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1 Introduction

This design started some time ago as a metal detector. In that case the reactance on the sensing inductor had to

be measured along with its resistance. Both components are of interest because different metals can alter the

impedance of the coil in different ways. For instance iron increases the inductance a little, but the increase in the

resistance is higher. Non magnetic metals, like copper, decreases the inductance but increases the resistance.

This last component also depends on the conductivity of the metal: lead increases the resistance more than

aluminium. Thus, a circuit to measure the two components of a complex impedance is required, and that is,

basically, an RLC meter.

One common way to measure an impedance is to put a constant AC current through it and to measure the

voltage drop across its terminals. This voltage is proportional to the impedance, with the in-phase part being

the resistance and the in-quadrature part the reactance. That was the way I followed for the first prototype, and

soon I found it easier to implement in the mind than on a board. It required operational amplifiers with a lot of

bandwidth, precision resistors, and even cascode transistors to avoid building a parasitic oscillator. There must

be a simpler way to measure a complex impedance. In this design a simple voltage divider between a known

resistor and the measured impedance is used instead of a current source. The output voltage still depends on

the impedance but their relationship is no longer linear. This isn’t a big problem: just let a microcontroller to

do the math.

Also, the AC signal has to be a pure sine wave because the reactance depends on the frequency and,

therefore, if harmonics are present the measured amplitude will include an error component.

The measuring process will include several steps, like sine-wave generation, amplification, mixing, filtering,

digitization, and complex variable math. In this design the AC signal is digitized before the mixing, so, the

microcontroller has to deal with an intensive signal processing. This, on the other hand, has the advantage of

getting rid of a lot of analog components with all their non-idealities: there are no phase errors with digitally

generated sine waves, nor channel imbalances in the digital mixer, digital integrators no not leak, etc. There

are still some required analog parts, like a DAC for the generation of a sampled sine-wave, a reconstruction

filter to remove the harmonics due to the sampling, some amplifiers to increase the measured voltage when

the impedance is low, and an ADC with an input multiplexer to digitize the resulting signals. Today many

microcontrollers include an ADC inside the chip, so this critical part comes at no additional cost. A DAC is

not so common, but a simple DAC can be built using resistors, again a very cheap part. The remaining analog

blocks are now the filter and the amplifiers.

A key trick used in this design is to have a sampling rate that is exactly 4 times the frequency of the AC

signal. This eases a lot the signal generation and processing because the sample sequence of a such sine-wave

is just 0, 1, 0, -1, and so on. Therefore, the DAC only has to generate three different levels, and this can

be accomplished with just two identical resistors. Also, the mixing doesn’t require any multiplication in the
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microcontroller, it is merely the addition or subtraction of sample values, something any CPU is quite capable to

do. A fixed frequency of 50kHz was chosen for the AC signal because a selectable frequency would also imply

to have a tunable reconstruction filter. With this frequency the sampling rate of the ADC has to be 200kS/s, or

said with another words: in addition to have an appropriate ADC, all the mixing and integration has to be done

in less than 5µs for each sample.

The frequency chosen for the test signal, along with the voltage divider resistance, Z0, set the measuring

range of the meter. Z0 was chosen as 120Ω from peak current considerations. From a practical point of view

the meter stops to take accurate measurements when the output voltage of the divider is too low or too close to

the input amplitude. Setting an upper and lower bounds of 1/32 of the full scale range of the ADC will result in

a relative quantization error about ±1.6% and a measurement range of 3.84Ω to 3720Ω, but low voltages can

be amplified up to ×121, so the minimum measurable resistance is 32mΩ. When measuring reactances, the

respectives ranges are 100nH to 11.8mH for inductors and 850pF to 100µF for capacitors.

The RLC meter was designed to be portable and powered with batteries. Instead of using a sophisticated

power regulation electronics in order to have several accurate supply voltages (maybe, with some of them

negative), everything is powered directly by two AA cells. This implies a variable voltage supply that decreases

as the cells are drained. The voltage can range from 3.1V when batteries are new to about 2.2V when they are

almost exhausted. The microcontroller, operational amplifiers, and everything else must be able to operate

within this range of voltage.

Finally, as a human interface, a typical alphanumeric LCD display was considered. The problem with this

kind of display is the high voltage required for the biasing of the LCD, around 5V, but the current consumption

is low (about 0.3mA). Therefore, a charge pump was designed with capacitors and diodes to generate a negative

voltage for its VEE pin (The LCD bias is (VDD −VEE)), while the logic of the display is powered directly with

the 3V of the batteries. The LCD bias voltage also has to be adjustable in order to get the best contrast in the

display. A reflective LCD model was chosen in order to avoid the current consumption of a backlight.

2 The circuit

The simplified block diagram of the RLC meter is shown in figure 1. The microcontroller is a cheap ARM

Cortex-M0 made by NXP, the LPC1112. This microcontroller runs with a 48MHz clock generated from a

reference crystal oscillator of 12MHz (It can also run from an internal oscillator, but it isn’t very accurate). It

includes a 10-bit ADC capable of more than 300kS/s, along with several timers, 4kB of internal RAM and 16kB

of internal Flash. An interesting aspect of this microcontroller is its low current consumption, less than 10mA,

which is very desirable for a portable system. Its package only includes 20 pins, making it easy to solder, yet,

it is a bit short of I/O pins and as a consequence some of them are used for more than a single purpose in this

design.

Along with the microcontroller comes an EEPROM memory with an I2C bus intended for the storage of

calibration data. The internal Flash of the microcontroller could also be used for this but it only allows the

erasing of 4kB blocks, thus resulting in a considerable waste of memory that is also much needed for program,

specially when floating point routines have to be included into the code. Almost any EEPROM could be used,

a 128 byte model is more than enough. The only consideration comes from the software point of view: an

EEPROM with more than 256 bytes in a single bank will require two bytes for the address instead on one.

For the generation of the sine-wave two pins with a matching to a timer function are used. Both pins toggle

each 10µs, but one toggles 5µs before the other, resulting in two square waves, 90º of phase apart. Connecting

identical resistors between each pin and a common output node we have the desired 3-level DAC. The same

pins are also driving the charge pump for the generation of the negative voltage needed by the LCD. Notice that

the output amplitude of the DAC doesn’t require to be very accurate because the actual amplitude is going to
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Figure 1: Block diagram of the RLC meter

be measured by the ADC.

After the DAC comes a filter block, the voltage divider, and some amplification. Three different gains can

be selected for the output signal: ×1, ×11, and ×121. The microcontroller must chose the output which has

the higher amplitude, but without clipping. Only two amplification stages are used.

A more detailed description of the circuit follows.

2.1 Main sheet

In figure 2 the master sheet of the schematic shows its main component, the LPC1112 microcontroller, along

with ancillary circuits, like the crystal oscillator or the in-system-programming connector, J1. The EEPROM

for calibration data is U2, and the alphanumeric display is LCD1. The display uses a 4-bit data bus in order to

reduce the required number of microcontroller pins. Even with this, the 4 data bits of the LCD bus have also

some other functions. Three of these signals can be connected to ground through the series resistors R7, R8, or

R9, if a short is placed in connector J6, which orders the processor to enter a calibration procedure. The bit D7

is connected to ground through a forward biased diode, and allows us to get a coarse estimation of the supply

voltage (D7 is connected to PIO0_11, which can also be programmed as an analog input, AD0).

R2 and R3 forms the 3-level DAC. Its output resistance is the parallel equivalent of these resistors, namely

2.8kΩ (This equivalent resistance is also part of the first stage of the filter). The output of this DAC is connected

to another schematic block, ANALOGBLOCK, that also includes 4 outputs that are connected to the analog

inputs AD1 to AD4 of the microcontroller.

The charge pump is built with capacitors C1, C2, and C3, and dual Schottky diodes D1 and D2 (only 3

diodes are actually used). Its output is connected to the VEE pin of the display through the variable resistor

RV1. Internally, the display has a 16.5kΩ resistor between VDD and VEE . Therefore, the variable resistor RV1

allows us to apply a variable negative voltage to VEE and to adjust the LCD contrast to its optimum value.
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Figure 2: Main sheet of the schematic: microcontroller, display, DAC, charge pump, EEPROM.

2.2 Analog block

The analog block schematic is shown in figure 3. Here we see another two sub-blocks, FILTER, and AMPLIF,

so the main purpose of this schematic sheet is to show how the voltage divider is actually implemented. First,

a fixed resistor, R6, is connected in series with the output of the filter. This resistor is the known impedance of

the divider, with ZX being the impedance under test. R6 also limits the current that is applied to ZX to about

10mA. This is important because this current has to be provided by an operational amplifier in the filter and we

don’t want to exceed its specs if a very low impedance is measured.

The output of the filter has a DC voltage about VDD/2. Because of this the second terminal of Z isn’t

connected directly to ground, it is connected to a big capacitor, C6, instead. The resistor R11 is included to

force the discharge of C6 if Z is an electrolytic capacitor. These capacitors will require attention to polarity,

and they could be wrongly polarized during the negative semicycles of the test signal if R11 is omitted and a

resistor or inductor was tested previously, leaving C6 charged.

The last thing we want to remark is the 4-lead connection for the impedance under test. This can make a

difference when very low impedances (about 1Ω, or less) are measured because the impedance of the meter

leads can be comparable to the impedance under test. Low impedances will require voltage amplification and,

therefore, the amplifier block that follows the voltage divider must have a differential input. For high value

impedances the error due to wires is negligible and a single-ended signal, ADC2, is taken directly from the

divider and routed to the AD2 input of the microcontroller.

2.3 Filter

The reconstruction filter schematic is shown in figure 4. Here a 3-stage Sallen-Key active filter is built around

3 operational amplifiers, resulting in a 6th-order filter, more or less of the Butterworth type. It has a cut-off
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frequency of 50kHz and an out-of-band attenuation of -120dB/dec. Our objective here is to attenuate the third

harmonic of the sampled sine-wave (no even harmonics are present in this signal) at least 50dB in order to

reduce its amplitude below 1LSB of the ADC. A rough estimation of the attenuation is the ratio of frequencies

to the power of the order of the filter, that in this case is 36 = 729 or 57dB.

The filter has an unity gain in its pass-band because all operational amplifiers are connected as followers.

The frequency response is thus controlled by the ratio of the capacitors in each stage. In the first stage the input

resistor isn’t included because it is the equivalent output resistance of the DAC.

The operational amplifier chosen for this circuit is the MCP6282, a cheap, dual rail-to-rail opamp with

5MHz gain-bandwidth product, FET inputs, and capable to operate with only 2.2V on its power supply. The

only ugly thing about this opamp is its high offset voltage at the input, but for this circuit this specification isn’t

critical because the DC gain is only 1.

I want to remark that a previous prototype of the filter was built using LM741 opamps, just because we have

lots of them in stock for teaching, and its performance was a disaster, with a total harmonic distortion about

-33dBc, and a quite high second harmonic generated by the distortion of the LM741. On the other hand, the

MCP6282 proved to be much more linear and the harmonic content of the output sine wave was negligible.

2.4 Amplifiers

The last part of the schematic of the RLC meter that we have to discuss is the amplifier. The corresponding

schematic is shown in figure 5. It consists of a first stage that operates as a differential amplifier, and a second

stage that is simply a non-inverting amplifier. Both stages have the same gain: ×11, or 20.8dB. DC decoupling

capacitors, C15, C16, and C17 are included with also a less clear function: Their values were chosen to make

the phase difference at the output of each stage as close to zero as possible, taking into account the bandwidth of

the opamps. Yet, this isn’t really needed because any phase difference in the amplifier is going to be corrected

thanks to calibration, but to have a proper value for capacitors doesn’t hurt either.

3 PCB layout

The circuit layout was fit into a 80×70 mm2, double side, PCB. The two layers are shown in figure 6. Most

of the components are installed in the top side of the PCB, with only 4 devices on the bottom side. These are:

the LCD display, the holder for the two AA cells, the variable resistor, RV1, for the contrast adjustment of the
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Figure 6: Top (red) and bottom (blue) sides of the PCB.

display, and the on-off switch, SW1.

The placing and routing was all done manually. The bottom layer was intended to be a ground plane and

only a few short traces with other circuit nodes are present here.

4 Software

The firmware of the microcontroller has to cover a wide range of functions. First, there should be an initializa-

tion code with its reset and interrupt vector table, the setting of the initial values for the .data and .bss sections,

and the setup of the peripherals to be used. This last part first includes the selection of the crystal oscillator

and the setup of the PLL for the generation of the 48MHz clock. Then the function and direction of each

microcontroller pin have to be selected.

Two timers are used. The 16-bit timer TMR16B0 is responsible for the generation of the 50kHz test signal.

In order to do this, the MAT outputs CT16B0_MAT0 and CT16B0_MAT1 are programmed to toggle on the

matching of the timer with their corresponding register values. MAT0 toggles when the counter reach the value

480 (10µs) and this matching also reset the counter to 0 (actually the counter counts from 0 to 479, so MAT

registers are decremented by one). MAT1 toggles when the counter value is 240. In this way two 50kHz square

waves with a 90º phase shift are generated. The CPU has to do nothing to generate these signals after the

initialization of the timer.

The 32-bit timer TMR32B0 is also used. A 200kHz square wave is programmed to be generated in its

MAT0 output in the same way as we did with the 16-bit timer. But in this case the MAT0 signal isn’t available

on any pin, it is used internally for the triggering of ADC conversions.

The ADC also has to be initialized and its interrupt enabled. The start of conversion is selected to be

triggered by the CT32B0_MAT0 rising edges, and a 4MHz ADC clock is used. One ADC conversion takes 11

ADC clock cycles, or 2.75µs. In the vector table, entry number 40, the address of routine “ADC_IRQ” is also

stored, and the bit 24 of the Interrupt Set Enable Register, ISER, is set, enabling the calling of the “ADC_IRQ”

routine every time the ADC completes a conversion.

In addition to the internal peripherals, the LCD display also requires an initialization, along with a set of

functions for its use that we can call a “driver”. The same applies to the external EEPROM, that requires a

driver for the I2C bus, where an internal hardware I2C controller is used, and for the memory itself.

After the initialization, the reading of calibration values from the EEPROM follows, and finally, the main
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loop of the code is reached. In addition to the main program loop, the ADC interrupt routine is performing a

time-critical digital signal processing task that is detailed next.

4.1 Data acquisition, mixing, and integration

The signal processing is that of a synchronous detector whose block diagram is shown in figure 7. After the

initial digitization in the ADC, everything is done by software inside the microcontroller. Each ADC sample is

processed in the interrupt routine. This includes the mixing of the input signal with a cosine and a sine waves,

that is merely the multiplication by the sequence of samples of the cosine and sine, that are:

Cosine Sine

1 0

0 1

-1 0

0 -1

... ...

The result of the cosine product is accumulated (integrated) into the In-phase component of the signal,

whereas the sine product is integrated into the In-quadrature component. A minimum of 4 samples (one signal

cycle) have to be integrated, but we can integrate a lot more in order to reduce the effect of noise. But, first,

by looking at the cosine and sine values, we can obtain a simple guideline for the code of the mixing and

integration, that is:

• Read the sample value from the ADC.

• Look at the 2 low bits of a sample counter. Depending on their value do:

– case 00: Add sample to the In-phase integrator variable.

– case 01: Add sample to the In-quadrature integrator variable.

– case 10: Subtract sample to the In-phase integrator variable.

– case 11: Subtract sample to the In-quadrature integrator variable.

• After a lot of samples (integration time):

– Copy the in-phase and in-quadrature values to their final destination

– Reset the in-phase and in-quadrature values to 0.
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The actual code is a little different because in our case the sample counter counts down, but the basic idea is the

same. The integration time was chosen to be 20ms (4000 samples), or a multiple of this value, because I live in

Europe and the mains frequency here is 50Hz (for America its better to integrate a multiple of 3332 samples).

Choosing an integration time that is an integer number of cycles of the mains frequency we can lower the effect

of the mains noise in the measurement. Samples are 10-bit long, and integrator variables are 32-bits wide. This

means we can add up to 222, or roughly 4 million, samples before overflowing our integrators.

The IRQ routine is called every 5µs, or 240 CPU cycles. Time is tight, and in order to not waste any cycle,

the code of the IRQ routine was written in assembly language, yet, still embedded into C code. This code is

relocated to RAM during startup because the execution from flash is slowed down due to wait states (A read

from flash takes 3 cycles, but 8 16-bit words are read, so, for sequential code execution one instruction every

8 takes two extra cycles to execute, but this has to be considered a best case scenario, non sequential code can

have a longer time execution penalty that also depends on the code alignment to flash addresses). The trick here

is to assign to the interrupt function the attribute section(“.data”), a section typically used for static

variables with non zero initial values whose content is copied from flash to RAM during startup. After all these

optimizations for speed, this task takes about 30% of the CPU time.

The listing of the Interrupt routine and its variables follows:

9



typedef unsigned int u32;

typedef signed int   s32;

//////////////////////////////////////////////

//           INTERRUPT ROUTINES

//////////////////////////////////////////////

volatile struct { // ISR Variables

    s32 tI;       // In-phase integrator

    s32 tQ;       // In-quadrature integrator

    u32 cnt;      // IRQ counter

    s32 I;        // In-phase result

    s32 Q;        // In-quadrature result

    u32 nresult;  // result counter

} demod;

//////////////////////////////////////////////////////////////////////////////

// ADC conversion done IRQ Service Routine

//   This ISR is called every 240 cycles (5us), and it last 76 cycles (worst 

//   case), including 12 cycles for calling and 12 cycles for return. When 

//   executed from flash times are longer. Thus, this code is copied to RAM 

//   (section ".data") and executed there.

void __attribute__((naked,section(".data"))) ADC_IRQ(void)

{

    asm volatile (

"    push  {r4-r7}      \n" // R0-R3, R12, and LR, are already saved 

"    ldr   r0,=ADCBAS+4 \n" // AD0GDR

"    ldr   r0,[r0]      \n" // R0: ADC result

"    lsl   r0,r0,#16    \n" // remove left bits

"    lsr   r0,r0,#22    \n" // remove right bits (0 <= sample <= 1023)

"    ldr   r7,=demod    \n" // Read data from "demod" struct:

"    ldmia r7!,{r1-r6}  \n" //   R1:tI, R2:tQ, R3:cnt R4:I, R5:Q, R6:nresult

"    lsr   r7,r3,#2     \n" // CY=cnt.1: 1: ADD, 0: SUB 

"    bcs   1f           \n"

"    neg   r0,r0        \n" // change sample sign (SUB)

"1:  lsr   r7,r3,#1     \n" // CY=cnt.0: 1: add to tI, 0: add to tQ

"    bcc   2f           \n"

"    add   r2,r2,r0     \n"

"    b     3f           \n"

"2:  add   r1,r1,r0     \n"

"3:  sub   r3,#1        \n" // cnt--

"    bpl   4f           \n" // if (cnt<0) 

"    mov   r4,r1        \n" //   I=tI

"    mov   r5,r2        \n" //   Q=tQ

"    mov   r1,#0        \n" //   tI=tQ=0;

"    mov   r2,#0        \n"    

"    ldr   r3,=15999    \n" // 16000 samples/integration (4 50Hz cycles)

//"  ldr   r3,=7999     \n" //  8000 samples/integration (2 50Hz cycles)

//"  ldr   r3,=3999     \n" //  4000 samples/integración (1 50Hz cycle)

"    add   r6,#1        \n" // nresult++

"4:  ldr   r7,=demod    \n" // Store data to "demod" struct

"    stmia r7!,{r1-r6}  \n"        

"    pop   {r4-r7}      \n" // restore registers

"    bx    lr           \n" // Return. R0-R3, R12, and LR, are also restored

"    .ltorg             \n" // local space for literals

    );

}

4.2 Impedance calculation and calibration

The interrupt routine processes the ADC samples but it doesn’t select the source of the analog signal. In the

main program we can chose the desired sine wave to measure by selecting the proper ADC input to digitize,

and then wait until the “demod.nresult “ variable changes. The in-phase and in-quadrature components of

the result are assigned to the real and imaginary part of a complex variable, each component as a floating-point

value.
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This procedure can be used to measure both the input, Vin, and output, Vout , levels of the voltage divider

where Zx is the impedance under test. From these values, and knowing Z0, the value of the impedance can be

derived:

Zx =
Vout

Vin −Vout
Zo (1)

Z0 is mainly the resistor R6 (120Ω), but it can also include some reactance due to C6 and wires. Also R6

wasn’t required to be a precision resistor, so its value isn’t very accurate. The actual value of Z0 is going to be

measured by connecting a precision resistor, Rcal , in the place of Zx and solving Equation 1 for Z0 during the

first calibration step:

Z0 =

(
Vin

Vout
−1

)
Rcal (2)

With this calibration we can start our measurements, but, if Zx is low we are going to digitize an amplified

version of Vout instead of the actual signal. The amplifier changes the magnitude of Vout , but it can also change

its phase, so, the amplifier gain also has to be treated as a complex number, H j. There are two possible gains,

H1 and H2, one per each amplifier output, and both of them need to be calibrated. The calibration involves

the same procedure as before, but with smaller calibration resistors. Also, Z0 needs to be calibrated before the

gains. The gain value is:

H j =
Vout. j

Vin

(
Z0

Rcal. j
+1

)
(3)

Where Rcal. j is the precision resistor used for calibration, and Vout. j the measured voltage at the output of

the amplifier. With the known values of the gain we can measure small impedances by just replacing Vout by

(Vout. j/H j) in equation 1.

I want to remark that the actual supply voltage doesn’t play any role in these equations. Of course, with

lower supply voltages we get less amplitude in all sine waves, but the measured impedance is going to be the

same because voltage ratios remain constant.

4.3 Complex numbers

The firmware of the microcontroller was written in C language, with only the interrupt routine being directly

written in assembler. Neither of these languages have support for complex numbers, but equations 1 to 3 all

include complex variables, so, a few complex arithmetic functions had to be added to the code. These are:
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typedef struct {float re,im;} complex;

// Addition

complex cadd(complex a,complex b)

{

        complex c;

        c.re=a.re+b.re;

        c.im=a.im+b.im;

        return c;

}

// Subtraction

complex csub(complex a,complex b)

{

        complex c;

        c.re=a.re-b.re;

        c.im=a.im-b.im;

        return c;

}

// Multiplication

complex cmul(complex a,complex b)

{

        complex c;

        c.re=a.re*b.re - a.im*b.im;

        c.im=a.re*b.im + a.im*b.re;

        return c;

}

// Multiplication by a real number

complex ckmul(float k,complex a)

{

        a.re*=k;

        a.im*=k;

        return a;

}

// Division

complex cdiv(complex a,complex b)

{

        complex c;

        float d;

        d = b.re*b.re + b.im*b.im;

        c.re=(a.re*b.re + a.im*b.im);

        c.im=(a.im*b.re - a.re*b.im);

        c.re/=d;

        c.im/=d;

        return c;

}

Using these functions the equation 1 is coded as:

zx=cmul(cal.z0,cdiv(v2,csub(vin,v2)));

Where “v2” can be either Vout , or cdiv(Vout, j,H j)

Also, as another example, equation 3 is written as:

cal.h1=cmul(cdiv(v2,vin),cadd((complex){1,0},ckmul(1./RCAL2,cal.z0)));

In this example “v2” is Vout,1, the measured complex voltage at the output of the first amplification stage, and

RCAL2 is a real number with a value of 10, because a 10Ω resistor is intended to be used for the calibration of

the first stage gain.

5 Results

After testing the basic correctness of the circuit, that is: the power consumption is low, the microcontroller can

be programmed, the 12MHz oscillator runs, the charge pump generates a negative voltage, and so on, the next
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Figure 8: How to digitize a fast periodic signal with a slow ADC using subsampling.

thing I wanted to check was the linearity of the reconstruction filter. The tool for this test, that we already got

integrated for free, is the ADC of the microcontroller, but if we only got four samples per each signal cycle is

going to be impossible to check the harmonics of the signal. What we really need is a way faster sampling rate,

but the ADC can’t run much faster than 300kS/s. Fortunately, our signal may not be a pure sine but its going to

be periodic for sure, and with periodic signals we can use the trick of subsampling.

The main idea behind subsampling is shown in figure 8. Here the sampling period is programmed to be

slightly longer than the period of the signal. Because the signal level is the same after a time T, this is equivalent

to have an effective sampling period that is the difference (TS −T ), and in this way we can get a large number

of samples per each signal cycle. In our case the CPU frequency is 48MHz, and this means a signal cycle is

exactly 960 cycles of the CPU clock. The sampling frequency was obtained by dividing the clock by 962 (the

divider had to be an even number). This is equivalent to having an effective sampling rate of 24MHz and 480

samples per each signal cycle, more than enough for a distortion analysis.

The results are shown in figure 9, were the acquired signal is shown along with its spectrum. Here the

second harmonic is -60.5dB below the first, third harmonic is -61.5 dB, and the total harmonic distortion is

about -56.0dBc. With these data we are really reaching the linearity limit of the ADC itself. The lower graph

shows the difference between the actual samples and the best curve fit to a sine wave as a function of the signal

level. An ideal sine wave in an ideal ADC would have that error confined to the -0.5 to +0.5 LSB range. Here,

the visible pattern is telling us that the quantization error in the ADC is a significant part of the total difference.

In any case the harmonic distortion in the filter output is low enough to be difficult to tell from the quantization

error and the own nonlinearity of the ADC (the datasheet of the microcontroller states an integral nonlinearity

error up to ±1.5LSB), so for our purposes we can take the output of the filter as a pure sine wave.

Apart for this linearity check, that isn’t required for the normal operation of the meter, the subsampling trick

is also used in the code for the measurement of the peak to peak amplitude of signals. This amplitude is then

used to decide how much amplification to use. The peak to peak amplitude is merely the difference between

the highest subsample and the lowest during a signal cycle, and this value is used instead of the magnitude of

the complex voltages because we don’t want to go into clipping under any situation.

The first thing we have to do in order to have accurate measurements is to calibrate the meter. The firmware

assumes default values for calibration: Z0 = (120+ j0) Ω , H1 = (11+ j0), H2 = (121+ j0), but these values

have to be refined. The procedure to follow is:

• Connect a button switch between pins 5 and 6 of the calibration connector, J6.

• Connect an accurate 100Ω resistor to the meter leads and push the button. The measured value of Z0 is

stored into the EEPROM.

• Connect an accurate 10Ω resistor to the meter leads and push the button. The measured value of H1 is

stored into the EEPROM.
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Figure 9: Upper curves: Acquired signal after the filter and its power spectrum. Lower graph: linearity error
plot (10000 samples).

Figure 10: Actual calibration values

• Connect an accurate 1Ω resistor to the meter leads and push the button. The measured value of H2 is

stored into the EEPROM.

The stored values of the calibration variables are displayed after power on. In figure 10 the values obtained

after the actual calibration are shown. As we can see from the photographs, the calibration values are close to

the default ones, all with small imaginary parts. From the values of H1 and H2 we can conclude that the phase

difference in the amplifiers of figure 5 is less than 1º.

We must show the actual measurements of some devices. Figure 11 (top) shows a 33µH inductor being

measured, along with the way the four leads are connected to the device under test. In this measurement the

RLC meter used its medium gain input (×11). The inductor shows a series resistance about 0.170Ω, that is

higher than the DC resistance (0.094Ω) due to the skin effect in the coil wire. This value is obtained for a

50kHz frequency, and is probably a better estimate for the inductor losses under real circumstances than the

DC resistance value. This gives a quality factor for the inductor of Q = 10.4Ω/0.17Ω = 61 at 50kHz.

The measurement of a 47µF electrolytic capacitor is also shown in figure 11 (bottom). In this case the ca-

pacitance measurement isn’t very accurate because the reactance is quite low (-64mΩ) and any stray inductance

can alter its value significantly, but usually in these cases what we want to measure is the series resistance of

the capacitor, that is 242mΩ, more than three times higher than the reactance. Still, this is a good capacitor.

Faulty electrolytic capacitors usually have series resistances over 1Ω. The RLC meter used the high gain input
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Figure 11: Top: a 33µH inductor being measured and detail of the 4-lead connection (Left to right: low sensing
alligator, low driving alligator, high driving alligator, high sensing alligator). Bottom: a 47µF, electrolytic
capacitor being measured for ESR.
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(×121) for this measurement. Also, the proper use of the four leads is mandatory if we want to avoid ending

measuring an inductor instead of a capacitor.

Finally, the voltage of the batteries is measured and a single character icon is shown to display three levels

of charge: full, half, and low. The way the supply voltage is measured is an indirect one: The forward voltage

of the diode D3 shows little dependence with the supply voltage, but the reference voltage for the ADC is the

supply itself. Thus, the value we get from the ADC increases as the supply voltage decreases. Two threshold

values were calibrated using a variable power supply instead of the actual cells, one for 2.8V (full to half)

and other for 2.5V (half to low). Unfortunately, the forward voltage of D3 also depends on temperature, so,

the charge level shown isn’t very indicative of the actual battery voltage if the meter is cold (precisely what

happened with the photographs of figure 11). In fact, the contrast of the LCD screen is probably a better low

battery indicator.

The current consumption of the meter is only 15mA and, therefore, the batteries are going to last at least

130 hours, assuming a cell capacity of 2000mAh, a parameter not a single cell manufacturer is willing to give

you but that we can assume to be a rough estimate for an alkaline AA cell.

6 Conclusions

In this document, an RLC meter design is presented, along with the results of a prototype already tested.

It is built with a low number of inexpensive components and is powered by two AA cells. No precision

components, other than a quartz crystal, are included in the design of the meter, although some precision

resistors are needed for calibration. Nevertheless, it still is an accurate device thanks, mainly, to the benefits of

applying digital signal processing for synchronous detection. The microcontroller, a cheap ARM Cortex-M0,

is powerful enough to process the incoming samples and to do all the math thanks to having a fixed sampling

frequency that is exactly four times the frequency of the test signal. The fixed test signal frequency, of 50kHz,

limits the measurement range of the meter, but it is still capable to measure impedances from less than 1Ω to

more than 1kΩ, making it an useful tool for the testing of inductors, specially those found in switched power

supplies, and also for testing the series resistance of electrolytic capacitors (In fact, a whole bunch of old

electrolytic capacitors went to thrash when this RLC meter became operational).

And, with an appropriate sensing coil and another firmware, it can still be turned into an smart metal

detector.
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