Atomistic Front-End Process Modeling

A Powerful Tool for Deep-Submicron Device Fabrication

Martin Jaraiz University of Valladolid, Spain

SISPAD 2001, Athens

Thanks to:

P. Castrillo (U. Valladolid) R. Pinacho (U. Valladolid) I. Martin-Bragado (U. Valladolid) J. Barbolla (U. Valladolid) L. Pelaz (U. Valladolid) G. H. Gilmer (Bell Labs.) C. S. Rafferty (Bell Labs.) M. Hane (NEC)

Front-End Process Modeling

The Atomistic KMC Approach

Lattice Atoms are just vibrating

Output

Defect Atoms can move by diffusion hops

KMC Simulator

KMC simulates **Defect Atoms** only

Ion Implantation: The "+1" model "One excess Interstitial per Implanted Ion" (M. Giles, 1991) Atomistic KMC made quantitative calculations feasible (I):

Ion Implantation: The "+1" model Atomistic KMC made quantitative calculations feasible (II):

KMC Simulations (Pelaz, APL 1999) Dependence on:

Dose

10²

10⁻²`

10⁻⁴

10⁻⁶

10⁸

I-hops per site

Temperature / Dose-Rate

Total diffusivity almost constant for T<500C, in agreement with Jones et al.

27

40

30

20

10

Û

3.5

per ion

Interstitials

Sub-linear increase for intermediate doses, as observed by Packan et al.

Impurity Atoms: Boron (I)

Annealed B Profiles

KMC Simulations (Pelaz, APL 1999):

- Kick-out mechanism
- I_nB_m complexes

Accurate annealed profiles:

- Diffused B (substitutional)
- Immobile B (I_nB_m complexes)

Impurity Atoms: Boron (II)

KMC Simulations (Pelaz, APL 1999):

Accurate prediction of electrically active B

Impurity Atoms: Carbon (I)

KMC Simulations (Pinacho, MRS 2001):

- Kick-Out Mechanism
- I_nC_m Complexes
- Frank-Turnbull Mech.

Impurity Atoms: Carbon (II)

850°C ANNEALING

DEPTH (nnt)

Impurity Atoms: Carbon (III)

Extended Defects: Interstitials

Small clusters

Faulted loops

Perfect loops

TEM images from Claverie et al.

Cristiano et al.

Cowern et al.

Extended Defects: Interstitial {311}

Simulated in DADOS with their actual crystallographic parameters

311-defects dissolution

- Full damage simulation: No "+N" assumption
- Defect cross-section automatically given by defect geometry

200 s

Interstitial supersaturation ↓ Determines dopant diffusivity

2 x1013/cm2, 40keV Si B markers Si implant 10 19 as-grown 800°C 40m 10 18 1017 1016 10 15 0.8 12 0.0 0.4 1.6 Depth (µm)

Experimental data from Cowern et al.

Dislocation Loops

From Claverie et al.

DADOS Simulation

Loop energy < {311} energy if Number of atoms > 345

However, {311} can in fact reach sizes >> 345

Therefore, the $\{311\} \rightarrow$ Loop transformation cannot be based just on minimum configurational energy.

{311}→Loop: Activation Energy?

Extended Defects: Vacancies

- Big V-clusters are spheroidal (Voids)
- Energies from Bongiorno et al. (Tight-Binding)
- ⇒ But chemical / electrical effects are evident from experiments (Holland et al.):

 \leftarrow Isoelectric \rightarrow

Nearly same atomic Number & Mass

 \leftarrow Dopants -

Extended Defects: Vacancies (II)

Lattice / Non-Lattice KMC

Do we **need** Lattice KMC?

energetics. It is not clear the need for Lattice KMC

Amorphization:

- Massive lattice disorder
- Continuum spectrum of time-constants and atomic configurations involved
 Not amenable to atomic-scale KMC description for device sizes.

Implant: 50 KeV, 3.6x10¹⁴ Si/cm² (Pan et al., APL 1997)

Implementation (3D):

- Small (2nm-side) "damage boxes"
- Accumulate Interst. & Vacs. ("disordered pockets") up to a maximum number per box (MaxStorage)
 - This allows for dynamic anneal between cascades
 - Maintain the correct I-V balance in each box
- When a box reaches a given damage level becomes an "Amorphous region"
- Amorphous regions in contact with the surface or with a crystalline region recrystalize with a given activation energy.
- Any I-V unbalance is accumulated as the amorphous region shrinks ("dumped" onto adjacent amorphous boxes).

KMC Simulation

Implant: 50 KeV, 3.6x10¹⁴ Si/cm² (Pan et al., APL 1997)

800 C, 60 s (Pan et al., APL 1997) <110>

No net I excess within the amorphised layer I,V recombination dissolves {311} and Loops

Are V's being held in small, stable clusters, that prevent recombination?

Charge Effects: Implementation

• Charge state update – static (immobile species) – dynamic (mobile species) $\frac{[I^-]}{[I^o]} = \frac{n(x)}{n_i} \cdot \delta_{I^-}$

• Electric field(ξ) drift

modeled as biased diffusion

$$\begin{array}{c} \begin{array}{c} \hline P(+x) \\ \hline P(-x) \end{array} = exp(\frac{q \cdot \xi \cdot \lambda}{kT}) \end{array}$$

• n(x) calculated from charge neutrality approximation

no interaction between repulsive species

Charge Effects: Examples

Equilibrium conditions

Non equilibrium Phosphorous in-diffusion

• Inert

- Emission Rate = D0*exp(-(Ef+Em)/kT)
- Recomb. Probability = <u>Recomb. Length</u> Jump Distance

Oxidation:
 I-supersaturation
 V-supersaturation

⇒ Atomistic KMC can incorporate any currently available injection rate model (from SUPREM, etc)

Surface: Impurity Atoms

- Surface-to-Bulk: (Diffusion from the Surface)
 Given the Surface concentration calculate the corresponding mobile species emission rate.
- Bulk-to-Surface: (Grown-in, Implant,...)
 - 1. Monitor the number (N_A) of Impurity atoms that arrive at the surface.
 - 2. Emit the mobile species at a rate proportional to N_A up to the solubility limit.

In Atomistic KMC all mechanisms are operative simultaneously

Unforeseen effects can show-up when all mechanisms are included simultaneously

Examples:

- 1. Nominally "non-amorphising" implants (e.g. 40 KeV, 8×10¹³ cm⁻² Si) can still generate small, isolated amorphous regions due to cascade overlapping.
- 2. Self-diffusion Data (Bracht, Phys. Rev. B **52** (1995) 16542):

⇒ V parameters (Formation + Migration) The split (Formation, Migration) was chosen such that (together with the V cluster energies from Bongiorno, PRL) V clustering spontaneously generates Voids.

\Rightarrow Missing mechanisms can lead to missed side-effects.

Device Processing

Example:

A 20-nm NMOSFET (Deleonibus et al., IEEE Electron Dev. Lett., April 2000)

Device Processing

15s @ 950 C

DADOS Simulation

Calculation region: $100x70x50 \text{ nm}^3$ S/D Extension: 3 KeV, 10^{14} As/cm^2 S/D Deep-Implant: 10 KeV, $4x10^{14} \text{ As/cm}^2$ (?) Anneal: 15 s @ 950 C

Anneal CPU time on a 400 MHz Pentium-II: **32 min Deep-Implant also simulated** (Extension only: 5 min)

Deleonibus et al., IEEE Elec. Dev. Lett., April 2000

Atomistic KMC can handle:

- All these mechanisms
- Simultaneously
- Under highly non-equilibrium conditions
- In 3D

Atomistic Front-End Process Simulation can advantageously simulate the processing steps of current deep-submicron device technology.