Building a bridge between *ab-initio* calculations and process simulation

Martin Jaraiz University of Valladolid, Spain

mjaraiz@ele.uva.es

Thanks to:

E. Rubio, P. Castrillo, R. Pinacho, L. Pelaz, J. Barbolla University of Valladolid, Spain

> G. Gilmer, C. Rafferty Bell Labs Lucent Tech., USA

Outline

The Problem: <u>Complex</u> Processing
The Solution: Atomistic Kinetic Monte Carlo
The Challenge: Obtaining the Parameters
Looking Ahead: Genetic Algorithms, Neural Networks, ...

The Problem

<u>Complex</u> Materials Processing Scenarios

The Problem: <u>Complex</u> Processing Scenarios

- 1. Many different species (V, I, As, C, O, B, ...)
- 1. ... and interactions (I-B, V-O, I-C-O, ...)
- Highly non-equilibrium conditions (Pair reactions, ...)
- 4. Extended defects
 - (voids, {311}'s, loops, ...)
 - Emission/Capture rates dependent on Size & Shape
- Low thermal budget (electrical activation?)

- 6. Ever smaller device dimensions
 - 2D: short channel effect
 - 3D: narrow channel effect
 - Local inhomogeneities (dopant discreteness)

The Problem: <u>Complex</u> Processing Scenarios

- Molecular Dynamics (MD) is most accurate, but limited to <1 nanosecond:
 - Follows all the atoms
 - 'Fixed' time step $\cong 10^{-15}$ s
- We use MD (off-line) to calculate the KMC event rates.

.

The Solution

Atomistic Kinetic Monte Carlo (KMC)

KMC vs. Molecular Dynamics

- Uses event rates obtained from DFT, classical MD or experiments
- KMC follows <u>only</u> the defect atoms
- Self-adjusts the timestep during the course of the simulation
 - Δt : ps ... hours

KMC simulates <u>real processing times</u> using atomistic mechanisms

ChiPPS 2000

KMC vs. Continuum Models

KMC: Accurate description of Defects

KMC: Easy definition of Defect Interactions

```
...
case Vacancy:
  switch ( neighbor )
        case Vacancy:
              return new Cluster<Vacancy>;
        case Bi:
              neighbor->delete();
              this->delete();
              return new PointD<Boron>;
...
```

Execution speed independent of number of interactions

ChiPPS 2000

The KMC core: The Event Scheduler

EXAMPLE:

	n	J _{rate}	Total
		(jumps/s)	Jumps/s
V	2	1000	2000
I	5	10	50

 To simulate 1 second anneal we need to simulate 2050 Jumps ⇒ ∆t = 1/2050 seconds per Jump
 We have to pick up V's and I's with a probability of 2000/2050 and 50/2050, respectively

ChiPPS 2000

KMC: Example 1

Local Inhomogeneities:Dopant DiscretenessClusters

Dopant Distribution Models

Continuum Models Dopants: Discrete <u>Random</u> (?) Possible Spatial correlation due to: Dopant charge states Clusters

ChiPPS 2000

M. Jaraiz, Univ. Valladolid, Spain

이 물건에 있는 것이 있는 것이 되는 것이 있었다. 이 귀엽 비행 방송이 이 물건 것이 많이 했다.

Dopants: Possible spatial correlation

Diffusion of <u>charged</u> point defects could give rise to <u>spatial correlation</u> (they cannot be arbitrarily close to each other).

In fact, similar effects have been shown to occur in the oxide charge distribution in MOS structures \Rightarrow change in the effective mobility.

F. Gamiz et al., Semic. Sci. & Technol, (1994)

ChiPPS 2000

Local Inhomogeneities: Clusters

Front View

ChiPPS 2000

M. Jaraiz, Univ. Valladolid, Spain

Local Inhomogeneities: Clusters

Cross-section

ChiPPS 2000

M. Jaraiz, Univ. Valladolid, Spain

Local Inhomogeneities: Clusters

High B diffusivity

{311} defects

Interst. hops

KMC: Example 2

KMC used to validate Simplifying Assumptions

KMC used to validate simplifying assumptions

Emission energies of I-clusters: Cowern et al., Phys. Rev. Lett. **82**, 4460 (1999)

Implant + Anneal

600 °C, 1000 s

Simplified model Supersat. +1 R, - No V's ("+1" model) - ... $\frac{dN_n}{dt} = F_{n-1}N_{n-1} - F_nN_n - R_nN_n + R_{n+1}N_{n+1},$ $S = \frac{\sum_{n=2}^{\infty} \beta_n R_n N_n}{D_s C^* (\sum_{n=1}^{\infty} A_n R_n N_n + 1/r_n)},$ where $F_{\pi} = 4\pi a_{\pi} D_I C_I^* S$. $R_n = (6D_{0n}a_n/\lambda^3) \exp{-[E_{diss}(n)]/kT}$

ChiPPS 2000

How accurate is the Simplified model ?

 Very good agreement with <u>full</u> simulation ...

... in spite of the presence of Vacancies and other assumptions

KMC: Example 3

Implantation Damage and the "+N" Number

KMC can yield an accurate "+N" :

Low Dose Implant

Non-overlapping Cascades (Spatial Inhomogeneities)

Pelaz et al., APL. 74 (1999) 2017

M. Jaraiz, Univ. Valladolid, Spain

ChiPPS 2000

KMC: Example 4

Extraction of parameters for Carbon diffusion in Silicon

Importance of Carbon in Silicon processing

 Reduction of the diffusion of B and P C traps self-Interstitials
 Unintentional impurity Introduced during crystal growth.
 High concentration (10¹⁶ -10¹⁸cm⁻³) Above its solubility at annealing temperatures

Carbon diffusion: the state of the art

Werner et al., Appl. Phys. Lett. (1998)

Rücker et al. Appl. Phys. Lett. (1998)

M. Jaraiz, Univ. Valladolid, Spain

Improving the model with Carbon clustering mechanisms

$$\begin{split} I + C_s &\leftrightarrow C_i \\ C_i + C_s &\leftrightarrow C_2 I \equiv C_i C_s \\ C_2 I &\leftrightarrow C_2 + I \\ C_i + C_2 &\leftrightarrow C_3 I \\ I + C_2 I &\leftrightarrow C_2 I_2 \\ C_i + C_2 I &\leftrightarrow C_3 I_2 \\ &\circ \circ \circ & \end{split}$$

000

- Continuum approach: many rate equations
- KCM: Easy modeling

KMC Simulation of Carbon diffusion

Lattice Kinetic Monte Carlo

Polycrystalline Materials

Aluminum, Polysilicon, ...: <u>Polycrystalline</u> structure

^{____} 0.5 μm

• Kang et al, J. Electron. Mater., 1997

• Murarka, "Metallization", 1993

Surface texture
 Grain Boundary diffusion
 Electromigration

Simulation approaches

 Continuum equations: SPEEDIE, SAMPLE, EVOLVE, DEPICT
 2-D ballistic simulator: SIMBAD, GROFILMS
 3-D atomistic approach: ADEPT

This Work. Polycrystalline 3-D atomistic approach

ChiPPS 2000

M. Jaraiz, Univ. Valladolid, Spain

Simulation Box

- Atoms are attached to the sites of a perfect fcc lattice.
- As a first approximation, the binding energy of each site depends on the number of occupied nearest neighbors

ChiPPS 2000

Energies from MD Embedded Atom Method using Gupta Potential

ChiPPS 2000

M. Jaraiz, Univ. Valladolid, Spain

Deposition

- Initial position and velocity according to desired distribution
- Atom travels in a straight line until it either:
 - Finds some neighbors: gets attached to that grain
 - Finds no neighbors: starts a new grain (orientation).

Surface Diffusion

- Atoms not fully coordinated can jump to a neighboring empty site.
- The jump probability depends on the number of nearest neighbors and on the migration energy.

ChiPPS 2000

Grain Boundaries

If the destination site of a jump (A2) is at a grain boundary:

- Check the energy of sites belonging to other orientations (B) around destination site.
- 2. If energy (B1) < energy(A2) then the jump final site is B1.

Lattice KMC: Simulation Examples

Nucleation
Crystalline Substrates: Orientation
Amorphous Substrates: Wetting
Annealing:
Texture evolution

Nucleation on AI (110)

10 nm

50 nm

STM images of Cu islands on Pd(100) at 265K and 300 K and coverage of 0.1 ML and 0.07 ML

Simulation: Al on Al (110) @ 200K, 350K, 500K, 600K Coverage=0.1 ML

ChiPPS 2000

Nucleation on AI (111)

Simulation: Al on Al (111) @ 200K and 400K

STM measurements: Pt on Pt(111) @ 200K and 455K

Nucleation on Amorphous Substrates

Bonding to substrate: effect on the grain size

"Wetting" substrate (Strong bonding) => smaller grains

"Non-wetting" substrate (Weak bonding)

ChiPPS 2000

Annealing: Texture Evolution

 $T_{dep} = T_{ann} = 663 \text{ K}$ Annealing time = 2.7 ms

depdif30_anneal.mpg

Number of atoms: 20000 Simulation size: 0.012 μ m \Rightarrow Actual size: 0.25 μ m

 $T_{dep} = T_{ann} = 513 \text{ K}$ Annealing time = 0.18 s

depnodif10_anneal.mpg

M. Jaraiz, Univ. Valladolid, Spain

ChiPPS 2000

The Challenge

Obtaining KMC Input Parameters In <u>Complex</u> Scenarios

Obtaining KMC Parameters from MD with a Genetic Algorithm

Problem: Find minimum energy configuration of 60 Carbon atoms, starting from random coordinates.
60 x 3 coords. = 180 unknowns
Assuming only 10 possible values for each coordinate: ~10¹⁸⁰ configs. ! (the Universe is about 10¹⁸ s old)
The GA found the solution in ~ 5000 steps (configs.)

It had not been solved by any other technique before

Deaven and Ho, PRL 75 (1995) 288

Free-standing Si clusters: Ho et al., *Nature* **392** (1998) 582

Evolutionary Computation (Genetic Algorithms, ...)

D. B. Fogel, IEEE Spectrum, Feb. 2000:
"... is one of the fastest growing areas of Computer Science"
"It is addressing complex engineering problems that were previously beyond reach"

Using a GA To Extract KMC Parameters From Experimental Data

Fitness Evaluation: DADOS simulations (just a rough estimate) done in ~ 3 minutes / simulation

Genetic Algorithm from: http://lancet.mit.edu/ga/

ChiPPS 2000

What Is a Genetic Algorithm?

Looking Ahead

Looking Ahead: GA + Neural Networks

Looking Ahead

 Genetic Programming

 Symbolic Regression: Set of symbols: { +,-,/,•, exp, cos, X,Y,Z, ... } Find best fitting function: f = X - Z • exp(Y)

 Materials Processing: Set of mechanisms: { Frank-Turnbull, Interstitialcy, Surface emission, E₁, E₂, ... } Find best mechanisms and energies

In Summary:

Materials Research can benefit from:
Atomistic KMC Process Modeling

Detailed and Accurate
Straightforward to Implement / Modify new Models
Can handle complex Processing scenarios

AI methods (Genetic Algorithms, Neural Nets, ...)

Opening a whole new range of capabilities
Currently under intense exploration. Looks most promising

M. Jaraiz, Univ. Valladolid, Spain