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ABSTRACT 
 
 The level of sophistication reached by today's Si device fabrication technologies has 
called for new modeling and simulation schemes, capable of handling the wide variety of 
interaction mechanisms that govern the complex phenomena that can occur at the atomic level. 
The kinetic Monte Carlo (KMC) technique seems particularly apt for this task. It takes as input 
basic materials parameters, derived from ab-initio calculations or from experiments, and is 
capable of carrying out a detailed simulation up to the dimensions and time scales of current 
ULSI Si device manufacture. In addition, it can accommodate and efficiently simulate complex 
interactions between multiple dopant and defect types. We explain the approach and show 
examples of application in both materials processing and device fabrication. Finally, we present 
the use of some artificial intelligence techniques (namely, genetic algorithms) that look most 
promising as methodologies that can easy and efficiently be employed to build the extensive 
KMC parameter database. 
 
INTRODUCTION 
 

As a result of the efforts to make progress into the deep submicron IC technology, silicon 
processing is facing an increasing level of complexity. And this situation can only worsen as it is 
pushed closer to the limit of its possibilities, limit that is expected to be reached around the end 
of this decade. Front end processing, in particular, is trying to extend the use of conventional and 
well established doping techniques (ion implantation plus furnace/RTP annealing) into this size 
regime (quarter-micron to deca-nanometer). However, many new effects show up when those 
techniques, well suited for larger feature sizes, are applied to sub-quarter micron processing. 
Since many of these effects are concurrent, the interpretation of experiments becomes ambiguous 
and the use of predictive process simulation becomes almost imperative. Atomistic Kinetic 
Monte Carlo (KMC) process modeling seems especially apt to fulfill these needs and is, thus, 
emerging as a most valuable simulation tool in the forefront of advanced materials processing 
research. 
 
THE PROBLEM: COMPLEX PROCESSING SCENARIOS 
 

Figure 1 shows a cross-sectional view of the simulation of a typical step in current front 
end processing: the annealing of a low energy (5keV) As implant to form the source/drain 
extensions of an N-channel MOS transistor. For that simulation to be truly predictive, physical 
modeling becomes essential because: 



1. There are many different species present: 
Vacancies (V), self-interstitials (I), arsenic, 
boron, native carbon and oxygen. 

2. There are many different interactions: I-I, I-B, 
I-C, V-O, C-I-O, … 

3. Highly non-equilibrium conditions: Pair 
reactions, … 

4. Extended defects: V voids, I {311}'s, 
dislocation loops, … with emission/capture 
rates which are size and shape dependent. 

5. Minimum thermal budget, just enough to 
achieve electrical activation. 

6. 2D (short channel) and 3D (narrow channel) 
effects. 

7. Local inhomogeneities: dopant discreteness 
and clusters. 

 
SIMULATION APPROACHES 
 

Continuum-type process simulators (which are based on partial differential equations) are 
still the dominant -if not the only- type of simulator used in the semiconductor industry. 
However, dealing with the above list becomes practically intractable for such a type of simulator: 
the number of equations would lead to a prohibitive computation time, leaving aside questions 
like the size/shape dependent cross-sections of extended defects, to just mention one. 

Alternatively, molecular dynamics (MD) can only simulate small regions and -most 
importantly- very short times, typically less than a nanosecond. This is due to the fact that MD 
follows the dynamics of every atom -including the vibration of each individual lattice atom- and 
there is a common timestep for all of them (typically around 10-15 s). By introducing a bias 
potential to accelerate some transitions, it has been possible to extend an MD simulation up to 
220 microseconds [1] in a small computation cell (55 moving atoms). However, even that 
improved MD scheme is still far from being able to simulate a typical processing step. 

Instead, the KMC technique seems remarkably suitable to act as a bridge between 
elemental mechanisms (described at the atomic size and time scales) and the times and sizes 
involved in typical materials processing steps. In other words, it is possible to, for instance, 
simulate the front end processing (implants and anneals) followed to fabricate a sub-quarter 
micron transistor, while still using an atomistic level of description throughout the entire 
simulation. 
 
THE KINETIC MONTE CARLO APPROACH 
 

Figure 2 illustrates the basic two ideas from which the KMC draws its strength: 
1. Only the atoms belonging to defects are considered in the simulation. The "background" 

lattice atoms are just vibrating around their lattice site position and, thus, need not be 
included.  

2. Instead of a fixed timestep, KMC simulates the sequence of events (point defect 
emissions, jumps, captures, …) and calculates the (variable) elapsed time between events. 

Figure 1. Cross-sectional view of a 
simulated S/D extension, where many 
different physical mechanisms need to be 
included for the simulation to be predictive.



The timestep can, in fact, change 
automatically from picoseconds to hours and back 
to nanoseconds, depending on the defects present 
as the simulation evolves. The sequencing of 
events and the calculation of the time elapsed 
between two consecutive events is done based on 
the current defect configuration (see Ref. [2] for 
details). 

One of the advantages inherent to an 
atomistic defect description is that the definition 
of the defect interactions is outstandingly simple 
and computationally efficient. For instance, the 
following excerpt from the DADOS source code 
initiates a V cluster when a V jumps and finds 
another V within its capture radius neighborhood. 
If, instead, the interacting particle is an interstitial 
Boron atom (Bi), then these two particles (jumping V and neighboring Bi) are deleted and 
replaced by a substitutional Boron: 

… 
    case Vacancy:  // jumping particle is a V 
  switch ( neighbor ) 
  { 
        case Vacancy: 
   return new Cluster<Vacancy>; 
  case Bi: 
   this->delete(); 
        neighbor->delete(); 
   return new PointD<Boron>; 
… 
    case Interstitial: // jumping particle is an I 
… 

In this way, different types of interactions between defects can be easily defined. 
Furthermore, since the 'switch' statement directly jumps to the corresponding 'case' clause, 
virtually any number of interactions can be included without degrading the simulation speed. 

Another distinct feature of the atomistic KMC approach is that, since extended defects 
are built as agglomerates of individual particles (atoms), the actual 3-D defect geometry can be 
represented accurately. This, in turn, means that the variation of the capture cross-section can be 
handled automatically -to a first approximation- as the defect's size and shape evolve. For 
example, the {311} defects use as capture region the superposition of the capture regions of the 
constituent self-interstitial atoms. Although this may not be totally accurate, it follows quite 
closely the growth and shrinkage of the defects and their relative capture strength. In any case, 
the uncertainties in the binding energies and prefactors will usually dominate over the minor 
inaccuracies still present in the capture cross-section obtained by the above-mentioned 
superposition.  
 
SIMULATION EXAMPLES 
 

A variety of examples that exhibit some of the distinctive features of the atomistic 

Figure 2. In the KMC approach, only 
the atoms in defects (represented as 
open and closed circles) are followed 
(TEM courtesy of D. Eaglesham). 



modeling approach can be found elsewhere [2]. Here we 
will briefly describe two more cases where the KMC 
approach reveals itself as a unique simulation tool for 
modeling some special processing effects. 
 
1. The "+n" Number at Low Implant Doses 
 

As a first example of some of the features that can 
best -if not only- be described with this type of simulation, 
Figure 3 illustrates the difference between the atomistic 
(KMC) and the continuum modeling of a low dose implant 
(non-overlapping cascades). In both cases the 
concentration depth profile is the same. However, in the 
atomistic view, two distinct cascades can be identified, 
separated by an undamaged region. As a consequence, the 
balance intracascade/front surface recombination is 
different from the continuum representation. Figure 4 
(from Ref. [3]) shows the dependence of the "+n" number 
(number of I's left after all V's have recombined, per 
implanted ion) with the dose. For medium/high doses, the 
+n is about 1, in agreement with the empirical "+1" rule. 
However, for low doses the predicted +n number goes up 
to very high values and then saturates, when the distance 
between cascades is comparable to the implant range -
distance to the surface- because for lower doses the cascades are essentially isolated an only 
interact with the surface. It has also been observed experimentally that the enhanced diffusivity 
increases sub-linearly with dose [4]. 
 
2. Local Inhomogeneities 
 

The trend to reduce the physical dimensions of devices has come to a point in which the 
discreteness of the dopants and the granularity introduced by the presence of clusters can play a 
role in the final operation of the device. The discreteness of the channel dopants, in particular, 
has been shown to lead to an average shift of the threshold voltage as well as to a source/drain 
asymmetric behavior in sub-0.1µm MOSFETs [5, 6]. The formation of clusters can, likewise, 
give rise to local inhomogeneities in the dopant distribution. Figure 5 demonstrates this concept. 
The left panel (100nm×100nm) shows a typical situation during a high temperature annealing 
step: {311} defects of different sizes are emitting and capturing self-interstitials but, since the 
small {311}'s have a higher emission rate than the big ones, there is a local increase around the 
small {311}'s in the number of self-interstitial hops (right panel) which increases the boron 
diffusivity and decreases its concentration locally. Atomistic modeling is, again in this case, a 
unique tool to account for these anomalies in the redistribution of dopants during high 
temperature processing. 

Figure 3. Two different views of the 
same low dose implant. 

Figure 4. Dependence of the "+n" 
number on the implanted dose. 



 
OBTAINING KMC PARAMETERS IN COMPLEX SCENARIOS 
 

The KMC scheme can do atomistic simulations with an exceptionally high level of 
accuracy and detail, and still reach the macroscopic time and length scales involved in some 
standard processing steps. Furthermore, adding new models is a fairly straightforward task that 
does not degrade performance noticeably. The main challenge it has to face for modeling 
complex processing scenarios is that of obtaining the parameters (migration and binding energies 
and prefactors) for the different species and defects involved. Fortunately, there is a growing 
awareness in the materials science community towards the exceptional tools that Artificial 
Intelligence (AI) techniques can nowadays offer to help handle such complex scenarios. 
Evolutionary Computation (Genetic Algorithms (GA), Genetic Programming (GP), Neural 
Networks (NN), …) in particular, "is one of the fastest growing areas of computer science" and 
"it is addressing complex engineering problems that were previously beyond reach" [7]. For 
example, a GA has been employed to find the minimum energy configuration of carbon clusters 
up to C60 [8]. For that purpose, although there had been many previous attempts to generate the 
C60 buckyball structure from simulated annealing, none had yielded the ground structure [8]. The 
problem posed to the GA was to find the minimum energy configuration of 60 carbon atoms, 
starting from random coordinates. Assuming only 10 possible values for each coordinate and 
ignoring symmetries there are 10180 possible configurations to be evaluated (as a reference, the 
Universe is about 1018 s old). Yet, although the GA looks almost like a random search, it found 
the solution after less than 6000 steps. Minimum energy configurations have also been studied 
for freestanding Si clusters using this technique [9]. 

We have used [10] a GA [11, 12] to find the unknown C-related parameters (InCm 
clusters energies, mainly) that optimize the fit to experimental SIMS profiles. We define (see 
Figure 6) a chromosome (also called genome or individual) as a particular set of values (alleles) 
each corresponding to one of the parameters (genes) to be optimized. Each chromosome is 
tagged with a fitness value that is a measure of how good a solution that chromosome is. The 

Figure 5. The small {311} clusters dissolve faster than the big ones (left panel). This leads to a 
local increase in the number of self-interstitial hops (right panel) that increases the boron 
diffusivity and decreases its concentration locally. 



chromosome's fitness can be evaluated by running a DADOS simulation and taking the inverse 
of the area between the resulting profile and the experimental SIMS profile. Those simulations 
need not be too accurate since we only need a rough (fairly noisy) profile, just enough to be able 
to decide which chromosome is best when comparing two of them. Instead, we will need to run 
many (hundreds or thousands) of those simulations and, therefore, they have to be very short. In 
our case they were 2-3 minutes long, and we needed between 200 and 800 to find the best fit. To 
achieve such fast simulations, the jump distance was increased (by a factor of 8) and the capture 
probability was corrected appropriately. The final solutions were always verified by running 
simulations with the original jump distance (0.345 nm). 

Once we have defined the chromosomes and the fitness evaluation we can apply the GA 
scheme (Figure 7). After the initial random generation of a population (N individuals) two 
parents are selected for crossover, with a probability proportional to their fitness. Crossover is 
performed by random exchange of some genes between the two parents. To ensure that the 
population does not get trapped in a local optimum, there is also a probability of randomly 
changing some of the genes (mutation). There are, of course, many other possible ways of 
defining these operations. This is only meant as an example to illustrate the basic concept of GA. 
The new individuals are then evaluated (fitness), the best N individuals are selected as the new 
population, and the process is repeated. 

Besides its simplicity, the GA approach is totally general in that it works without any 
specific knowledge of the problem (response surface, gradients, etc.). Other techniques borrowed 
from AI, like Genetic Programming [13], are also increasingly been used in connection with 
materials science problems. 

EC2I ECI2 EC2 …   “Genes” 
“Chromosome”: 1.3 2.0 1.9 … … 

Fitness 

8.3

DADOS simulation 

Figure 6. The fitness of a chromosome (i.e. a particular set of values) is evaluated by 
running a DADOS simulation and comparing the resulting profile with the experimental 
SIMS profile. 



CONCLUSIONS 
 

Atomistic process modeling, based on the kinetic Monte Carlo approach, provides 
detailed and accurate simulations of materials and device processing. In addition, it is fairly 
straightforward to define new models. It is especially apt for the simulation of complex 
processing situations where many interacting species and defects are present simultaneously. In 
such contexts, the limiting step might be the availability of the KMC parameters needed. 
Fortunately, artificial intelligence techniques (particularly, genetic algorithms), which are 
increasingly been adopted by the materials science community, can offer invaluable help in the 
acquisition of those KMC parameters. This synergy, just beginning to be explored, looks most 
promising for the advancement of materials research. 
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Figure 7. A Genetic Algorithm scheme. 


