Kinetic Monte Carlo Simulation: an Accurate Bridge Between Ab-Initio Calculations and Standard Process Experimental Data

M. Jaraíz, P. Castrillo, L. Pelaz, L. Bailon, J. Barbolla

University of Valladolid, Spain

G.H. Gilmer and C.S. Rafferty

Lucent Technologies, Bell Labs, USA

Outline

- Why Kinetic Monte Carlo?
- Ion Implantation damage simulation:
 - Simulation Scheme
 - Examples
- Polycrystalline thin film deposition:
 - Nucleation and Grain Boundaries
 - Examples
- Channeling Implants: Relevance of the Electron Density Distribution

The Kinetic Monte Carlo approach

- Simulate only defects (Point & Extended)
- Use ab-initio or classical MD (off-line) to get the necessary parameters (migration energies, binding, ...)
- Use BCA to generate each cascade (I,V coordinates)
- Anneal using kinetic Monte Carlo (kMC)

Atomistic Simulation of Diffusion and Clustering

SIMULATION SCHEME

SIMULATION BOX

LATERAL

BOUNDARY

FRONT SURFACE

BACK SURFACE

DEFECT TYPES 1. POINT DEFECTS

- SINGLE POINT DEFECTS: V, I, B, C, ...
 POSSIBLE EVENT: JUMP Jrate = 6 * D_o * exp (-Ea / kT) / L²
- PAIR POINT DEFECTS: IB, Bi, VO, ...
 - POSSIBLE EVENTS:
 - JUMP:
 - BREAK UP: $IB \rightarrow I + B$
 - SWITCH: $IB \rightarrow Bi$

INTERACTION BETWEEN DEFECTS:

- CAPTURE RADIUS = 3.84 Å
- WITH / WITHOUT AN INTERACTION BARRIER

DEFECT TYPES 2. CLUSTERS

{311}'s

• SHAPES:

- IRREGULAR (blob): V, B, C, ...
- SPECIFIC:
 - VOIDS
 - {311}'s
 - DISLOCATION LOOPS
 - STACKING FAULTS

• **POSSIBLE EVENTS:**

- CAPTURE of a point defect
- EMISSION of a point defect

DEFECT TYPES 3. COMPLEXES

COMPOSITION: BINARY: I_nB_m, I_nC_m, V_nO_m, ... TERNARY, ...

SHAPE: IRREGULAR (small sizes)

POSSIBLE EVENTS: CAPTURE or EMISSION of a point defect (SINGLE or PAIR)

Trap

Trap

DEFECT TYPES 4. SURFACES

FREE SURFACE (Front): THERMAL I-V GENERATION Neutral, Oxidation (I),Nitridation (V) SINK for point defects: from perfect SINK to perfect MIRROR (energy barrier)

BULK (Back surface): DELAYING SURFACE: Random walk

Random walk Bulk Traps Re-emission from Traps

SIMULATION SCHEDULER

EXAMPLE:		n	J _{rate} (jumps/s)	Total Jumps/s
	V	2	1000	2000
		5	10	50

- To simulate 1 second anneal we need to simulate 2050 Jumps $\Rightarrow \Delta t = 1/2050$ seconds per Jump
- We have to pick up V's and I's with a probability of 2000/2050 and 50/2050, respectively.

DIFFUSION SIMULATOR

SIMULATION EXAMPLES

AT THE UNIVERSITY OF VALLADOLID WE HAVE IMPLEMENTED A FAST ATOMISTIC SIMULATOR : DADOS

(Diffusion of Atomistic Defects, Object-oriented Simulator)

PERFORMANCE: 1.4 seconds / Million events (450 MHz Pentium II Xeon, Microsoft Visual C++ compiler)

On average, <u>simulates one event in the time it takes to</u> calculate three Jump rates:

Jrate = $6 * D_o * exp(-Ea / kT) / I^2$

Anomalous Boron Diffusion in Silicon Processing

Anomalous Boron Diffusion in Silicon Processing: Experimental data (SIMS) and Kinetic Monte Carlo simulation

Appl. Phys. Lett. 70, 2285 (1997)

Ion Implantation damage in Si: {311} self-interstitials Defects

DADOS simulation

40 keV Si implant

after **5 seconds** at 800C

Experiment (TEM)

DADOS simulation

40 keV Si implant

after **<u>30 seconds</u>** at 800C

Experiment (TEM)

Energetics of {311} Defects

Interstitial Supersaturation vs. Annealing Time

Cowern et al, Phys. Rev. Lett., in press

Dopant Fluctuations

Discreteness of Channel Dopants =>Average Shift of Threshold Voltage

H.S Wong and Y. Taur, IEDM 93

A. Asenov, IEDM 98

=> Do the local inhomogeneities due to clusters induce a spatial correlation in the dopant atoms?

Comparison between same dopant depth distributions generated:

•Randomly

•With the actual ion cascades

Radial Distribution Function

=> The diffusion process fully randomizes any local inhomogeneities due to clusters However, diffusion of <u>charged</u> point defects could still give rise to <u>space</u> <u>correlation</u> (local fluctuations).

In fact, similar effects have been shown to occur in the oxide charge distribution in MOS structures => increase in the effective mobility.

F. Gamiz et al., Semic. Sci. And Technol. 9, 1102-1107 (1994)

0.12 μm MOSFET

Towards sub-0.1 μ m technology

TEM micrograph: F. Baumann

KINETIC LATTICE MONTE

CARLO SIMULATION OF

POLYCRYSTALLINE

THIN-FILM DEPOSITION

INTRODUCTION

Aluminum: Polycrystalline structure

* Y-S Kang et al, J. Electron. Mater. 26, 805 (1997)
* S.P. Murarka, "Metallization", Butterworth-Heinemann, 1993

Microstructure of the deposited films during deposition and annealing:

Grain sizes, surface texture

It depends on: temperature, deposition rate, substrate conditions

Random initial position on the top of the simulation box Random velocity angles according to the desired angle distribution.

Atom travels in a straight line until either:

 It finds some neighbors: it finally get attached to the lower energy site in the neighborhood

It finds no neighbors: It starts a new orientation.

 \rightarrow

GRAIN BOUNDARIES

Jump to the Site which minimizes the energy: Grain growth competition

TABLE II. Prefactor (D_a^0) and migration energy (E_m) of each atom used in the MC model is given as a function of coordination (M_i) at the top; and self-diffusion coefficient (prefactor, D_r^0 , and activation energy, Q) on three low index surfaces are given below. For comparison, results according to MD^a and LDA^b calculations are also listed. (The unit of the prefactor is cm²/s, that of energy is eV.)

$ \frac{M_i}{D_a^0} $ $ E_m $	3 2.0×10 ⁻⁴ 0.10	4 4.0×10 ⁻ 0.33	5 4.0×1 0.33	60^{-3} 1.0×3000	5 10 ⁻² 1.0 50	7 ×10 ⁻² 0.60	8 1.0×10 ⁻² 0.60	9 1.0×10 ⁻² 0.60	10 1.0×10 ⁻² 0.60	$ 11 1.0 \times 10^{-2} 0.60 $
Diffusion	Surface	MC	(111) MD	LDA	MC	(100) •MD	LDA	мс	(110) MD	LDA
D Q	0 5)	2.0×10 ⁻⁴ 1.04	4.3×10 ⁻⁴ 1.02	2.0×10 ⁻⁴ 1.09	4.0×10 ⁻¹ 0.97	4.0×10 0.68	4 8.0×10 ⁻³ 0.73	4.0×10 ⁻³ 0.56	4.4×10 ⁻³ 0.56	1.0×10 ⁻² 0.57

^aReference 16.

^bReference 14.

SIMULATION RESULTS

"Wetting substrate"
(Strong bonding)
=> smaller grains

"Non wetting substrate" (Weak bonding) Bonding to substrate: effect on the grain size

"Non wetting substrate" (Weak bonding) Channeling Implants: Relevance of the Electron Density Distribution

Channeling Implants: Relevance of the Electron Density Distribution

– ZBL(Hartree-Fock)

LDALDA, radial

SIMS
This Work
Cai et al.,
Phys. Rev. B54,
17147 (1996)

Conclusions

- Atomistic Process Simulators provide a <u>bridge</u> between ab initio calculations and standard process experimental data.
- Efficient and accurate <u>3D</u> simulation.
- <u>Straighforward</u> implementation of new mechanisms.
- Microelectronics Device Processing: "Continuum physics models are no longer sufficient below 100 nm. Tools are needed for the physical and chemical processes <u>at an</u> <u>atomic level</u>" (1997 USA National Technology Roadmap for Semiconductors)