
PET on stick

Jesús Arias

Contents

1 Introduction 1

2 Replica details 2
2.1 Memory . 2

2.2 Clocks . 3

2.3 The SPI ROM . 3

2.4 Peripherals . 4

2.5 Keyboard . 4

2.6 Video generation . 5

2.7 RF generation . 6

2.8 Connections . 6

3 A better PET 7
3.1 Cassette interface . 7

3.2 Audio . 8

3.3 .TAP cassette input . 8

3.4 32K PET . 9

3.5 Loading snapshots . 9

4 Some problems 12

5 Summary 14

1 Introduction

This was initially a recreation of a Commodore PET into an Lattice ICESTICK board, that later was extended

to more capable FPGAs boards. I must remark the original PET replica isn’t an accurate one because some

parts of the original computer were removed in order to fit it into the restricted space of the board’s FPGA.

Let’s first present the components of that computer (model 2001), that are:

• A 6502 processor.

• 4KB or 8KB of RAM. (up to 32KB on other models)

• 14KB of ROM.

• Monochrome, text mode, video controller with:

– 40×25 character array.

– 1KB of video RAM.

1

– 2KB of ROM for character generation. It includes two sets of 128 characters (PETscii):

1. “Graphic” mode: with uppercase letters, numeric digits plus symbols, and 64 graphic charac-

ters.

2. “Business” mode: with lowercase letters, numeric digits plus symbols, uppercase letters, and

only 32 graphics characters.

– Inverted video if the bit #7 of characters is set.

• Peripherals:

– PIA #1, 6520: Keyboard, vertical retrace interrupt, cassette, IEEE-488

– PIA #2, 6520: IEEE-488.

– VIA, 6522: User port, cassette, IEEE-488

This computer has no sound, no joysticks, no cartridges, and no expansion connector. Its memory map is:

Base address Size (bytes) address selection mask

RAM 0x0000 4KB / 8KB1 000n_nnnn_nnnn_nnnn

video RAM 0x8000 1KB 1000_xxnn_nnnn_nnnn

ROM
BASIC 0xC000 8KB 110n_nnnn_nnnn_nnnn

Editor 0xE000 2KB 1110_0nnn_nnnn_nnnn

I/O2

PIA #1 0xE810 4 registers 1110_1xxx_xxx1_xxnn

PIA #2 0xE820 4 registers 1110_1xxx_xx1x_xxnn

VIA 0xE840 16 registers 1110_1xxx_x1xx_nnnn

ROM Kernel 0xF000 4KB 1111_nnnn_nnnn_nnnn

2 Replica details

2.1 Memory

The ICESTICK board just includes an ICE40HX1K FPGA and a 4MB SPI Flash. The FPGA is rather limited,

with only 1280 logic cells and 8KB of synchronous RAM. Just the CPU requires about a 60% of the LCs,

and the internal memory is barely enough for a 4KB PET replica because some blocks are used in the video

generation logic and keyboard (one BRAM block has 512 bytes):

BRAM usage Blocks

4KB RAM 8

1KB video 2

2KB character ROM 4

Keyboard matrix 1

Unused 1

As we can see in this table, 15 out of the available 16 BRAM blocks are used and the replica ROMs aren’t

included yet. The ROM content is going to be stored in the same flash memory as the FPGA bitstream and read

through its SPI bus when needed. There, a random byte read takes no less than 40 clock cycles. Therefore, a

48MHz clock was selected as the main clock, and this signal is routed to the SPI clock when reading the flash.

All other clocks are derived from the 48MHz signal, and also this clock is the carrier for the RF modulator

logic.

1Max 32KB with custom expansions
2Notice the incomplete decoding of the peripherals. More than one device could be selected simultaneously.

2

2.2 Clocks

There are several clocks in the replica:

Signal Frequency Uses remarks

clk 48MHz SPI clock, RF carrier main clock

pixck 8MHz Pixel shifting clk/6

cclk 1MHz CPU clock pixclk/8, in phase lock with video reads

A CPU clock pulse is generated every 8 pixel clock cycles, and this pulse is timed to happen just before

a video read. The video data read for the CPU (q[7:0]) is latched at the rising edges of the CPU clock (as it

should be for a synchronous memory):

2.3 The SPI ROM

addrcmd

0 1

load

sinsout

16

d_out

8

stop
SCK

/CS

MISOMOSI

==15

reset

bit counter

>=40

clk (48MHz)

cclk (1MHz)

The combined ROMs of the PET are stored into the SPI Flash. The address I chose for this image starts

at 0x2C000, at the end of the last 64KB block used for the FPGA configuration bitstream (for the HX4K/8K

FPGAs, HX1K have smaller bitstreams). The SPI ROM block basically issues a flash read command (0x03)

after every rising edge of the CPU clock by means of a 16-bit shift register that gets loaded with this command

and the 8 most significant bits of a 24-bit address (0x0302). This register is loaded again after 16 clock pulses

with the remaining bits of the address, and keeps shifting in the bits coming out of the flash memory. After 40

cycles the data is available at the lower 8 bits of the shift register, the SPI clock is held low, and the /CS signal

deasserted. Not shown in the previous figure is a latching register for the output data that holds the read value

during the whole next cclk cycle. This register is needed because the CPU core (a 6502 equivalent by Arlet

Ottens) requires a synchronous memory. The timing details are displayed in the following simulation where

the reading of the reset vector of the CPU is shown:

3

2.4 Peripherals

An early version with “decent” PIA an VIA recreations required about 1750 logic cells, way too much. So,

these components were replaced by just a minimal recreation of the PIA #1 that allows the connection of a

keyboard matrix emulator and the generation of the retrace interrupts, that are needed for keyboard scanning

and cursor blinking. The lack of the second PIA means there is no IEEE-488 bus, not a big deal, but the missing

VIA will result in no cassette interface nor hardware timers, and this is a more serious limitation. But, in spite

of these missing blocks, the BASIC interpreter runs fine.

2.5 Keyboard

The PET keyboard is a 10×8 array with the columns driven from a BCD decoder connected to the lower 4 bits

of the PIA’s Port A, while the rows are connected to the 8 bits of the Port B. This matrix is simulated by using

an 80-bit, dual-port, RAM. Single bits are written with ’0’ when a pressed key scancode is received from the

PS2 keyboard interface, and set to one when the corresponding released key scancode is received. On the read

side the 4 lower bits of the PIA’s Port A are used as the reading address, and the RAM data is placed on the 8

bits of Port B.

kclk

kdat

pull−ups

serial

receiver D

Ard

Q

Mapping

RAM

Matrix

4

8

Port_A

Port_B

PIA #1ROM

wr

PS2

keyboard

1

new_scancode

7
Awr

pos
QA

7scan

code

key_release

80 bits128 x 7

Unfortunately, the symbol to key mapping on the PET is quite different than that of the spanish PS2 key-

board, and some symbols had to be placed on unrelated keys (the hardware is fine, but some keys ought to be

relabeled). Otherwise the keyboard works quite well.

Another problem we have to face is the use of 5V logic in the keyboard. Here two possible solutions are:

1. Connect the keyboard to a 3.3V supply instead of 5V. Some keyboards have no problem running with

lower voltages and their signals can be connected to the FPGA pins directly (my case).

2. Put diodes in series with the two PS2 signals. On the FPGA pins the corresponding pull-ups are enabled,

so the default logic level is high. When the keyboard drives a signal low, the corresponding diode will

also pull the FPGA pin low, but if the keyboard signal is high, at 5V, the diode is reverse biased, isolating

the high voltage from the FPGA pin.

4

2.6 Video generation

The PET has its own video monitor with separate horizontal and vertical sync pulses, but in our recreation we

want to use a monitor with a composite video input instead (a TV set). The composite video output has its own

complications that we have to face, mainly the generation of a three-level signal and its weird vertical sync

waveform, but fortunately there is no color here.

The three-level video signal is generated using just one FPGA pin along with its tristate control in the

following way:

nSYN

FPGA

560

monitor

75

Ω

Ω

Zo=75 Ω Comp. Video

0V

0.3V

1V White

black
hsync

Video

3.3V

150 Ω

The vertical sync waveform is detailed next. Analog TV video is always interlaced, totalling 525 lines for

NTSC or 625 lines for PAL. These lines are split into two frame fields: one for the even lines of the image and

the next for the odd lines. 8 or 7 lines are reserved for the vertical sync signal as shown in the figure:

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

EVEN
field

ODD

field

vertical sync

vertical sync

long pulses

long pulses

counter
line

counter
line

skip line #0

262

262

(312)

(312)

In our recreation the even and odd fields of the image show the same lines. This results in half the vertical

resolution, but we only need 200 lines and a full resolution will result in the text being “compressed” vertically

at the top of the screen. The displayed lines are placed at the middle of the screen and some top and bottom

borders are left around the image.

And with respect to the horizontal resolution, an screen line last 64µs and its visible time is 48µs. Using

the same pixel clock as in the original PET (8 MHz) we can achieve a maximum of 384 pixels per line, but we

only need 320 pixels, so, our display time is reduced to 40µs and some borders are placed at the left and right

sides of the screen.

After all the trouble of the sync pulses, the video signal generation is a quite conventional text-mode one,

with a 1KB RAM memory for the text and a 2KB ROM for character pixels. The RAM address can come from

the CPU or from the vertical and horizontal counters. In this last case the text row (displayed_vertical_line /

8) has to be multiplied by 40 and added to the text column. This multiplication is accomplished using just one

adder (40 is 32 plus 8). The output of the video RAM, along with the 3 lower bits of the line counter, is the

address input of the character ROM. That ROM is in fact built using BRAMs with a known initial content and

write disabled. Well, the bit #7 of the video RAM isn’t routed to the ROM address because it is used as a control

signal to invert the video output. And also the MSB bit of the character ROM comes from a Graphic/Business

input (supposedly controlled by the VIA).

5

2.7 RF generation

Internally, the video and sync are two separate signals. These signals are combined at the output pin to generate

the 3-level composite video, but they can also be used along a carrier signal (48MHz) in order to generate a TV

signal for an antenna output in the following way:

330Ω

100Ω

220Ω
antnSYN

VIDEO

CARRIER 15%

75%

100%
sync

black

white(48MHz)

TV video is AM modulated, and this is accomplished by a few gates that translates the video and sync

signals into a 4-level analog output thanks to a simple resistor DAC. Three FPGA pins are needed in this case.

The resistor ratio must be keep constant because it controls the relative amplitude of the various signal parts,

but these resistors can be made higher in order to reduce the RF amplitude at the antenna cable if a direct

connection to the TV is desired.

2.8 Connections

p78

p79

p80

p81

GND

+3.3V+3.3V

GND

p91

p90

p88

p87

ICESTICK

ANT[2]

ANT[1]

ANT[0]

VIDEO

KDAT

KCLK

(sync)

(video)

(carrier)

The signals discussed before are attached to the ICESTICK board pins at the positions shown in the above

figure (upper side). A photograph with the board connected to a monitor and a keyboard is included next:

6

3 A better PET

The presented replica barely fits into the ICE40HX1K FPGA of the ICESTICK board, and only after removing

quite a lot of hardware, like the 6522 VIA. Without this chip we have no hardware timers in the PET and

there is no way the cassette interface could work at all. But there are also some other boards around using the

ICE40HX4K, like Alhambra or ICECREAM, and here we have a lot more logic cells (7680 instead on 1280)

and RAM (32 blocks instead of 16). So, here we can do a more realistic replica including decent descriptions

of the PIAs and VIA as Verilog modules (code form Thomas Skibo) and we can also replicate a PET with 8KB

of RAM instead of only 4KB. And in these replicas we can have a functional cassette interface.

3.1 Cassette interface

Well, the replica is now able to generate an audio waveform with the data to save on the VIA pin PB3, and it

can also decode an input waveform in PIA #1 pin CA1 or VIA pin CB1 into some data to load. But we have to

route these internal signals into some external hardware, and a real cassette player/recorder is out of question

(all rubber belts disintegrated long time ago). Some sort of audio input/output is possible, but I wanted to use a

communication channel already at hand on these boards, and I chose a serial port as the cassette adapter. With

115200 bps we can transfer 11520 8-bit samples each second and this is enough audio quality for a cassette

data tape.

Therefore, the cassette input interface is just a 115200 baud serial receiver with one of the RX buffer bits

attached to the cassette inputs. A logic analyzer capture shows the generated wave is composed of square wave

cycles of three different lengths: 346µs, 506µs, and 676µs. With a 11520Hz sampling rate these pulses are

7

roughly:

length (µs) Samples actual length (µs) error %

short 346 00 00 ff ff 347.2 +0.3%

medium 506 00 00 00 ff ff ff 520.8 +2.8%

long 676 00 00 00 00 ff ff ff ff 694.4 +2.7%

The relative time errors are small and probably well below the pulse width variations of a real cassette tape.

So, the only remaining problem is the generation of the tape samples, but once this is done we can load some

programs into the PET by simple typing “LOAD” and then dumping the samples over the serial port:

For tape output I followed a different approach. Instead of a continuous stream of high or low samples the

pulse lengths are measured and transmitted over the serial port. The idea is to follow the same encoding used

for the tape files of the VICE emulator, where each byte corresponds to a square-wave pulse of a duration:

Tpulse = bytevalue×8µs

In this way, not only the data gets compressed with respect to a plain sample stream. Also, if there are

no transitions in the cassette output no data is generated at all. And the captured data only needs an header to

become a .TAP file that could be used with VICE.

These .TAP files were also the data source for the generation of sample streams for the cassette input, as it

was the case of the game shown in the previous photographs.

3.2 Audio

Some later PET models included an speaker connected to the CB2 pin of the VIA, so, sound can be generated

by means of loading the shift register of the VIA with a data pattern and then recirculating it at a rate controlled

by a hardware timer. This capability was also recreated and an audio signal is routed to an FPGA pin.

3.3 .TAP cassette input

The tape loading using sampled audio through the serial port runs but isn’t very reliable. Well, we can argue

the actual tapes were unreliable too, but we don’t expect this for the emulation. It seems the problem lies on

the PC side: serial ports, specially USB ones, don’t guarantee a continuous stream of data even at relative low

bitrates like 115200 bps, so, something has to be done. It was also desirable to use the same data format for

“LOAD” and “SAVE” operations, the same of VICE .TAP files, but without headers. In order to use this data

format we have to add a buffer for the received serial bytes and to implement some sort of flow control to avoid

having the buffer completely filled and to lost data.

So, now the cassette interface is a quite complex block that includes:

• An UART with receiver and transmitter.

8

• A 512-byte FIFO memory (1 BRAM) with its associated read and write pointers. Warning pulses are

generated when the FIFO is 16 bytes over or under half-full, that results in the sending of XOFF or XON

characters through the transmitter.

• A .TAP decoder that translates the FIFO data into square wave pulses with a length proportional to the

values read from the FIFO.

• A .TAP encoded that measures the length of cassette write pulses (SAVE command) and sends the result-

ing data through the serial port.

These blocks are included into a single module with only one clock input plus serial TXD and RXD, and

cassette read and write signals. This module is synthesized using 189 logic cells and one BRAM.

And also some programming is needed on the PC side because now we can’t just send all the .TAP data

to the serial device without any flow control. We have to send the data in small blocks and to check the data

the system sends back. When an XOFF character is received we must pause the transmission until an XON

character is received later. Well, that was OK with some USB/serial adapters but failed with others (FTDIs),

so, at the end I’m using a different approach: Send the data in big blocks in order to be sure the upper FIFO

watermark is always reached, and then keep reading the incoming characters until an XON byte is received

before sending the next block.

After these changes we can just type “LOAD” on the PET and then send the whole .TAP file through the

serial port. The file header just results in a burst of noise at the beginning of the tape image that has no ill effects

on the loading, and sure, the reliability is now solid.

3.4 32K PET

The ICECREAM board includes an external SRAM with 128KB of additional memory that can also be used in

order to expand our recreated PET. In fact, we have more than enough memory to map the entire 6502 address

space into that external memory and this could have simplified the design quite a lot (no SPI ROM, write-only

video memory...), but in the real design I’m using the external RAM only for the first 32KB of the PET memory.

A 32K PET could play “The Attack of the PETSCII Robots” (at least if we found a way to put that game

into the memory, because a floppy disk emulator is just too much work for this design), probably the only

decent game ever written for a PET machine (by David Murray, the “8-Bit Guy”). So, the next addition to the

PET is going to be some support for the upload of memory snapshots.

3.5 Loading snapshots

In order lo load an snapshot file into the PET memory and to execute it we need the following hardware:

• A serial port.

• Some ROM space for the uploading code.

• Some RAM space for variables.

The serial port is already at hand due to its use for the cassette interface. We only have to make its received

data visible to the PET. In order to do this I chose the following addresses for the UART receiver:

Address Reg comments

$E800 RX data read clears data available flag

$E801 RX flag Bit #7: data available

9

Where, the UART is selected if address lines #4, #5, and #6, are zero, meaning neither the PIAs nor the

VIA are selected.

For ROM I initially though about using some free area in the PET’s ROMs for my upload code, but it seems

not a single byte of these ROMs are free. Also, for RAM I was planning to use the last 24 bytes of the video

RAM that aren’t displayed, but these bytes could still have been used by applications. So, at the end I resorted

to include in the PET another BRAM with half its space writable and mapped after the video RAM:

address attr. use comments

$8800 - $88FF RO Upload code. Call with “SYS 34816”

$8900 - $89FF RW Variables. CPU and VIA regs stored here

This hardware addition allows the loading of snapshots files. These files were obtained from VICE emu-

lations, but the native VICE snapshots have too much metadata inside (Should we call it garbage? Why these

snapshots are 144KB long when the PET RAM memory is only 33KB?). Also, the actual format of the .VSF

snapshots differs from what is stated on the VICE documentation (in particular in the dump of the VIA reg-

isters), and some reverse engineering was needed in order to get the correct values. The relevant data was

extracted into a much simpler file before sending it through the serial port without any flow-control.

The structure of such files is:

Byte # Size Field comments

0 1 last RAM page (+1) $10,$20,$40, or $80 depending on the amount of RAM

1 1 last VRAM page (+1) $84 for 40-column text

2 32 Registers CPU and peripheral registers

34 4K to 32K RAM dump

nnnn 1K or 2K VRAM dump

The “Registers” field is still under development. It must include the CPU registers for sure, and some

registers for the VIA too, but the PIAs aren’t yet included as they seem to remain untouched by applications.

These are the registers included in the field:

CPU VIA —

offset reg offset reg offset reg offset reg

0 A 8 ORB 16 T2LL 24 -

1 X 9 ORA 17 T2CH 25 -

2 Y 10 DDRB 18 SR 26 -

3 S 11 DDRA 19 ACR 27 -

4 P 12 T1CL 20 PCR 28 -

5 PCL 13 T1CH 21 IFR 29 -

6 PCH 14 T1LL 22 IER 30 -

7 - 15 T1LH 23 - 31 -

The code that loads and executes the snapshot is listed next:

10

; --
; Define constants

VARBAS = $8900
REGBAS = VARBAS + 2
ZPBAS = REGBAS + 32

URXD = $E800
USTA = $E801

; --
; --

.code
_start:

sei ; No interrupts
; Clear screen
ldx #0
lda #32

l1: sta $8000,x
sta $8100,x
sta $8200,x
sta $8300,x
inx
bne l1
; Print message

l2: lda msg,x
beq l3
and #63 ; Uppercase ASCII -> PETSCII
sta $8000+494,x
inx
bne l2

l3: ; start upload
lda URXD ; clear UART RX flag
ldy #0
sty 0 ; destination pointer
sty 1
; Save npages, nvpages, regs[32], and first 2 bytes of RAM on SNA RAM area

l4: bit USTA ; UART getchar
bpl l4
lda URXD
sta VARBAS,y
iny
cpy #36 ; total 36 bytes: npages+nvpages+regs(32)+zp[0]+zp[1]
bne l4
; read Memory blocks
ldy #2 ; start at $0002
ldx #0 ; block counter: 0=RAM, 1=VRAM

l5: bit USTA ; UART getchar
bpl l5
lda URXD
sta (0),y
iny
bne l5
inc 1 ; next page
lda VARBAS,x ; all pages loaded?
cmp 1
bne l5
lda #$80 ; now point to VRAM
sta 1
inx
cpx #2
bne l5

; All RAM loaded, now restore register values
; Zero page restoration
lda ZPBAS ; restore ZP[0]
sta 0
lda ZPBAS+1 ; restore ZP[1]
sta 1

11

; VIA reg restoration
ldx #14 ; IER offset

l6: lda REGBAS+8,x
sta $E840,x
dex
bpl l6
; CPU reg restoration
ldx REGBAS+3 ; restore S
txs
ldx REGBAS+1 ; restore X
ldy REGBAS+2 ; restore Y
lda REGBAS+4 ; restore flags (through stack)
pha
lda REGBAS ; restore Acc
plp ; restore flags
jmp (REGBAS+5) ; restore PC

msg: .asciiz "UPLOAD SNA"

.export endtxt
endtxt:

The snapshot upload allowed to start a game in an emulator, to freeze it into an snapshot file, and to resume

its execution on the FPGA PET replica. The uploading only takes 3 seconds for a 32K PET. Here is an example

of the PET running an snapshot of the “Attack of the PETSCII Robots” on an ICECREAM board.

The support for uploading snapshots was also included in the “reduced” ICESTICK version of the PET,

resulting in all BRAM blocks being occupied and only 5 unused logic cells out of 1280. That’s a tight fit! The

same small ICE40HX1K FPGA was also used in an old ICECREAM board but in that board we also get the

external RAM. This results in a “reduced” 32K PET that is able to play PETSCII Robots without sound.

4 Some problems

The “reduced” PET recreation always use the “graphic” character set because there is no VIA to control the

selection signal, but the “complete” recreation is able to change the character set by means of the following

POKEs:

12

POKE 59468,12 for Graphic mode

POKE 59468,14 for Business mode

These pokes works as expected, but the PET starts using the “Business” mode after reset and this seems to be

wrong. After debugging a little the VIA recreation without finding any problem I tried a different ROM set

and it started in “Graphics” mode. Unfortunately, the new ROM set results in a very different keyboard layout,

so it was clearly intended for another PET model. So, at the end this is not a problem with the recreation but

with the PET firmware itself that defaults to a “Business” character set. After further research I found this is

the normal behavior for models with “business” keyboards and Editor ROMs, that is just the kind of matrix I

mapped to the PS2 keyboard. I should have selected another Editor ROM and key mapping. Well, I don’t want

to redo the boring key mapping again, so, at the end we are dealing with a Business PET.

Another possible bug is the cassette motor control signal that starts in an ON state until you execute a

“SAVE” or “LOAD” command. In a real cassette player this bug is of little importance because the “Play” key

has to be also pressed in order to play or record the tape. It was more annoying when I tried to use this signal

as an enable for dumping the cassette data over the serial port after a “SAVE” command. I don’t know if this

behavior is the same for later ROM revisions, but considering the cassette tapes were completely replaced by

floppies during the early eighties it is quite possible to have this bug in all of them.

I must admit the PET ROM set is a sort of chaos with many different versions around for its various parts

(Kernel, Editor, and BASIC), and it’s easy to chose the wrong ones (BTW, the BASIC version includes the

famous “WAIT 6502,n” Easter egg). At the end the recreated computer is a sort of FrankensPET, based on a

2001 model hardware but with a slightly modern BASIC version and a “Business” keyboard and Editor ROM.

By the way, the software repository for the Ubuntu version of VICE, the 8-bit Commodore emulator, says

the ROMs are still owned by a Low-Countries company and not included in the emulator. I don’t think this is

still the case because a recent download of VICE from its web page included all the ROMs, but I wonder why a

company wanted to invest into this fossil software (unless that company was also becoming a fossil itself, with

no engineers but with lots of lawyers, a sort of “White Dwarf” company).

As another problem to report, I was given an Alhambra-II board and I tried to port the design into it, but

my screen remainded always black. Soon I found the board has 200Ω resistors in series with the FPGA pins

and these resistors were ruining the voltage levels of the video output, so, my 1-pin composite video solution

is unsuited for this board. (I got reports of other screens working in spite of the wrong voltage levels, but not

my Samsung TV)

But it is still possible to have decent composite video levels if the internal video and sync signals are

available at the connectors, and by an strike of luck the series resistors have just the correct value to avoid an

extra external resistor. The schematic is:

monitor

75Ω

Zo=75 Ω Comp. Video

0V

0.3V

1V White

black
hsync

200

200 Ω

Ω

330 Ω

Alhambra−II
Board

Ω20

Ω20
nSYN

Video

3.3V

0V

3.3V

0V

FPGA

13

Video nSync Occurence Level

L L Sync pulses 0V

L H video black 0.305V

H L never happens (grey) 0.762V

H H Video white 1.066V

Here the video output is no longer a tristate signal, and only a 330Ω resistor is required along with the two

outputs. With this mod the PET screen was also displayed from an Alhambra-II board.

And finally, I want to mention the annoying cursor keys and their workaround. It wasn’t until I got the

game “Attack of the PETSCII robots” running when I decided to do something about these keys. The PET has

only two cursor keys: Right and Down, and, if you want to move the cursor in the opposite directions the Shift

key also have to be pressed. Well, compared to the 4 cursor keys of PC keyboards that approach is, lets say it

softly, not very user friendly. And, BTW, in the VICE emulator the four cursor keys works as expected, so they

are surely emulating two key presses, one of then Shift, when typing on the Left or Up keys. I should do the

same in the PS2 keyboard interface, but in that design I only considered single keypresses when writing to the

key array RAM. The solution was to include a single extra bit that get set when one of these two cursor keys

are pressed and to force a pressed Shift key when reading the array data (bit #6 of column #6) regardless of the

Shift key state if this bit is set.

With this last change the four cursor keys of the PS2 keyboard do what they are supposed to do and the

“Attack of the PETSCII robots” is finally playable.

5 Summary

These are some tested PET replica variants:

Board PET RAM Snaps VIA Tape Sound LCs BRAMs Comments

ICESTICK 4K yes no no no 1275 16

ICECREAM-1K 32K yes no no no 1261 8 external RAM

Alhambra-II 8K yes yes yes yes 1944 25 2-pin video interface

ICECREAM-4K 32K yes yes yes yes 1892 9 external RAM

SIMRETRO 32K yes yes yes yes 1909 9 Video DAC

14

	Introduction
	Replica details
	Memory
	Clocks
	The SPI ROM
	Peripherals
	Keyboard
	Video generation
	RF generation
	Connections

	A better PET
	Cassette interface
	Audio
	.TAP cassette input
	32K PET
	Loading snapshots

	Some problems
	Summary

