This help file describes all the features implemented in the current version (2003.10.13) of the IIS (Ion Implantation Simulator) program. The introduction of parameters is very simple. You must only write the correct case sensitive- keyword in the input file and the values assigned to. The quantities shown with \square are by default if the keyword does not appear. If some keyword appears twice or more times in the file, the program take the last value assigned to.

Main tokens

$A B C 100$
[100] Define the X axis of simulation. It coincides with the crystal orientation.
In silicon:

$$
\begin{aligned}
& \langle 100\rangle \Rightarrow A B C=1 \quad 0 \quad 0, \quad \text { FLAT }=\begin{array}{lll}
0 & 1 & 0 \\
\langle 110\rangle \Rightarrow A B C=1 & 1 & 0,
\end{array}, F L A T=0
\end{aligned}
$$

flat 010
[0 10] Define the Y axis of simulation. It must be perpendicular to ABC , else program will stop.

WinA 5.431
Define the implant window (units \AA)
[5.431] (axe z or horizontal)
WinB 5.431
Define the implant window (units \AA)
[5.431] (axe y or vertical)
I mplantationArea 100.0
[100.0] Define the implantation area used by the 3D damage accumulation model (units A \AA^{2})
Cut Tha 0.0
Cut-Phi 0.0
Define the wafer cut error in tilt, tha, and rotation, phi (units: degrees)
[0.0] Tilt cut error of the wafer
[0.0] Rotation cut error of the wafer

Atom definition

Atom	B	11.000	519.0	
Atom Si	14	28.086	519.0	
Atom	0	8	15.994	519.0

Define the atoms involved in the problem. The order is important for the next keywords.
The syntax is:

```
Atom_name(up_to_ __chars) atomic_number atomic_mass(in_uma) debye_temp(K)
```

The Debye temperature is for the thermal vibration model included. The atoms used as projectiles must be isotopes.

By default the program defines boron and silicon (in this order).

Target definition

```
Amorphous 0
    [0] By default
    ( =0) Current layer is crystalline
    (=1) Polycrystalline
    ( =2) Amorphous
```

XMin 0.0
[0.0] X origin of current layer (units: \AA)
XMax 15.0
[1.0e9] X limit of current layer (units: \AA)
LatticeParameter 5.431 5.431 5.431
[5.431 5.431 5.431]
Define the lattice parameters of the unit cell that reproduce the crystal (units: \AA).
Angles 90.0 90.0 60.0
[90 90 90]
Define the angles of unit cell (alpha, beta, gamma). In degrees

XTal	2	1	0.3333	-0.465	0.465	15 // Si
XTal	2	1	0.0	0.0	0.465	15 // Si
XTal	2	1	0.6666	0.465	0.0	15 // Si
XTal	3	1	0. 12	0. 272	0.415	15 // 0
XTal	3	1	0.4533	-0.415	-0.143	15 // 0
XTal	3	1	0.7866	0. 143	-0.272	15 // 0
XTal	3	1	-0. 12	0.272	0.143	15 // 0
XTal	3	1	0.5467	0.415	0.272	15 // 0
XTal	3	1	0.2133	-0.143	-0.415	15 // 0

Define each lattice site of the unit cell. Syntax:

```
XTal n_atom type xpos ypos zpos binding_energy
```

where:
n_atom is the atom. It uses the introduction order number in the input file.
type is the centered type. You can choose from:
1: primitive
2 : body centered
3 : A end centered
4: B end centered
$5:$ C end centered
6 : face centered
xpos ypos zpos are the relative coordinates measured in lattice parameter units referred to the unit cell origin.
binding_energy is the energy needed to destroy a link between atoms in this lattice site (units: eV).

```
Xtal2 3 2 1 0.2133 -0.143 -0.415 0.57 15 15
```

Define each lattice site of the unit cell. Syntax:
Xtal $2 n_{2}$ atom1 n_atom2 type xpos ypos zpos ratio binding_energyl binding_energy2 where:
n_atom1, n_atom2 are the atoms that could appear in that lattice site. It uses the introduction order numbers of atoms in the input file.
type is the centered type. You can choose from:
1 : primitive
2 : body centered
3 : A end centered
4: B end centered $5:$ C end centered 6 : face centered
xpos ypos zpos are the relative coordinates measured in lattice parameter units referred to the unit cell origin.
ratio is the number of times that $n _$atom 1 statistically appears in that place. (1.0-ratio) is number of times that $n _$atoms 2 appears. It is useful for alloys like $\operatorname{In}_{x} \mathrm{Ga}_{1 \times \mathrm{x}} \mathrm{As}$
binding_energy1 binding_energy2 are the energies need to destroy a link between each atom and the crystal (units: eV).

EDTCreate 0

[0] If you do not have a 3D electronic density for a particular target, you can select to create it (!=0) using for that the radial electronic densities of the atoms involved. These electronic densities must be in Nxx.den files ($x x$ is the atomic number: boron(05), silicon(14)). The format of these files for each row is (radius (\AA) density (electron $\left./ \AA^{3}\right)$)

EDTFile[EDT_SiO2]
[] Empty by default
(Text) File name of the 3 D electron density. If you do not have the density and you wish to create it, the program can put a proper name based in its chemical symbol. If you write here a file name the program overrides the file name solved. If you have the density and the name matches the name generated by the program, you don't need to put any name.

NextLayer

After the definition of one layer you can add more layers with no lateral limits, at the depth you wish. The keyword has no parameters.

```
Amorphous o
LatticeParameter 5.431 5.431 5.431
Angles 90.0 90.0 90.0
XTal 2 6 0.00 0.00 0.00 15
XTal 2 6 0.25 0.25 0.25 15
XMi n 15.0
XMax 1. Oe10
EDTCreate 0
EDTFile[EDT_Si]
```


Implants

Projectiles 10
[2 0] Define the list of projectiles involved in that implantation (each number represents the order number of the atoms defined before). It is possible to simulate BF_{2} implants, taking into account the damage generated by the F atom. The list must be ended with 0 .

Numberofl mplants 1000
[10] Define the number of primary trajectories simulated for each set of projectiles
[200.0] Define the implantation energy of each set of projectiles (units: eV). The energy is distributed between the projectiles according to their mass.

```
Miller O
    [=0] Select the direction of implant with the angles (Tha & Phi tokens)
    (!=0) Select the direction of implant with the miller indexes (DIR token)
Tha O
    [0] Polar angle (tilt) of implant direction (unit: degrees)
Phi O
[0] Azimuth angle (rotation) of implant direction (unit: degrees)
DIR O O O
[0ccll 000 Direction with miller indexes (dimensionless units). Used if Miller!=0
Divergence 1.5
[0.0] Define the divergence amplitude of the implant direction (unit: degrees)
Dose 1. Oe13
[1e13]
Define the dose of the implantation (units: atom \(/ \mathrm{cm}^{2}\) ). Used to calculate the histogram. The program does not take into account the dose rate.
```

Temperature 300
[300] Defines the temperature of the target (unit: Kelvin). It is related to the thermal vibration model and with the Debye temperature defined in the atom definition section. This token is take into account if the Therm token is activated

RareEvent 0
[=0] No rare event algorithm
(=D) Decades (up to 6) of precision with the rare event algorithm in order to reduce the statistical noise in the simulation speeding-up the simulation

RSO $1.85 \quad 0.0$
[1.850 .0] The only one fitting parameter for the electronic stopping model. Is a list of values, each one is for a layer of the target material. If there are more layers than values the last layers repeat the last value. It must be ended by 0.0

Dosesplitting off
[Off] Does not uses the dose division algorithm. This algorithm is used to improve the statistical noise in high dose implants

DoseDistribution lel3 lel4 le15 0. O
[] If DoseSplitting is activated the simulator choose automatically a dose distribution, but you can override it by using this token. You write a list of doses to be simulated. The sum of that doses must not be greater than the Dose defined before. The last number 0.0 is needed to end the list and is replaced by the remainder dose (units: atom $/ \mathrm{cm}^{2}$).

Example:
Dose= 1 e 16
DoseDistribution $=1 \mathrm{e} 13,1 \mathrm{e} 14,1 \mathrm{e} 15,0$
The doses simulated sequentially will be: $1 \mathrm{e} 13,1 \mathrm{e} 14,1 \mathrm{e} 15$ and ($1 \mathrm{e} 16-1 \mathrm{e} 15-1 \mathrm{e} 14-1 \mathrm{e} 13$)

NextSimulation

This token indicates the simulator that must done another sequential implant simulation. You can repeat the above Implant tokens to define more sequential implants. The damage is accumulated from one to another.

Damage model

RecombinationFactor 0.06
[0.06] Is the survival factor of the defects generated at each time (units: dimensionless). By default uses the value fitted for Silicon.

KinchinPeaseConstant 0.8
[0.8] Is the Kinchin-Pease constant and must not be modified.
AmorphizationDensity 4.99e21
[0.1*4.99e22]
Is the amorphization density needed to consider the crystal amorphized (units: atom $/ \mathrm{cm}^{3}$). By default uses the value fitted for Silicon

DisplacementEnergy 15.0
[15.0] Is the displacement energy used in the Kinchin-Pease model (units: eV). You must adjust it for each target. By default uses the value extracted from experiments for Silicon.

Cuttoffenergy 0.15
[0.12] If you does not simulate the complete cascades (see LevelOfSimulation token) the simulator uses a correction to avoid that a volume of material becomes amorphized by only one impact. If the energy transferred is greater then the cut-off energy then the only energy transferred is the cut-off energy (units: eV/Å). If you simulates complete cascades this parameter is not used (more correct).

PreviousDamageFile[pepe]
[] By default is not used. Defines a previous damage file name.

Stopping models

```
Stopping[ Our ]
    (text) Define the electronic stopping function used.
        You can select from:
                        None - No stopping
                    ZBL - Brandt-Kittagawa stopping model
                        Our - Our stopping model based on Cai-Groenbench model
Ionization[ ZBL ]
    (text) Define the electronic ionization function used.
        You can select from:
                            ZBL - Ziegler-Biersack-Littmark ionization model
                    BK - Brandt-Kittagawa ionization model
                    CGJ - Cai-Groenbech-Jensen ionization model
                    MP - Mattar-Posselt ionization model
SpecificPotential 514 1
    Syntax: SpecificPotential Z1 Z2 Type
    Z1 atomic number of the first atom
    Z2 atomic number of the second atom
    Type is the screening function used:
        0 : Universal ZBL screening function.
                                    Screening = 0.18179* exp(-3.2*X)+0.50986* exp(-0.9423*X)
                                    +0.28018*}\operatorname{exp}(-0.4029*X)+0.02817*\operatorname{exp}(-0.2016*X
                            where X is the reduced distance = x/au
        1:Specific screening function
                            Simulator searches for a file named "ssfz1z2.dat" where z1 and z2 are
                            the atomic numbers specified before. The file format will be:
                                    Distance(Å) Screening Screening_Derivative
        2:Thomas-Fermi screening function
```

$3:$ Molière screening function
4 : Lenz-Jensen screening function
5 : Bohr screening function
6 : Specific screening function without potential derivative
Simulator searches for a file named "ssfz1z2.wopd" where z1 and z2 are the atomic numbers specified before. The file format will be:

Distance (Å) Screening
After run the simulator a file named "ssfz1z2.w" will contain also the potential derivative.

Advanced 1

Level Of Simulation 1
(0) Follows all levels of projectiles (slow)
[1] The program only follows the primary ion trayectory (fast)

Randomize 1

(0) Assume initial positions give by POS keyword
[1] Assume random positions
Seed1 1234
[1234] Seed for the Marsaglia random number generator used by the program
Seed2 5678
[5678] Seed for the Marsaglia random number generator used by the program
POS O O O
[llll 0000$]$ Fixed initial position of each set of projectiles. If Randomize keyword is activated, this field is not taken into account

Advanced 2

SimultaneousDistance 0. 5
[0.5] Defines the distance to considerate that the projectile go to collide simultaneously with two atoms or more (units: Å). Before collisions.

SD2 0. 25
[0.25] Defines the distance to considerate that the projectile go to collide simultaneously with two atoms or more (units: Å). After collisions.

GhiLimit 0. 1

[0.1] Defines the minimum distance in the direction of the projectile to search new targets to not collide two times with the same target atom (units: Å)

ThresholdEnergy 10

[10] Defines the threshold energy to follow a projectile (units: eV)

I nteractionRadius 2.7155

[2.7155] Defines the interaction radius used to search the targets to collide with (units: \AA)
MaxDepth 15000
[1e10] The ion is not longer followed if it reaches this depth. The ion has energy but we don't want to follow more. He is marked as ION_NOT_FOLLOWED but it appears in the final histogram.

MaxlterationsPerlmplant 100000
[1e4] The ion is not longer followed if this number of collisions or free flying steps are reached.

Therm On

[On] Activate the thermal vibration model

EnergySpread O

[0] The energy can vary from nominal energy following one of the following distributions:
0 : No dispersion
1: Uniform distribution between
\{ENERGY - EnergySigma/2, ENERGY + EnergySigma/ 2\}
2 : Gaussian distribution using EnergySigma
EnergySigma 0.0
[0.0] Define the dispersion of the distribution defined above (units: eV)
EnergyPercentage 0.0
[0] If defined (not 0) the EnergySigma = ENERGY*EnergyPercentage/100

DivType 2

[1] Defines the statistical divergence model for the implant direction
(=0) isotropic distribution
(=1) non uniform cosine distribution (around azimuth angle)
REThreshold 100
[100] Number of trajectories simulated for each set of projectiles in order to recalculate the splitting depths for the rare event algorithm (with depth or distance)

REInterval 100

[100] Number of trajectories simulated to recalculate the splitting depths after reach the REThreshold

REType 0

[0] Type of rare event to use :
0 : Statistical noise reduction based on depth
1 : Statistical noise reduction based on distance
RareEvent 0
[0] Number of orders of magnitude of extra accuracy in the statistical noise reduction algorithm: not for surface rare event
pE O. O
[0.0] Energy percentage (between 0.0 and 1.0) to activate surface rare event. By default is deactivated. A typical value could be 0.10
pX 0.0
[0.0] Depth percentage (between 0.0 and 1.0) to activate surface rare event. By default is deactivated. A typical value could be 0.05

Output tokens

Verbose Of f

[Off] Display extra information.
Also saves to disk (Layer_XX.xyz) the crystallite used corresponding to each layer in .xyz format readable with Xmol-like programs (xmol, chime, rasmol, raswin, etc.)

PearsonlV Off

[Off] Saves to disk a Pearson IV profile fitted to simulated profile if possible. The file name will be "pearsonIV_xx", where xx is the number of projectile. The format is
distance (nm), conc. Gaussian distrib. (at/ cm^{2}), concentration PearsonIV distribution (at/cm ${ }^{2}$)
and includes the solved moments. Example:
\# Pearson |V moments:
\# Mean range ml $=272.536$
\# Straggle m2 $=201.059$
\# Skewness m3 $=1.02545$

```
# Kurtosis m4 = 4.11697
```

\# Cannot generate a Pearson IV

HSTFilel profile]
[Histo1D.xx_yy] Filename for the 1D doping profile. The simulator adds to the filename "xx_yy" where xx is the implant number and yy is the projectile number (order of implantation)

ShowHistold On

[Off] Shows the 1D doping profile in runtime in a gnuplot window (only unix systems). In
Windows systems a file named "gnuplot0.dat" will contain the gnuplot commands to plot the file
GPInitl set data style lines; set auto scale]
(Text) Initialisation commands when showing the doping profile progress with gnuplot. See gnuplot documentation. Up to 255 chars. Empty by default.

GPPIot [t "Current implantation"]
(Text) Plotting commands that follow the command\{ plot "Histo1D." $\}$ when showing the doping histogram progress. See gnuplot documentation. Up to 255 chars. Empty by default.

ShowDamage On
[Off] Shows the 1D damage profile in runtime in a gnuplot window (only unix systems) . In Windows systems a file named "gnuplot2.dat" will contain the gnuplot commands to plot the file
GPInitDamage[set data style lines; set auto scale]
(Text) Initialisation commands when showing the damage profile progress with gnuplot. See gnuplot documentation. Up to 255 chars. Empty by default.

GPPIot Damagel t "This work", "B_Si.rbs"t "Experimental RBS"]
(Text) Plotting commands that follow the command $\{$ plot "Histo1D." $\}$ when showing the damage histogram progress. See gnuplot documentation. Up to 255 chars. Empty by default.

Full DoseOutput On
[Off] Show the doping profile scaled or not to the total dose at runtime

REShow Of f

[Off] Plot splitting depths. The data is stored in 'RE_Depths.xx' file, where xx is the number of projectile

ASCII Off

[Off] Shows 3D profiles in ASCII format

Example 1

Boron into crystalline silicon with an amorphous layer of silicon oxide of $15 \AA$ width at room temperature. The crystal orientation for Silicon is $\{100\}$ for the depth axis and the ion beam is rotated 30° and tilted 7° and has an energy of 15000 eV . The divergence of the beam is 0.5°. The dose is 1 e 14 atom $/ \mathrm{cm}^{2}$

Input filename: B_Si.in

```
RSO 1.85 1.85 0.0 || the only one fitting parameter for silicon
Divergency 0.5
RareEvent 2 |/ two extra orders of accuracy
ENERGY 15000 eV
Dose 1e14
NumberOfImplants 5000
ABC 1 O O
Tha }7\mathrm{ degrees (tilt)
Phi O degrees (rotation)
Temperature 300 kelvin
Atom B 5 11.000 519.0 1/ atom 1
Atom Si 14 28.086 519.0 l/ atom 2
Atom O 8 15.994 519.0 /| atom 3
Projectiles 1 0
1/ Si 02
\begin{tabular}{llll} 
Latticeparameter & \begin{tabular}{ll}
4.91304 & 4.91304 \\
Angles & 90.0
\end{tabular}\(\quad 90.0\) & 60.0
\end{tabular}
0.3333-0.465
XTal 2 1 1 0.0 
lllllll
XTal 
XTal 3 1 0.4533 -0.415 -0.143 15 l/ 0
XTal 3 1 0.7866 0.143 -0.272 15 || 0
XTal 3 1-0.12 
XTal 
Amorphous 2 || amorphous
XMi n O A
XMax 15.0 A
NextLayer
l| Si <100>
XTal 2 6 0.00 0.0000.00 15 11 Si
XTal 2 6 0.25 0.25 0.25 15 l| Si
Amorphous 0 /| crystalline
XMi n 15.0 A
```

Output filenames:
All of this in the DB_Si.in directory
Parameters.out
Histold. 01 ol
on.o1. histo3D. bin
Amorph1D.dat

Parameters.out. This file includes all the parameters used by the simulator. You can use this file to known if the simulator has understood the input file and to known the rest of parameters used. Some parameters are twice or more times.

Histo1D.01_01. This file is the doping profile obtained by the first implant and the first projectile of that implant.. The format is

```
# 1000 10000
100 102.302
```


Example 2

Boron into

