
6.7.58 Process Simulation - Atomistic 
 
The diffusion of point defects, whose interactions can lead to the formation of extended defects, is a 
fundamental physical process at the root of most materials processing steps. Until recently, the diffusion 
process was modeled almost exclusively on the basis of the continuum approach and on partial differential 
equation (PDE) solvers. The main reason for taking such an approach was that it is less computationally 
expensive than any of its atomistic counterparts. However, the level of sophistication reached by today's 
materials processing technologies is calling for new modeling and simulation schemes, capable of handling 
the rich variety of interaction mechanisms that govern such complex processes at the atomic level. The 
Kinetic Monte Carlo technique seems particularly apt to fill in that gap. 
 
 
1. The Kinetic Monte Carlo (KMC) Approach 
Molecular dynamics (MD) is the most accurate atomistic simulation technique. However, due to the fact 
that it simulates all the lattice atoms and, most importantly, that it uses an almost constant timestep on the 
order of the femtosecond (10-15 s), it cannot simulate the time scales involved in typical technological 
processing steps (seconds to hours). The kinetic Monte Carlo method, instead, is an event-driven technique, 
i.e., simulates events (e.g. diffusion hops) at random, with probabilities according to their respective event 
rates. In this way it self-adjusts the timestep as the simulation proceeds, just to be able to account for the 
fastest event present at that time. In what follows, the KMC simulator DADOS (Jaraiz et al. 1996, Jaraiz et 
al. 1998) will be used as a reference. 
 
1.1 Simulation Scheme 
Figure 1 illustrates the concept behind the KMC approach: the figure shows a high resolution TEM view 
(Eaglesham et al. 1994) of a silicon sample with a {311} extended defect embedded in the silicon atomic 
rows. In MD, all lattice and defect atoms are simulated. In KMC, only the atoms belonging to point or 
extended defects (represented as circles on the TEM view) are simulated. In the actual sample, all lattice 
atoms would be vibrating (with a period of about 10-13 s) and, from time to time (e.g. every 10-9 s), one of 
the isolated point defects would jump to a neighboring position where it might be captured by an adjacent 
extended defect. At even longer time intervals (e.g. every 10-3 s) a point defect would be emitted from the 
extended defect. To simulate this, KMC starts out with timesteps of about 10-9 s, since it only follows the 
defect atoms. In addition, the fast moving point defects disappear very quickly, leaving only the extended 
defect and allowing the timestep to automatically be raised to 10-3 s. 
A key component in a KMC simulator is the event manager or “Scheduler”, which is the procedure 
responsible for selecting the random events according to their event rates. Fig. 1 illustrates the selection 
procedure for a configuration consisting of 3 vacancies (V), 2 interstitials (I) and one {311} defect. Let’s 
assume that the vacancy and interstitial jump rates are 1000 s-1 and 100 s-1 respectively, and the {311} 
emission rate is 10 s-1. Then, to simulate 1 s we need to simulate a total of 3210 events. In addition, we 
have to pick a V with a probability proportional to 3000/3210, an I with a probability proportional to 
200/3210 and the {311} with a probability proportional to 10/3210. 
A KMC simulator consists of a 3D simulation box, of dimensions ranging from tens of nanometers to a few 
microns, where point defects can be created and allowed to jump and interact. For instance, to simulate an 
ion implantation step, a BCA (Binary Collision Approximation) code can be used to generate the 
coordinates of the I’s and V’s for each cascade, allowing for some annealing between cascades to account 
for dose rate effects. Or I’s can be generated at one of the box surfaces to simulate an oxidation step.  
 
1.2 Defect Types 
In DADOS, each defect atom is represented by a point, with coordinates (x, y, z) and a common interaction 
radius, in a 3D simulation box. It is, therefore, very easy to build any type of defect by either the 
transformation of existing point defects or by agglomerating jumping point defects to form an extended 
defect like the {311} shown in Fig. 1. Extended defects can be modeled replicating the actual geometry of 
the defect: vacancies can form spherical clusters (voids), interstitials can grow elongated stripes ({311}’s), 
or planar dislocation loops and stacking faults. Modeling the actual geometry improves the accuracy of the 
emission and capture rates, and can become essential in the proximity of the surface. A free surface is 
treated as a particular type of extended defect, and is included in the Scheduler with I and V emission rates 



derived from the surface area and the formation energy of the corresponding point defect. The interaction 
or capture region of an extended defect is the superposition of the capture spheres of the constituent 
particles. Finally, each type of capture process can have an associated capture energy barrier. 
 
1.3 Input Parameters 
In the current version of DADOS, a unique capture radius is used for all particles, equal to the jump 
distance, λ, which is taken to be the second nearest neighbors distance in silicon (3.84 Å). 
As an example of event rate, the interstitial jump rate is given by 
 

Jrate,I = 6 × D0 × exp( - Emig,I / kT ) / λ2 
 
where D0 is the diffusivity prefactor and Emig,I is the interstitial migration energy. Figure 2 represents the 
total energy of a system consisting of one boron and one silicon interstitial atom, as the system goes 
through different configurations. The intermediate configuration corresponds to an IB pair that is assumed 
to be immobile, whereas Bi stands for a mobile interstitial boron. The activation energy for the emission of 
a Bi from the IB pair is: 
 

Eact,Bi = Ebind,Bi + Emig,Bi 
 
where Ebind,Bi is the binding energy of the interstitial boron. These energies, obtained from ab initio 
calculations (Zhu et al. 1996) or estimated by fitting experimental data, are then used in the Scheduler to 
calculate the event rates and decide which event to perform next.  
In addition to point defects, a full KMC simulator should implement models for a variety of extended 
defect types like the above mentioned surfaces, clusters and complexes (e.g. BmIn). Fig. 3 is a plot of the 
activation energy for the emission of an interstitial from interstitial clusters of different sizes, as derived 
from experimental measurements (Cowern et al. 1999a). The binding energy for a vacancy cluster (void) of 
size N is the energy difference between two configurations for N vacancies: a single vacancy plus a size N-
1 void, and a size N void. Assuming that the void energy is proportional to the number of vacancies at its 
surface, taking 3.65 eV as the vacancy formation energy at the free surface and choosing the prefactor to fit 
the experimental activation energy for the divacancy, the vacancy binding energy is (Jaraiz et al. 1998) 
 

Ebind,V = 3.65 + 4.9 × [ (N-1)2/3 – N2/3 ] 
 
Although this equation was used for all void sizes, a KMC simulator can equally well use a table of discrete 
values, just like in the case shown in Fig. 3 for the interstitial cluster energies. 
Finally, Table I collects some of the parameter values used in the current version of DADOS for the boron-
interstitial complexes, BmIn (Pelaz et al. 1997). 
 
 
 
2 Simulation examples 
The capabilities of the KMC approach as a materials process simulator, establishing a direct link between 
atomistic parameters and standard process experimental data, have been explored over the last few years 
with the most encouraging results. The following examples show some of the unique capabilities of this 
type of process simulator. 
 
2.1 Voids 
High dose implantation of heavy ions at elevated temperatures (to prevent amorphization) can lead to the 
agglomeration of vacancies to form large vacancy clusters (voids), with rounded shapes that are visible by 
TEM. Due to the momentum of the heavy ion, the silicon atoms are knocked deeper into the substrate 
leaving behind a vacancy rich region near the surface, where the voids are formed. Voids can be used as 
gettering centers because their internal surface behaves like a clean silicon surface. Figure 4 (Holland and 
White 1991) shows a cross-sectional view of a 100 keV, 1016 cm-2 As+ implant. Beam heating with a high 
flux ion beam was used to prevent amorphization. A 45 nm region can be identified, extending from the 
surface, which contains a high density of voids followed by a band of dislocations extending up to about 
200 nm. Although in this case the temperature can only be roughly estimated, the DADOS simulation, 



shown at the same scale in the bottom figure, also predicts the formation of voids and interstitial clusters 
within the same depth ranges under those implant conditions. 
 
2.2 {311} defects 
Figure 5 (top) shows a plan view TEM of a 40 keV, 5×1013 Si+/cm2 implant after annealing at 800 °C for 30 
s (Stolk et al. 1995) and the corresponding DADOS simulation (bottom). This type of simulator has been 
shown to be able to yield very accurate quantitative predictions of the time evolution of the interstitial 
defects (Cowern et al. 1999b). In addition, and unlike the continuum models, this simulator also describes 
the actual geometry of the defects, which can play an important role in low energy implants, where their 
size is comparable to the distance to the surface. 
 
2.3 The “+1” model 
The damage generated during ion implantation induces transient enhanced diffusion (TED) of dopants that 
diffuse interstitially, like boron. In the current trend towards small thermal budgets, it has become essential 
to model TED in order to predict device profiles. In spite of the complexity of the process associated with 
the annealing of the damage, the “+1” model (Giles 1991) has been very successful for predicting TED. 
According to that model, only one excess interstitial is left per implanted ion, since the ion becomes 
substitutional and the Frenkel pairs quickly recombine during annealing. This empirical rule, also verified 
experimentally by counting the number of interstitials in {311} defects (Eaglesham et al.1994), was first 
corroborated theoretically by KMC simulations of a 40 keV, 5×1013 Si+/cm2 room temperature implant 
followed by an 800 °C anneal (Jaraiz et al. 1996). There are conditions, however, where the “+n” factor is 
experimentally known to significantly deviate from the +1 rule. KMC simulations can, in those cases, help 
understand and quantitatively predict the effective “+n”. 
For instance, Figure 6 (Pelaz et al. 1999) is a plot of the total number of interstitial hops per lattice site 
versus the implanted dose, for a 10 keV Si implant, after a 10 min anneal at 800 °C. The number of 
interstitial hops per lattice site is proportional to the time averaged diffusivity of interstitial diffusing 
dopants like boron. In the figure, the “+n” factor is defined as the ratio between the number of hops using 
the total damage to that using only the “+1” model. For very low doses the effective +n increases as the 
overlap between cascades decreases and interstitials can hop longer distances before they recombine. In the 
low dose limit, the +n saturates at the value corresponding to isolated cascades interacting with the surface 
only. 
As another example, Figure 7 (Pelaz et al. 1998), shows the enhanced boron diffusivity as measured in the 
experiment (Griffin et al. 1993) compared with the total number of silicon interstitial hops per lattice. 
Simulations including all the Frenkel pairs generated in the cascades and using only the +1 model, are 
plotted. Notice the deviation of the +1 model from the experimental values and the excellent prediction of 
the full KMC simulations. 
In these simulations, the advantage of the KMC versus the continuum approach relies on the fact that the 
former is almost insensitive to the particular diffusivity values used. This is so because it mimics the 
random walk and, therefore, reduces the recombination problem to the probability that an interstitial meets 
a vacancy along its random path. Now, that probability is a function of the jump distance and of the capture 
radius, which should not be off by more than a factor of, say, two or three. The diffusivities and reaction 
rates used in the continuum approach, on the contrary, can be off by orders of magnitude. 
 
2.4 Boron diffusion and clustering 
A notable progress was also achieved in the long standing problem of boron diffusion and clustering 
through the use of KMC simulations (Pelaz et al. 1997). Besides TED, implanted boron also exhibits the 
problem of incomplete electrical activation, which was attributed to clustered boron although there was 
little understanding of the specific mechanisms leading to the coalescence of the electrically inactive 
component. In this case, the easiness provided by the KMC simulator for implementing and testing 
complex mechanisms was crucial to find a model whereby boron clustering is initiated by the nucleation of 
immobile cluster “precursors” consisting of a boron atom and several silicon interstitials, for example BI2. 
Figure 8 (Pelaz et al. 1997) shows the SIMS profiles in a sequence of anneal times at 800 °C along with the 
simulation results. Notice the excellent agreement between the model and the experiment over the entire 
run. The predicted electrically inactive or clustered boron also agrees well with spreading resistance 
profilometry data (not plotted in the figure). This model provides parameters and suggests simplified 
mechanisms that can be implemented in continuum process simulators. 



 
2.5 3D process simulation: 50 nm MOSFET 
The complexity of the atomic level interaction mechanisms involved in today’s semiconductor device 
processing is a subject of concern for the microelectronics industry, as already manifested in the 1997 SIA 
Roadmap (NTRS 1997 p. 188): “Continuum physics models are no longer sufficient below 100 nm. Tools 
are needed for the physical and chemical processes at an atomic level”. Furthermore, the discreteness of the 
channel dopants has been shown to give rise to both a shift of the threshold voltage (as compared to the 
prediction from the continuum approach) and to an asymmetry in drain current upon interchanging the 
source and drain (Wong and Taur 1993). Figure 9 is a sketch of the simulated region of a 50 nm N-
MOSFET including the 40-nm S/D extension and half the channel region. The processes simulated are (1) 
5 keV, 1014 As/cm2 S/D extension implant, (2) 70 keV, 1013 BF2/cm2 SPI implant and (3) 10s, 950 °C 
anneal. Figure 10 shows a snapshot of the simulation after 25 ms annealing, time at which the average 
{311} size reaches its maximum. This configuration is analyzed in four separate views. Figs. 10 (a) and (b) 
are plan views of the {311} defects and As implanted atoms, respectively. Figs. 10 (c) and (d) are cross 
sectional views. Assuming non-amorphizing conditions, microvoids form near the surface whereas 
interstitials are pushed beyond the As implant range due to the heavy As ion mass. The Si interstitials 
generated by the arsenic implant induce TED on the boron already present in the channel, depleting the 
channel to S/D transition region and leading to the reverse short channel effect, of detrimental 
consequences in deep sub-micron devices. The KMC simulation of sub-0.1 µm devices can be even more 
computationally efficient than the full model 3D continuum approach and, in addition, it provides a 
simulation with an unprecedented level of detail. In particular, the KMC method is especially apt for the 
study of atomic scale spatial correlation associated to the discreteness of the dopants. In summary, the 
KMC technique can also be used to implement a new type of device processing simulator, that looks 
particularly well suited to tackle the problems posed to today’s TCAD systems. 
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Table 1. 
Simulation parameters for B-I agglomerates. En,m is the potential energy of a BnIm complex. Energies are in 
eV. 
 
DBi=10-3 exp(-0.3/kT) cm2/s Ebinding(BI)=1, Ebinding(BI2)=1.2 

E2,0=0.0  E2,1=-2.1, Ebarrier=0.5 E2,2=-4.8 
E3,0=-0.8  E3,1=-4.0   E3,2=-5.5, E3,3=-6.8 
E4,0=-1.2  E4,1=-5.0   E4,2=-6.4, E4,3=-7.4, E4,4=-8.5 

En,m=-0.2n-2.0m, n≥5; Ebarrier=1, n=5 



Figure captions 
 
 
Figure 1.  
TEM view of an extended {311} defect in silicon (Eaglesham et al. 1994). Circles represent the (defect) 
atoms simulated by the KMC method. As an example, the figure illustrates the emission of an interstitial (I) 
from the {311} defect and its eventual recombination with one of the vacancies (V) present in the sample. 
 
Figure 2.  
Total energy of a boron atom and a silicon interstitial as the system goes through different configurations. 
A (mobile) interstitial point defect, jumping with a migration energy Emig,I , can find a substitutional B atom 
and give rise to an immobile IB pair. Subsequently, the IB pair can transform into an interstitial boron 
atom, migrating with an energy Emig,Bi . Eb,Bi and Eact,Bi are the binding energy of the Bi defect and the 
activation energy of the IB à Bi process, respectively. 
 
Figure 3.  
Emission energies of interstitial clusters as a function of the size, as derived from experimental 
measurements at three different temperatures (Cowern et al. 1999a). 
 
Figure 4.  
Cross-sectional TEM of a beam-heated, 100 keV, 1016 cm-2 As+ implant (Holland and White 1991), 
compared with the corresponding simulation using DADOS, drawn to the same scale (units are nm). 
 
Figure 5.  
Plan view TEM micrograph (Stolk et al. 1995) (a) and DADOS simulation (b) of a 40 keV 5×1013 cm-2 
silicon implant after a 30 s annealing at 800 ºC, exhibiting {311} defects. 
 
Figure 6.  
Total number of interstitial hops per lattice site versus the implanted dose, for a 10 keV Si implant, after a 
10 min anneal at 800 °C. The results of a full Monte Carlo simulation are compared with those of a 
simulation using the “+1” approximation. The “plus factor” is given by the ratio of the two curves (Pelaz et 
al. 1999). 
 
Figure 7.  
Experimental time averaged diffusivity (Griffin et al. 1993) and simulated total number of interstitial hops 
per lattice site for (a) equal range implants (R ~ 45 nm: 15 keV B, 35 keV P, 80 keV As) and (b) equal 
energy implants (35 keV), after 120 min at 750 ºC anneal curves (Pelaz et al. 1998). 
 
Figure 8.  
Experimental SIMS profiles (thin lines) and DADOS simulation profiles (thick lines) for a boron doped 
layer after a 40 keV 9×1013 cm-2 silicon implant and anneal at 800 °C. Thick dashed lines are the simulated 
boron in clusters (Pelaz et al. 1997). 
 
Figure 9.  
50 nm N-MOSFET corresponding to the process described in the text. The simulated region is also 
indicated in the figure.  
 
Figure 10.  
Simulated atomistic configurations of the device of Figure 9, after a short annealing of 25 ms.   (a) and (b) 
are plan views of the {311} defects and As implanted atoms, respectively, while (c) and (d) are their 
respective cross sectional views. 
 


