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Preface
The microSPARCTM-IIep is an extension of the SPARCTM processor family target-

ed for low-cost applications. The microSPARC-IIep RISC processor allows sys-

tems designers to take advantage of a highly integrated SPARC system on a chip

and achieve industry-leading performance.

The microSPARC-IIep integrates a 32-bit SPARC processor with floating-point

unit, memory management unit, separate instruction and data caches, PCI bus

controller, DRAM and flash memory controller, and clock generator using phase-

locked loop on to a single device. Implemented with state-of-the-art CMOS tech-

nology, the microSPARC-IIep provides an ideal low-cost, high-performance, and

low-power-consumption solution.

Like all SPARC processors, microSPARC-IIep processors are supported by the in-

dustry’s largest installed base of native RISC development environments, appli-

cations, and support tools. SPARC is the leading microprocessor technology

supporting the information superhighway infrastructure in terms of hardware

and software. These tools and technology make SPARC ideal for your embedded

and networked computing applications.

microSPARC-IIep Version

Refer to the contents of the device ID register (see Figure 11-4 on page 205) for the

version of the microSPARC-IIep covered by this manual.
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microSPARC-IIep Overview 1
1.1 Introduction

The microSPARC-IIep CPU is a highly integrated, low-cost implementation of the

SPARC version 8 RISC architecture with a PCI interface. Its implementation

evolved from Sun’s microSPARC architecture.

• High performance is achieved by the high level of integration, including on-

chip instruction and data caches, built-in DRAM controller, and PCI local bus

controller.

• A full-custom implementation allows for a target frequency of 100-133MHz

providing sustained performance.

• The design is highly testable with support of full JTAG scan.

• The microSPARC-IIep chip supports up to 256MBytes of DRAM and 4

external PCI slots.

Table 1-1 lists the key differences between microSPARC-IIep and microSPARC-II.

Table 1-1 Feature Comparison of microSPARC-II and microSPARC-IIep

Feature microSPARC-II microSPARC-IIep

Overall • 32-bit SPARC Architecture version 8

• Supports big-endian byte ordering • Supports little- and big-endian byte

ordering

Frequency • 110MHz • 100MHz - 133MHz
microSPARC-IIep User’s Manual — April 1997 1
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Integer Unit • 136-word register file with 8 windows and 8 global registers

• 5-stage pipeline

• Supports branch folding

• 4-deep instruction queue supporting instruction prefetching

• Support instruction and data cache streaming

• Support big-endian byte ordering • Support little- and big-endian byte

ordering

Floating-Point Unit • Supports all single- and double-precision floating-point SPARC version 8 instruc-

tions

• Traps all quad-precision floating-point instructions

• Datapath contains Meiko floating-point engine, fast multiply unit.

• Support of simultaneous execution of fast multiplications and other floating-point

operations such as floating-point add.

• 3-entry floating-point deferred trap queue

• 32 floating-point registers of 32 bits wide

Memory Management

Unit

• SPARC version 8 Reference MMU

• Translates 32-bit virtual address to 31-bit physical address

• Supports 8 different 256MByte address spaces

• Supports 256 contexts

• 64-entry fully-associative TLB with

pseudo random replacement algo-

rithm

• 32-entry fully-associative TLB with

pseudo random replacement algo-

rithm

• Unified memory TLB and IO TLB • Separate memory TLB and IO TLB

• Supports hardware table-walks

Data Cache • 8KByte, direct-mapped, virtually-indexed, virtually-tagged, write-through with

write-allocate

• 512 lines of 16 bytes

• 4-deep write buffer of 64 bits wide

Instruction Cache • 16KByte, direct-mapped, virtually-indexed, virtually-tagged

• 512 lines of 32 bytes

Graphics Bus Interface • High-speed local bus • Not supported

Table 1-1 Feature Comparison of microSPARC-II and microSPARC-IIep (Continued)

Feature microSPARC-II microSPARC-IIep
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1.2 microSPARC-IIep Memory Map

The microSPARC-IIep physical memory address mapping is shown in

Appendix B, Physical Memory Address Map.

Memory Interface • Programmable DRAM controller

• Supports up to 256MBytes of system memory

• 64-bit data and 2-bit parity

• 8 RAS lines

• 4 CAS lines

• Supports 2 pages at a time

• Supports 5V/3V standard/slow refresh, self-refresh

• Supports fast-page mode DRAM only • Supports FPM or EDO DRAM that

meets fast-page mode timing

Local Bus Controller • SBus • PCI revision 2.1

• 32-bit, 33MHz

• Supports up to 4 external bus masters

or slaves

• Supports host and satellite modes.

• Address translation from 32-bit local

bus address to main memory space

assisted by dedicated 16-entry IO TLB

• Supports little- and big-endian byte

ordering

• Interrupt controller with programma-

ble priority assignments and program-

mable output pins

• Programmable local bus to chip fre-

quency

Flash Memory Interface • Not supported • Supports 8-bit or 32-bit interface

• Pin-selectable boot choice

Boundary Scan JTAG

TAP Controller

Packaging • 321 pins pin grid array • 272 pins plastic ball grid array

Performance • 72 SPECint92

• 59 SPECfp92

• 208K Dhrystone

Voltage • Core operating voltage of 3.3V

Table 1-1 Feature Comparison of microSPARC-II and microSPARC-IIep (Continued)

Feature microSPARC-II microSPARC-IIep
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1.3 Endian Support
The microSPARC-II works only with big endian data. The microSPARC-IIep

works with either big endian or little endian data. To do so, the microSPARC-IIep

has built-in endian conversion logic. When operating on little endian data, the

endian conversion logic performs byte swapping to convert external little endian

data to internal big endian data and internal big endian data to external little en-

dian data. The endian conversion logic is enabled by bits 15 and 16 of the proces-

sor state register (PSR) and bit 2 of the PCI controller PIO control register.

1.3.1 Processor-to-System Memory Endian Conversion

The microSPARC-IIep supports little endian system memory data for both super-

visory and user modes. PSR bits 16 and 15 enable little endian conversion during

supervisor and user modes, respectively:

• PSR [16]: When set, the default byte ordering for supervisor data references is

little endian. When clear, the default byte ordering for supervisor data

references is big endian.

• PSR[15]: When set, the default byte ordering for user data references is little

endian. When clear, the default byte ordering for user data references is big

endian.

For example (see Figure 1-1):

• Processor operating little endian mode: If the contents of a double word

register (r2,r3) = 0001.0203.0405.0607 and a double word store to memory

location 0 is issued, the double word at memory location 0 would contain

0706.0504.0302.0100 after the transfer.

• Processor operating in big endian mode: If the same double word register was

transferred to memory location 0 while operating in big endian mode, the

double word at memory location 0 would contain 0001.0203.0405.0607 after

the transfer.
4 microSPARC-IIep User’s Manual — April 1997
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Figure 1-1 Big Endian vs. Little Endian Example (Processor Double Word Store)

All loads and stores, including ones using address space identifiers (ASI), are

handled in the mode designated by the PSR endian control bit.

Note: Please remember to check the PSR endian control bits while performing

maintenance operations in little endian mode. Failure to do so may result in

erroneous failure indications because the data may appear to be scrambled.

Switching of endian modes does not take effect until after completion of the in-

struction immediately following the PSR endian control bits update. When

switching between endian modes, the instruction following the PSR modification

will operate in the previous endian mode.

Note: When switching modes, the software must include a NOP, non-memory,

or ASI shadow instruction following an update to the PSR (see Figure 1-2).

Figure 1-2 Required Shadow Instruction at Processor Endian Mode Switch

00010203 04050607(r2,r3) 00010203 04050607

00010203 04050607 07060504 03020100(mem0,mem1)

Big Endian Mode Little Endian Mode

. . .
instr
LOAD PSR /* change endian mode */
NOP/non-memory/ASI instruction /* required */

instr
instr

Previous Endian Mode

New Endian Mode

. . .
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Caching of data is allowed while operating in little endian mode, but there is no

hardware mechanism in the data cache to determine if a particular datum is

stored in big or little endian format. The endian mode of the cached data is deter-

mined by the context identity value of the process. By tracking the context identi-

ty, the user can determine the endian mode of the cached data.

Note: Certain hardware operations of the microSPARC-IIep processor assume

the byte ordering of the data references to be big endian only. For example,

independent of the PSR settings, the data references for table walks are treated as

big endian data.

There is no performance penalty while operating in little endian mode.

1.3.2 Processor-to-PCI Endian Conversion

The endian conversion logic across the processor-to-PCI interface is controlled by

bit 2 of the PCI controller PIO control register (PA=0x300C.0060). On reset, the en-

dian conversion logic is enabled. Therefore, data on the PCI bus is little endian.

For example (see Figure 1-3):

• If the processor is operating in big endian mode, has contents

0001.0203.0405.0607 in the double word register (r2,r3), and bit 2 is set to 0,

then a PIO initiated PCI memory write would place the data 0302.0100 then

0706.0504 on the PCI bus in consecutive transactions.

• With bit 2 set to 1, no twisting is done. If the processor is operating in big

endian mode with bit 2 set and has contents 0001.0203.0405.0607 in the double

word register (R2,R3), then a PIO initiated PCI memory write would place the

data 0001.0203 then 0405.0607 on the PCI bus in consecutive transactions.

Figure 1-3 Big Endian vs. Little Endian Example (PCI Master Double Word Transfer)

00010203 04050607(r2,r3) 00010203 04050607

00010203 04050607 03020100 07060504(PCI Bus)

Big Endian Mode Little Endian Mode
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This bit can be changed on the fly. The preferred method is to set the bit to the

desired value, then read back the bit. This will guarantee that other PIO transac-

tions are locked out while the PIO endian control is in transition (see Figure 1-4).

Figure 1-4 Required Readback Instruction at PCI Master Endian Mode Switch

1.3.3 Settings for Endian Conversion

The following two sections describe the recommended register settings for mi-

croSPARC-IIep to operate in big and little endian environments.

1.3.3.1 Big Endian Environment

PSR[16] and PSR[15] are both cleared to 0. PCI controller PIO control register [2]

is set to 1. See Table 1-3 for an example.

Table 1-2 Big Endian Example

Location Data

microSPARC-IIep register r2 r3
00010203 04050607

System memory addr 0 7
data 00010203 04050607

PCI local bus AD 31 0
CBE 3 0
data 00010203

AD 31 0
CBE 3 0
data 04050607

. . .
instr
LOAD PCIC CONFIG /* change endian mode */
READ PCIC CONFIG instruction /* required */

instr
instr

Previous Endian Mode

New Endian Mode

. . .
microSPARC-IIep Overview 7
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1.3.3.2 Little Endian Environment

PSR[16] and PSR[15] are set to 1 depending on whether data access is in supervi-

sor or user mode. PCI controller PIO control register [2] is set to 0. See Table 1-3

for an example.

1.4 Block Diagram
Figure 1-5 shows the typical microSPARC-IIep system block diagram.

Figure 1-5 Typical microSPARC-IIep System Block Diagram

Figure 1-6 shows the microSPARC-IIep:

• Integer unit (IU)

• Floating-point unit (FPU)

• Instruction and data caches

Table 1-3 Little Endian Example

Location Data

microSPARC-IIep register r2 r3
00010203 04050607

System memory addr 7 0
data 00010203 04050607

PCI local bus AD 31 0
CBE 3 0
data 03020100

AD 31 0
CBE 3 0
data 07060504

Up to 4
PCI Bus
loads

microSPARC-IIep

32 MB DRAM SIMM Module
32 MB DRAM SIMM Module

32 MB DRAM SIMM Module
32 MB DRAM SIMM Module

Up to
256 MB
DRAM
SIMMs

Local Bus

Flash
Memory PCI Bus
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• Memory management unit (MMU) with 32-entry translation lookaside buffer

(TLB)

• DRAM controller

• PCI controller

• PCI bus interface

• IOMMU with 16-entry IOTLB

• Flash memory interface

• Interrupt controller

• 2 timers

• Internal and boundary scan JTAG interface

• Power management

• Clock generation

Figure 1-7 shows the microSPARC-IIep pipeline.

Figure 1-6 microSPARC-IIep Block Diagram
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Figure 1-7 microSPARC-IIep Pipeline Diagram
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CPU Performance 2
The performance projections for the microSPARC-IIep CPU is extrapolated from

the actual performance figures for the microSPARC-II. This is possible because

the microSPARC-IIep CPU is based on the design of the microSPARC-II core.

There are, however, minor differences in the I/O subsystem and the translation

lookaside buffer (TLB) of the microSPARC-II and microSPARC-IIep (i.e., the mi-

croSPARC-II CPU has a 64-entry TLB with 16 entries dedicated for IOTLB use,

while the microSPARC-IIep CPU has a 32-entry TLB). As a result, adjustments

have to be made to the microSPARC-II data to account for these differences.

2.1 Benchmark Test Results

The results of these benchmark tests at 100MHz on microSPARC-II machines is

presented in Table 2-1.

microSPARC-IIep’s SPECint92 is anticipated to drop in performance by 4.5% and

its SPECfp92 by 0.9% from these microSPARC-II results.

Table 2-1 microSPARC-II CPU Performance Summary

Benchmark 100MHz

SPECint92 72.29

SPECfp92 59.28

Dhrystone 208.33K

MIPS 118.57

MFLOPS 8.89
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Note: Performance of programs that overflow the available TLB entries will be

less than listed.

2.1.1 Benchmark Test Setup

The benchmark test setup is listed in Table 2-2.

2.1.2 SPECint92 Test Results

The SPECint92 test results are presented in Table 2-3. SPECint92 computed by

best runs is 72.29 and SPECrate_int92 is 1864.

Table 2-2 Benchmark Test Setup

Item Configuration

Hardware Model Number SPARCstation 5-100

CPU 100MHz microSPARC II

FPU Integrated

Number of CPUs 1

Primary Cache 16KByte instruction + 8KByte data on chip

Other Cache None

Memory 64MByte

Disk Subsystem 1GByte single-ended SCSI

Software Compilers Apogee 3.051

Other Software Kuck & Associates KAP

File System UFS

System State Single User

Table 2-3 Test Results for SPECint92

Benchmark Copies Elapsed Time Best Runs

008.espresso 1 35.70 70.28

022.li 1 87.00 75.82

023.eqntott 1 7.80 154.93

026.compress 1 70.80 41.22

072.sc 1 36.80 135.22

085.gcc 1 117.90 51.12
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2.1.3 SPECfp92 Test Results

The SPECfp92 test results are presented in Table 2-4. SPECfp92 computed by best

runs is 59.28.

2.1.4 Dhrystone Test Results

This machine benchmarks at 208,333 Dhrystone/second.

2.2 Compiler Optimization Guidelines
This section explains some of the code scheduling issues that affect the perfor-

mance of the microSPARC-IIep processor.

2.2.1 Branches

Integer branches are either folded with their delay slot instructions or allowed to

enter the integer pipeline.

Branch folding is supported by a four-deep instruction queue. The queue is filled

each cycle by a double word fetch. For a branch to be folded, the branch, delay

slot, and delay slot+1 instructions must be in the queue or is streaming to the in-

Table 2-4 Test Results for SPECfp92

Benchmark  Copies lapsed Time Best Runs

013.spice2g6 1  542.90 44.21

015.doduc 1 37.10 50.13

034.mdljdp2 1 97.70 72.57

039.wave5 1  99.50 37.19

047.tomcatv 1 44.80 59.15

048.ora 1 79.30 93.57

052.alvinn 1 68.20 112.76

056.ear 1 285.00 89.47

077.mdljsp2 1 81.40 41.15

078.swm256 1 311.90 40.72

089.su2cor 1 207.40 62.20

090.hydro2d 1 298.00 45.97

093.nasa7 1 245.80 68.35

094.fpppp 1 152.20 60.45
CPU Performance 13
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teger unit (IU) from the instruction cache. In addition, the instruction preceding

the branch cannot be a multi-cycle instruction or a control transfer instruction

(CTI), and there cannot be a WRspec (write to a special register) in the pipe.

All branches are predicted taken. The target instruction is fetched in the D-stage

of the delay slot instruction (or branch-delay slot pair).

bicc 1f

delay

delay+1

...

1: target

...

Table 2-5 summarizes the cycles taken for a branch.

If the branch can be folded, the branch and delay slot will be executed at cycle x.

If the branch is taken, the target will execute at cycle x+1. If the branch is not tak-

en, the target must be killed and delay+1 will be executed at cycle x+2. Thus,

folded taken branches take 0 cycles, while folded untaken branches take 1 cycle.

If the branch cannot be folded, it enters into the pipeline at cycle x, and the delay

slot instruction enters at cycle x+1. If the branch was taken, the target will execute

at cycle x+2. If the branch was not taken, but the delay instruction+1 was in the

instruction queue, it will execute at cycle x+3; otherwise it must be fetched and

will execute at cycle x+4.

2.2.2 Guidelines for Branch Folding

1. Try to make as many BICC's taken as possible since microSPARC-IIep

always predicts taken and fetches the target. If the branch is untaken, it

will cost a cycle if it was folded, and may cost an additional cycle if it was

not folded.

Table 2-5 Cycles for a Branch

Branch Taken Not Taken

Folded 0 1

Not Folded 1 1 or 2
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2. Avoid BICC to BICC control transfers. The target BICC cannot be folded

since delay+1 will not be in the instruction queue.

bicc 1f

delay

...

1: bicc2f

...

3. Try to have CTI target instructions be double word aligned (e.g., label 1 is

a double word address). This allows the odd word to enter the queue

immediately. If the odd word happens to be a BICC, it can be folded. If the

target is an odd word, the following BICC will not enter the queue and will

not be folded.

bicc1f

delay

...

1: target

bicc2f

...

4. Do not put save/restore in the delay slot of an annulling BICC. If the save/

restore is annulled, microSPARC-IIep must take a cycle to fix the current

window pointer (CWP).

bicc,a 1f

save

5. Do not follow multicycle instructions with a BICC.

Will not Fold Can Fold

-------------- ---------------

std std

bicc add

delay bicc

delay
CPU Performance 15
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6. Do not follow WRspec with a BICC. Folding is disallowed when there is a

WRspec anywhere in the pipeline's D, E, or W stages. WRspec refers to any

of the special registers (PSR, WIM, TBR, Y).

Will not Fold Can Fold

-------------- ---------------

mov .., %psr mov .., %psr

nop nop

bicc nop

nop

nop

bicc

Note: Only integer branches are folded. FP branches are not. Calls are not

folded due to a register file limitation.

2.2.3 Multicycle Instructions

Most instructions in microSPARC-IIep take a single cycle to execute. The instruc-

tions listed in Table 2-6 take multiple cycles.

Table 2-6 Instructions Taking Multiple Cycles

Instruction Cycles

JMP, RETT 2

LDA, STA 2

LDD, LDDA, STD, STDA 2

LDSTB, LDSTBA 2

SWAP, SWAPA 2

STA FLUSH 3

IFLUSH 3

IMUL 19

IDIV 39
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2.2.4 Pipeline Interlocks

microSPARC-IIep has several pipeline interlocks that may be avoided with im-

proved code scheduling. The following operations will result in interlocks:

1. An integer load immediately followed by an instruction that uses the load

destination as a source operand.

2. A CALL followed by an instruction that uses r[15] of the register file as a

source operand.

3. A RD to a special register followed by a dependent operation.

4. A folded SAVE/RESTORE that was annulled.

5. An unfolded CTI branch which is not taken and the delay slot + 1

instruction is not in the instruction queue.

2.2.5 Other Guidelines

Usage of the IMUL instruction, instead of a kernel routine, is preferred due to

higher performance. However, the performance gain of the IDIV instruction over

a kernel routine is highly dependent on the operand types. Therefore, usage of

the IDIV instruction may not always provide higher performance than a kernel

routine.

2.2.6 Floating-Point Instructions

Scheduling of floating-point (FP) instructions can have a large impact on FP per-

formance. The most important thing to consider when scheduling FP code is

making efficient use of the floating-point queue. The FP unit has a three-entry

floating-point queue and two independent functional units (multiplier and every-

thing else).

microSPARC-IIep does not interlock for FP loads, including double-word loads,

followed by dependent FP operations. Since operands for floating-point opera-

tions are read in W-stage, the result from the previous floating-point load can be

bypassed to the floating-point units.

Refer to Section 4.5, “FP Performance Factors for more information about float-

ing-point performance.
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2.2.6.1 FP Interlocks

1. FP queue full - if an FPOP is in E-stage and the FP queue is full, the pipe

must be held until the first instruction in the queue completes.

2. FP store waiting for data from FPOP in queue - held in E-stage.

3. FP load writing register used by FPOP in queue - held in W-stage. This

applies whether the FPOP register is RS1, RS2, or RD.

4. FPLD followed by FPST - single cycle interlock if the FP register (modulo

2) being loaded is the same as the FP register being stored (modulo 2).

5. FPLDFSR/FPSTDFQ followed by any FPOP/FPMEMOP/FPCMP - single

cycle interlock.

6. FPOP followed by FPLDFSR/FPSTDFQ - LDFSR or STFSR must wait for

FPOP to complete.

7. FP branch in decode and FCCV (FP condition code valid) deasserted. The

IU pipe will interlock until FCCV is reasserted. FCCV is deasserted when

an FCMP is started and reasserted when the FCMP completes. The branch

is held in D-stage.

2.2.6.2 Functional Units

There are two functional units: the multiplier and the Meiko core, which handles

all other operations. The multiplier can start an operation every three cycles, but

operations dependent on the multiplier results must wait five cycles for the result

to be written. The initial multiply must also be in the first queue entry if the sec-

ond multiply is to be started before the first results are written. The Meiko core is

not pipelined; when an operation completes, the data and functional unit are

both available. See Chapter 4, “Floating-Point Unit for details on instruction cycle

count.

2.2.6.3 FP Queue Details

The FP queue is three entries deep. It allows out-of-order issue, but forces in-or-

der completion. Only one operation can be started per cycle, and only one opera-

tion may complete per cycle. An operation does not leave the queue until it has

written its results. The following examples demonstrate how dependencies affect

the pipeline.
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1. Out-of-order issue, no dependencies - data written back in-order, issued

out of order because of functional unit availability.

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

fmuld %f6, %f8, %f10 Mult x+3 x+8

faddd %f12, %f14, %f16 Adder x+2 x+9

2. FADD throughput - dependencies have no effect, 5 cycles per operation,

due to a single functional unit.

Unit Issued Written

faddd %f0, %f2, %f2 Adder x x+5

faddd %f2, %f2, %f0 Adder x+5 x+10

3. FMUL throughput - no dependency, 3 cycles per operation.

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

fmuld %f6, %f8, %f10 Mult x+3 x+8

4. FMUL throughput - with dependency, 5 cycles per operation.

Unit Issued Written

fmuld %f0, %f2, %f2 Mult x x+5

fmuld %f0, %f2, %f2 Mult x+5 x+10

5. FMUL/FADD pair - no dependency, 5 cycles per pair. The second multiply

cannot enter the queue until the first add has completed, at which time the

second add is being started.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f6, %f8, %f10 Mult x+1 x+6

faddd %f0, %f2, %f4 Adder x+5 x+10

fmuld %f6, %f8, %f10 Mult x+6 x+11
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6. FMUL/FADD pair - one dependency, 6 cycles per pair. It doesn't matter

which way the dependency goes.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f4, %f6, %f8 Mult x+5 x+10

faddd %f0, %f2, %f4 Adder x+6 x+11

fmuld %f4, %f6, %f8 Mult x+11 x+16

Unit Issued Written

fmuld %f0, %f2, %f4 Mult x x+5

faddd %f4, %f6, %f8 dder x+5 x+11

fmuld %f0, %f2, %f4 Mult x+6 x+11

faddd %f4, %f6, %f8 Adder x+11 x+16

7. FMUL/FADD/FMUL - two dependencies, 10 cycles per pair.

Unit Issued Written

faddd %f0, %f2, %f4 Adder x x+5

fmuld %f4, %f6, %f0 Mult x+5 x+10

faddd %f0, %f2, %f4 Adder x+10 x+15

fmuld %f4, %f6, %f8 Mult x+15 x+20

8. Longer instructions (divide, square root) - other instructions can enter the

pipeline, but none will complete out of order. The integer pipe will not be

held unless a fourth FPop tries to enter the queue. Note that the second

multiply cannot start until the first advances to the first queue entry.

Unit Issued Written

fdivd %f0, %f2, %f4 Adder x x+35

fmuld %f6, %f8, %f10 Mult x+1 x+36

fmuld %f12, %f14, %f16 Mult x+36 x+41
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2.2.7 Loads and Stores

Load and store ordering was found to have a large impact on microSPARC-IIep’s

performance. The microSPARC-IIep has a 8 KByte write through with write allo-

cate data cache. If all accesses hit the cache, the order of accesses makes little dif-

ference. The order of access can have a large effect on the latency of cache misses

though. The following guidelines may help improve performance:

1. Group memory accesses by DRAM page — Cache misses require reads

from DRAM. The DRAM access is faster if it can be accessed in page mode.

Therefore, loads and stores to the same page should be grouped together.

One way to do this is to group accesses which use the same base register

together, since these are likely to be in the same page. For instance:

Poor order: Good order:

ld [%o0], %f3 ld [%o0], %f3

ld [%i5-12], %f4 ld [%o0+8], %f5

ld [%o0+8], %f5 ld [%i5-12], %f4

ld [%i5-8], %f2 ld [%i5-8], %f2

See Section 2.3, “Using the Two Page-Hit Registers for further

improvement by effectively using the page-hit registers.

2. Minimize write buffer full penalty — microSPARC-IIep has four write

buffers. At higher frequencies, the write buffers will take more cycles to

flush. So, use fewer store instructions if possible, and reduce clustering of

stores to allow the buffers a chance to empty. One technique is to maximize

the use of store double (std). A double word store occupies only one write

buffer entry and takes one memory access. Storing the two registers

separately would require two write buffer entries and two memory

accesses.

Since microSPARC-IIep has four write buffers, up to four stores can be

clustered together without stalling the pipe if the stores hit. However, all

issued stores must be written to memory before the next cache miss can be

processed. It is recommended that the number of instructions between the

stores and the next memory access be roughly proportional to the number

of stores, to allow time for the write buffer to empty.

3. Minimize usage of STB and STH — Memory accesses have word write

enables, so these instructions are implemented as a read-modify-write

memory operation. This is slower than a normal store.
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2.2.8 General Techniques

The following things will help performance, but are not microSPARC-IIep specif-

ic optimizations.

1. Decrease instruction count.

2. Reduce integer load use interlock through better instruction scheduling.

3. Reduce register window overflow/underflow.

4. Reduce cache miss rates, especially store miss rates.

2.3 Using the Two Page-Hit Registers
You can improve microSPARC-IIep’s performance by using the two page-hit reg-

isters. See Section 5.3.1, “Processor Control Register (VA[12:8]=0x00) for informa-

tion on how to enable page-mode operations.

Each time a virtual address (VA) is translated for a memory operation, the result-

ing physical address (PA) is compared to the PA of the previous memory opera-

tion stored in the page-hit registers. If the two PAs are within the same 4KByte

physical address space, the MMU signals that the current operation is a page hit.

This indicates to the memory interface logic that there is no need to toggle the

RAS lines to the memory, and the overall access is therefore much faster. Every

memory access puts its page address into the page hit register.

In microSPARC-IIep, there are two page-hit registers. This allows the saving of

two PAs for possible page hits. This also requires the memory interface to divide

its memory into two groups, one for each page-hit register. Each group has its

own RAS lines also. The actual banks of memory are setup so that every other

bank/SIMM belongs to a given page-hit register.

The two page-hit registers will especially help applications that alternate a large

number of accesses between text and data. If there were only a single page-hit

register, text and data accesses would thrash the page hit register and reduce its

effectiveness.

With the existing page allocation software, the first group of pages have to be en-

tirely used or allocated before any of the second group of pages are used. This

means that the benefit of having two page-hit registers is not seen until that point

is reached. This also means that when an application is mapped, the banks will

be used serially, one bank after another.
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To maximize the benefit of the page-hit register scheme, the two registers have to

be used as much as possible. This means dividing all of the available pages into

two groups that correspond to the two page-hit registers. After this is done, a

number of allocation preferences can be used. One group can be used for text and

the other for data, or simply alternate between the two groups. In microSPARC-

IIep, the DRAM page size is 4KByte, so alternating will make available a total of

8KByte of fast-access memory at any given time.

The difference between page and non-page access in microSPARC-IIep is 4 cycles

for a page hit versus 11 cycles for non-page hit.

Note: When the microSPARC-IIep accesses main memory on behalf of the PCIC

for PCI DMA accesses, the page-hit registers are marked invalid prior to the

DMA access to prevent hitting in these registers incorrectly.
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Integer Unit 3
The microSPARC-IIep integer unit (IU) implements SPARC integer instructions as

defined in SPARC Architecture Manual version 8. It is derived from the integer

unit of the microSPARC-II. This implementation balances the needs of high-per-

formance and low-cost while maintaining software compatibility. The only differ-

ences between the microSPARC-II and microSPARC-IIep integer units are noted

in Section 3.13, “Compliance With SPARC Version 8 in this chapter.

3.1 Overview
The microSPARC-IIep integer unit is a CMOS implementation of the SPARC 32-

bit RISC architecture version 8. Important features include:

• 5-stage instruction pipeline

• Branch folding

• Instruction and data cache streaming support

• Hardware implementation of IMUL and IDIV

• 136-register register file supporting 8 register windows

• Interface to on-chip floating-point unit

• 4-deep instruction queue supporting instruction prefetching

• Little and big endian byte ordering support
microSPARC-IIep User’s Manual — April 1997 25



3

Figure 3-1 IU Block Diagram
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3.2 Instruction Pipeline
The microSPARC-IIep IU uses a double (1 branch, 1 other) instruction issue pipe-

line with 5 stages.

1. F (Instruction Fetch): Instruction fetch occurs in this stage. Instructions

may be fetched either from the 4-instruction deep queue or directly from

the instruction cache. The instruction is valid at the end of this stage and is

registered inside the IU.

2. D (Decode): This stage decodes the instruction and reads the necessary

operands. Operands may come from the register file or from internal data

bypasses. The register file has 3 independent read ports — two for operand

or address calculation, and one for store operand read in the E-stage. For

situations where the necessary operand is in the pipeline and has not been

written to the register file yet, internal bypasses are supplied to prevent

pipeline interlocks. In addition, addresses are computed for CALL and

Branch in this stage.

3. E (Execute): This stage performs ALU, logical, and shift operations. For

memory operations (e.g., LD) and for JMPL/RETT, the address is

computed in this stage. Store operand read is done in this stage from

register file’s third read port and sent to the data cache.

4. W (Write): This stage accesses the data cache. For cache reads, the data will

be valid by the end of this stage, at which point it is aligned as appropriate.

Store data read out in the E-stage is written to the data cache at this time.

5. R (Result): This stage loads the result of any ALU, logical, shift, or cache

read operation into the register file.
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Table 3-1 lists the cycles per instruction.

3.3 Memory Operations

3.3.1 Loads

All load operations take 1 cycle in the microSPARC-IIep IU except for LDD which

takes 2. For LD, LDB, and LDH, the pipeline does the following:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — Address operands are added to compute the memory address. This

address is presented to the cache in this stage.

3. W — Address is registered in the cache and access is started. Data is

expected at the end of this stage. Any necessary alignment and sign

extension is done by the data cache prior to being registered by the IU.

4. R — Data is registered in the IU and is written into the register file.

Table 3-1 Cycles per Instruction

Instruction Cycles

CALL 1

Single Loads 1

Jump/Rett 2

Double Loads 2

Single Stores 1

Double Stores 2

LDF/LDDF 1

STF/STDF 1

LDA/STA 2

LDDA/STDA 2

STA FLUSH 3

IFLUSH 3

Taken Trap 3

Atomic Load/Store 2
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In the event of a cache miss, the miss signal is given to the IU in the W stage. The

miss signal holds the pipeline. Once the miss data is available, the cache signals

the IU to release the pipeline. The IU also registers the miss data into the appro-

priate R-stage register and writes it into the register file. As the cache line is being

filled, the IU can accept additional data either from within the filling line or from

another line that exists in the data cache.

An integer LDD takes 2 cycles to complete because of the use of 32-bit datapaths.

The pipeline does the following:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — Address operands are added to compute the even memory address.

This address is presented to the data cache in this stage.

3. W (E2) — The even memory address is registered in the cache and access is

started. This data is sent to the IU. At the same time, the odd address is

generated by the IU and sent to the cache.

4. R (W2) — The even word is registered in the IU and written to the register

file. The odd word address is registered in the cache and its access is

started.

5. R2 — The odd word is registered in the IU and written to the register file.

In the event of a cache miss, the miss signal is generated in the W-stage of the

LDD. The miss holds the pipeline. When the cache receives the miss data, the IU

control releases the pipeline, registers the even data into the R register, and writes

it to the register file. It picks up the odd data in the next stage. As the cache line

is being filled, the IU can accept additional data either from the filling line or

from another line that exists in the data cache.

Floating-point load-single and load-double instructions (LDF/LDDF) operate like

an integer load, except that the floating-point register file is loaded with the data

coming from the data cache. In the case of LDDF, the instruction is executed in

only one stage using the 64-bit datapath that exists between data cache and FPU.
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3.3.2 Stores

The microSPARC-IIep IU register file has three independent read ports. As a re-

sult, store operations take 1 cycle, except integer STD which takes 2. For integer

stores and floating point single stores, the IU duplicates the store data on both

words of the 64-bit bus from IU to data cache. For floating point store double, the

words are aligned correctly.

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E — The store virtual address is computed in the ALU. The store operand

is read from the third read port of the register file — this includes potential

bypassing of results and a store aligner. If it is a floating point store of any

size, operands are read from the floating-point file instead. Integer and

floating point store data are correctly selected and sent to the data cache.

3. W — The store data is registered by the data cache and written.

4. R — The store is complete.

For integer STD the pipeline does the following:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the even memory

address and sent to the data cache. This address will be registered within

the IU to provide the data cache with the odd address in the next stage. At

the same time, the even store data is read from the register file’s port 3 or

bypassed from instructions still in the pipe and is sent to the data cache.

3. W (E2) — The odd address is sent to the data cache. Odd word is read

from register file or bypassed from instructions still in the pipe and is sent

to the data cache. Even word is written to data cache.

4. R (W2) — The odd word is written to the data cache.

5. R2 — The STD complete.

3.3.3 Atomic Operations

SWAP and LDSTUB each take two cycles to complete. The pipeline does the fol-

lowing on the SWAP instruction:
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1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the swap memory

address. This address is sent to the data cache to start the cache read

portion of the operation. The register to be swapped is read out in this

stage and sent to the data cache.

3. W (E2) — The data cache returns the memory location accessed. The

register to be swapped is sent to the data cache again. (The store address is

not sent to the data cache again).

4. R (W2) — The IU registers the read data and writes it to the register file.

5. R2 — The SWAP complete.

The pipeline does the following on the LDSTUB instruction:

1. D — Register operands are read from the register file or are bypassed from

instructions still in the pipe. An immediate operand is sign extended.

2. E (D2) — The address operands are added to compute the LDST address.

This address is sent to the data cache to start the cache read portion of the

operation. 0xffff.ffff is sent to the data cache along with the appropriate

bytemarks for the store.

3. W (E2) — The data cache returns the memory location accessed and it is

shifted appropriately and sent to the IU. 0xffff.ffff is sent to the data cache

again. (The store address is not sent to the data cache again.)

4. R (W2) — The IU registers the read data and writes it to the register file.

5. R2 — LDSTUB complete.

3.4 ALU/Shift Operations

Most ALU and shift operations take a single cycle to complete. The exceptions are

integer multiply and integer divide. On add, subtract, boolean, and shift opera-

tions, the pipeline does the following:

1. D — Operands are read from the register file or bypassed from instructions

still in the pipe.
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2. E — Appropriate operation is executed in ALU or shifter. There is a

selective inverter on the B input of the ALU to allow for subtracts and

certain Boolean operation (e.g. ANDN).

3. W — Result of operation is forwarded to the next stage.

4. R — Result is stored in the register file.

3.5 Integer Multiply

Integer multiply normally takes 22 cycles to complete, but may complete in 19 cy-

cles if the 3 instructions preceding the multiply instruction do not write into the

integer register file. The algorithm implemented in the microSPARC-IIep IU is a

modified Booth’s (2-bit) multiply. The multiply process can be broken up into 4

distinct steps:

Initialization: 1 - 4 cycles

Booth’s iteration: 16 cycles

Correction (ala Booth): 1 cycle

Writeback: 1 cycle

The first cycle is used to set up the registers used in the multiply. The RS1 and

RS2 registers are initialized to the operands of the multiply. The W-stage result

register and the RS2 register are used as accumulators. At the completion of the

multiply, the W-stage register contains the most significant 32 bits of the result

and the RS2 register contains the least significant 32 bits of the result. The W-

stage register contents are then written to the Y register and the RS2 contents to

the destination register in the register file.

3.6 Integer Divide

Integer divide normally takes 42 cycles to complete, but may complete in 39 cy-

cles if the 3 instructions preceding the divide instruction do not write into the in-

teger register file. If an overflow is detected, however, the instruction completes

in 6 cycles. The algorithm implemented in the microSPARC-IIep IU is non-restor-

ing binary division (add and shift). The divide process can be broken into 5 dis-

tinct steps:

Divide by zero detection: 1 - 4 cycles
32 microSPARC-IIep User’s Manual — April 1997



3

Initialization/Ovf detection: 3 cycles

Non-restoring division iteration: 33 cycles

Correction (for non-restoring): 1 cycle

Writeback: 1 cycle

Because the microSPARC-IIep IU does not allow traps to be taken in the middle

of instructions, the first step is to determine if we have a divide by 0 condition.

The high order bits of the dividend are in the Y register. The low order bits are in

the RS1 operand. The divisor is in the RS2 operand. In the initialization step, the

Y register is read out and put into the RS1 register in the datapath. The RS1 oper-

and is passed through to the W-stage register. The RS2 operand is passed to the

RS2 register. The W-stage and RS1 registers are used as accumulators. At the

completion of the divide, the W-stage register contains the final quotient.

There are two overflow options for signed divide with a negative result as de-

fined in the SPARC version 8 manual. The microSPARC-IIep IU generates over-

flow when result is less than -231 with a remainder of 0.

If an overflow condition is detected, the divide terminates early with the appro-

priate result being written to the destination register.

If no overflow is detected, the non-restoring (sub and shift) divide stage is start-

ed. A correction step is provided to correct the quotient (necessary for this algo-

rithm). After the correction step, the quotient is written to the correct destination

register.

3.7 Control-Transfer Instructions

3.7.1 Branches

Branches are handled in two ways in microSPARC-IIep. A branch may be folded

with its delay slot instruction or it may flow down the integer pipeline. Refer to

Section 5.3.1, “Processor Control Register (VA[12:8]=0x00) for information on

how to enable branch folding.
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In order for a branch to be folded with its delay slot, several criteria must be met.

Among these are:

• The branch, delay slot instruction, and the instruction following the delay slot

must all be in the instruction queue or at the inputs of the IU from the

instruction cache.

• No other control-transfer instruction (CTI) may be in the D-stage.

• No multi-cycle instruction may proceed the branch.

A target instruction fetch is immediately started in the D-stage of the BICC/de-

lay-slot pair. In addition, the delay slot + 1 instruction is sent to a special alter-

nate buffer. All folded branches are predicted taken. In the next cycle, the target

instruction may begin execution (if the delay slot is not a multi-cycle instruction).

In this cycle, it may be determined that the branch was not taken, which will re-

sult in the target instruction being ignored and the delay slot +1 instruction being

fetched from the alternate buffer. Taken folded branches require 0 cycles to exe-

cute, while untaken folded branches require 1 cycle to execute.

Nonfolded branches usually take a single cycle to execute. There is no penalty for

taken vs. untaken branches, even if the instruction prior to the branch sets the

condition codes provided the delay slot + 1 instruction is in the instruction

queue. In the event that the branch is untaken and the delay slot + 1 is not in the

instruction queue, the branch takes two cycles.

In the D-stage, the IU evaluates the condition codes and branch condition to de-

termine whether it is taken or untaken. The IU outputs the correct instruction ad-

dress for either the target or fall through paths in time to be registered by the

instruction cache for the fetch occurring in the next cycle. Refer to Section 2.2,

“Compiler Optimization Guidelines for more information.

3.7.2 JMPL

JMPL is a two cycle instruction in the microSPARC-IIep IU.

1. D — Read operands from register file or bypass from instructions still in

the pipe. Sign extend immediate operands. The delay slot instruction is

fetched in this stage.

2. E (D2) — Compute target address and send this to the instruction cache.

3. W(E2) — Fetch target.
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4. R (W2) — Load the program counter (PC) of the JMPL instruction into the

destination register.

3.7.3 RETT

RETT is a two cycle instruction in the microSPARC-IIep IU.

1. D — Read operands from register file or bypass from instruction still in the

pipe. Sign extend immediate operands. The delay slot instruction is fetched

in this stage.

2. E(D2) — Compute target address and send this to the instruction cache.

3. W(E2) — Fetch target.

4. R(W2) — Set PSR.ET to 1, move PSR.PS to PSR.S, and increment PSR.CWP.

3.7.4 CALL

CALL is a single cycle instruction in the microSPARC-IIep IU.

1. D — Add PC and disp30 to form target address. Send this address to

instruction cache. The delay slot instruction is fetched in this stage.

2. E — The CALL target is fetched.

3. W — No action.

4. R — The program counter (PC) of the CALL is written to r[15].

3.8 Instruction Cache Interface

In the event of an instruction cache miss, the IU is informed of the miss early in

the F-stage to prevent the pipeline from moving the missed instruction into D-

stage. The IU then waits for the instruction to be fetched. Once the missed in-

struction is returned, the IU releases the pipe and the execution continues.

The instruction cache is implemented so that the missed word of the cache line is

returned first. The IU is free to stream instructions from the instruction cache as

the cache is doing its line fill. This means that the IU is not held for the entire du-

ration of the cache fill, but it can use the instructions as soon as either the instruc-

tion cache receives it or, when fetching out of the filling line and that line is valid,
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directly out of the instruction cache. To do this, the IU is told when the instruc-

tion addressed by the IU is available to be registered. Then the IU either holds or

releases the pipe.

If one of the instructions encountered during the instruction streaming is a taken

CTI whose target is outside of the cache line being filled, and if that cache line is

valid in the instruction cache, the fetch may take place. If the line is not in the

cache, the IU will hold and wait for that line to be filled after the previous line

filling is completed.

3.9 Data Cache Interface

The data cache interface is roughly similar to the instruction cache interface. In

the event of a data cache miss, the IU will hold the pipeline in the W-stage.

The data cache is also implemented to return the missed word first. On Load in-

structions, when the data cache indicates that the load data is available, the data

is passed through the load aligner (for any necessary alignment). Then the IU re-

leases the pipe and strobes data into the R-stage (and the appropriate E-stage)

register prior to being written to the register file.

Like the instruction cache, the data cache can return data words as they are being

filled. In addition, if, during a fill, a word is addressed from a different cache line,

and if the line is valid in the data cache, that word will be sent to the IU.

3.10 Interlocks

3.10.1 Load Interlock

There is a single-cycle load usage interlock in the microSPARC-IIep IU when a

load instruction is followed by an instruction that uses the load operand (data) as

a source operand.

3.10.2 Floating Point Interlocks

The IU interlocks the integer pipeline if it detects certain conditions in combina-

tions of FP instructions. The single-cycle interlocks are:
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• Floating-point load or load double in the E-stage of the pipe, a floating-point

store or store double in the D-stage of the pipe and the FP register number

(modulo 2) to be loaded is the same as the FP register number (modulo 2) to

be stored.

• A LDFSR or STDFQ operation in the E-stage of the pipe and the D-stage has

any FP math operation, an FP compare, or any FP memory operation.

In addition, the IU interlocks when the FPU deasserts the FCCV (floating point

condition code valid) signal and the IU has a floating-point branch in D-stage.

The IU continues to interlock the pipe until FCCV is reasserted. The FPU will

deassert FCCV when it begins an FCMP instruction and reasserts it when the

FCMP is complete.

3.10.3 Miscellaneous Interlocks

Due to the datapath design, the microSPARC-IIep IU is unable to bypass special

register read data to the instruction immediately following it in the pipeline. A

single-cycle interlock occurs in those cases.

A CALL instruction followed by an instruction that reads R15 (destination regis-

ter for the CALL), will cause a one-cycle interlock.

IMUL and IDIV require datapath structures associated with the register file ports.

As a result, they cannot use datapath bypass paths. If the three instructions pre-

ceding the IMUL or IDIV write the register file, the IU interlocks until these in-

structions have completed. The maximum length of this interlock is 3 cycles. The

minimum is 0. (Examples of instructions that do not write the integer register file

are: stores, FPops, integer and floating point branches, IFLUSH, etc. NOP does

write the register file, into Register 0.)

There are also interlocks associated with branch folding. These are dependent on

queue, cache, and pipeline state.

3.11 Traps and Interrupts

3.11.1 Traps

The microSPARC-IIep IU implements all SPARC V8 traps except the following

optional traps:
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• Data store error

• R-register access error

• Unimplemented FLUSH

• Watchpoint detected

• Coprocessor exception

Trap priorities are defined in SPARC version 8. If multiple traps occur during one

instruction, only the highest priority trap is taken. Lower priority traps are ig-

nored since it is assumed that lower priority traps will persist, recur, or are mean-

ingless due to the presence of the higher priority trap.

In the pipeline, the trap indication always occurs when the trapping instruction

reaches the W-stage of the pipeline. Note that traps may be detected as early as

the D-stage of the instruction. The trap indication is then piped to the W-stage of

that instruction.

After the assertion of the TRAP signal, instructions following the trapped instruc-

tion in the pipeline and any instructions in the instruction queue are flushed out.

The processor status register (PSR) is set as follows:

• Bit ET (enable trap) = 0

• Bit PS (previous status) = S (i.e., the state of the S bit at the time of the trap)

• Bit S = 1 (supervisor mode)

• Bits CWP = value of current window pointer at the time of the trap

Also field TT (trap type) of the TBR (trap base register) is set to the corresponding

trap code and the PC and nPC values at the time of the trap are written into r17

and r18. Instruction fetches then transfer operation to the trap vector as defined

in the TBR.

The microSPARC-IIep IU does not allow traps during execution of multi-cycle in-

structions. There are no deferred integer traps. The IU detects and acts on de-

ferred floating-point traps.

3.11.2 Interrupts

The microSPARC-IIep IU is interrupted via the PCI controller and the PCI inter-

rupt request lines. The interrupt controller in the PCI controller selects the high-

est priority interrupting device. It then signals to the IU which is the highest

priority interrupt on the IRL lines.

The interrupts levels for the PCI interrupt controller are programmable by soft-

ware.
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Two 32-bit timers in the PCI controller can be programmed to generate interrupts

at any level desired. Refer to Chapter 11, “Mode, Timing, and Test Controls.

The PCI interrupt controller can be disabled and bypassed, which allows an ex-

ternal interrupt controller to generate the IRL lines directly to the microSPARC-

IIep IU.

To ignore glitches on the IRL lines, the IRL signals must be stable for at least 2 cy-

cles. Only then does the IU initiate an interrupt request to the processor. This re-

quest is pipelined by one cycle. The interrupt will be taken by the instruction

currently in the W stage of the pipeline (or, if that instruction is a help instruc-

tion, by the next non-help W stage) if the IRL level is greater than the current pro-

cessor interrupt level (PIL) and there are no higher priority traps that take

precedence. A help instruction is a dummy instruction inserted whenever addi-

tional cycles are required to complete execution of certain instructions, like the

second cycle on LDD. The help instruction propagates through the pipeline and

maintains its integrity and consistency.

Note: Due to the one cycle delay existing between them when the IRL and PIL

are compared and when the trap priorities are checked, this could create a

problem where back to back PSR writes could cause an interrupt to occur when

the existing value in PSR.PIL is greater than the IRL. The microSPARC-IIep IU

prevents this from happening by hardware.

3.11.3 Reset Trap

On reset, the following steps occur:

• Traps are disabled (i.e., PSR.ET <= 0) and supervisor mode is entered (i.e.,

PSR.S <= 1)

• If the reset occurs during power-up, then PSR.PS, PSR.CWP, TBR.TT, r[17],

and r[18] are undefined

• Otherwise, PSR.PS, PSR.CWP, TBR.TT, r[17], and r[18] are unchanged

• Execution begins at location PC=0 and nPC=4

For more information, refer to Section 9.9, “System Status and System Control

(Reset) Register on programmable reset generation and Chapter 11, “Mode, Tim-

ing, and Test Controls on the reset controller.
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3.11.4 Error Mode

Error mode is entered when a trap occurs and PSR.ET = 0. Entry into error mode

causes the following to occur:

• PSR.S <= 1; PSR.PS and PSR.CWP remain unchanged

• The contents of PC and nPC are stored into r[17] and r[18]

• PC and nPC are set to 0 and 4 respectively and the IU_ERROR signal is

asserted

In addition, the TBR.TT may be changed if the trapping instruction is an RETT.

The TBR.TT will reflect:

• Privileged instruction trap when PSR.S = 0

• Underflow trap when a window underflow occurred

• Misaligned trap when a misaligned target address occurred

The IU remains in error mode until it is reset. For more information, refer to Sec-

tion 9.9, “System Status and System Control (Reset) Register on programmable

reset generation and Chapter 11, “Mode, Timing, and Test Controls on the reset

controller.

3.12 Floating-Point Interface

The microSPARC-IIep IU controls the addresses for all instructions and floating-

point memory operations. The IU supplies the fetched instruction directly to the

FPU from the instruction queue. The IU also informs the FPU if the instruction

just loaded into the instruction register is valid.

For floating-point loads, the IU starts the cache access and the FPU reads the da-

ta. If the FPLOAD causes a data cache miss, the IU will sequence the cache miss.

The FPU will pick up the missed data once the IU releases the pipeline. For float-

ing-point stores, the IU starts the cache access and picks up the store data from

the FPU. The IU then forwards this data to the data cache store bus.

The IU detects FP resource conflicts and interlocks the pipeline. In addition, the

FPU may assert FHOLD to hold the IU pipeline when it detects an internal re-

source conflict. It will deassert FHOLD once the conflict is resolved.

FCC and FCCV are used by the IU to determine taken and untaken options for

floating-point branches. If a floating-point branch is detected in decode stage and

FCCV is not asserted, the IU stalls the pipeline until FCCV is asserted.
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The FPU asserts the FEXC line when it detects a floating-point exception. The IU

acknowledges the floating-point exception (FXACK) when the floating-point in-

struction is in the W-stage of the pipe. Then the IU takes a floating-point excep-

tion trap.

Floating-point operations take one cycle in the IU plus additional cycles in the

FPU. For the number of cycles in the FPU, please refer to Chapter 4, “Floating-

Point Unit.

3.13 Compliance With SPARC Version 8

The microSPARC-IIep IU has been designed to comply with the SPARC version 8

architecture, including hardware integer multiply and divide. However, it devi-

ates from full support of SPARC version 8 features in the following areas:

1. The microSPARC-IIep has two additional bits to the PSR register for endian

control. See Section 1.3.1, “Processor-to-System Memory Endian

Conversion for more information.

2. Instead of decoding the 8 bits of ASI for alternate space memory

operations, the microSPARC-IIep MMU only decodes 6 bits and ignores the

remaining 2 most significant bits. Therefore, out-of-bound ASI encodings

are not detected.

3. The microSPARC-IIep IU does not implement the STBAR instruction since

there is no need to force store ordering in this system. STBAR is interpreted

as a read Y register operation with destination being the bit bucket (%g0).

4. The microSPARC-IIep IU does not support reads and writes to the ancillary

state registers. All reads act like read Y register operations. All writes act

like NOPs.

5. When entering error mode, the microSPARC-IIep IU decrements the

current window pointer (CWP) and updates R17 and R18. While not in

conflict with the SPARC version 8 specification, it is noted here.

6. The value read from the implementation field (IMPL) of the processor state

register (PSR) for microSPARC-IIep is (hexadecimal) 0x0. The value read

from the version (VER) field of the PSR is (hexadecimal) 0x4.
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Floating-Point Unit 4
The microSPARC-IIep floating-point unit (FPU) serves multiple purposes: it exe-

cutes floating-point instructions, detects data dependencies among those instruc-

tions, and handles floating-point related exceptions.

The FPU is consisted of a fast multiply unit, the Meiko core, and state machines

to control the two datapaths. The Meiko core is licensed from Meiko, Inc.

Note: The floating-point unit of the microSPARC-IIep is identical to that of the

microSPARC-II, which has been in production and has gone through extensive

laboratory and field testing.

This chapter covers the inner workings of the floating-point unit. For information

relating to floating-point performance, refer to Section 2.2.6, “Floating-Point In-

structions.
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4.1 Overview
The microSPARC-IIep floating-point unit (FPU) consists of the Meiko floating-

point core and a fast multiplier.

The Meiko floating-point design implements the following algorithms which re-

sult in an optimized implementation of the floating-point engine:

• 8-bit multiply

• 2-bit division

• 1-bit square root

• Short distance (0-15 bits) shifter/normalizer

• Separate single-cycle rounding

The fast multiplier implements FMULS, FMULD, and FSMULD. In most cases,

these operations can be executed in parallel while the Meiko core executes other

floating-point instructions such as FADD. This ability in executing floating-point

instructions in parallel provides significant instruction throughput.

In certain corner cases, the fast multiplier may not be able to complete multiplica-

tions. In such cases, the operation is aborted and restarted in the Meiko core in-

stead. Nonetheless, the correct sequence of execution is maintained.
44 microSPARC-IIep User’s Manual — April 1997



4

Figure 4-1 FPU Block Diagram
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Figure 4-2 Meiko FPP Block Diagram
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Figure 4-3 microSPARC-IIep Multiplier Mantissa Block Diagram
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Figure 4-4 microSPARC-IIep Multiplier Exponent Block Diagram
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4.2 Deviations from SPARC version 8
The microSPARC-IIep FPU supports all single- and double-precision floating-

point (FP) instructions as defined in the SPARC Architecture version 8. Quad-pre-

cision floating-point instructions are not supported and execution of these in-

structions will result in assertion of unimplemented trap in the floating-point

trap type (FTT) of the FSR. All implemented instructions except FSMULD will

complete in hardware. Therefore, the unfinished exception can only be generated

by the execution of FSMULD.

The microSPARC-IIep floating-point unit also differs from the SPARC IEEE 754
Implementation Recommendations defined in Appendix N of the SPARC version 8

Architecture Manual in the NaN format. The following figures show the value re-

turned for an untrapped floating-point result which is in the same format as the

operands.

In Figure 4-5, all QNaN results will have their sign bit set to zero.

Figure 4-5 Untrapped FP Result in Same Format as Operands
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ME_NaN: 0x7fff.0000 (single-precision)
 0x7fff.e000.0000.0000 (double-precision)
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In Figure 4-6, QNaN2 is a copy of the mantissa bits of the operand with the extra

low order bits zeroed and the sign bit zeroed.

Figure 4-6 Untrapped FP Result in Different Format

4.3 Implementation Specific Features
The microSPARC-IIep FPU implements a 3-entry floating-point deferred trap

queue. When a floating-point instruction generates an fp_exception, microSPARC-

IIep delays the handling of the fp_exception trap until the next floating-point in-

struction is encountered in the instruction stream. This implementation can be

modeled as a state machine of having three states (see Figure 4-7): fp_execute,

fp_exception_pending, and fp_exception.
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Figure 4-7 FPU Operation Modes

4.3.1 fp_execute State

Normally, the FPU is in fp_execute state. It transitions to fp_exception_pending
when an floating-point operation results in a floating-point exception. If a STDFQ

instruction is executed when the floating-point queue is empty, the FPU immedi-

ately generates an fp_exception trap while setting the Floating-point Trap Type

(FTT) field of floating-point state register (FSR) (bits 16 to 14) to sequence_error.

However, in this case, the FPU remains in the fp_execute state.

4.3.2 fp_exception_pending State

The FPU moves from fp_exception_pending to fp_exception when the integer unit

dispatches any floating-point instruction (including FBCC). The transition to

fp_exception triggers a fp_exception trap. At this time, the first entry on the float-

EXECUTION

PENDING
EXCEPTIONEXCEPTION

RESET

FP EXCEPTION

FXACK

SEQUENCE ERROR

EMPTY
FP
QUEUE
Floating-Point Unit 51



4

ing-point queue contains the instruction and address of the floating-point opera-

tion that caused the fp_exception originally. fp_exception traps can only be

triggered when the FPU transitions from fp_exception_pending to fp_exception.

4.3.3 fp_exception State

While in the fp_exception state, the FPU can only execute floating-point store in-

structions such as STDFQ and STFSR. However, these instructions will not cause

another fp_exception trap.

The FPU remains in the fp_exception state until the floating-point queue is emp-

tied by STDFQ instructions. Once the queue is empty, the FPU returns to the

fp_execute state. While in the fp_exception state, if the FPU encounters floating-

point operations or floating-point load instructions, it will return to the

fp_exception_pending state while setting the floating-point trap type (FTT) field in

FSR (bits 16 to 14) to sequence_error, i.e. 0x4. However, the instruction triggering

this sequence_error is not entered into the floating-point queue.

4.3.4 STDFQ Instruction

STDFQ stores the address and instruction from the floating-point queue to the ef-

fective address and effective address + 4 respectively.

4.4 Software Considerations
This section describes the software visible features of the microSPARC-IIep float-

ing-point unit.

The floating-point trap type (FTT) field is set whenever a floating-point operation

completes or causes an exception. This field remains unchanged until another

floating-point operation completes or causes a sequence_error. The FTT field can

be cleared by executing a non-trapping floating-point operation such as

fmovs %f0, %f0.
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Table 4-1 describes the bits in the floating-point state register (FSR).

Table 4-1 Floating-Point State Register (FSR) Summary

Bits Field Description Values Writable by LDFSR

31:30 RD Rounding Direction 0 — Round to nearest (tie even)

1 — Round to zero

2 — Round to +infinity

3 — Round to -infinity

Yes

29:28 res reserved Always 0 No

27:23 TEM Trap Enable Mask 0 — Disables corresponding trap

1 — Enables corresponding trap

Yes

22 NS Nonstandard FP Always 0 No

21:20 res reserved Always 0 No

19:17 ver FPU Version Number Always 4 No

16:14 FTT FP Trap Type 0 — None

1 — IEEE Exception

2 — Unfinished FPop

3 — Unimplemented FPop

4 — Sequence error

No

13 QNE Queue Not Empty 0 — Queue empty

1 — Queue not empty

No

12 res reserved Always 0 No

11:10 FCC FP Condition Codes 0 — ==

1 — <

2 — >

3 — ? (unordered)

Yes

 9:5 AEXC Accrued Exception Bits 0 — No corresponding exception

1 — Corresponding exception

Yes

4:0 CEXC Current Exception Bits 0 — No corresponding exception

1 — Corresponding exception

Yes
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4.5 FP Performance Factors
The microSPARC-IIep FPU instruction cycle counts are provided in Table 4-2. The

counts are in processor core clock cycles.

Because of the limited shifter size (0-15 bits was chosen to save hardware), the FP

instruction cycle counts are data dependent. There are 5 ways in which opera-

tions may take longer than the typical cycle count:

Table 4-2 FPU Instruction Cycle Counts

Instruction Min Typ Max

FADDS 4 5 17

FADDD 4 5 17

FSUBS 4 5 17

FSUBD 4 5 17

FMULS 3 3 28

FMULD 3 3 35

FSMULD 3 3 3

FDIVS 6 20 36

FDIVD 6 35 51

FSQRTS 6 37 56

FSQRTD 6 65 80

FNEGS 2 2 2

FMOVS 2 2 2

FABSS 2 2 2

FSTOD 2 2 14

FDTOS 3 3 16

FITOS 5 6 13

FITOD 4 6 13

FSTOI 6 6 13

FDTOI 7 7 14

FCMPS 4 5 15

FCMPD 4 5 15

FCMPES 4 5 15

FCMPED 4 5 15

unimplemented 3 3 13
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1. Exceptional operands (such as NaN, etc.) may add several cycles to the

typical cycle count. In a normal environment, these are rare events

probably caused by ill-conditioned data and will be trapped (if traps are

enabled).

2. Possible exceptional results (results which are very close to underflow or

overflow) may add up to 5 cycles to the typical cycle count. In a normal

environment these are rare events, probably caused by ill-conditioned data.

3. Denormalized operands will add 1 extra cycle for each 15-bit shift required

to normalize before the operation, and 1 extra cycle for each 15-bit shift

required to denormalize the result after the operation (if necessary).

Because operations on denormalized numbers will always complete in

hardware (except for the FSMULD instruction), the overall performance

will be greater than for an FPU which traps on denormalized operands.

4. Add or subtract which require an initial alignment of more than 15 bits will

add 1 extra cycle for each 15 bit shift. Also, a subtract result which requires

a shift of more than 15 bits to normalize will add 1 extra cycle for each 15

bit shift.

5. Non-standard rounding modes (RZ and RN are the typical operating

modes) may require up to 3 additional cycles for some corner cases and

exceptions.

Statistical analysis shows that, on average, 90% of FPU instructions will complete

with the typical cycle count.

For a more detailed description of the Meiko FPP, please refer to the Meiko FPU

specification, provided by Meiko Limited of Bristol, England.

The figures below show the peak performance (cached) of the microSPARC-IIep

FPU for certain interesting FPOP combinations.

Figure 4-8 FP Add Peak Performance
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Figure 4-9 FP Mul Peak Performance (No Dependencies)

Figure 4-10 FP Mul Peak Performance (Dependency)

Figure 4-11 FP Mul-Add Peak Performance (No Dependencies)

Figure 4-12 FP Mul-Add Peak Performance (Dependency)
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56 microSPARC-IIep User’s Manual — April 1997



Memory Management Unit 5
The microSPARC-IIep memory management unit (MMU) provides the function-

alities specified in the SPARC version 8 Reference MMU Architecture. The imple-

mentation of the microSPARC-IIep MMU is based on the microSPARC-II MMU

design. However, minor changes were made which include a separate dedicated

IOTLB for translating I/O memory references. The I/O translation lookaside

buffer (IOTLB) resides in the PCI controller and is separate from the CPU transla-

tion lookaside buffer (TLB).

Note: The changes to the microSPARC-II that resulted in processor-visible

differences for the microSPARC-IIep are reflected in the MMU and MMU

registers. This chapter details most of those changes. The addition of the endian

control bits for the processor, however are defined in the processor state register

(PSR) and described in Section 3.13, “Compliance With SPARC Version 8 in

Chapter 3, “Integer Unit.
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5.1 Overview
The microSPARC-IIep MMU provides four primary function:

1. It translates 32-bit virtual addresses of each running process to a 31-bit

physical address. This translation is sped up with the assistance of a 32-

entry translation lookaside buffer (TLB). The MMU uses the 3 most

significant bits of the physical address (i.e., PA[30:28]) to map to eight

separate address spaces (see Appendix B, Physical Memory Address Map). It

also supports 256 contexts.

2. It provides memory protection to prevent unauthorized processes from

reading or writing address space of another process.

3. It implements virtual memory by maintaining page tables in the main

memory. When an address translation miss occurs, it performs a table-walk

in the hardware and the resulting page-table entry is cached in the TLB.

4. It arbitrates memory references among the instruction and data caches, the

I/O and TLB.

The address and data path block diagram of the microSPARC-IIep MMU is

shown in Figure 5-1.
58 microSPARC-IIep User’s Manual — April 1997



5

Figure 5-1 MMU Address and Data Path Block Diagram
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5.2 MMU Programming Interface

The MMU internal can be accessed by the user via load and store from alternate

space with the following address space identifiers (ASI):

• ASI = 0x03: Reference MMU flush or probe (see Section 5.8, “CPU TLB Flush

and Probe Operations(ASI=0x03))

• ASI = 0x04: Reference MMU registers (see Section 5.3, “Reference MMU

Registers (ASI=0x04))

• ASI = 0x06: Reference MMU diagnostics (see Section 5.7, “Reference MMU

Diagnostic (ASI=0x06))

• ASI = 0x20: Reference MMU bypass (see Section 5.12, “Reference MMU

Bypass (ASI=0x20))

To better explain the functionality of the MMU, programming interface related to

ASI=0x4 and ASI=0x6 will be covered first followed by ASI=0x3 and ASI=0x20.

5.3 Reference MMU Registers (ASI=0x04)

There is a total of eight MMU registers that are visible to the user. They are refer-

enced based on bit 12 to bit 8 of the virtual address (i.e., VA[12:08]). While access-

ing these registers, VA[31:13] and VA[7:0] must be set to zero, even though these

bits are ignored. See Table 5-1.

1. Writable for diagnostic purposes.

Table 5-1 Address Map for MMU Registers

VA[12:08] Register

0x00 Control register

0x01 Context table pointer register

0x02 Context register

0x03 Synchronous fault status register

0x04 Synchronous fault address register

0x05-0x0F Reserved

0x10 TLB replacement control register

0x11-0x12 Register

0x13 Synchronous fault status register1

0x14 Synchronous fault address register1

0x15-0x1F Register
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5.3.1 Processor Control Register (VA[12:8]=0x00)

The processor control register (PCR) contains general CPU control and status

flags. The PCR is defined in Figure 5-2.

Figure 5-2 Processor Control Register

Field Definitions:

• [31:28]: Implementation (IMPL) — This 4-bit field stores the implementation

number of this SPARC version 8 Reference MMU. It is hard-wired to 0x0 and

is READ-ONLY.

• [27:24]: Version (VER) — This 4-bit field stores the version number of this

SPARC version 8 Reference MMU. It is hard-wired to 0x4 and is READ-ONLY.

• [23]: Software Table-walk enable (ST) — This bit enables the

instruction_access_MMU_miss and data_access_MMU_miss traps for instruction

and data table-walks respectively for table walks done by software.

• [22]: Watch Point enable (WP) — When set, this bit enables the watch point

trap logic within the MMU.

• [21]: Branch Folding (BF) — This bit enables integer unit to perform branch-

folding operations. See Section 3.7.1, “Branches for more information.

• [20:19]: Page-Mode Control (PMC) — These 2 bits enable page-mode

operations between the MMU and the memory interface (MEMIF). When set,

the MMU’s page-hit registers will track the usage of pages in memory to take

advantage of page-mode access to the DRAM when possible. Bit[19] controls

page-hit register 0 while Bit[20] controls page-hit register 1. These two bits are

cleared on reset. See Section 2.3, “Using the Two Page-Hit Registers and

Section 5.11, “Translation Modes for more information.

• [18]: Parity Enable (PE) — When set, data coming through the memory

interface is checked for parity across each word. The PC bit of the PCR

determines whether odd or even parity is used.

      IMPL         VER ST WP BF  PMC PE PC AP AC BM            RC IE DE SA          Reserved NF EN

31 28 27 24 23 22 21 20 19 18 17 16 15 14 13 10 09 08 07 02 01 00
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• [17]: Parity Control (PC) — This bit controls the generation and checking of

parity across each word through the memory interface as shown in Table 5-2

(parity is disabled with the PE bit).

• [16]:Reserved — This bit is reserved and is READ-ONLY.

• [15]: Alternate Cacheability (AC) — When set, this bit specifies that the caches

are enabled by the instruction cache enable (IE) and data cache enable (DE)

bits of the PCR when the MMU is disabled. When clear, the caches are

disabled when the MMU is disabled. This bit should not be used during boot-

mode accesses. The access privilege associated with memory operations done

under alternate cacheability mode is hard-wired to ACC=0x3 (i.e., user

R/W/E and supervisor R/W/E). With alternate cacheability, instruction

accesses to the main memory space are still allowed.

• [14]: Boot Mode (BM) — This bit is set by both normal reset and watchdog

reset and must be cleared for normal operations.

• [13:10]: Refresh Control (RC) — These 4 bits control the DRAM refresh rate.

For 100MHz operations, the RC field should be programmed with 0x6 value.

Refer to Section 8.3, “RAM Refresh Control for details and definitions of this

field.

• [9]: Instruction cache Enable (IE) — When set, the instruction cache is enabled.

When clear, all instruction references miss the instruction cache. This bit is

reset by both normal reset and watchdog reset. Refer to the AC bit of the PCR

for special cases concerning this control bit.

• [8]: Data cache Enable (DE) — When set, the data cache is enabled. When

clear, all data references miss the data cache. This bit is reset by both normal

reset and watchdog reset. Refer to the AC bit of the PCR for special cases

concerning this control bit.

• [7]: Store Allocate (SA) — When set, the data cache treats all user operations

to cacheable pages as write-allocate accesses. Therefore, on a user store miss to

a cacheable page, the data cache will perform a line-fill into the cache. When

clear, the data cache treats all users operations to cacheable pages as no-write-

allocate accesses. Therefore, on a user store miss to a cacheable page, the data

Table 5-2 Parity Control Definition

PC Meaning

0 Even Parity

1 Odd Parity
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cache will not perform a line-fill. By skipping the data cache on store misses,

the amount of time the CPU is stalled is reduced. In either case, the store data

is placed in the store buffer and drained to the memory. This bit does not

affect supervisor operations. All supervisor memory operations are treated as

no-write-allocate accesses. Table 5-3 shows the possible settings.

• [6:2]: Reserved — These bit are reserved and are READ-ONLY.

• [1]: No Fault (NF) — When set, faults are registered in the synchronous fault

status register (SFSR) and synchronous fault address register (SFAR). (See

Section 5.3.4, “Synchronous Fault Status Register (VA[12:8]=0x03,

VA[12:8]=0x13) and Section 5.3.5, “Synchronous Fault Address Register

(VA[12:8]=0x04, VA[12:8]=0x14) for more information.) However, the

processor is not notified of the fault. This bit does not affect accesses to

alternate address space with ASI=0x8 or ASI=0x9.

• [0]: MMU Enable (EN) — When set, the MMU is enabled and address

translation occurs normally. When clear, the lower 31-bit virtual address

becomes the 31-bit physical address without any translation. This bit is

cleared by both normal reset and watchdog reset.

5.3.2 Context Table Pointer Register (VA[12:8]=0x01)

The context table pointer register (CTPR) contains the base address of the context

table. It is defined in Figure 5-3.

Figure 5-3 Context Table Pointer Register

The context table pointer is 18 bits wide. The reserved fields are unimplemented,

should be written as zero, and read as a zero.

Table 5-3 Store Allocate Setting

SA User Store Miss Supervisor Store Miss

0 no-write-allocate no-write-allocate

1 write-allocate no-write-allocate

Reserved Context Table Pointer Reserved

31 24 23 06 05 00
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5.3.3 Context Register (VA[12:8]=0x02)

The context register (CXR) indexes into the context table. It is defined in

Figure 5-4.

Figure 5-4 Context Register

The context register defines which virtual address space is considered the current

address space. This continues until the CXR is changed. The physical address of

the root pointer is obtained by taking bits [23:06] from the CTPR to form

PA[27:10] and bits [07:00] from the CXR to form PA[09:02]. PA[30:28,01:00] are

zero (i.e., PA[31:0] = {0b000, CTPR[23:6], CXR[7:0}, 0b00}).

Bits [31:08] of the CXR are unimplemented, should be written as zero, and read as

a zero.

5.3.4 Synchronous Fault Status Register (VA[12:8]=0x03,
VA[12:8]=0x13)

The synchronous fault status register (SFSR) provides information on exceptions

(faults) issued by the MMU during CPU-type transactions. There are three types

of faults: instruction access faults, data access faults, and translation table access

faults. If another instruction access fault occurs before the fault status of a previ-

ous instruction access fault has been read by the integer unit (IU), the last fault

status is written into the SFSR and the overwrite (OW) bit is set. If multiple data

access faults occur, only the status of the one taken by the IU is latched into the

SFSR (with the faulting address in the SFAR). Fault overwrites complies with the

following rules:

1. If a data access fault overwrites an instruction access fault, the OW bit is

cleared since the fault status is represented correctly.

2. An instruction access fault does not overwrite a data access fault.

3. If a translation table access fault overwrites a previous instruction or data

access fault, the OW bit is cleared.

4. An instruction access or data access fault does not overwrite a translation

table access fault.

Reserved Context Number

31 08 07 00
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Reading the SFSR using ASI=0x4 and VA[12:08]= 0x03 clears it. However, reading

the SFSR with VA[12:08]=0x13 does not clear it. Writes to the SFSR using ASI=0x4

and VA[12:08]=0x03 have no effect while writes using VA[12:08]=0x13 update the

register. The SFSR is only guaranteed to be valid after an exception is actually sig-

nalled. In other words, it may not be valid if there is no exception.

Figure 5-5 Synchronous Fault Status Register

Field Definitions:

• [31:17]: Reserved — Read and written as zero.

• [16]: Control Space Error (CS) — This bit is asserted on any of the following

conditions:

• Invalid ASI space

• Invalid ASI size

• Invalid VA field in valid ASI space

• Invalid ASI operation (for example a swap instruction to an ASI other than

0x8-0xB,0x20)

Note that the AT field is not valid on control space errors.

• [15]: Reserved — Read as zero.

• [14:13]: Parity Error (PERR) — These two bits are set for external memory bus

parity errors with bit 14 corresponding to the even word and bit 13

corresponding to the odd word.

• [12]: Reserved — Read as zero.

• [11]: Time Out (TO) — When set, a time out resulted from a CPU-initiated

read transaction from an unsupported address space is detected.

• [10]: Read Error (RE) — An error indication is returned on a CPU-initiated

read transaction from an unsupported address space.

Reserved CS R PERR R TO RE L AT FT FAV OW

31 17 16 15 14 13 12 11 10 09 08 07 05 04 02 01 00
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• [9:8]: Level (L) — The level field is set to the page-table level of the entry

which caused the fault. If an error occurs while fetching a page table (either a

PTP or PTE), this field records the page table level for the entry. The level field

is defined in Table 5-4.

• [7:5]: Access Type (AT) — The access type field defines the type of access

which caused the fault. Loads and stores to user/supervisor instruction space

can be caused by load/store alternate instructions with ASI = 0x8-0xB. The AT

field is defined in Table 5-5. Note that this field is not valid on control space

errors.

Table 5-4 SFSR Level Field

L Level

0 Entry in Context Table

1 Entry in Level 1 Page Table

2 Entry in Level 2 Page Table

3 Entry in Level 3 Page Table

Table 5-5 SFSR Access Type Field

AT Access Type

0 Load from User Data Space

1 Load from Supervisor Data Space

2 Load/Execute from User Instruction Space

3 Load/Execute from Supervisor Instruction Space

4 Store to User Data Space

5 Store to Supervisor Data Space

6 Store to User Instruction Space

7 Store to Supervisor Instruction Space
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• [4:2}: Fault Type (FT) — The fault type field defines the type of the current

fault. The FT field is defined in Table 5-6.

Invalid address errors, protection errors, and privilege violation errors depend

on the AT field of the SFSR and the ACC field of the corresponding PTE. The

errors are set as listed in Table 5-7.

• The protection error code (FT=2) is set if an access is attempted that is

inconsistent with the protection attributes of the corresponding PTE.

• The privilege error code (FT=3) is set when a user program attempts to

access a supervisor only page.

Table 5-6 SFSR Fault Type Field

FT Fault Type

0 None

1 Invalid Address Error

2 Protection Error

3 Privilege Violation Error

4 Translation Error

5 Access Bus Error

6 Internal Error

7 Reserved

Table 5-7 Setting of SFSR Fault Type Code

AT

FT Code

PTE[V]=0
PTE[V]=1(ACC)

0 1 2 3 4 5 6 7

0 1 - - - - 2 - 3 3

1 1 - - - - 2 - - -

2 1 2 2 - - - 2 3 3

3 1 2 2 - - - 2 - -

4 1 2 - 2 - 2 2 3 3

5 1 2 - 2 - 2 - 2 -

6 1 2 2 2 - 2 2 3 3

7 1 2 2 2 - 2 2 2 -
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• A translation error code (FT=4) is set when a SFSR PE type error occurs

while the MMU is fetching an entry from a page table or when a PTP is

found in a level 3 page table, or when a PTE has ET=3. The L field records

the page-table level at which the error occurred. The PE field records the

word(s) having a parity error, if any.

• An access bus error code (FT=5) is set when the SFSR PE field is set on a

memory operation that was not a table walk. Additionally, this error code

is also set on an alternate space access to an unimplemented or reserved

ASI or the memory access is using a size prohibited by the particular type

of ASI operation.

• If multiple errors occur on a single access the highest priority fault is

recorded in the FT field (see Table 5-8). If a single access causes multiple

errors, the fault type is recognized in the priority listed in Table 5-8.

• [1]: Fault Address Valid (FAV) — The fault address valid bit is set if the

contents of the synchronous fault address register (SFAR) are valid. The SFAR

is valid for data exceptions and data errors.

Table 5-8 Priority of Fault Types on Single Access

Priority Fault Type

1 Internal Error

2 Translation Error

3 Invalid Address Error

4 Privilege Violation Error

5 Protection Error
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• [0]: Overwrite (OW) — This bit is set if the SFSR has been written more than

once to indicate that previous status has been lost since the last time it was

read (see Table 5-9).

5.3.5 Synchronous Fault Address Register (VA[12:8]=0x04,
VA[12:8]=0x14)

The synchronous fault address register (SFAR) records the 32-bit virtual address

of any data fault or translation reported in the SFSR. The SFAR is overwritten ac-

cording to the same policy as the SFSR on data faults. Reading the SFAR using

ASI=0x4 and VA[12:08]=0x04 clears it. Using VA[12:08]=0x14 to read the SFSR

does not clear it. Writes to the SFAR using ASI=0x4 and VA[12:08]=0x04 have no

effect while writes using VA[12:08]=0x14 update the register.

Note: The SFAR should always be read before the SFSR to ensure that a valid

address is returned. The structure of this register is shown in Figure 5-6.

Figure 5-6 Synchronous Fault Address Register

Table 5-9 Overwrite Operations

Pending Error New error OW Status Action Signalled

Translation Error Translation Error Set Translation Error

Translation Error Data Access Exception Unchanged Data Access Exception

Translation Error Instruction Access Exception Unchanged Instruction Access Exception

Data Access Exception Translation Error Clear Translation Error

Data Access Exception Data Access Exception Set Data Access Exception

Data Access Exception Instruction Access Exception Unchanged Instruction Access Exception

Instruction Access Exception Translation Error Clear Translation Error

Instruction Access Exception Data Access Exception Clear Data Access Exception

Instruction Access Exception Instruction Access Exception Set Instruction Access Exception

Faulting Virtual Address

31 00
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5.3.6 TLB Replacement Control Register (VA[12:8]=0x10)

The TLB replacement control register (TRCR) contains the TLB replacement

counter and counter disable bit. TLB replacement is discussed in Section 5.5.1,

“TLB Replacement in this chapter. The TRCR can be read and written using alter-

nate load/store (LDA and STA) at ASI=0x4 with VA[12:08]=0x10. It is defined in

Figure 5-7.

Figure 5-7 TLB Replacement Control Register

Field Definitions:

• [31:25]: Reserved — May be read as zero or one.

• [24:23]: PCI Bus Speed (PCISP) — These bits are used to indicate the multiple

used to generate the CPU clock from the external PCI bus clock. This speed

select value is defined by a hard-wired input pins (DIV_CTL). The value is

encoded as shown in Table 5-10.

• [22:21]: Boot Mode Select (BM_SEL) — These bits are used to indicate which

boot mode has been selected by hard-wired input pins BM_SEL (see Section

11.7, “Boot Options).

When the PCI bus is selected for boot mode, the flash memory interface is still

available to the processor (physical address space 0x2), and defaults to the 32-

bit flash memory mode on the memory data bus.

Note: In the microSPARC-II, the memory speed (MEMSP) setting is defined in

bits 22 and 21 of the TRCR. In the micoSPARC-IIep, however, the memory speed

setting is defined in the MID register (see Section 5.9.5, “MID Register

(PA[30:0]=0x1000.2000)).

             Reserved  PCISP  BM SEL VP Reserved          PL R                        WP TC R  TLBRC

31 25 24 23 22 21 20 19 17 16 14 13 12 07 06 05 00

Table 5-10 PCI Speed Select

PCI SP[1:0] CPU Core Frequency to PCI Frequency Ratio

01 3:1

10 4:1

11 5:1

00 6:1
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• [20]: Virtually tagged PTP (VP) — This bit is used to enable the tagging of

level 2 PTPs in the TLB with virtual tags instead of physical tags. The TLB

should be flushed after setting or resetting this bit to avoid mixing physically-

tagged and virtually-tagged level 2 PTPs. See Section 5.4, “TLB Table Walk for

more information.

• [19:17]: Reserved — May be read as zero or one.

• [16:14]: PTP Lock (PL) — This bit is used to enable PTP location limits. When

any of the bits is set, PTP placement in the TLB will be limited to entries 0-2.

Bit[16] locks PTPs for level 2, Bit[15] locks PTPs for level 1, and Bit[14] locks

PTPs for level 0. When PTP lock is used the wrap point should not be set to a

value less than 0x5. The MMU will try to use locations 3, 4, and 5 as alternate

PTE stores when 0, 1, and 2 are reserved for PTPs. This use of locations 3, 4,

and 5 is done regardless of the current setting of the WP.

• [13:12]: Reserved — May be read as zero or one.

• [11:7]: Wraparound Point (WP) — This 5-bit value is used to set a wrap-

around point for TLB replacement. For the microSPARC-IIep, this value

should be set to wrap at 32 entries maximum. It may be set to a smaller value

to allow locked TLB entries.

• [6]: TLB Replacement Counter Disable (TC) — When set, the TLB replacement

counter (TRC) does not increment.

• [5]: Reserved — May be read as zero or one.

• [4:0]: TLB Replacement Counter (TRC) — This is a 5-bit modulo 32 counter

that is incremented by one every CPU clock cycle unless the TC bit is set.

When the value in the counter exceeds the wraparound point specified in WP,

the counter resets to count from zero so that the counter never goes beyond

the wraparound point. When a TLB miss occurs, the counter value is used to

address the entry to be replaced.

5.4 TLB Table Walk

On a translation miss, the table walk hardware translates the virtual address to a

physical address by transversing the context table and 1 to 3 levels of page tables.

The first and second levels of these tables (page or context) typically (not neces-

sarily) contain page table pointers (PTP) to the next level tables.
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The table walk for a CPU-generated virtual address uses the context table pointer

register (CTPR) as the base register and the context number contained in the con-

text register (CXR) as an offset to reference to an entry in the context table. The

context table entry is then used as a PTP into the first-level page table. A PTP is

used in conjunction with a field in the virtual address to select an entry in the

next level of tables. The table walk continues searching through levels of tables as

long as PTPs are found pointing to the next table. The table walk terminates once

a PTE is found. If a PTE is not found after accessing the third-level page table (or

if an invalid or reserved entry is found), an exception is generated. PTPs and

PTEs encountered during a table walk are not cached in the data cache.

A full table walk is shown in Figure 5-8.

Note: The hardware table walking is done in big endian mode.

Figure 5-8 CPU Address Translation Using Table Work

31 001824 23 17 12 11
Index 1 Index 2 Index 3 Page Offset

30 0012 11

Physical Page Number Page Offset

CTPR

CXR PTP

PTP

PTP

PTE

Context Table

Level 1 Table

Level 2 Table

Level 3 Table

Virtual Address

Physical Address
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When the PTE is found, it is cached in the TLB and used to complete the original

virtual to physical address translation. A table walk which was forced by a store

operation to an unmodified region of memory causes the modified (M) bit in the

PTE in the external memory and TLB to be set. Any entire probe or normal table-

walk operation causes the referenced (R) bit of the PTE in the external memory to

be set if it had not been already.

The table walk mechanism is simplified when virtually-tagged level 2 PTPs are

enabled. It is enabled by setting bit 20 of the TRCR (see Section 5.3.6, “TLB Re-

placement Control Register (VA[12:8]=0x10)). In this case, the MMU will initially

search for the level 2 PTP by using the CXR, Index 1, and Index 2 of the virtual

address. Should this PTP be found in the TLB, there is no need for the Context ta-

ble and level 1 lookups. We may then use the level 2 PTP to lookup the required

PTE directly. This effectively reduces the time required for the table walk in half.

If the virtual-tagged PTP is not found in the TLB, the MMU will start the table

walk from the context table.

The I/O address translations occur in the separate IOTLB in the PCI controller

(see Section 9.5.6, “PCIC IOTLB Operation (DVMA) and Section 9.5.7, “PCIC

IOTLB Write Registers), which is managed by software.

5.5 Translation Lookaside Buffer (TLB)

The TLB is a 32-entry, fully-associative cache of page descriptors (i.e., page table

pointers (PTP) or page table entries (PTE)). It caches CPU virtual to physical ad-

dress translations and the associated page protection and usage information.

Unlike the microSPARC-II TLB, the microSPARC-IIep TLB only caches applica-

tion translation information. A separate IOTLB in the PCI controller of the mi-

croSPARC-IIep is available for caching I/O translations (see Section 9.5.6, “PCIC

IOTLB Operation (DVMA) and Section 9.5.7, “PCIC IOTLB Write Registers for

more information).

Note: The TLB operates in big-endian mode. Therefore, all entries should be

stored using big-endian mode.
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5.5.1 TLB Replacement

The TLB uses a pseudo-random replacement scheme. The TLB replacement con-

trol register (TRCR) contains a 5-bit counter which is incremented by one every

CPU clock cycle. When a TLB miss occurs and if the TLB is full, this 5-bit counter

is used to locate the TLB entry that is to be replaced. This counter is initialized to

zero on reset. To disable this counting function, bit 6 of TRCR (TC) can be set. In

that case, one TLB entry will always be selected for replacement. To lock-down

TLB entries, a 5-bit field (WP) of TRCR can be set to specify upper limit of re-

placeable TLB entries. This effectively locks down entries beyond this upper limit

and prevents replacement of those entries.

The microSPARC-IIep TLB supports another locking mechanism. By program-

ming bits 16 to bits 14 of the TRCR, the first three TLB entries are reserved for

page table pointers (PTP) exclusively. In that case, PTP can only be stored in

those three TLB entries. This mechanism prevents PTPs from displacing page ta-

ble entries (PTE) or vice versa.

Please refer to Section 5.3.6, “TLB Replacement Control Register (VA[12:8]=0x10)

for more information.
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Figure 5-9 Possible TLB Replacement

5.5.2 TLB Entry

The field is the base physical address of the next level page table. The page table

pointer (PTP) appears as PA[30:8] during miss processing.

5.5.3 CPU TLB Lookup

A virtual address to be translated by the MMU is compared to each entry in the

TLB. During the TLB lookup, the value of the level field in the TLB tag specifies

the number of virtual address bits required to match the TLB virtual tag. (Refer to

Section 5.7.3, “TLB Tag for address tag match criteria.)

For user page references (ACC is 0x0 to 0x5), TLB hit requires both virtual tag

match and context ID match for either user or supervisor (ASI=0x8 to ASI=0xB).

For supervisor page references (ACC is 0x6 to 0x7), however, TLB hit requires vir-

tual tag match only.

0 Level 0 PTP

1 Level 1 PTP

2 Level 2 PTP

3

.

.

.

.

Replaceable* PTE Entries

.

.

.

31

Locked TLB Entries*

TLB Replacement Counter

Wrap Around Point

* No entries are allocated for IOPTEs and all

tablewalking is done in big-endian mode.
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Note that the TLB ignores access-level checking during probe operations. The

most significant bit of level field is used as a valid bit for the TLB. This means

that root level PTEs are not supported.

5.6 Address Space Decodes
The physical address space for microSPARC-IIep is mapped into eight address

spaces based on the upper three bits of the physical address(PA[30:28]). See

Appendix B, Physical Memory Address Map.

5.7 Reference MMU Diagnostic (ASI=0x06)
All TLB entries are accessible directly through alternate virtual address space

loads and stores. Diagnostic reads and writes to the 32 TLB entries are performed

by using load and store alternate instructions in ASI 0x6 and the virtual address

to explicitly select a particular TLB entry.

The virtual address used to select the TLB entries is listed in Table 5-11.

Table 5-11 TLB Entry Address Mapping

Virtual Address TLB Entry

0x0 Entry 0 PTE

0x4 Entry 1 PTE

: :

0x78 Entry 30 PTE

0x7C Entry 31 PTE

0x80-0xFC Reserved

0x100 Entry 0 Tag[9:0]

0x104 Entry 1 Tag[9:0]

: :

0x178 Entry 30 Tag[9:0]

0x17C Entry 31 Tag[9:0]

0x180-0x2FF Reserved

0x300 Entry 0 Tag[41:10]

0x304 Entry 1 Tag[41:10]

: :

0x378 Entry 30 Tag[41:10]

0x37C Entry 31 Tag[41:10]

0x380-FFFFFFFC Reserved
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The access must be a word access, all other data sizes will result in an internal er-

ror. Depending on the virtual address specified, either the TLB Tag or the TLB

Data will be referenced. The TLB Data can be either PTE or PTP.

5.7.1 Page Table Entry

Figure 5-10 CPU Diagnostic TLB PTE Format

Field Definitions:

• [31:29]: Level (LVL) — These 3 bits indicate the page table level where the

entry is to be found. See Table 5-12.

• [28:27]: Reserved, should be written as zero, and will be read as zero.

• [26:8]: Physical Page Number (PPN) — This field is the high order 19 bits of

the 31-bit physical address of the page (i.e., PA[30:12]).

• [7]: Cahceable (C) — When set, the page is cacheable in instruction or data

caches.

• [6]: Modified (M) — When set, the page has been modified.

• [5]: Reference (R) — Hard-wired to 1.

Lvl Rsvd PPN C M 1 ACC 10

31 29 28 27 26 08 07 06 05 04 02 01 00

Table 5-12 Page Table Entry Level in TLB

LVL[2:0] Page Table Level

000 Level 0 (Root)

100 Level 1

110 Level 2

111 Level 3
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• [4:2]: Access permission (ACC) — These bits are the coded access permissions.

The field is defined in Table 5-13.

• Bits [01:00] are set to 2’b10 by hardware indicating the entry type (ET) of a

PTE. These bits are not actually stored in the TLB but rather are derived as a

function of the PTP bit of the tag.

5.7.2 Page Table Pointer

Figure 5-11 CPU Diagnostic TLB PTP Format

Field Definitions:

• Bits [31:27, 3:2] — Reserved.

• [26:4]: Page Table Pointer (PTP) — This field is the base physical address of

the next level page table. It appeas as PA[30:8] during miss processing.

• Bits [01:00] are set to 2’b01 by hardware indicating the entry type (ET) of a

PTP. These bits are not actually stored in the TLB but rather are derived as a

function of the PTP bit of the tag.

5.7.3 TLB Tag

The format of the TLB tag is shown in Figure 5-12 and Figure 5-13.

Table 5-13 Page Table Access Permission

ACC
Access Mode

User Supervisor

0 Read Only Read Only

1 Read/Write Read/Write

2 Read/Execute Read/Execute

3 Read/Write/Execute Read/Write/Execute

4 Execute Only Execute Only

5 Read Only Read/Write

6 No Access Read/Execute

7 No Access Read/Write/Execute

Reserved PTP Rsvd 01

31 27 26 04 03 02 01 00
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Figure 5-12 CPU Diagnostic TLB Upper Tag Access Format

Field Definitions:

• [32:12]: Virtual Address Tag — If the TLB entry contains a PTE, then this 20-bit

tag stores the most significant 20 bits of the virtual address (i.e., VA[31:12]).

If the TLB entry contains a virtually-tagged PTP, then the least significant bits

of this 20-bit tag stores the physical address bit 26 to bit 8 (i.e., PA[26:08]). In

this case, the most significant bit is cleared to 0.

• [11:4]: Context Tag — If the TLB entry contains a PTE, then this 8-bit tag stores

the context number of the entry. A TLB PTE entry reference is considered a hit

only if the context tag matches the current context register value and the

virtual address tag matches VA[31:12] of the current access.

If the TLB entry contains a PTP, then the most significant bits of this 8-bit tag

stores the physical address bit 7 to 2 (i.e., PA[7:2]). In this case, the two least

significant bits are cleared to 0.

The page table pointed to by a PTP must be aligned on a boundary equal to

the size of the page table. The size of the page table is determined by the

which level the page table is. The sizes of the tables are summarized

Table 5-14.

• [3]: Valid bit — The Valid bit indicates a valid entry.

Virtual Address Tag Tag Context ID V Match Level

31 12 11 04 03 02 01 00

Table 5-14 Size of Page Tables

Level Size (Bytes)

Root 1024

1 1024

2 256

3 256
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Rese M

31 00
• [2:0]: Match Level — These 3 bits are used to enable the proper virtual tag

match of root, region, and segment PTE’s as shown in Table 5-15. They are the

negate of the level bits in the TLB PTE.

Figure 5-13 CPU Diagnostic TLB Lower Tag Access Format

Field Definitions:

• [31:10]: Reserved — These bits are not used and will always return zero.

• [9:4]: Protection — These 6 bits are the decoded access permission bits (ACC)

of the PTE. They are compared against the permission of the current process.

See Table 5-13.

• [9]: UE — This bit indicates that the Page has User Execute permission set.

• [8]: UR — This bit indicates that the Page has User Read permission set.

• [7]: UW — This bit indicates that the Page has User Write permission set.

• [6]: SE — This bit indicates that the Page has Supervisor Execute permission

set.

• [5]: SR — This bit indicates that the Page has Supervisor Read permission set.

• [4]: SW — This bit indicates that the Page has Supervisor Write permission set.

• [3]: Supervisor (S) — This bit marks the page as a supervisor level. In that

case, the matching of the context field is disabled.

• [2]: RE — Reserved. This bit is reserved.

• [1]: Page Table Pointer (PTP) — This bit is set if entry is a PTP. All SRMMU

flush types (except page) will flush all PTPs from the TLB.

Table 5-15 Virtual Tag Match Criteria

Match Level[2:0] Match Criteria

111 None

011 VA[31:24]

001 VA[31:18]

000 VA[31:12]

rved UE UR UW SE SR SW S RE PTP

10 09 08 07 06 05 04 03 02 01
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• [0]: Modified (M) — This bit is used to indicate that the page has been

modified by a previous write operation.

Note that when loading TLB entries under software control (using alternate space

accesses) care should be taken to ensure that multiple TLB entries cannot map to

the same virtual address. This may inadvertently occur when combining TLB en-

tries that map different sizes of addressing regions. A level 3 PTE could be in-

cluded in a TLB region for a level 1 or 2 PTE for example. The TLB output is not

valid when this occurs.

5.8 CPU TLB Flush and Probe Operations(ASI=0x03)

The flush operation allows software invalidation of TLB entries. TLB entries are

flushed by using a store alternate instruction. The probe operation allows testing

the TLB and page tables for a PTE corresponding to a virtual address. TLB entries

are probed by using a load alternate instruction. The ASI value 0x3 is used to in-

validate or probe entries in the TLB. In an alternate address space used for prob-

ing and flushing, the address is as shown in Figure 5-14.

Figure 5-14 CPU TLB Flush or Probe Address Format

Field Definitions:

• [31:12]: Virtual Flush or Probe Address (VFPA) - This field is the address that

is used as the match criterion for the flush or probe operations into TLB.

Depending on the type of flush or probe, not all 20 bits are significant. Context

flush uses the current context ID as defined in the context register.

• [11:8]: Type - This field specifies the extent of the flush or the level of the entry

probed. See Section 5.8.1, “CPU TLB Flush for more information.

• [7:0]: Reserved - These bits are reserved and should be set to zero.

VFPA Type Reserved

31 12 11 08 07 00
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5.8.1 CPU TLB Flush

The flush operation removes the PTEs and PTPs from the TLB that match the

type criteria shown in Table 5-16.

Page flush only removes matching PTEs from the TLB. All OTHER flushes will

remove matching PTEs and all PTPs from the TLB. CPU context flush operations

will flush PTEs that match the current context, and all PTEs that have the S (su-

pervisor) bit set in their tags. If the CPU is running with virtual PTPs enabled, all

virtually tagged PTPs are flushed for any occurrence of flush context, region, or

segment. Flush operations to types 5-F are reserved and will not affect the TLB.

5.8.2 CPU TLB Probe

The probe operation returns either a PTE from a page table in main memory or

the TLB or it returns a zero if there is an invalid address or translation error while

searching for the entry implied by the probe. If there is an error, a zero is re-

turned for data. The reserved probe types (0x5-0xF) return an undefined value. A

type 4 probe (entire) brings the accessed PTE and any PTPs that were needed into

the TLB. If the PTE was not already there, the referenced bit of the PTE in the

main memory is updated. Probe types 0-3 affect one entry of the TLB which is in-

validated at the end of the probe operation.

Table 5-16 TLB Entry Flushing

Type Flush PTE Match Criteria

0 Page ((ACC > 6) or context ID match) and VA[31:12] match

1 Segment ((ACC > 6) or context ID match) and VA[31:18] match

2 Region ((ACC > 6) or context ID match) and VA[31:24] match

3 Context (ACC > 6) or context ID match

4 Entire Entire TLB flush

5 to F Reserved -
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The value returned by a probe operation is specified in Table 5-17.

1. pte = page table entry
res = reserved
inv = invalid
ptp = page table pointer

2. For a given probe type, the table is read left-to-right:
"0" = a zero is returned
"X" = the page table entry itself is returned
"->" = the next-level page table entry is examined
"—" = don’t care

Table 5-17 Return Value for MMU Probes

Type

If No Memory Errors Occur

Mem
Err

Level - 0
Entry Type1, 2

Level - 1
Entry Type

Level - 2
Entry Type

Level - 3
Entry Type

pte res inv ptp pte res inv ptp pte res inv ptp pte res inv ptp

0(page) 0 0 0 -> 0 0 0 -> 0 0 0 -> X 0 X 0 0

1(seg) 0 0 0 -> 0 0 0 -> X 0 0 X -- -- -- -- 0

2(reg) 0 0 0 -> X 0 X X -- -- -- -- -- -- -- -- 0

3(ctx) X 0 X X -- -- -- -- -- -- -- -- -- -- -- -- 0

4(entire) X 0 0 -> X 0 0 -> X 0 0 -> X 0 0 0 0

5-0xF (undefined)
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5.9 Control Space MMU Registers

By performing memory access to control space with PA[30:28]=0x1, the MMU

registers residing in the control space can be read or written. The registers are

listed in Table 5-18.

5.9.1 Asynchronous Memory Fault Status Register
(PA[30:0]=0x1000.1000)

The asynchronous memory fault status register (AFSR) shown in Figure 5-15

records information on asynchronous faults during CPU-initiated transactions to

reserved address space (see Appendix B, Physical Memory Address Map) and CPU

write operations. A hardware lock is used to ensure that this register does not

change while being read. Reading this register unlocks it.

Figure 5-15 Asynchronous Memory Fault Status Register

Table 5-18 MISC MMU, and Performance Counter Control Space

PA[30:00] Device R/W

1000 1000 Asynchronous Memory Fault Status Register R/W

1000 1004 Asynchronous Memory Fault Address Register R/W

1000 1050 Memory Fault Status Register R/W

1000 1054 Memory Fault Address Register R/W

1000 2000 MID Register R/W

1000 3000 Trigger A Enables Register R/W

1000 3004 Trigger B Enables Register R/W

1000 3008 Assertion Control Register R/W

1000 300C MMU Breakpoint Control Register R/W

1000 3010 Performance Counter A R/W

1000 3014 Performance Counter B R/W

1000 3018 VA Mask Register R/W

1000 301C VA Compare Register R/W

E

R

R

L

E

T

O

B

E

Res S 1000 M

E

RD FA

V

Reserved

31 30 29 28 27 25 24 23 20 19 18 17 16 00
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Field Definitions:

• [27:25, 16:0]: Reserved — Should be written as zero, but may be read as zero

or one.

• [31]: Summary Error Bit (ERR) — One or more LE, TO, or BE is asserted.

• [30]: Late Error (LE) — An error was reported after the transaction has

completed.

• [29]: Time Out (TO) — A write access timed out. This may be caused by

writing to reserved address space (see Appendix B, Physical Memory Address
Map).

• [28]: Bus Error (BE) — A write access received an error acknowledge. This

may be caused by writing to reserved address space (see Appendix B, Physical
Memory Address Map).

• [24]: Supervisor (S) — CPU was in supervisory mode when error occurred.

• [23:20]: — Hard-wired to 0x1000.

• [19]: Multiple Error (ME) — At least one other error was detected after the one

shown.

• [18]: Read Operation (RD) — The error occurred during a read operation.

• [17]: Fault Address Valid (FAV) — The address contained in the AFAR is

accurate and can be used in conjunction with the status in AFSR. The only

time the AFAR will be invalid is on a late error.

5.9.2 Asynchronous Memory Fault Address Register
(PA[30:0]=0x1000.1004)

The asynchronous memory fault address register (AFAR) shown in Figure 5-16

records the 31-bit physical address that caused the fault. A hardware lock is used

to ensure that this register does not change while being read. Reading the AFSR

unlocks the AFAR.

Figure 5-16 Asynchronous Memory Fault Address Register

0 Faulting Address Register

31 30 00
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Bit 31 is unimplemented, should be written as zero, and will be read as zero. Al-

so, this register is only held when an error is reflected in the AFSR.

5.9.3 Memory Fault Status Register (PA[30:0]=0x1000.1050)

The memory fault status register (MFSR) provides information on parity faults

(see Figure 5-17). This register is accessed using control space (0x1000.1050). This

register is loaded on every memory request unless the register is locked. The reg-

ister is locked to ensure that it does not change while being read if there was an

error condition. Reading this register allows it to begin loading once again.

Figure 5-17 Memory Fault Status Register

Field Definitions:

• Reserved (Rsvd) — Bits [30:25,22:20,18:16,10:08,03:00] are not implemented,

should be written as zero and read as zero.

• [31]: Summary Error Bit (ERR) — Either PERR[1] or PERR[0] or both are

asserted.

• [24]: Supervisor (S) — CPU was in supervisor mode when error occurred.

• [23]: CPU Transaction(CP) — CPU initiate the transaction that resulted in the

parity error.

• [19]: Multiple Error (ME) — At least one other error was detected after the one

shown.

• [15]: PCI Local Bus Timeout (ATO) — This bit is used to indicate that a time

out has occurred for the current local bus operation.

• [14:13]: Parity Error[1:0] (PERR) — These bits are set on external memory

parity errors for the even and odd words (respectively) from memory. Parity

errors can result from CPU or I/O initiated memory reads and byte or half

word (8 or 16 bit) write operations (which result in read-modify-writes).

• [12]: Boot Mode (BM) — This bit indicates that the error occurred while the

BM bit of the PCR was set.

ER

R

Rsvd S CP Rsvd M

E

Rsvd AT

O

PERR BM C Rsvd Type Rsvd

31 30 25 24 23 22 20 19 18 16 15 14 13 12 11 10 08 07 04 03 00
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• [11]: Cacheable (C) — Address of error was mapped cacheable. In CPU

initiated transactions, this bit was from the C bit of the PTE; otherwise it is set

to zero.

• [7:4]: Memory Request Type — This field records the type of request that

generated the parity error as shown in Table 5-19.

5.9.4 Memory Fault Address Register (PA[30:0]=0x1000.1054)

The memory fault address register (MFAR) records the 31-bit physical address

that caused the fault. This register is loaded on every memory request unless the

register is locked. The register is locked to ensure that it does not change while

being read if there was an error condition. Reading this register allows it to begin

loading once again. The structure of this register is shown in Figure 5-18.

Figure 5-18 Memory Fault Address Register

Bit 31 should be written as zero and will be read as zero. Also, this register is

only held when an error is reflected in the MFSR.

Table 5-19 Memory Request Type

Value(Hex) Name Definition

0 NOP No memory operation

1 RD64 Read of 64 bits (2 words)

2 RD128 Read of 128 bits (4 words)

3 - Reserved

4 RD256 Read of 256 bits (8 words)

5-8 - Reserved

9 WR8 Write of 8 bits (1 byte)

A WR16 Write of 16 bits (2 bytes)

B WR32 Write of 32 bits (1 word)

C WR64 Write of 64 bits (2 words)

D-F - Reserved

0 Faulting Physical Address

31 30 00
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5.9.5 MID Register (PA[30:0]=0x1000.2000)

The MID register controls the miscellaneous functions of the microSPARC-IIep. It

is defined in Figure 5-19.

Figure 5-19 MID Register

Field definitions:

• [31:17, 15:12]: Reserved — Should be written as zero, but may be read as zero

or one.

• [16]: I/O Arbitration Enable (IO) — This bit enables arbitration for the PCI

interface to access the DRAM memory bus. This arbitration is between other

internal usage of the DRAM memory bus, not between PCI devices.

This bit must be set to one to allow I/O access to the memory, and is cleared

to zero on reset.

• [11]: Standby Enable (SE) — This bit enables the microSPARC-IIep to enter a

power savings standby mode. While this bit is set, if there is no activity on the

PCI bus, the processor will stop execution and enter standby mode. Refer to

Chapter 11, “Mode, Timing, and Test Controls for more information.

• [10:8]: Memory Speed Select (SP_SEL[2:0]) — These bits indicate the speed

select being used for the DRAM memory interface. Refer to Section 8.4, “Clock

Speeds for the details and definition of this field.

• [7:4]: Flash Memory Speed — - These bits select the speed for read/write

timing of the flash memory. See Section 10.2, “Flash Memory Speed for the

details and definition of this field.

• [8:0]: MID - This field is a constant 0x8 and is read only (writes to these bits

are ignored).

5.9.6 Trigger A Enable Register (PA[30:0]=0x1000.3000)

The Trigger A enable register (see Figure 5-20) is used to define trigger events for

performance counter A. Setting a field to "1" will enable that trigger event for

counting.

Reserved IO Reserved SE Mem Spd Flash Mem-

ory Speed

’0x8’

31 17 16 15 12 11 10 08 07 04 03 00
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Figure 5-20 Trigger A Enables Register

Field definitions:

• Reserved — (R) Bits [31:27,25:23] are not implemented and reserved. They

should be written as zero, and will be read as zero.

• [26]: Counter B_CO (CO) — Counter B carry out. For trigger A only, this

allows counter A to reflect the number of counter B overflows.

• [22]: fhold_fq_full (FQ) — Indicates that fhold is asserted because the fp queue

is full, and another FPop is in the pipeline.

• [21]: fhold_perf (FP) — FPU hold signal asserted for FLD/FST dependency

cases, or FP queue is full and another FPop is in the pipeline. Guaranteed to

hold the IU pipeline if psr.ef==1.

• [20]: Pipeline stalled (ST) — Asserted whenever the pipeline is stalled (1-cycle

delay).

• [19]: MMU breakpoint (MU) — Combined signal from MMU breakpoint

decode.

• [18]: Supervisor mode (SU) — Based on the processor PSR.S bit. Can be used

with other fields to determine supervisor overhead.

• [17]: Processor Tablewalk (SR) — Asserted for the duration of processor

tablewalks. Can be used in conjunction with the translation count to

determine TLB hit rate.

• [16]: Translation (XL) — 1-cycle pulse for each translation attempt.

• [15]: Memory RMW op (MR) — Memory Read/Modify/Write operation

requested. Asserted once for each memory access.

• [14]: Memory precharge request (MC) — Asserted once for each memory

access that indicated non-page hit prior to request.

• [13]: Memory page mode access (MP) — Asserted once for each memory

access that is on the same page as the previous access (for a given DRAM

bank).

Reserved C

O

R FQ FP ST M

U

SU SR XL M

R

M
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M
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AB M

B

W

B

DF DS D

M

D

H

IF IS IM IH OR L
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• [12]: Local Bus (PCIC interface bus) busy (AB) — Local bus interface currently

busy.

• [11]: Memory busy (MB) — Memory currently busy.

• [10]: - Write buffer full (WB) — Asserted while all 4 write buffer entries are

valid.

• [9]: D-cache lookup (DF) — Asserted on data cache accesses.

• [8]: D-cache streaming (DS) — Asserted after the 1st word has been fetched

from memory, and until the cache line fill has completed.

• [7]: D-cache miss pending (DM) — Asserted 1-cycle after miss detected, and

sustained until corresponding memory request has been made.

• [6]: D-cache miss (DH) — Asserted 1-cycle after the miss is detected, and

sustained until the miss has been resolved.

• [5]: I-cache lookup (IF) — Asserted on instruction cache accesses.

• [4]: I-cache streaming (IS) — Asserted after the 1st word has been fetched from

memory, and until the cache line fill has completed.

• [3]: I-cache miss pending (IM) — Asserted 1-cycle after miss is detected, and

sustained until corresponding memory request has been made.

• [2]: I-cache miss (IH) — Asserted 1-cycle after the miss is detected, and

sustained until the miss has been resolved.

• [1]: OR — Combine triggers by ORing or ANDing function. When set, the

triggers are logically ORed to form the increment signal. When cleared, the

triggers are e logically ANDed to form the increment signal.

• [0]: Trigger on Edge or Level {L) — When set, the trigger become level

sensitive. When cleared, the trigger becomes edge sensitive.

5.9.7 Trigger B Enable Register (PA[30:0]=0x1000.3004)

The Trigger B enable register (see Figure 5-21) is used to define trigger events for

performance counter B. Setting a field to "1" will enable that trigger event for

counting.
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Figure 5-21 Trigger B Enables Register

Field definitions:

• Reserved — (R) Bits [31:27,25:23] are not implemented and reserved, should

be written as zero, and will be read as zero.

• [26]: Cycle count (CY) — Always active.

The remaining fields are identical to those of the Trigger A enable register. Refer

to Section 5.9.6, “Trigger A Enable Register (PA[30:0]=0x1000.3000).

5.9.8 Assertion Control Register (PA[30:0]=0x1000.3008)

The assertion control register (see Figure 5-22) can be used to invert any trigger

event defined in the two trigger registers. Setting a field to "1" will cause the trig-

ger event for that field to be inverted prior to going into the trigger register logic.

Figure 5-22 Assertion Control Register

Refer to Section 5.9.6, “Trigger A Enable Register (PA[30:0]=0x1000.3000) for defi-

nition of the fields.

5.9.9 MMU Breakpoint Register (PA[30:0]=0x1000.300C)

The MMU breakpoint debug logic is intended for debugging in a laboratory envi-

ronment only since its usage requires setup through a scan facility. The basic idea

is to stop the clocks when certain conditions occur.

The MMU breakpoint register (see Figure 5-23) can specify a single breakpoint

based on a number of field comparisons defined in the register. Any of the fields

can be used as a stand alone compare, or combined with other fields that are part

of the MMU function.
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Figure 5-23 MMU Breakpoint Register

Field definitions:

• Reserved — (R) Bits [31:12] are reserved, should be written as zero, and will

be read as zero.

• [11:8]: Memory request Type (MT) — This bit field is used to define the type

and size of the memory operation for the breakpoint event. The possible

definitions for this field are shown in Table 5-20.

• [7]: Memory Request compare Enable (RE) — This bit field is used to enable

breakpoint.

Reserved MT RE TWS VAM VAM VE

31 12 11 08 07 06 05 04 03 02 01 00

Table 5-20 MMU Breakpoint Register MT Field Decode

MT Memory Request Type

0000 NOP

0001 READ 8 bytes

0010 READ 16 bytes

0011 Reserved

0100 READ 32 bytes

0101 - 1000 Reserved

1001 WRITE 1 byte

1010 WRITE 2 bytes

1011 WRITE 4 bytes

1100 WRITE 8 bytes

1101 WRITE 16 bytes

1110 - 1111 Reserved
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• [6:5]: Table Walk translation Source (TWS) — These bits are used to describe

the type of table walk operation to be used for the breakpoint. The bit

definitions are shown in Table 5-21.

• [4:3]: Virtual Address Memory operation (VAM) — These bits are used to

describe the type of memory operation to be used together with the address

compare for breakpoint. The possible memory operations for breakpoint

definition are shown in Table 5-22.

• [2:1]: Virtual Address Source (VAS) — These bits are used to control the source

of the address to be used for breakpoint compare operations. The two bits are

defined in Table 5-23.

• [0]: Virtual address breakpoint enable (VE) —

Table 5-21 MMU Breakpoint Register TWS Field Decode

TWS TableWalk Translation Source

00 Disabled

01 Table walk for instruction access

10 Table walk for data access

11 Reserved

Table 5-22 MMU Breakpoint Register VAM Field Decode

VAM Virtual Address Memory Operation

00 Disabled

01 Read (D-Cache miss, or I-Cache miss)

10 Write (D-Cache miss)

11 LDSTO

Table 5-23 MMU Breakpoint Register VAS Field Decode

VAS Virtual Address Source

00 I-Cache Address

01 D-Cache Address (includes write buffer)

10 Reserved

11 Physical Address
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5.9.10 Performance Counter A (PA[30:0]=0x1000.3010)

Performance counter A (see Figure 5-24) is the first of two 32-bit counters.

Counter A will be incremented based on the assertion of triggers defined for

counter A in the Trigger A enables register.

Figure 5-24 Performance Counter A

5.9.11 Performance Counter B (PA[30:0]=0x1000.3014)

Performance counter B (see Figure 5-25) is the second 32-bit counter. Counter B

will be incremented based on the assertion of triggers defined for counter B in the

Trigger B enables register. When CO of the Trigger A enable register is set, over-

flows of this counter increment the performance counter A (see Section 5.9.6,

“Trigger A Enable Register (PA[30:0]=0x1000.3000)).

Figure 5-25 Performance Counter B

5.9.12 Virtual Address Mask Register (PA[30:0]=0x1000.3018)

The virtual address mask register (see Figure 5-26) disables the comparison of

specific bit fields in the virtual address compare register. Enables I1 - I9 enable

their respective fields for comparison. The N11 and N bits are used to decode the

'compare not' function. The N11 bit only affects the F field (VA[11]), and the N bit

affects the range of VA[31:12]. When the N=0, normal comparisons are made.

When N=1, the compare result is inverted - so a 'hit' occurs when the addresses

mismatch.

Figure 5-26 Virtual Address Mask Register

Counter A Value

31 00

Counter B Value

31 00

Mask ID Reserved I1 I2 I3 I4 I5 I6 I7 I8 I9 N11 N

31 24 23 11 10 09 08 07 06 05 04 03 02 01 00
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Field definitions:

• [31:24]: Mask ID — This read-only eight bit field is used to uniquely identify

the revision level of the mask that was used to manufacture the part. The

revision number shall be one of the entries found in Table 5-24.

• [23:11]: Reserved — Not implemented, should be written as zero, and will be

read as zero.

• [10]: I1 — Compare enable for VA[31:24].

• [9]: I2 — Compare enable for VA[23:18].

• [8]: I3 — Compare enable for VA[17:12].

• [7]: I4 — Compare enable for VA[11].

• [6]: I5 — Compare enable for VA[10:04].

• [5]: I6 — Compare enable for VA[03].

• [4]: I7 — Compare enable for VA[02].

• [3]: I8 — Compare enable for VA[01].

• [2]: I9 — Compare enable for VA[00].

• [1]: N11 — Normal of inverted compare mode for bit 11 only.

• [0]: Normal or inverted comparison enable (N) — N=0 enables normal

comparisons, N=1 enables inverted comparisons.

5.9.13 Virtual Address Compare Register (PA[30:0]=0x1000.301C)

The virtual address compare register (see Figure 5-27) specifies the value of the

virtual address that the breakpoint logic compares against. This register should

be used together with the virtual address mask register to define the exact match

criteria for the breakpoint. The virtual address (VA) can be either the I-cache, or

D-cache virtual address, or the address that is being translated by the MMU.

Table 5-24 Mask ID

Mask ID Mask Revision

0011 0100 (0x34) 1.0

0011 0101 (0x35) 1.1

0011 0110 (0x36) 2.0
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Since the caches are virtually tagged, cache hit accesses do not need to be trans-

lated. Therefore, selects are provide to maintain address checking on a single

source of address (regardless of hit/miss results).

Figure 5-27 Virtual Address Compare Register

5.10 Arbitration

The MMU block performs the primary memory arbitration function within the

CPU. The different sources of memory activity are the instruction cache (for in-

struction fetches), the data cache (for loads and stores), the TLB (during table-

walks and to keep the referenced and modified bits in the main memory page

tables up to date), and I/O DMA activity.

The other entity needing main memory is the DRAM refresh logic. This function

is folded into the arbitration scheme by the memory controller which must arbi-

trate between it and a request out of the MMU.

The arbitrating requirements can be broken down into several different resource

arbiters. The TLB arbitration and the internal memory bus arbitration.

The current priority scheme places TLB references as highest priority, followed by

data references, and finally instruction references (see Table 5-25). Tablewalks and

updates to the memory PTEs due to changes to the referenced and modified bits

are given the highest priority. They imply that some other operation is in

progress.

1. X = Don’t Care,

Virtual Address Compare Value

31 00

Table 5-25 TLB Reference Priority

Operation pending1

Results
IU Data Ref Instr. Fetch

Yes X Translate for IU Data Reference, Tablewalk if miss

No Yes Translate for Instruction Fetch, Tablewalk if miss
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5.11 Translation Modes

Translation of virtual addresses to physical addresses is done in the modes listed

in Table 5-26.

The MMU is responsible for generating a signal to the memory controller indicat-

ing whether or not the current memory request can use page mode of the DRAMs

or not. This is done by comparing the current physical address against the physi-

cal addresses of the previous memory access to the even and odd memory banks.

For this purpose the MMU has two page hit registers that are used to store the

current physical address. Page-hit register 0 is used if the memory operation is to

an even bank. Page-hit register 1 is used if the memory operation is to an odd

bank. The even or odd state of an address is determined by bit 25 of the physical

address. For the page-hit registers a bank refers to the physical address space con-

sumed by a single DRAM SIMM module. Each page-hit register is used to store

bits 30:12 of the physical address. If either register detects that the current access

is to the same bank as the previous access the page mode signal to the memory

controller will be activated. This signal can be over-ridden by the PMC bits in the

PCR register to disable this feature (see Section 2.3, “Using the Two Page-Hit

Registers for performance considerations and Section 5.3.1, “Processor Control

Register (VA[12:8]=0x00) for more information).

5.12 Reference MMU Bypass (ASI=0x20)

This space can be used to access an arbitrary physical address. It is particularly

useful before the MMU or main memory have been initialized. Accesses in by-

pass mode are not cacheable. The MMU does not perform an address translation

rather a physical address is formed from the least significant 31 bits of the virtual

address (PA[30:00] = VA[30:00]).

Table 5-26 Translation Modes

Name ASI Boot Mode MMU En. PA[30:00]

Boot IFetch 0x8, 0x9 Yes X PA[30:28]=0x2, PA[27:00]=VA[27:00] for flash boot

PA[30:28]=0x3, PA[27:00]=VA[27:00] for PCI boot

Pass Through 0x8, 0x9 No Off PA[30:00]=VA[30:00]

Translate 0x8, 0x9 No On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]

Pass Through 0xA, 0xB X Off PA[30:00]=VA[30:00]

Translate 0xA, 0xB X On PA[30:12]=PTE[26:08], PA[11:00]=VA[11:00]

Bypass 0x20 X X PA[30:00]=VA[30:00]
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5.13 Errors and Exceptions
The MMU generates: instruction access error, instruction access exception, data

access error, and data access exception for the SPARC IU. Also, an external inter-

rupt is driven for asynchronous faults. This would indicate a level 15 interrupt.

This interrupt must be enabled in the PCIC interrupt controller in order to be sig-

nalled to the CPU.
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Data Cache 6
6.1 Overview
The microSPARC-IIep data cache is a 8KByte, direct-mapped cache. It is used on

load or store accesses from the CPU to cacheable pages of main memory. It is vir-

tually-indexed and virtually-tagged. The write policy for stores is write-through

with write allocate. The data cache is organized as 512 lines of 16 bytes of data.

Each line has a cache tag associated with it. There is no sub-blocking. On a data

cache miss to a cacheable location, 16 bytes of data are written into the cache

from main memory.

Within the data cache block there are cache bypass paths. These paths are used

for non-cached load references, and for streaming data into the integer unit and

floating-point unit on cache misses.

A simple block diagram is shown in Figure 6-1.
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Figure 6-1 Data Cache Block Diagram

6.2 Data Cache Data Array

Since the data cache is a write-through cache, all write operations trigger the

main memory to be updated. On cache misses, the missed cache line is read from

memory into the cache (i.e., write allocate). This avoids stale data remaining in
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the virtual data cache due to aliasing. This write-through with write allocate pol-

icy makes the data cache controller design more uniform, since load misses are

also handled in a similar way.

Diagnostic software may read and write the data cache directly by executing a

single word load or store alternate space instructions in ASI space 0xF. Virtual ad-

dress bits VA[12:4] indexes the cache line and VA[3:2] indexes one of the four

works in a cache line. All other virtual address bits (addresses rollover), as well

as the context bits, ACC bits and the valid bit are ignored during ASI=0xF opera-

tions.

6.3 Data Cache Tags

A data cache tag entry consists of several fields as shown in Figure 6-2.

Figure 6-2 Data Cache Tag Entry

Field Definitions:

• [31:13]: Virtual Address Tag (VA TAG) — This field contains the virtual

address of the data held in the cache line.

• [12]: Reserved (R) — Reserved.

• [11:4]: Context bits — These 8 bits indicate the context of the particular cache

line. They are filled from the TLB.

• [3:1]: Access (ACC) - These 3 bits indicate various levels of protection for that

cache line. This is copied from the TLB.

• [0]: Valid (V) — When set, the cache line contains valid data. This bit is set

when a cache line is filled due to a successful cache miss; a cache line fill

which results in a memory parity error will leave the valid bit unset. Stores to

ASI space (0x10-0x14) will clear the valid bits, conditionally, as defined in the

SPARC version 8 reference manual. See Section 6.7, “Data Cache Flushing.

 V VA TAG[31:13]

31

         ACC

  13
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      4 3          1  0  11   12
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Diagnostic software can read and write the data cache tags by executing only

word-length LDA and STA (load and store alternate) instructions in ASI space

0xE. The virtual address bits [12:4] will select one of the 512 tags; all other ad-

dress bits are ignored.

Note: Due to different line sizes, the VA bits used to access the data cache are

different from those used to access the instruction cache.

6.4 Write Buffers
The write buffers (WRB) are four, 64-bit registers in the data cache block used to

hold data being stored from the IU or FPU to memory or other physical devices.

WRB temporarily holds the store data until it is sent to the destination device. For

halfword or byte stores, this data is left-shifted (with zero-fill) and replicated into

proper byte alignment for writing to a word-addressed device, before being load-

ed into one of the WRB registers. There is no diagnostic read/write access to the

WBR registers. The WRB is emptied prior to a load or store miss cache line fill se-

quence to avoid any stale data from being read in to the data cache. There is no

snoop logic to check for any data hazards between the WRB and the data coming

back from main memory.

The address portion of the WRB contains virtual addresses rather than physical

addresses. Thus the need for translation on store hits is avoided until the store is

to be written to memory. There is an array of 4 valid bits associated with each en-

try of the WRB. On a store which Traps, the WRB is properly flushed by the data

cache controller, while the IU pipeline is held by the data cache controller. This

is needed, because the WRB is written at the end of the E-stage, and the store

could trap in the W-stage of the pipeline.

The microSPARC-IIep has a fifth bit for each write buffer, containing the endian

mode setting for the register at the time the entry is written.

6.5 Data Cache Fill
The cache line size fetched from memory on data cache misses is 16 bytes. The re-

quested doubleword is always returned first followed by the other doubleword,

which wraps around a 16-byte boundary until the entire 16-byte block has been

returned. The transfer rate is one doubleword every 4 to 5 cycles from memory

(see Section 5.9.5, “MID Register (PA[30:0]=0x1000.2000) for MID register and

memory speed select for timing).
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Table 6-1 illustrates the fill operation showing the order that words are written

into the cache.

During the write cycles of a cache fill, data can be bypassed (or streamed) to the

IU or FPU, one cycle after it appears on the cache_fill bus. During the dead cy-

cles, data from any line in the cache can be written or read by subsequent load or

store instructions.

On a cache miss for both loads and stores, the IU waits in the W-stage while the

protections are being checked in the TLB. It resumes execution when the first re-

quested word of the line is returned from memory.

6.6 Endian Conversion

Two bits of the processor state register (PSR) control the endian conversion

blocks. Refer to Section 3.13, “Compliance With SPARC Version 8 in Chapter 3,

“Integer Unit.

6.7 Data Cache Flushing

The data cache tags are implemented with all the five flush mechanisms (page,

segment, region, context and user) as suggested in the SPARC version 8 Refer-

ence MMU document. These are activated by word size store instructions to ASI

0x10 - ASI 0x14. The addressed data cache line’s valid bit is reset to zero by this

operation. The store alternate flush using ASI 0x10 to ASI 0x14 flushes both the

data cache and the instruction cache (although not necessarily in exactly the same

clock cycle). Another way to flush both the caches is by explicitly writing a 0x0

into the valid bit of the cache line using the cache tag diagnostic ASIs (0xC for the

instruction cache and 0xE for the data cache). This resets the valid bit of the ad-

dressed cache line.

Table 6-1 Data Cache Fill Ordering

Requested Word Order of Fill

0 (0, 1), (2, 3)

1 (0, 1), (2, 3)

2 (2, 3), (0, 1)

3 (2, 3), (0, 1)
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Note: The data cache is not flushed by the FLUSH instruction (the addressed

instruction cache line, however, is).

A cache line is flushed if it meets the minimum criteria given in the following ta-

ble. S is the supervisor bit, U is the inverse of S, CNTXT is the matching of the

context register and tag context, and VA[31:xx] is a comparison based on the vir-

tual address tag.

6.8 Data Cache Protection Checks

The data cache tags also incorporate three access permission bits (ACC[2:0]) for

checking access violations. These bits detect a protection or privilege exception in

the W-stage, so that protection traps can occur in W-stage. This decouples the vir-

tually-addressed data cache from the TLB for a lot of cases. Load and store in-

structions which hit in the cache do not need the corresponding TLB entry to be

present in the TLB (although stores do need a translated physical address when

they are ultimately drained from the WRB to main memory). If a store instruction

creates a protection violation, the corresponding data cache line is invalidated.

6.9 Cacheability of Memory Accesses

Pages that are declared as non-cacheable (C=0 in the PTE) are not cached in the

data cache. For data consistency and implementation reasons, the following data

are also not cached:

• Accesses when the MMU is disabled and alternate cacheability is disabled

(EN, AC bits of the MMU PCR=0). See Section 5.6, “Address Space Decodes in

Chapter 5, “Memory Management Unit for more information.

Table 6-2 Flush Criteria for ASI 0x10-0x14

ASI[2:0] Flush Type Compare Criterion

0 Page (S or CNTXT) and VA[31:12]

1 Segment (S or CNTXT) and VA[13:18]

2 Region (S or CNTXT) and VA[31:24]

3 Context U and CNTXT

4 User U

5, 6 reserved -
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• Accesses while the data cache is disabled (DE bit of the MMU PCR=0). See

Section 5.3.1, “Processor Control Register (VA[12:8]=0x00).

• Accesses to any ASI except 0x8, 0x9, 0xA and 0xB.

• Accesses to any non-memory physical address (i.e., PA[30:28]) 0x1, 0x3, 0x4,

0x5, 0x6, 0x7). See Section 5.6, “Address Space Decodes in Chapter 5,

“Memory Management Unit for more information. Flash memory space

(PA[30:28]=0x2) is cacheable.

• Accesses while in boot mode.

• Accesses by the MMU during tablewalks.

Note: An ST instruction to a non-cached address in ASI space 0x8, 0x9, 0xA and

0xB, invalidates the corresponding data cache line. This is because the ST has

already updated the data RAM by the time the cacheable information is available.

6.10 Data Cache Streaming
When the first half of the data cache line is brought back from main memory, the

IU pipeline is released by the data cache controller for both load and store in-

struction misses. During the period from the time the first half of the cache line is

back until the second half of the cache line is filled, most instructions in the IU

are allowed to proceed or stream, except for the following:

• LD/ST instructions to any ASI space other than 0x8 to 0xB.

• LD/ST instructions which access the second half of the missed cache line.

• Any instruction issued one cycle after a parity error is detected on a cache line

fill.

• A store instruction issued one cycle before the second half of a line-fill cycle.

The write buffers allow stores to continue execution during a cache miss. Howev-

er, the pipeline is held if the write buffers become full.

6.11 PTE Reference Bit Clearing
Many paging-based operating systems use the referenced bit (R bit) in the page

table entry (PTE) to approximate least recently used (LRU) behavior in accessing

frequently used pages quickly. Clearing the referenced bit of a PTE could be cost-
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ly in microSPARC-IIep because clearing the R bit of a PTE entails flushing that

page from the instruction and data caches, and microSPARC-IIep has virtual

caches and no flash clear instruction. The cost of flushing is two-fold:

1. The cycles spent in flushing each line of the cache.

2. The loss of cycles due to extra cache misses as a result of the cache line

invalidations.

To avoid both of these problems, do not flush the instruction and data caches

when the reference bit of PTE is reset.

6.12 Powerdown

The data cache RAM and tag RAM are both powered down to conserve energy

during cycles when they are not used by the data cache controller. Powerdown is

initiated by:

• The external standby pin.

• the MID register bit.

• The data cache controller state machine.

• Externally, the data cache controller follows a simple two way handshake

protocol of request/grant to go into powerdown mode. The data cache

controller also holds the IU pipeline during this period. For more on this refer

to Chapter 11, “Mode, Timing, and Test Controls.

• Internally the data cache controller goes into powerdown mode during

various state machine states, when the Data RAMs and TAGs are both not

needed. This is because the RAM’s and the TAG’s both share the same

powerdown control signal.

6.13 Parity Errors

Parity errors on data cache line fill, will invalidate only that particular cache line

that caused the parity error. Parity errors during non-cached misses do not cause

any invalidations.
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Instruction Cache 7
7.1 Overview
The microSPARC-IIep instruction cache is a 16KByte, direct mapped cache. It is

accessed on CPU instruction fetches from cacheable pages of main memory. It is

virtually-indexed and virtually-tagged. The instruction cache is organized as 512

lines of 32 bytes of data. Each line has a cache tag associated with it. There is no

sub-blocking. On an instruction cache miss to a cacheable location, 32 bytes of

data are written into the cache from main memory.

Within the instruction cache block there are also cache bypass paths. These paths

are used for non-cached instruction fetches, and for streaming instructions into

the IU on cache miss. A simple block diagram is presented in Figure 7-1.
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Figure 7-1 Instruction Cache Block Diagram
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7.2 Instruction Cache Data Array

Diagnostic software may read and write the instruction cache directly by execut-

ing a single word load or store alternate space instructions in ASI space 0xD. Vir-

tual address bits VA[13:5] indexes the cache line and VA[4:2] indexes one of the

eight words in a cache line. All other virtual address bits (addresses rollover), as

well as the Context bits, ACC bits and the valid bit are ignored during ASI=0xD

operations.

7.3 Instruction Cache Tags

A instruction cache tag entry consists of several fields shown in Figure 7-2.

Figure 7-2 Instruction Cache Tag Entry

Field Definitions:

• [31:14]: Virtual Address Tag (VA TAG) — This field contains the virtual

address of the data held in the cache line. The instruction cache controller

writes this field from bits [31:14] of the virtual address of the line.

• [13:12] — Reserved.

• [11:4]: Context bits — These indicate the context of the particular cache line.

They are filled from the TLB.

• [3:1]: Access (ACC) bits — These 3-bit field indicates various levels of

protection for that cache line. The field is copied from the TLB (see Table 5-13

on page 78).

• [0]: Valid (V) — When set, the cache line contains valid instructions. This bit is

set when a cache line is filled due to a successful cache miss; a cache line fill

which results in a memory parity error leaves the valid bit cleared. A flush

instruction clears the valid bit of the single line which is addressed by

VA[13:5] (only if the tag for the addressed line matches the flush address). See

Section 7.5, “Instruction Cache Flushing.
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There are two input sources to the instruction cache tag array. The virtual address

bits needed for the tag are used for cache updates due to instruction cache misses

or alternate store operations.

Diagnostic software can read and write the instruction cache tags by executing

word-length LDA and STA (Load and Store Alternate) instructions in ASI space

0xC.; VA bits [13:5] will select one of the 512 tags; all other address bits are ig-

nored.

Note: Due to different line sizes, the VA bits used to access the instruction cache

are different from those used to access the data cache.

7.4 Instruction Hit/Miss

The memory block size of data fetched from memory on instruction cache misses

is 32 bytes. Memory returns 32 bytes of data, starting with the requested double

word followed by the three remaining double words (even double word, then

odd double word), which will wrap around a 32-byte boundary until the entire

32-byte block has been returned. The transfer rate is one double word every 4 or

5 cycles from memory. The cache array is written during the cycle that each word

appears on the cache_fill bus[63:0]. Table 7-1 illustrates the fill operation showing

the order that words are written into the cache. Depending on the memory speed

selection SP_SEL setting of the microSPARC-IIep, there will be a gap of some

(usually 3 or 4) internal clocks in between every two words filled into the cache.

During an instruction cache fill, instructions from the missing line can be sup-

plied to the IU or FPU by two separate mechanisms; these mechanisms are collec-

tively called streaming. In the first type of streaming (bypass streaming),

Table 7-1 Instruction Cache Fill Ordering

Requested Word Order of Fi.ll

0 (0, 1), (2, 3), (4, 5), (6, 7)

1 (1, 0), (2, 3), (4, 5), (6, 7)

2 (2, 3), (4, 5), (6, 7), (0, 1)

3 (3, 2), (4, 5), (6, 7), (0, 1)

4 (4, 5), (6, 7), (0, 1), (2, 3)

5 (5, 4), (6, 7), (0, 1), (2, 3)

6 (6, 7), (0, 1), (2, 3), (4, 5)

7 (7, 6), (0, 1), (2, 3), (4, 5)
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instructions are bypassed around the cache data array to the IU/FPU in the same

cycle that the array is being written - this can occur in all clock cycles of the fill

sequence except the gap cycles. The second form of streaming (gap streaming) oc-

curs only during the gap cycles; any instruction word, from any line in the cache

which has already been written into the RAM array can be accessed by reading

the array. In a given cycle, the IU is able to accept the instruction word which it

needs, immediately and instruction words which it may need in the future

(prefetching). If, in a given cycle, the IU is requesting a word which is available

via streaming, then that word is supplied to the IU and the pipeline is allowed to

advance. The concept of streaming does not apply to non-cached instructions, as

the IU does not have to be held for a cache fill.

7.5 Instruction Cache Flushing

The instruction cache tags are implemented with all the five flush mechanisms,

(page, segment, region, context and user) as suggested in the SPARC version 8

Reference MMU document. They are activated by word length alternate store in-

structions to ASI=0x10 to ASI=0x14. The IFLUSH instruction also can be used to

flush the instruction cache. In both cases, the addressed instruction cache line’s

valid bit is reset if the corresponding tags match. (The match criteria is deter-

mined by the type of flush instruction.) The instruction queue is not flushed on

an instruction cache flush because the maximum depth of the instruction queue is

only 4 instructions and the IU disables any more instruction fetches when it de-

codes an instruction cache flush opcode in the D-stage. (The SPARC Architecture

Manual allows 5 instructions after an instruction cache flush instruction, for the

IU to make the pipeline, the instruction queue and the instruction cache consis-

tent.) Similar to the data cache, the instruction tag diagnostic ASI=0xC can be

used to reset the valid bit.

It is recommended that the instruction cache be flushed whenever the referenced

bit (R bit) of any cacheable line is reset in the corresponding entry in the page ta-

bles.

Note: To maintain consistency, it is required that the software flush the

instruction cache whenever the ACC bits or the C bit of a cacheable location is

changed in the corresponding entry in the page tables.
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A cache line is flushed if it meets the minimum criteria given in the following ta-

ble. S is the supervisor bit, U is the inverse of S, CNTXT is the matching of the

context register and tag context, and VA[31:xx] is a comparison based on the vir-

tual address tag.

7.6 Cacheability of Memory Accesses
Non-cacheable pages (C=0 in the PTE) that are declared as are not cached in the

instruction cache. For data consistency and implementation reasons, the follow-

ing instruction fetch operations are not cached regardless of the PTE.C bit.

• Accesses when the MMU is disabled and alternate cacheability is disabled

(EN, AC bits of the MMU PCR=0). Refer to Section 5.3.1, “Processor Control

Register (VA[12:8]=0x00).

• Accesses while the instruction cache is disabled (IE bit of the MMU PCR=0).

Refer to Section 5.3.1, “Processor Control Register (VA[12:8]=0x00).

• Accesses while in boot mode.

• Accesses to sources in physical address spaces 1-7. See Section 5.6, “Address

Space Decodes in Chapter 5, “Memory Management Unit for more

information. Flash memory space (PA[30:28]=0x2) is cacheable.

Table 7-2 Flush Criteria for ASI 0x10-0x14

ASI[2:0] Flush Type Compare Criterion

0 Page (S or CNTXT) and VA[31:12]

1 Segment (S or CNTXT) and VA[13:18]

2 Region (S or CNTXT) and VA[31:24]

3 Context U and CNTXT

4 User U

5, 6 reserved -
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Memory Interface 8
8.1 Overview

The memory interface (MEMIF) provides tight coupling between the processor

core and the external memory. The important features include:

• 64-bit data bus to increase memory bandwidth.

• 1-bit parity per word (32 bits) for reduced cost. The parity checking can be

controlled by the processor control register (PCR).

• Supports different density devices by dividing memory into blocks. This

allows relatively small memory increments with a small number of blocks.

• Allows the usage of compatible EDO DRAM that meets fast-page mode

DRAM timing.

• Support of dual-RAS and single-RAS modes.

• Allow for future higher memory requirements by supporting next generation

of DRAM devices.

Typically a carefully laid out system board using the microSPARC-IIep chip

would require 60ns, 3.3V/5V DRAMs at 100MHz clock speed. The designer, how-

ever, should use the memory interface AC specifications in the microSPARC-IIep

datasheet to select the appropriate DRAM speed for a specific system and clock

speed.
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8.1.1 Memory Organization

microSPARC-IIep architecture defines a 28-bit physical address space for memory

(with PA[30:28] = 0x0). This supports a 256MByte block for system DRAM. See

Appendix B, Physical Memory Address Map.

This 256MB is divided into 8 banks, each capable of addressing up to 32MByte.

The banks are defined as follows:

• Each bank is selected by a separate RAS line. There is a total of eight RASs

(RAS_L[7:0]) for eight DRAM banks.

• The banks have 64-bit data paths to microSPARC-IIep.

• Banks 0, 2, 4, 6 use the same 2-bit CAS lines (CAS_L[1:0]) to select the upper

or lower 32 bits (high or low word).

• Banks 1, 3, 5, 7 use the other 2-bit CAS lines (CAS_L[3:2]) to select the upper

or lower 32 bits (high or low word).

• All the banks use the same write signal (MWE_L) and same output enable

(MOE_L, required for EDO rams only). Fast-page mode and EDO DRAMs

cannot be mixed within the same system unless their output RAM enables can

be connected to the microSPARC-IIep memory output enable pin MOE_L.

• All the banks use the same 22-bit multiplexed row/column address bus

MEMADDR[11:0].

The memory interface is designed with the 4-bit wide DRAM devices in mind. To

provide a 64-bit wide data bus, 16 such devices (or 2 SIMMs with eight devices

on each) are required. Each bank requires two additional 1-bit wide devices of the

same depth (if using SIMMs, one on each SIMM) to store the 2 parity bits. Hence,

each bank can be populated using one of the configurations listed in Table 8-1.

Table 8-1 Memory Bank Population

Size of Data Width of Data Bus Configuration

8MB 64 • 16 1Mx4 devices for data and 2 1Mx1 for parity

• 2 1Mx33 SIMMs

16MB 64 • 8 2Mx8 devices for data and 2 2Mx1 for parity

• 2 2Mx33 SIMMs

32MB 64 • 16 4Mx4 devices for data and 2 4Mx1 for parity

• 2 4Mx33 SIMMs
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8.1.2 Access to Unused or Unpopulated Memory Regions

If a bank contains less than the defined maximum of 32MByte, the real memory

will be mirrored on to the higher unused sections of the bank. Any access to the

unused sections will be mirrored to the corresponding location in the lowest

block and no errors will be generated. For example, if a bank contains 8MByte of

real memory, this will be mirrored on the remaining 3 empty 8MByte sections.

However, access to a completely empty bank will result in undetermined data

that may cause a parity error.

8.1.3 Arbitration for Memory Access and MEMIF Priority Scheme

All requests are checked at the end of each operation. For multi cycle operations,

the checking is done at the end of the last memory cycle. The MEMIF arbitration

scheme is based on the following rules:

1. If no requests are pending, MEMIF will enter the idle state and will remain

there until a request is detected. If only one request is pending, it will be

granted and the operation will begin. If more than one request is pending,

the one with the highest priority will be granted and the operation will

begin. The priorities are as follows:

a. MMU is the highest priority, except when the current cycle is also an

MMU request, in which case it will be considered the lowest priority.

This is to prevent bus locking as a result of back to back MMU

requests.

b. PCIC has the second highest priority except when the current and

last cycles are also PCIC requests.

c. DRAM refresh request has the lowest priority, except when the

current cycle is an MMU request, in which case it has a higher

priority.

2. If an DRAM refresh request is detected while MEMIF is in idle, the state

machine advances to a check state, where it checks to see if an MMU

request occurred just as DRAM refresh request was accepted. If there are

no pending MMU requests, MEMIF will continue to acknowledge the

DRAM refresh request and perform a DRAM refresh. Otherwise, it will

service the MMU cycle.
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8.1.4 Dual-RAS Mode

Two basic modes of operation are supported as controlled by the SIMM32_SEL

input pin:

• When this input pin is hardwired low, the memory interface operates in dual

RAS mode. In this mode, an even and odd RAS are allowed to be active

simultaneously. The CAS lines are also qualified by even or odd block.

CAS_L[1:0] are qualified with even banks (physical address bit 25 = 0) and

CAS_L[3:2] are qualified with odd banks (physical address bit 25 = 1). Using

this technique, an even and odd RAS_L line could be active without conflict

on the memory data bus. This mode is only supported with fast-page mode

DRAMs in configurations of 16 MB SIMMs (or less) and 32 MB DIMMs (or

less). See the dual-RAS mode configuration example in Figure 8-1. The two

page-hit registers support page mode operations while under dual-RAS mode.

See Section 5.11, “Translation Modes for more information about these two

page-hit registers.

• When the SIMM32_SEL input pin is hardwired high, only a single RAS_L line

is allowed to be active and CAS_L lines are not qualified by even or add

block. (CAS_L[1:0] and CAS_L[3:2] are logically identical.) This allows

support of EDO DRAMs (with no performance improvement) and 32 MB

SIMMs. This mode could result in up to a 5% performance loss. See the single-

RAS mode examples in Figure 8-2 and Figure 8-3.

Note: Any EDO memory module that has its output enable grounded internally

is currently not supported as this will result in a drive conflict on the memory

data bus.
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8.1.5 Address Mapping For System DRAM

When a memory cycle request is detected (i.e., PA[30:28] = 0x0), the address bits

PA[27:02] are used to generate DRAM column and row addresses and control sig-

nals. Table 8-2 describes the decode scheme used for system memory.

A maximum of 1024 memory cycles can be made from a contiguous block, while

remaining within a DRAM page. This gives a maximum of 8K (1024x64) block

size which can theoretically be accessed using page mode cycles only.

Table 8-2 shows the staggered decoding of PA[24:21] for MEMADDR[10:9]. This

was necessary in order to allow different size devices (1Mx4 and 4Mx4) to be

used while maintaining the largest common contiguous block, which is dictated

by the least dense device.

Also, as shown in Table 8-2, PA[23] is used as both MEMADDR[10] for column

address and MEMADDR[11] for row address. This supports two different 4Mx4

DRAM architectures, 11x11 matrix and 12x10 matrix.

Table 8-2 Physical Address Decode for System Memory

PA Decode

30-28 Not used. System memory limit is 256 MB.

27-25 Select 1 of 8 RASes (each bank is 32MByte):

000 RAS_L[0] Bank 0 100 RAS_L[4] Bank 4

001 RAS_L[1] Bank 1 101 RAS_L[5] Bank 5

010 RAS_L[2] Bank 2 110 RAS_L[6] Bank 6

011 RAS_L[3] Bank 3 111 RAS_L[7] Bank 7

24 Row address bit 10 (MEMADDR[10]). Required for 16MBit DRAMs.

23 Column address bit 10 (MEMADDR[10]) and row address bit 11 (MEMADDR[11]). Required

for 16MBit DRAMs. See text for more information.

22 Row address bit 9 (MEMADDR[9]). Required for 4MBit DRAMs.

21 Column address bit 9 (MEMADDR[9]). Required for 4MBit DRAMs and up.

20-12 Row address bits 8 to 0 (MEMADDR[8:0]). Required for 1MBit DRAMs and up.

11-3 Column address bits 8 to 0 (MEMADDR[8:0]). Required for 1MBit DRAMs and up.

2 Select one of 4 CASes: (only qualified with PA[25] when SIMM32_SEL = 0)

0 CAS_L[0] Lower address word (MEMDATA[63:32]) for banks 0,2,4,6. (PA[25] = 0)

1 CAS_L[1] Higher address word (MEMDATA[31:0]) for banks 0,2,4,6. (PA[25] = 0)

0 CAS_L[2] Lower address word (MEMDATA[63:32]) for banks 1,3,5,7. (PA[25] = 1)

1 CAS_L[3] Higher address word (MEMDATA[31:0]) for banks 1,3,5,7. (PA[25] = 1)

1-0 Not used for external decode. Byte and halfword writes are achieved by doing a read, mod-

ify, write sequence. This bits are used then, to select the appropriate data fields.
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The 4Mx33 SIMMs will use the DRAMs based on 11x11 matrix (to allow the use

of a 4Mx1 DRAM for parity). microSPARC-IIep also provides a 12th DRAM ad-

dress bit, which allows the 12x10 matrix DRAMs to be used.

Note: Byte and half word writes are converted to read-modify-write sequences

where the full word is read, updated with the byte or half word, and written beck

to DRAM.

8.2 Data Alignment and Parity Check/Generate Logic
During any read, write or hardware controlled read-modify-write cycle, the

MEMIF performs the necessary data alignment and byte/halfword placement. It

also provides temporary storage for hardware controlled read-modify-write cy-

cles, resulting from byte/halfword write cycles to memory.

The MEMIF also contains the parity generation and checking logic. The parity is

composed of 1 bit per word (32 bits) and is used for system DRAM only.

The type of parity operation for the system DRAM is determined by the state of

the parity control bit (PC) and the parity enable control bit (PE) in the MMU pro-

cessor control register. (Refer to Section 5.3.1, “Processor Control Register

(VA[12:8]=0x00) for the details.)

Since system parity is 1-bit per word, any byte or halfword store operation, will

result in a hardware controlled read-modify-write cycle. During the read part of

such operation, the word parity will be checked and if an error is detected, a par-

ity error will be generated. After the word has been updated to contain the new

byte/halfword, a write operation will be performed, which will also update the

parity. MEMPAR[0] is associated with MEMDATA[31:0] while MEMPAR[1] is as-

sociated with MEMDATA[63:32].
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8.3 RAM Refresh Control
The RAM refresh controller can be selected by programming 4 bits of the MMU

processor control register (PCR) according to Table 8-3.

At powerup, MEMIF is also responsible for initializing the DRAMs.

After power-up and before they can be reliably used, DRAMs require a 500 µs

wait period followed by 8 CAS-before-RAS refresh cycles.

For systems built around microSPARC-IIep, the reset must remain active for at

least 500 µs after power-up to satisfy the wait period. However, PCI subsystems

require the source of the PCI reset signal to be stable 1 ms after power has stabi-

lized and 0.1 ms after clocks have stabilized. Systems built around microSPARC-

IIep should guarantee an active reset duration of 1.1ms or more.

After an active reset, the RC[3:0] bits are set to 0b0000 (see Table 8-3). In addition,

the DRAM refresh controller initiates 8 CAS-before-RAS refresh cycles to com-

plete the DRAM initialization cycle. After that, the DRAM refresh controller pro-

ceeds to its normal operation state.

Table 8-3 Refresh Rate Control Bits

Refresh Control (RC[3:0]) Refresh Interval (Processor Core Clock Periods)

0b0000 Refresh every 128 clock periods. This setting guarantees adequate

refresh is guaranteed for clock periods down to 8.6MHz. This is the

default after power up.

0b0001 No Refresh!

0b0010 Refresh every 704 clock periods. This setting guarantees adequate

refresh is guaranteed for clock periods down to 48MHz.

0b0011 Refresh every 896 clock periods. This setting guarantees adequate

refresh is guaranteed for clock periods down to 60MHz.

0b0100 Refresh every 1216 clock periods to run above 83 MHz.

0b0101 Refresh every 5120 clocks for low refresh DRAMs.

0b0110 Refresh every 1408 clock periods to run above 100 MHz.

0b0111 Refresh every 1792 clock periods to run above 125 MHz.

0b1xxx Reserved
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8.4 Clock Speeds
microSPARC-IIep memory controller is designed to operate over a variety of

clock frequencies. Table 8-4 lists the four speeds available and controlled by the

speed select setting pins (SP_SEL[2:0]).

Wait states are inserted in medium speed compared to low speed; and higher

speeds have even more wait states. For example, low speed has a read bandwidth

of 4 cycle; medium speed, high speed and ultra high speed have 5, 6, and 7 cycle

read bandwidths, respectively. Timing around microSPARC-IIep is designed to-

wards systems that use 60 ns DRAM. Selecting higher speeds can provide extra

time (cycles) to compensate for slower DRAM.

8.5 Summary of Cycles
Table 8-5 provides a summary of the number of cycles designed for different in-

terface signals to the DRAM at various speed selects. Only cycles that are impor-

tant to system usage are given here. The purpose is to provide the system

designer with a quick reference to evaluate which kind of DRAMs may be suit-

able for the desired speed select choice. Please note that cycle numbers are given

in terms of processor clock and not PCI clock. Actual delays from clock to output

of each pin may differ.

Table 8-4 Processor Core Clock Speeds Available

SP_SEL Use

000 Low speed (70 MHz);

001 Medium/low speed (85 MHz)

010 Normal speed (100 MHz)

011 High speed (133 MHz)

100-111 Reserved for very high speeds
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8.6 Memory Configurations
Memory configurations are illustrated in Figure 8-1, Figure 8-2, and Figure 8-3.

Table 8-5 Number of Cycles for Different Interfaces

Parameter
Specification

(ns)

Number of
cycles at

SP_SEL = 000

Number of
cycles at

SP_SEL = 001

Number of
cycles at

SP_SEL = 010

Number of
cycles at

SP_SEL = 011

t_RP 40 3.5 3.5 4.5 5.5

t_RAS (rd) 60 7.5 8.5 9.5 11.5

t_RAS (wr) 60 5.5 8.5 8.5 9.5

t_CP (rd) 10 1 1 2 2

t_CP (wr) 10 2 3 3 3

t_CAS (rd) 15 3 4 4 5

t_CAS (wr) 15 2 3 3 3

t_ASC 4 1 3 3 4

t_RAD, t_RAH 15-25, 10 1.5 1.5 1.5 1.5

t_RCD (rd) 20-40 3.5 3.5 4.5 5.5

t_RCD (wr) 20-40 2.5 4.5 4.5 5.5

t_DS, t_WCS 0, 4 1 3 - 2 3 - 2 4 - 2

t_DH, t_WCH 20, 19 2 3 3 3

t_RPC (ref) 10 2 2 2 2

t_CSR (ref) 15 1.5 1.5 2.5 3.5

t_CHR (ref) 20 4.5 4.5 4.5 6.5

t_RAS (ref) 60 6.5 6.5 6.5 8.5

t_RAS (rmw) 111 13.5 15.5 17.5 18.5

t_CAS1 (rd) (rmw) 3 4 4 5

t_CAS2 (wr) (rmw) 2 3 3 3

t_CP (rmw) 4 5 6 7
Memory Interface 121



8

Figure 8-1 Dual-RAS Mode: Fast-Page Mode, 16 MByte SIMMs (SIMM32_SEL=0)
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Figure 8-2 Single-RAS Mode: Fast-Page Mode, 32MByte SIMMs (SIMM32_SEL=1)
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Figure 8-3 Single-RAS Mode: EDO, 32 MByte DIMMs (SIMM32_SEL=1)
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 PCI Controller 9
9.1 Overview
The PCI controller (PCIC) provides the microSPARC-IIep core with a 32-bit in-

dustry standard PCI local bus interface (see Figure 9-1). Key features include:

• 32-bit industry standard PCI local bus interface

• Support for host and satellite modes

• Support up to four master or slave external PCI subsystems

• Direct memory access (DMA) transactions between PCI masters and host

system memory

• 16-entry I/O TLB provides address mapping translating 32-bit PCI addresses

to 28-bit DRAM physical addresses

• Facilities for mapping PCI address space to memory address

• Direct transactions between PCI masters and PCI slaves

• Pin-selectable processor core clock frequency as a multiple of the input PCI

clock frequency

• PCI interrupt controller supports up to eight external interrupts and the

controller can be disabled by the user

• Programmable configuration registers

• On-chip PCI arbiter (which can be disabled) supports four external masters

• Two 32-bit counters or one 32-bit counter and one 64-bit timer
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Figure 9-1 System Overview With PCIC

9.2 Address and Data Byte Ordering
Refer to Section 1.3, “Endian Support in Chapter 1, “microSPARC-IIep Overview

for more information on endian support and operation.

DRAM

RAS, CAS, WE

data (64)

adr (12)

PCI bus

load 3

load 2

load 1

load 0

Host IIep

memif

PCIC
Bridge

Internal Arbiter Enabled

DRAM

RAS, CAS, WE

data (64)

adr (12)

PCI bus IIep

memif

PCIC

Internal Arbiter Disabled

Host Mode

Satellite Mode
126 microSPARC-IIep User’s Manual — April 1997



9

9.2.1 Address Byte Ordering

PCI local bus uses little-endian bit format (i.e., bit 0 is the least significant bit).

However, SPARC architecture uses big-endian bit format, i.e. bit 0 is the most sig-

nificant bit. Therefore, the PCI address bit AD[0] equates to SPARC address bit

[31] while the PCI address bit AD[31] corresponds to SPARC address bit [0].

9.2.2 Data Byte Ordering

Since PCI local bus uses little-endian bit format, for data that is comprised of

more than a single byte, the least significant byte is stored at the lowest address

while the most significant byte is store at the highest address.   However, for

SPARC, the most significant byte is stored at the lowest address while the least

significant byte is stored at the highest address. To ensure the correct byte-order-

ing of data while transferring data to and from the PCI local bus, the PCI control-

ler reorders all the data bytes to little-endian format before storing the address

and data on the PCI local bus-bound queue.
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Figure 9-2 PCIC Byte Twisting
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9.3 Memory Map and Address Translation

The PCI controller maps addresses in the physical address space to PCI address

space. The PCIC memory map is defined as a 256MByte physical address space

that spans 0x3000.0000 to 0x3fff.ffff. Refer to Appendix B, Physical Memory Ad-
dress Map.

9.3.1 System Memory Address to PCI Address Translation

The system memory address space is mapped to the PCI memory address space

and the PCI I/O address space. The system memory address space of 256MByte

is actually divided into a 16MByte region of fixed memory address and a

240MByte region for memory address translation. The 16MByte region spans

0x3000.0000 to 0x30ff.ffff and is defined in Table 9-1.

Hence, the system memory address space 0x3000.0000 to 0x3007.ffff is translates

to PCI I/O cycles. However, since the bits 18 to 16 are ignored, the PCI I/O actu-

ally only occupy a 64KByte of the 16MByte of the fixed memory map. Similarly,

the system memory address 0x300c.0000 to 0x300d.ffff is mapped to PCI control-

ler registers. Since the bits 16 to 8 are ignored, there is only a maximum of 256 ad-

dressable PCI controller registers. Finally, the pass-through memory mapping

covers 0x3010.0000 to 0x30ff.ffff and provides a 15MByte region where physical

address becomes the PCI memory address without any translation.

2. x indicates that the bit is ignored and a indicates the bit is an address bit.

1. The three least significant bits of the physical address in the configuration data space access must match those in
the configuration address space access (see Section 9.5.1, “Configuration Register Accessing).

Table 9-1 PCI Controller Fixed Memory Map (0x3000.0000 to 0x30ff.ffff)

System memory address2

PCI Cycle [31:24] [23:16] [15:8] [7:0]

I/O cycle (64KByte) 0011.0000 0000.0xxx aaaa.aaaa aaaa.aaaa

Configuration address 0011.0000 0000.100x xxxx.xxxx xxxx.xxxx

Configuration data1 0011.0000 0000.101x xxxx.xxxx xxxx.xxxx

PCI Controller Registers 0011.0000 0000.110x xxxx.xxxx aaaa.aaaa

Special cycle 0011.0000 0000.1110 xxxx.xxxx xxxx.xxxx

Interrupt acknowledge 0011.0000 0000.1111 xxxx.xxxx xxxx.xxxx

Pass-through memory mapping 0011.0000 (!=0000).aaaa aaaa.aaaa aaaa.aaaa
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The remaining 240MByte that spans 0x3100.0000 to 0x3fff.ffff is available for map-

ping physical address to PCI memory and PCI I/O address space. The mapping

is defined by three sets of registers, two for PCI memory space and one for PCI I/

O space. Each set is consisted of three registers, system memory base address,

size and PCI base address. The two sets for PCI memory space are {SMBAR0,

MSIZE0, PMBAR0} and {SMBAR1, MSIZE1, PMBAR1}. The set for PCI I/O space

is {SIBAR, ISIZE, PIBAR}. Figure 9-3 illustrates one possible address space map-

ping.
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Figure 9-3 System Memory to PCI Addressing
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Figure 9-3 shows how the PCI controller maps the internal system memory ad-

dress to the PCI bus. The PCI controller translates the address if the system mem-

ory address falls within the addresses defined in the three set of translation

registers. The order of system memory address translation is based on the follow-

ing priority:

1. If system memory address is within 0x3010.0000 to 0x30ff.ffff, then the

fixed memory address map is used.

2. If system memory address falls within memory mapping specified in

{SMBAR0, MSIZE0}, then map to PMBAR0.

3. If system memory address falls within memory mapping specified in

{SMBAR1, MSIZE1}, then map to PMBAR1.

4. If system memory address falls within memory mapping specified in

{SIBAR, ISIZE}, then map to PIBAR.

5. Otherwise, system memory address is passed through to PCI address

untranslated.

9.3.2 PCI address to System Memory Address Translation

The PCI controller allows PCI memory or PCI I/O cycles to access the DRAM

main memory from any PCI master except the microSPARC-IIep host itself (see

Figure 9-4). There are six sets of translation registers for converting PCI address

to system memory address. Each set is consisted of a PCI based address register

(PCIBAR) and PCI address space size register (PCISIZE). These registers specify

the range of addresses of PCI memory and I/O operations that will be mapped

into the microSPARC-IIep DRAM. Using these six sets of registers, the PCI con-

troller acknowledges the operations with assertion with DEVSEL#.
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Figure 9-4 PCI to microSPARC-IIep DRAM Mapping
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Note: There is no checking provided to ensure that a DMA access is within the

range of populated memory. This function is left to software.

The mapping of accepted PCI slave memory transactions to the DRAM memory

space is done by a I/O translation lookaside buffer (IOTLB). The IOTLB provides

a fully-associative 16-entry PCI to DRAM address mapping. The IOTLB is man-

aged by software. There is no table-walking mechanism on the hardware level.

All PCI memory mappings must be written into the IOTLB via software prior to

the DMA operation. PCI memory addresses that have been accepted that do not

match a translation entry in the IOTLB will trigger an error interrupt. The memo-

ry operation then completes using a pass-through mode, i.e. the address is un-

translated.

9.4 PCI Bus Interface
This section describes the microSPARC-IIep implementation of the PCI local bus

revision 2.1. Table 9-2 lists the basic PCI bus operations and restrictions.

The microSPARC-IIep CPU ensures that there is no memory activity outstanding

at the time it desires to make the PCI bus quiescent. Doing so ensures that all out-

standing memory transactions are completed prior to the completion of a quies-

cent bus read. See Section 9.5.4, “Processor to PCI Translation Registers (PIO) for

more details.

Table 9-2 Basic PCI Bus Operations and Restrictions

Operation Restriction

Addressing Modes Only the linear incrementing addressing mode is supported.

Configuration Cycles PCIC can generate both type 0 and type 1 configuration accesses as a bus master.

The technique to resistively-couple the drive of the IDSEL lines is used, as

described in the PCI specification. The configuration registers that are contained

within the PCIC are only accessible through PCI configuration cycles during

PCI satellite mode.

Cache Support The PCIC does not support any cache operations.

Exclusive Access The PCIC does not implement locking at all and the LOCK# signal is not con-

nected. Any exclusive access will proceed as if it were a non-exclusive access.
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Note: When performing PCI configuration by accessing the address space of

configuration address and configuration data, the three least significant address

bits used for the configuration data space access must be identical to those for the

previously loaded configuration address space access. For example, if the

configuration address register is loaded with 0b100 in the three least significant

bits, then the configuration data access must use 0b100 in the three least

significant bits also.

9.4.1 PCI Host/Satellite Mode

microSPARC-IIep can be programmed to operate in PCI host mode or satellite

mode.

In PCI host mode:

• The PCI arbiter is enabled and is responsible for asserting PCI reset.

• Responsible of configuring other PCI entities via PCI configuration

transactions.

In PCI satellite mode:

• The PCI arbiter is disabled.

• Disallow external configuring of PCI registers via PCI configuration

transactions.

microSPARC-IIep operates in satellite mode if PCC_BYP_L and EXT_CLK2 input

pins are both tied to 1 at power-up. Otherwise, microSPARC-IIep operates in host

mode.

The PCI mode is visible and programmable by software. Refer to Section 9.9,

“System Status and System Control (Reset) Register.
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9.4.2 PCI Bus Commands

The PCI bus commands are listed in Table 9-3.

Table 9-3 PCI Bus Commands

C/BE#[3:0] Command Type
Supported
As Master

Supported
As Slave

Definition

0000 Interrupt

Acknowledge

Yes No The Interrupt Acknowledge command is a read,

implicitly addressed to the system interrupt con-

troller.

0001 Special Cycle Yes No The Special Cycle command provides a simple

message broadcast mechanism.

0010 I/O Read Yes Yes The I/O Read command accessed devices mapped

in I/O address space for PCI master, cannot access

I/O address space of microSPARC-IIep.

0011 I/O Write Yes Yes The I/O Write command accessed devices mapped

in I/O address space for PCI master, cannot access

I/O address space of microSPARC-IIep.

0100 RESERVED No No

0101 RESERVED No No

0110 Memory Read Yes Yes The Memory Read command accesses devices

mapped in the memory address space. The read

when seen as a target will fetch one 32 B line from

memory when the address is so aligned for PCI

master, cannot access I/O memory space of

microSPARC-IIep.

0111 Memory Write Yes Yes The Memory Write command accesses devices

mapped in the memory address space for PCI mas-

ter, cannot access I/O memory space of

microSPARC-IIep.

1000 RESERVED No No

1001 RESERVED No No

1010 Configuration

Read

Yes

(type 0

and 1)

Yes The Configuration Read command is used to

access the configuration space of each device, a

device is selected when its IDSEL signals is

asserted. Support as slave only under satellite

mode for PCI master, cannot access its own config-

uration registers.

1011 Configuration

Write

Yes

(type 0

and 1)

Yes The Configuration Write command is used to

access the configuration space of each device, a

device is selected when its IDSEL signals is

asserted. Support as slave only under satellite

mode for PCI master, cannot access its own config-

uration registers.
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1100 Memory Read

Multiple

No Yes The Memory Read Multiple command will

cause a prefetch of the next 32 B line. The PCIC

will treat this as a Memory Read command.

1101 Dual Access

Cycle

No No Used to transfer 8 byte addresses to devices.

1110 Memory Read

Line

No Yes The Memory Read Line command is identical to

the Memory Read command.

1111 Memory Write

& Invalidate

No Yes The Memory Write & Invalidate command is

identical to the Memory Write command. There

is no cache line function supported.

Table 9-3 PCI Bus Commands (Continued)

C/BE#[3:0] Command Type
Supported
As Master

Supported
As Slave

Definition
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9.5 PCIC Control
The PCIC control is accessed through a set of registers in the PCIC (see Table 9-4).

These registers can only be accessed through the microSPARC-IIep through the

PCIC configuration register space. Some of these registers are standard PCI con-

figuration registers as defined by the PCI specification. Some of these registers

control specific operations within the PCIC itself.

Table 9-4 Configuration/Control Register Addresses

Offset Number of Bytes Register Name
Details in

Section

00 4 Device and Vendor ID 9.5.2.1

04

06

2

2

PCI Command Reg

PCI Device Status

9.5.2.2

9.5.2.3

08

09

1

3

Revision

Class Code

9.5.2.1

9.5.2.1

0C

0D

0E

0F

1

1

1

1

Latency Timer

Cache Line-Size

Header Type

BIST

9.5.3

9.5.3

9.5.2.1

9.5.3

10/14/18/

1C/20/24

4 PCI Base Address Reg

(PCIBAR0/1/2/3/4/5)

9.5.5.1

40

68

4

2

PCI counters (Retry and Trdy)

PCI Discard Timer (Half word)

9.5.3

9.5.3

44/48/4C/

50/54/58

4 PCI address space Size (PCISIZE0/1/2/3/4/5) 9.5.5.2

60

62

63

1

1

1

PCIC PIO Control

PCIC DVMA Control

PCIC Arbitration/Interrupt Control

9.6.3

9.6.4

9.6.5

64

6A

6E

4

2

2

PCIC Processor Interrupt Pending Register

PCIC Software Interrupt Clear Register (Half Word)

PCIC Software Interrupt Set Register (Half Word)

9.7.5

9.7.6

9.7.6

70 4 PCIC System Interrupt Pending Register 9.7.2

74

78

7C

4

4

4

PCIC System Interrupt Target Mask Register

PCIC System Interrupt Target Mask Clear Register

PCIC System Interrupt Target Mask Set Register

9.7.4

9.7.4

9.7.4

83 1 PCIC Clear System Interrupt Pending Register 9.7.3

88 2 PCIC Interrupt Select Register 9.7.1

8A 2 PCI Arbitration Assignment Select Register 9.6.1
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9.5.1 Configuration Register Accessing

The PCIC configuration registers can be accessed by the CPU during PCI host

mode through the PCIC fixed space register map. PCIC maps the registers to the

address space starting at 0x300c.00xx, where the least significant byte defines the

register offset. The register offset in the PCIC fixed space register map is the same

as it is for the PCI configuration space header. All PCIC registers are defined in

little endian format as defined in the PCI Local Bus Specification Revision 2.1.

When programming the PCIC, registers that can be accessed as byte registers can

be accessed by the byte, thus eliminating any potential confusion with regards to

endian-ness. However, PCIC registers can also be accessed as any size, up to and

including a word access.

84

90

94

98

9C

4

4

4

4

4

PCI IOTLB Control Register

PCI IOTLB RAM Input Register

PCI IOTLB CAM Input Register

PCI IOTLB RAM Output Register

PCI IOTLB CAM Output Register

9.5.7.1

9.5.7.2

9.5.7.3

9.5.8.1

9.5.8.2

A0

A1

A2

1

1

1

System Memory Base Address Reg (SMBAR0)

Memory address space Size (MSIZE0)

PCI Memory base Address Reg. (PMBAR0)

9.5.4.1

9.5.4.1

9.5.4.1

A4

A5

A6

1

1

1

System Memory Base Address Reg (SMBAR1)

Memory address space Size (MSIZE1)

PCI Memory base Address Reg. (PMBAR1)

9.5.4.2

9.5.4.2

9.5.4.2

A8

A9

AA

1

1

1

System I/O Base Address Reg (SIBAR)

Memory address space Size (IOSIZE)

PCI Memory base Address Reg. (PIBAR)

9.5.4.3

9.5.4.3

9.5.4.3

AC

B0

B4

B8

BC

C0

C4

C5

C6

4

4

4

4

4

4

1

1

1

Processor Counter Limit Register or User Timer MSW

Processor Counter Register or User Timer LSW

Processor Counter Limit Register (non-resetting port)

System Limit Register

System Counter Register

System Limit Register (non-resetting port)

Processor Counter User Timer Start/Stop Register

Timer Configuration Register

Counter Interrupt Priority Assignment Level Register

9.8.1

9.8.2

9.8.3

9.8.4

9.8.5

9.8.6

9.8.7

9.8.8

9.8.9

C7

C8

1

4

PIO Error Cmd Register

PIO Error Address Register

9.5.9

9.5.9

CC 4 PCI IOTLB Error Address Register 9.5.8.3

D0 1 System Status and Control Register 9.9

Table 9-4 Configuration/Control Register Addresses (Continued)

Offset Number of Bytes Register Name
Details in

Section
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Note: The registers in the PCIC can be accessed as little-endian or big-endian.

Refer to the DVMA control registers for a description of the selection on the

mode. This allows the access method to be selectable by software, and registers

that are used for little-endian control can be accessed as little-endian and

registers, such as those that control the interrupt controller or IOTLB, can be

accessed as big-endian representations. Refer to Section 1.3, “Endian Support in

Chapter 1, “microSPARC-IIep Overview for a description of the endian support.

9.5.2 PCI Configuration Register Definitions

This section describes the PCI functionality of the PCI configuration registers

supported by PCIC. The register definitions are divided into sections pertaining

to their functionality.

9.5.2.1 PCI Device Identification

Five fields in the PCI configuration header define the device identification (see

Table 9-5, Table 9-6, Table 9-7, and Table 9-8). All PCI devices implement these

fields for standard software identification. Each of these register is read-only.

Table 9-5 PCI Vendor ID Register (4 bytes @ offset = 00)

Bit(s) Reset Field Name R/W

31:16 0x9000 Device ID -- - 0x9000 R

15:00  0x108e Vendor ID. Sun Microelectronics - 0x108e R

Table 9-6 PCI Revision Register (1 byte @ offset = 08)

Bit(s) Reset Field Name R/W

07: 00 0x00 Revision of PCIC. R

Table 9-7 PCI Class Code Register (3 bytes @ offset = 09)

Bit(s) Reset Field Name R/W

23: 16 0x06 Base Class Code - Bridge Device R

15: 08 0x00 Sub-Class Code - Other Bridge Device R

07: 00 0x00 Programming Interface - Not applicable R

Table 9-8 PCI Header Type Register (1 byte @ offset = 0E)

Bit(s) Reset Field Name R/W

07: 00 0x00 Header Type. R
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9.5.2.2 PCI Device Control Field Name

The PCI command register (see Table 9-9) provides coarse granularity control

over PCIC’s ability to generate and respond to PCI cycles. When a 0 is written to

bits [02:00] of this register, PCIC is logically disconnected from the PCI bus for all

accesses.

1. Should be set to 1 for normal operation.

Table 9-9 PCI Command Register (2 bytes @ offset = 04)

Bit(s) Reset Field Name R/W

15:10 0x00 Reserved. Read as Zero. R

09 0 Fast back-to-back enable. Read as zero. R

08 0 SERR# enable. R/W

07 0 Address stepping. Read as zero. R

06 0 Parity Check enable. R/W

05 0 VGA Palette Snooping. Read as zero. R

04 1 Memory write and invalidate. Read as one.

(Treated as a memory write.)

R

03 0 Special cycle support. Read as zero. R

02 1 PCI bus master1. R/W

01 0 Memory space1. R/W

00 0 I/O space1. R/W
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9.5.2.3 PCI Device Status

The PCI status register is used to record status information for PCI bus related

events. Reads to this register behave normally. Writes to the PCI status register

can reset individual bits, but cannot set any bits. A bit is reset whenever the reg-

ister is written, and the data in the corresponding bit location is a 1. For example,

to clear the system error bit[14] and not affect any other bits, write the value

0b0100.0000.0000.0000.

Table 9-10 PCI Status Register (2 bytes @ offset = 06)

Bit(s) Reset Field Name R/W

15 0 Detected Parity Error. R/C

14 0 Signaled SERR#. R/C

13 0 Received Master Abort. R/C

12 0 Received Target Abort. R/C

11 0 Signaled Target Abort. R/C

10: 09 00 DEVSEL# timing. - Medium=01

Refer to Section 9.6.5, “PCIC Arbitration Control Register

R

08 0 Data Parity Error detected while a Master R/C

07 0 Fast back-to-back capable. Read as zero. R

06 1 User Definable Features. Read as one. R

05 0 66 MHz Capable. Read as zero. R

04 0 Master Retry Count Expired. Read or Clear.

Note: this bit is not standard in PCI.

R/C

03 0 Master Trdy Count Expired. Read or Clear.

Note: this bit is not standard in PCI.

R/C

02: 00 0 Reserved. Read as Zero. R
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9.5.3 PCI Miscellaneous Functions

The following three registers must have a defined response for PCI configuration

accesses. PCIC does not implement or support cache coherency on the PCI bus,

and therefore the PCI cache line-size register is hard-wired to zero. PCIC also

does not implement any type of built-in self test, and therefore the PCI BIST reg-

ister is supported only with read as zero. The PCI latency timer register is imple-

mented as recommended in the PCI specification, as an 8-bit register with the

bottom three bits being read-only, resulting in a timer granularity of eight clocks.

The PCI latency timer is used to determine how long PCIC, as a master is al-

lowed to burst on the PCI bus.

The PCI TRDY# counter and the PCI retry counter are for diagnostic purposes

only.

Table 9-11 PCI Cache Line-Size Register (1 byte @ offset = 0D)

Bit(s) Reset Field Name R/W

07: 00 0x00 No support for PCI cache. Read as Zero R

Table 9-12 PCI Latency Timer Register (1 byte @ offset = 0C)

Bit(s) Reset Field Name R/W

07: 03 0b00000 PCI Latency Timer. R/W

02: 00 0b000 reserved R

Table 9-13 PCI BIST Register (1 byte @ offset = 0F)

Bit(s) Reset Field Name R/W

07: 00 0x00 PCI BIST. No BIST. Read as Zero R

Table 9-14 PCI Counters (4 bytes @ offset = 40)

Bit(s) Reset Field Name R/W

31:24 0x00 Unimplemented (reserved) R

23:16 0x00 PCI Trdy Counter R/W

15:08 0x00 PCI Retry Counter R/W

07: 00 0x00 Unimplemented (reserved) R
PCI Controller 143



9

Note: Setting these counters to anything other then the default value of zero

may result in a violation of PCI protocol, and should not be done.

Note: The PCI discard counter is for diagnostic purposes only. Setting these

counters to anything other then the default value of 0x7F may result in a

violation of PCI protocol, and should not be done. The discard timer is used to

discard data that has been fetched and is pending transfer.

Table 9-15 PCI Discard Counter (2 bytes @ offset = 68)

Bit(s) Reset Field Name R/W

15: 00 0x7F Discard Timer R
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9.5.4 Processor to PCI Translation Registers (PIO)

The PCIC translation registers are used to map the processor’s 28-bit physical ad-

dress into a 32-bit PCI physical address. The translation registers function as

groups, with two groups for mapping PCI memory cycles and one group for

mapping PCI I/O cycles. If the physical address matches one of the system trans-

lation registers in the group, then the physical address is translated accordingly.

If the physical address does not match any of the system translation registers, or

is not in the first 1MB of the PCIC address space (fixed memory map), then the

address is passed directly to the PCI bus untranslated.

9.5.4.1 PCI Memory Cycle Translation Register Set 0

The PCI memory cycle translation register set 0 is comprised of three registers:

SMBAR0 (see Table 9-16), MSIZE0 (see Table 9-17), and PMBAR0 (see Table 9-18).

Table 9-16 System Memory Base Address Register 0 (SMBAR0) (1 byte @ offset = A0)

Bit(s) Reset Field Name R/W

07: 04 0b0000 reserved R

03: 00 0b0000 System Memory Base Address [27:24] R/W

Table 9-17 System Memory Size Register 0 (MSIZE0) (1 byte @ offset = A1)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System Memory Size R/W

        mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB

Table 9-18 PCI Memory Base Address Register 0 (PMBAR0) (1 byte @ offset = A2)

Bit(s) Reset Field Name R/W

07: 00 0x00 PCI Memory Base Address [31:24] R/W
PCI Controller 145



9

The 4-bit value stored in SMBAR0 is used to compare with the physical address

PA [27:24]. Both the physical address and the SMBAR0 values are first masked

(ANDed) with the contents of MSIZE0.

Address Match 0 = ((PA[27:24] & MSIZE0[3:0]) = = (SMBAR0[3:0] & MSIZE0[3:0]));

If the results of the comparison is true, then PMBAR0 is used to form the PCI

memory cycle address according to this equation:

PCI address = {(PMBAR0[7:4]), ((PA[27:24] & ~MSIZE0[3:0]) | PMBAR0[3:0]),(PA[23:00])};

Note that the PCI memory address is always prefixed with PMBAR0[7:4], regard-

less of the size specified by MSIZE0. If the result of the address comparison is

false, then no translation is performed based on PMBAR0.

9.5.4.2 PCI Memory Cycle Translation Register Set 1

The PCI memory cycle translation register set 1 is comprised of three registers:

SMBAR1 (see Table 9-19), MSIZE1 (see Table 9-20), and PMBAR1 (see Table 9-21).

Table 9-19 System Memory Base Address Register 1 (SMBAR1) (1 byte @ offset = A4)

Bit(s) Reset Field Name R/W

07: 04 0000 reserved R

03: 00 0000 System Memory Base Address [27:24] R/W

Table 9-20 System Memory Size Register 1 (MSIZE1) (1 byte @ offset = A5)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System Memory Size R/W

        mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB
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The 4-bit value stored in SMBAR1 is used to compare with the physical address

PA [27:24]. Both the physical address and the SMBAR1 values are first masked

(ANDed) with the contents of MSIZE1.

Address Match 1= ((PA[27:24] & MSIZE1[3:0]) = = (SMBAR1[3:0] & MSIZE1[3:0]));

If the results of the comparison is true, then PMBAR1 is used to form the PCI

memory cycle address according to this equation:

PCI address = {(PMBAR0[7:4]), ((PA[27:24]] & ~MSIZE1[3:0]) | PMBAR1[3:0]),(PA[23:00])};

Note that the PCI memory address is always prefixed with PMBAR1[7:4], regard-

less of the size specified by MSIZE1. If the result of the address comparison is

false, then no translation is performed based on PMBAR1.

9.5.4.3 PCI I/O Cycle Translation Register Set

The PCI I/O cycle translation register set is comprised of three registers: SIBAR

(see Table 9-22), ISIZE (see Table 9-23), and PIBAR (see Table 9-24).

Table 9-21 PCI Memory Base Address Register 1 (PMBAR1) (1 byte @ offset = A6)

Bit(s) Reset Field Name R/W

07: 00 0x00 PCI Memory Base Address [31:24] R/W

Table 9-22 System I/O Base Address Register (SIBAR) (1 byte @ offset = A8)

Bit(s) Reset Field Name R/W

07: 04 0x0 reserved R

03: 00 0x0 System I/O Base Address [27:24] R/W
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The 4-bit value stored in SIBAR is used to compare with the physical address

PA)[27:24]. Both the physical address and the SIBAR values are first masked

(ANDed) with the contents of ISIZE.

Address Match = ((PA[27:24] & ISIZE[3:0]) = = (SIBAR[3:0] & ISIZE[3:0]));

If the results of the comparison is true, then PIBAR is used to form the PCI mem-

ory cycle address according to this equation:

PCI address = {(PIBAR0[7:4]), ((PA[27:24] & ~ISIZE[3:0]) | PIBAR[3:0]),(PA[23:00])};

Note that the PCI memory address is always prefixed with PIBAR[7:4], regardless

of the size specified by ISIZE. If the result of the address comparison is false, then

no translation is performed based on PIBAR.

Table 9-23 System I/O Size Register (ISIZE) (1 byte @ offset = A9)

Bit(s) Reset
Field
Name

R/W

07: 04 0x0 reserved R

03: 00 0x0 System I/O Size (mask) R/W

        mask for address bits[27:24]

Value Memory Size

0xF 16 MB

0xE 32 MB

0xC 64 MB

0x8 128 MB

0x0 256 MB

Table 9-24 PCI I/O Base Address Register (PIBAR) (1 byte @ offset = AA)

Bit(s) Reset Field Name R/W

07: 00 00 PCI I/O Base Address [31:24] R/W
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9.5.5 PCI to DRAM Translation Registers and Operation

PCI transactions are accepted by the PCIC PCI slave interface, based on the trans-

action type (memory or I/O), and an acceptable address. The PCIC slave inter-

face accepts memory or I/O transactions that match the address range specified

in any one of the six PCI base address registers. A full 32-bit address is presented

on the PCI bus and may be mapped into a 28-bit physical address to be used to

access main memory (DRAM). The mapping from PCI addresses to DRAM ad-

dresses is done by the IOTLB. There are six base address register and size register

sets.

9.5.5.1 PCI Base Address Registers

The PCI base address register (see Table 9-25) contain the most significant 24 bits

of the 32-bit base address for PCI operations that will be accepted (DEVSELed) by

the PCI slave interface for memory or I/O operations. The PCIC slave interface

will compare all memory and I/O requests presented on the PCI bus for this val-

ue. When the address presented on the PCI bus matches the value in the PCI base

address register, along with the size specified by the PCI size register, the PCIC

slave will accept that memory or I/O operation, if enabled in the PCI command

register, and subsequently perform a memory operation on the memory (DRAM).

The address used to perform the main memory operation is subject to mapping

using the PCI IOTLB if enabled (see Section 9.5.6, “PCIC IOTLB Operation (DV-

MA) in this chapter).

Bit 00, PCI I/O base address select, selects between I/O addresses and memory

addresses. When set, the contents of this base address register, and the size regis-

ter associated with it, will be used to compare against I/O addresses that are re-

ceived by the PCIC slave. When cleared, the base address register and size

register are used to compare against memory addresses that are received by the

PCIC slave. These operations must also be enabled in the PCIC command regis-

ter.

Table 9-25 PCI Base Address Register (PCIBASE0) (4 bytes @ offset = 10,14,18,1C,20,24)

Bit(s) Reset Field Name R/W

31:08 0 PCI Base Address Register [31:08] R/W

07: 01 0 unused R

00 0 PCI I/O Base Address Select R/W
PCI Controller 149



9

9.5.5.2 PCI Base Size Registers

The PCI address space size (PCISIZE#) register (see Table 9-26) is used to select

the size of the address comparison. The bits that are set to one allow the corre-

sponding base address register bits to participate in the comparison. When a bit

is set to a zero, the corresponding bit of the base address register is not used in

the comparison of the PCIC accepted address with the value in the base address

register. The address bits that are not compared are still accepted and propagated

to the IOTLB and DRAM memory. This allows I/O cycles that have been accept-

ed within different 256 byte boundaries (mask set to all F’s) to be mapped to the

same page in the IOTLB.
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Table 9-26 PCI Memory Size Register (PCISIZE0) (4 bytes @ offset = 44,48,4C,50,54,58)

Bit(s) Reset Field Name R/W

31:08 0 System Memory or I/O Size R/W

        mask for address bits[31:08]

Value Memory Size

0xFF FF FF 256 B

0xFF FF FE 512 B

0xFF FF FC 1 KB

0xFF FF F8 2 KB

0xFF FF F0 4 KB

0xFF FF E0 8 KB

0xFF FF C0 16 KB

0xFF FF 80 32 KB

0xFF FF 00 64 KB

0xFF FE 00 128 KB

0xFF FC 00 256 KB

0xFF F8 00 512 KB

0xFF F0 00 1 MB

0xFF E0 00 2 MB

0xFF C0 00 4 MB

0xFF 80 00 8 MB

0xFF 00 00 16 MB

0xFE 00 00 32 MB

0xFC 00 00 64 MB

0xF8 00 00 128 MB

0xF0 00 00 256 MB

0xE0 00 00 512 MB

0xC0 00 00 1 GB

0x80 00 00 2 GB

0x00 00 00 4 GB

07:00 0 unused R
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9.5.6 PCIC IOTLB Operation (DVMA)

Memory operations that have been accepted by the PCIC slave interface (DVMA)

are mapped to main memory DRAM addresses by the IOTLB. The IOTLB is a 16-

entry fully-associative content-addressable memory (CAM) and random access

memory (RAM) set that is fully managed by software. Five registers are provided

in the PCIC to provide the control necessary to manage the IOTLB.

Before any read or write operations that access the contents of the IOTLB, all

pending PCI operations should be made quiescent. The control necessary to en-

sure quiescence is provided in the PCI DVMA control register (configuration reg-

ister 0x62). If a read or write to the IOTLB for control purposes is attempted at

the same time that a normal PCI to DRAM access is attempted, the translation at-

tempt will be aborted and an undefined address may be used to access the

DRAM.

To ensure that the quiescent state is not extended any longer then necessary, it

may be desirable to disable interrupts while the PCI bus is made quiescent.

The PCI IOTLB can contain three sized entries. Entries can be posted that match

on a 4KB page size, 256KB page size, and 16MB page size. All three entry types

can be resident in the IOTLB at the same time. Software should never allow mul-

tiple entries to be written into the IOTLB that can result in a multiple matches.

This also applies to mapping a 4KByte or 256KByte page inside another larger

sized page.

The IOTLB can be flash flushed on any single page entry, or the entire IOTLB can

be flushed at once.

The PCI IOTLB can be disabled by setting a bit in the PCI DVMA control register

(configuration register 0x62). When the IOTLB is disabled, the addresses that

have been accepted from the PCI slave for DRAM memory operations are un-

translated and directly mapped into DRAM physical addresses. In this case the

most significant PCI address bits [31:28] are ignored.

A block diagram of the IOTLB and associated registers is shown in Figure 9-5.
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Figure 9-5 IOTLB Block Diagram With Control Registers

9.5.7 PCIC IOTLB Write Registers

There are two registers that are used to write information into the CAM and

RAM. One register is used to contain write data for the CAM and the other con-

tains write data for the RAM. The PCI IOTLB control register is used to control
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the operation of the IOTLB. The IOTLB CAM/RAM is always accessed as a set.

Normal content addressable searches result in a single match indicator, which is

used to select the appropriate entry from the RAM.

Read operation is performed by selecting which entry number to read and writ-

ing a IOTLB read command into the IOTLB control register, then reading the cam

output register and the ram output register.

A write operation is performed by first writing the CAM input register with the

data to be written into the CAM (the PCI address to translate), and the ram input

register with the corresponding ram data (the DRAM physical address). After

these two registers have been setup with an entry, the IOTLB control register is

loaded with the entry number selected for the write, and the write command.

9.5.7.1 PCI IOTLB Control Register

The PCI IOTLB control register (see Table 9-27) contains address bits used to

compare with PCI addresses. When there is a match of the PCI address with the

contents that has been written into the CAM, a successful translation has been

made.

Table 9-27 PCI IOTLB Control Register (PCICR) (1 byte @ offset = 84)

Bit(s) Reset Field Name R/W

07 0 IOTLB Write Select R/W

06 0 IOTLB Flush Enable R/W

05 0 IOTLB Address Select R/W

Valid Cmds: 7:5 0b111

0b110

0b101

0b100

0b011

0b010

0b001

0b000

Invalid, Undefined

Invalid, Undefined

Directed Write of CAM and RAM at entry in “entry select” field

Invalid, Undefined

Invalid, Undefined

Flush (size of flush defined by bits 02:00 of CAM Input Register)

Directed Read of CAM and RAM at entry in “entry select” field

Invalid, Undefined

04 0 unused R/W

03:00 0 IOTLB Entry Select R/W
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9.5.7.2 PCI IOTLB RAM Input Register

The PCI IOTLB RAM input register (see Table 9-28) contains physical address bits

that will be used to address the DRAMs as a result of a successful translation.

Bits 11:03 are written into the RAM, but do not participate in any of the transla-

tion process. These bits can be used to store entry information.

Bits 02:00 are unused and are not written into the Ram. The actual input to the

RAM is the size of the translation that is being written to the CAM. The input to

the RAM is derived from the input to the CAM bit position[02:00]. The outputs

from the RAM are used when the IOTLB is enabled and there is a IOTLB hit to

select which portion of the real address will be overridden by the translated ad-

dress. This will allow multiple-sized entries to be placed in the CAM at the same

time.

Table 9-28 PCI IOTLB RAM Input Register (PCIRIR) (4 bytes @ offset = 90)

Bit(s) Reset Field Name R/W

31:28 0 unused (not written to ram) R/W

27:24 0 DRAM Physical Memory Address (4K/256K/16M) R/W

23:18 0 DRAM Physical Memory Address (4K/256K) R/W

17:12 0 DRAM Physical Memory Address (4K) R/W

11:03 0 unused (written to ram also) R/W

02:00 0 unused (NOT written to ram) R/W
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9.5.7.3 PCI IOTLB CAM Input Register

The PCI IOTLB CAM input register (see Table 9-29) contains address bits that will

be used to write information into the CAM for subsequent compares with PCI ad-

dresses.

Bit 03 is the valid bit, and must be set to a one for an entry to be valid. An entry

must be marked valid in order to result in a successful translation. When bit 03 is

set to a zero and written into the CAM, that entry is marked invalid and will not

be used for PCI address compares. The remaining portion of the CAM and RAM

input registers are a don’t care if the entry is being written as invalid.

Bit 02 disables the comparison for 16MByte page sizes. When an entry is written

into the CAM with bit 02 set to a zero, that entry is a 4KByte or a 256KByte or a

16MByte page, and requires address bit 31:24 to match the IOTLB contents. The

value of bit 02 is also written into the RAM in position 02 when the CAM is writ-

ten.

Bit 01 disables the comparison for 256KByte pages. When an entry is written into

the CAM with bit 01 set to a zero, that entry is a 4KByte or a 256KByte page. This

requires address bit 23:18 to match the IOTLB contents. The value of bit 01 is also

written into the RAM in position 01 when the CAM is written.

Table 9-29 PCI IOTLB CAM Input Register (PCICIR) (4 bytes @ offset = 94)

Bit(s) Reset Field Name R/W

31:24 0 PCI Address to translate (4K/256K/16M) R/W

23:18 0  PCI Address to translate (4K/256K) R/W

17:12 0 PCI Address to translate (4K) R/W

11:04 0 unused (not written to cam) R

03 0 PCI Address Valid R/W

02 0 PCI Address Check Enable for 16M Pages R/W

01 0 PCI Address Check Enable for 256K Pages R/W

00 0 PCI Address Check Enable for 4K Pages R/W

Valid Combinations

of bits 2:1:0

for compares

0b000 Enables 4 KB page size for translation

0b001 Enables 256 KB page size for translation

0b011 Enable 16MB page size for translation

0b111 Disables all page size comparisons

Valid Combinations of

bits 2:1:0

for Flush Operations

0b000 Flush Entries that match on 4KB page size

0b001 Flush Entries that match on 256KB page size

0b011 Flush Entries that match on 16MB page size

0b111 Flush All Entries
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Bit 00 disables the comparison for 4K page sizes. When an entry is written into

the CAM with bit 00 set to a zero, that entry is a 4KByte page. This requires PCI

bus address bit 17:12 to match the IOTLB contents. When bit 00 is set to a one, ad-

dress bits 17:12 will not participate in the address comparison. The value of bit 00

is also written into the RAM in position 00 when the CAM is written.

When flushing the CAM, all valid bits that match the compare prior to the flush,

will be set to zero after the flush completes.

9.5.8 PCIC IOTLB Read Registers

There are two registers that are used to read information from the CAM and

RAM. One register contains data read from the CAM and the other contains data

read from the RAM. The PCI IOTLB control register is used to control the opera-

tion of the IOTLB and is described in Section 9.5.7.1, “PCI IOTLB Control Register

in this chapter. The IOTLB CAM/RAM is always accessed as a set.

A directed read operation is performed by selecting which entry number to read

and writing a IOTLB read command into the IOTLB control register. After writing

the read command in the control register, the CAM output register and RAM out-

put register may be read.

9.5.8.1 PCI IOTLB RAM Output Register

The PCI IOTLB RAM output register (see Table 9-30) contains physical address

bits that will be used to address the DRAMs as a result of a successful translation.

Bits 11:03 are read from the RAM, and can be used to store entry information, but

do not participate in any translation process.

Table 9-30 PCI IOTLB RAM Output Register (PCIROR) (4 bytes @ offset = 98)

Bit(s) Reset Field Name R/W

31:28 0 unused (read as zero) R

27:24 0 DRAM Physical Memory Address (4K/256K/16M) R

23:18 0 DRAM Physical Memory Address (4K/256K) R

17:12 0 DRAM Physical Memory Address (4K) R

11:03 0 unused (read from RAM) R

02:00 0 Page size selected, as written to CAM on input [02:00] R
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Bits 02:00 are read from the RAM and reflect the size of the translation entry. The

input to the RAM is derived from the input to the CAM bit position[02:00]. The

outputs from the Ram are used when the IOTLB is enabled and there is a IOTLB

hit to select which portion of the real address will be overridden by the translated

address. This will allow multiple sized entries to be placed in the CAM at the

same time.

9.5.8.2 PCI IOTLB CAM Output Register

The PCI IOTLB CAM output register (see Table 9-31) contains virtual address bits

that have been written into the IOTLB. The IOTLB CAM output register is used

to read entries that have been written into the IOTLB. This is useful for diagnostic

testing.

9.5.8.3 PCIC DVMA Address Register

The PCI DVMA error address register (see Table 9-32) records the DVMA address

used to access memory if an error occurs during the DVMA. This error also gen-

erates a level 15 interrupt and sets a bit in the interrupt registers to reflect this

state.

Table 9-31 PCI IOTLB CAM Output Register (PCICOR) (4 bytes @ offset = 9C)

Bit(s) Reset Field Name R/W

31: 24 0 PCI Virtual Address to translate (4K/256K/16M) R

23:18 0 PCI Virtual Address to translate (4K/256K) R

17:12 0 PCI Virtual Address to translate (4K) R

11:04 0 unused, read as zeros R

03 0 Valid Bit as read from CAM R

02:00 0 page size selected, as read from CAM] R

Table 9-32 PCIC IOTLB Translation Error Address Register (4 bytes @offset = CC)

Bit(s) Reset Field Name R/W

31:03 0 PCI DVMA address R

02:01 0 Error type code:

00: translation failed in IOTLB access

01: parity error on DVMA read, wd0

10: parity error on DVMA read, wd1

11: parity error on DVMA read, both words

R

 00 0 Access for IOTLB operation was a read (=1) R
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9.5.9 PCIC PIO Error Command and Address Registers

The PCIC PIO error command and address registers reflect the command and ad-

dress information that were in progress at the time that an error was signaled

during a PIO.

Table 9-33 shows the fields of the PCIC PIO error command register.

Table 9-34 shows the fields of the PCIC PIO error address register.

9.6 PCI Arbitration and Control
microSPARC-IIep has a built-in arbiter that can be enabled or disabled by the us-

er. The arbiter is activated at power-up if microSPARC-IIep is selected to operate

in host mode and is disabled if microSPARC-IIep is selected to operate in satellite

mode. The arbiter can also be disabled or enabled by programming the PCI arbi-

tration control register (see Section 9.6.5, “PCIC Arbitration Control Register).

When the internal arbiter is activated, microSPARC-IIep supports four external

PCI masters in addition to the PCIC.

Locking the bus for continuous operations using the LOCK signal is not support-

ed.

As a host arbiter, the PCI bus is parked on the last master that has been granted

the PCI bus for usage.

Table 9-33 PCIC PIO Error Command Register (1 byte @offset = C7)

Bit(s) Reset Field Name R/W

07: 04 0 reserved R

03: 00 x PCIC PIO Error Cmd R

Table 9-34 PCIC PIO Error Address Register (4 byte @offset = C8)

Bit(s) Reset Field Name R/W

31: 00 x PCIC PIO Error Address R
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9.6.1 PCIC Arbitration Assignment Select Register

The PCIC arbitration assignment select register (see Table 9-35) is used to select

the assignment of request/grant pairs within the PCIC arbiter. The request/grant

assignment is used to determine priorities for bus arbitration and allows the pri-

orities to be programmable. However, each assignment must be programmed

with a unique value.

The three level arbitration algorithm describes the operation of the request/

grants as they are in the default condition, which is in response to reset. Program-

mable assignment of request/grants allows the arbitration priority of all bus mas-

ters to be determined by software. The priorities should only be changed when

there is no bus activity. The programmable assignment operates for the default

round-robin algorithm, even though all bus masters are at equal priority in that

algorithm.

Table 9-35 PCIC Arbitration Assignment Select Register (2 bytes @ offset = 8A)

Bit(s) Reset Field Name R/W

14:12

Host

host req assignment

100 100: host assigned as host at level 0

011: host assigned as agent 3 at level 2

010: host assigned as agent 2 at level 2

001: host assigned as agent 1 at level 1

000: host assigned as agent 0 at level 1

R/W

11:09

Load 3

PCI_REQ_L[3] assignment

011 100: Load 3 assigned as host at level 0

011: Load 3 assigned as agent 3 at level 2

010: Load 3 assigned as agent 2 at level 2

001: Load 3 assigned as agent 1 at level 1

000: Load 3 assigned as agent 0 at level 1

R/W

08:06

Load 2

PCI_REQ_L[2] assignment

010 100: Load 2 assigned as host at level 0

011: Load 2 assigned as agent 3 at level 2

010: Load 2 assigned as agent 2 at level 2

001: Load 2 assigned as agent 1 at level 1

000: Load 2 assigned as agent 0 at level 1

R/W

05:03

Load 1

PCI_REQ_L[1] assignment

001 100: Load 1 assigned as host at level 0

011: Load 1 assigned as agent 3 at level 2

010: Load 1 assigned as agent 2 at level 2

001: Load 1 assigned as agent 1 at level 1

000: Load 1 assigned as agent 0 at level 1

R/W

02:00

Load 0

PCI_REQ_L[0] assignment

000 100: Load 0 assigned as host at level 0

011: Load 0 assigned as agent 3 at level 2

010: Load 0 assigned as agent 2 at level 2

001: Load 0 assigned as agent 1 at level 1

000: Load 0 assigned as agent 0 at level 1

R/W
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Note: The PCIC arbitration assignment select register should never be set such

that any two loads or the host are assigned the same level and agent. Each

assignment must be unique.

9.6.2 PCI Arbitration Algorithm

There are two arbitration algorithms available in the PCIC. Both implement a

fairness algorithm as described in the PCI specification (revision 2.1) on page 56,

Implementation Note: System Arbitration Algorithm. The first algorithm has all pos-

sible PCI masters at the same priority level, and rotates a token to the next re-

questor. In this way all masters are assured of an equal access to the PCI bus.

The second algorithm has three levels of assignment for the bus requests (see

Figure 9-6). Level 0 is the highest priority, with the host processor as the only

agent at that level (Agent H). Every other bus operation cycle, the processor is al-

located the bus. Level 1 requests have three agents, representing PCI request 0

(Agent 0), PCI request 1 (Agent 1) and all level 2 requests. When a level 1 agent is

granted the bus and uses the bus, a token is set representing which level 1 agent

has used the bus last. All level 1 agents have the same priority, and are granted

the bus equally (rotating within level 1). There are two more agents at level 2. The

agents at level 2 represent PCI request 2 (Agent 2) and PCI request 3 (Agent 3).
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Figure 9-6 Three Level Arbitration Algorithm

9.6.3 PCIC PIO Control Register

The PCIC PIO control register (see Table 9-36) is used to control the operation of

the PIO interface. This is the interface that accepts transactions from the mi-

croSPARC-IIep, buffers the requests in various FIFOs, and dispatches the requests

to the PCI bus. Three control bits are defined.

Table 9-36 PCIC PIO Control Register (1 byte @ offset = 60)

Bit(s) Reset Field Name R/W

07 0 PIO Prefetch Enable R/W

06 0 PIO Burst Enable R/W

05: 03 0 PIO Reserved R

02 0 PIO Big-Endian R/W

01:00 0 PIO Reserved R

Host

Level 0

Level 1
Level 1

Agent 0 Agent 1

Level 2

Agent 3Agent 2

level 2

any

or
Level 2

any
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Bit 07 is the prefetch enable bit. When enabled, the PCI interface prefetches mem-

ory references from the PCI bus. THis increases the performance of PIO loads.

Bit 06 is the burst enable bit. This control bit, when set, allows requests for con-

secutive memory data operations, to be packed into a burst when sent on the PCI

bus. When set, PIO performance is increased.

Note: When interfacing to external PCI slave devices that are very slow in

responding, due to the host being assigned to a low arbitration priority, or other

reasons, it may be desired to turn off the burst enable. This will have no

noticeable difference on the speed of the transfer, since this transfer is slow

already. When the bursts are disabled, the CPU to PCIC transfer will handshake

on each transaction, rather then convert the transfer into a burst. This may

prevent time-outs on the internal bus. PIO performance may be reduced, but in

this case, PIO performance was very poor anyway.

Bit 02 is used to enable big-endian mode on read and write accesses to PIO data.

When this bit is set, the data and byte enables will not be switched for little endi-

an mode when performing any operations in the PCIC interface. This includes

configuration register reads and writes, and PIO. This may be useful for software

that is operating on big-endian data and desires to maintain the representation of

that data when accessing PCIC configuration registers. The counters/timers, and

IOTLB are examples where this may be desired. When changing this bit in this

register, a store byte should be used to avoid uncertainty as to the current setting

of this bit. In addition, to insure that all preceding operations have completed pri-

or to changing this bit, a read from this register should be performed (the data

can be discarded). Refer to Section 1.3, “Endian Support in Chapter 1, “mi-

croSPARC-IIep Overview for more information on endian support and operation.
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9.6.4 PCIC DVMA Control Register

The PCIC DVMA control register (see Table 9-37) is used to control the operation

of the DVMA interface. This is the interface that accepts transactions from the

PCI bus, buffers the requests in various FIFOs, and dispatches the requests to the

IAFX bus. Three control bits are defined.

Bit 00 and bit 04 are used when quiescence (inactivity) is desired in the slave PCI

interface for memory and I/O activity. When bit 00 is set to a one, a request for

quiescence is made. After some time, all PCI slave input activity will have com-

pleted (FIFOs are emptied) and any new memory or I/O requests are rejected (re-

try on PCI). This insures that any memory store operations that may be sitting in

the PCI slave input FIFOs will be completed. The quiescent state, when it is

reached, is signaled when bit 04 of this register is set.

Note: Quiescence of the PCI bus is needed when entries to the IOTLB are

changed. It may be desirable to disable interrupts while quiescence is requested

to prevent any additional time where PCI bus activity to the host is suspended.

Bit 01 is used to enable the IOTLB. When set, all addresses that have been accept-

ed by the PCI slave and will be used to access main DRAM memory will first

pass through the IOTLB for translation. When cleared, the IOTLB is bypassed,

and addresses are untranslated.

Bit 02 and 03 are reserved and should be set to zero.

Table 9-37 PCIC DVMA Control Register (1 byte @ offset = 62)

Bit(s) Reset Field Name R/W

07:05 00 reserved R

04 0 PCIC DVMA Quiescence Acknowledge R

03 0 reserved R/W

02 0 reserved R/W

01 0 PCIC DVMA IOTLB Enable R/W

00 0 PCIC DVMA Quiescence Request R/W
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9.6.5 PCIC Arbitration Control Register

The PCIC arbitration control register (see Table 9-38) is used to control the opera-

tion of the internal PCI arbiter, and the interrupt controller.

Bit 04 is selects an external interrupt controller. When set, the internal interrupt

controller is bypassed and the four PCI interrupt signals (INTD#/C#/B#/A# or

PCI_INT_L[3:0]) are routed directly to the internal interrupt request lines (IRL) of

the microSPARC-IIep. The IRL lines are the four interrupt request lines that inter-

face directly to the standard SPARC version 8 interrupt request inputs (INTD-

>IRL[3], INTC->IRL[2], INTB->IRL[1], and INTA->IRL[0]). The CPU samples the

IRL lines each cycle and responds to the interrupt request following the standard

SPARC interrupt priority. When the internal interrupt controller is disabled, an

external interrupt controller could be used to provide up to 15 levels of interrupt

to the microSPARC-IIep. (Refer to bit 02 for a description on how to access the in-

terrupts that are detected internally. For more information, refer to Section 9.7.2,

“PCIC System Interrupt Pending Register.)

Bit 03 is reserved and must be set to zero.

Bit 02 is used to disable the internal arbiter. When the internal arbiter is disabled,

an external arbiter is required to resolve bus requests.

• When the internal arbiter is disabled, microSPARC-IIep signals a request to

use the bus on the output pin PCI_GNT_L[0] and receives an

acknowledgment from the external arbiter on the input pin PCI_REQ_L[0].

(The direction of these signals remains the same independent of the internal

arbiter enable state. However, the interpretation of these signals changes with

the state of the internal arbiter disable bit.)

1. Selected by PLL_BYP_L and EXT_CLK2 (Section 9.4.1, “PCI Host/Satellite Mode).

Table 9-38 PCIC Arbitration/Interrupt Control Register (1 byte @ offset = 63)

Bit(s) Reset Field Name R/W

07:05 0 Reserved R

04 0 PCI External Interrupt Controller Select R/W

03 0 Reserved (must be set to zero) R/W

02 0/11 Internal Arbiter Disable R/W

01 0 Reserved R

00 0 PCIC Arbitration Level Select R/W
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• When the internal arbiter is disabled, the PCI_GNT_L[1] output pin signals

when the microSPARC-IIep is requesting to use the PCI bus for an extended

operation. An extended operation is requested for PCI configuration cycles

(IDSEL bus charging), when quiescence has been requested (preventing retries

from occurring too often), or when the PCI host is requesting the bus to be

parked. During an extended operation request, the bus activity may not start

immediately following the bus grant signal.

• When the internal arbiter is disabled, the PCI_GNT_L[2] output pin signals

when microSPARC-IIep has detected any unmasked internally detected

interrupts. When the internal interrupt controller is bypassed (refer to bit 04)

and an external interrupt controller is used to drive the IRL lines directly into

the microSPARC-IIep CPU, this output pin could be monitored by the external

controller. This signal is asserted when any unmasked lever I5 interrupt is

signaled or when an unmasked timer interrupt is signaled.

Bit 00 selects the single level of priority when it is cleared, and selects the three

levels of arbitration when it is set. When the three level arbitration is selected, the

arbitration assignment select register can be used to map which request/grant

pairs are assigned to each level. (Refer to Section 9.6.1, “PCIC Arbitration Assign-

ment Select Register in this chapter.)

9.7 PCIC Interrupts

The PCIC also contains interrupt control logic. It receives the interrupts from the

PCI bus (INTD#/C#/B#/A# or PCI_INT_L[3:0]) and generates an interrupt vec-

tor to the microSPARC-IIep core. The same interrupt pins may be used as outputs

to signal interrupt conditions to external devices if the internal interrupt control-

ler is disabled. In addition any internally detected error conditions will generate

a level 15 interrupt vector. The interrupt vector in the IIep processor is processed

according to the normal SPARC interrupt structure. There are several configura-

tion registers in the PCIC devoted to the function of interrupt control. These reg-

isters provide the functionality of the interrupt control unit from the 89C105

interrupt controller.

The PCI interrupts are level signals, and must be asserted low for a minimum of

two processor clocks before the IRL lines are considered stable and the processor

will respond to the interrupt.
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9.7.1 PCIC Interrupt Assignment Select Registers

The PCIC interrupt assignment select registers (see Table 9-39 and Table 9-40) are

used to assign the interrupt input signals to a desired priority level. An interrupt

is assigned to a interrupt priority level, and all subsequent masking operations

are on the assigned interrupt priority level. Each interrupt can be mapped to any

interrupt priority level, independent of the other interrupt assignments. More

then one interrupt may be assigned the same priority level, which would then re-

quire the software interrupt handler to determine which interrupt occurred.

Any interrupt assigned as interrupt priority zero, is disabled, since there the ab-

sence of any interrupt is signaled to the processor with an IRL code of zero.

See Figure 9-7 for a block diagram of the PCIC interrupt controller.

Table 9-39 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 88)

Bit(s) Reset Field Name R/W

15:12 0x7 PCI INTD# (PCI_INT_L[3]) assignment field R/W

11:08 0x5 PCI INTC# (PCI_INT_L[2]) assignment field R/W

07:04 0x3 PCI INTB# (PCI_INT_L[1]) assignment field R/W

03:00 0x2 PCI INTA# (PCI_INT_L[0]) assignment field R/W

Table 9-40 PCIC Interrupt Assignment Select Register (2 bytes @ offset = 8C)

Bit(s) Reset Field Name R/W

15:12 0x7 PCI_INT_L[7] assignment field R/W

11:08 0x5 PCI_INT_L[6] assignment field R/W

07:04 0x3 PCI_INT_L[5] assignment field R/W

03:00 0x2 PCI_INT_L[4] assignment field R/W
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Figure 9-7 PCIC Interrupt Controller Block Diagram
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9.7.2 PCIC System Interrupt Pending Register

The PCIC system interrupt pending register (see Table 9-41) is used to read status

information for any system interrupts that are pending. These are hardware asso-

ciated interrupts. The state of the eight PCI interrupt lines and the two timer in-

terrupts can be examined by reading this register. Any error conditions that are

detected by the PCIC that result in a level 15 interrupt are also signaled by post-

ing bits in this register.

Bits 1-15 reflect the state of the programmable priority assigned hardware inter-

rupts. These are the eight assigned PCI interrupts, and the two assigned timer in-

terrupts. The PCI interrupts are level sensitive, active low and are defined by the

PCI specification to remain active until some processor action clears it. The inter-

rupt controller does not resynchronize these signals. It does perform the assign-

ment, masking and comparison to the software interrupt level before passing

through to the processor IRL lines. The processor IRL lines are sampled for two

clocks to avoid glitches on the lines.

When the bypass path is selected, the four PCI interrupt pins are routed directly

to the processor IRL lines (PCI_INT[3]->IRL[3], PCI[_INT[2]->IRL[2], PCI_INT[1]-

>IRL[1], PCI_INT[0]->INT[0]), where the processor samples for two clocks (pro-

cessor clocks, not PCI clocks) to ensure that they are stable before responding.

When the interrupt controller is bypassed, the state of the internal interrupt con-

ditions may not be available to the external interrupt controller. The internal tim-

er interrupts and any error conditions detected by the PCIC or the microSPARC-

IIep may not be able to generate a signal to the external interrupt controller. Refer

to the arbiter-disable bit in Section 9.6.5, “PCIC Arbitration Control Register for a

method to monitor for these conditions externally when the internal arbiter is

disabled.

Table 9-41 PCIC System Interrupt Pending Register (4 bytes @ offset = 70)

Bit(s) Reset Field Name R/W

31 0 Reserved. Read as Zero. R

30 0 PCIC PIO detected error R

29 0 PCIC DMA detected error R

28 0 PCI Bus Error (SERR#) signaled R

27 0 Processor detected error (AFSR or MFSR) R

26:16 0 Reserved. Read as Zero R

15:1 0 Assigned HW interrupts R

0 0 Reserved. Read as Zero R
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Bit 26 is set whenever the processor detects the PCI reset input signal active while

the PCI RESET pin is used as an input. If the PCI input pin is enabled as a proces-

sor reset, bit 26 will be cleared as a result of that reset (see Section 9.9, “System

Status and System Control (Reset) Register). Bit 26 has a latching memory effect

and will be set on the first detection of the PCI reset signal. While PCI RESET is

asserted, bit 26 cannot be cleared by writes to the clear system interrupt pending

register. This bit remains set after the PCI RESET input signal is removed until it

is cleared with reset or by a write to the clear system interrupt pending register

after the reset condition has been removed (see Section 9.8, “Counters - Timers).

Note: The PCI reset input, when enabled as a processor reset, overrides the

level 15 interrupt that is set when bit 26 is set.

Bit 27 is set whenever the processor has detected an internal level 15 interrupt

condition, that results in bit 31 of the AFSR (asynchronous fault status register) or

bit 31 of the MFSR (memory fault status register) setting. Refer to the appropriate

sections for details on the AFSR and the MFSR.

Bit 28 is set whenever any subsystem on the PCI bus signals SERR#. The interrupt

is generated and does not depend on which PCI subsystems were involved in a

transaction, if any were involved at all. Polling the PCI configuration registers of

all devices on the PCI bus may be necessary to determine the cause for signaling

SERR#. (Signaling of SER# by the PCIC itself can be disabled, and is described in

the PCIC configuration registers.)

Bit 29 is set whenever an error is detected on a PCI DMA operation. This error

can occur for an IOTLB miss while the IOTLB is enabled. When bit 29 is set, the

PCI virtual address that would resulted in a IOTLB miss has been saved in the

IOTLB translation error address register (0xcc).

Bit 30 is set when an error condition is detected on a PIO transaction that is ter-

minated abnormally. Additional status information may be present in the PCI de-

vice status configuration register (see Section 9.5.2.3, “PCI Device Status) and in

external PCI device status registers. When bit 30 is set, the command and address

that was in process when the error occurred is saved in the PCI master error com-

mand register and the PCI master error address register (see Section 9.5.9, “PCIC

PIO Error Command and Address Registers).
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9.7.3 PCIC Clear System Interrupt Pending Register

The PCIC clear system interrupt pending register (see Table 9-42) is used to clear

any system PCIC interrupts that have been set as a result of an error. The state of

the four PCI interrupt lines cannot be cleared by setting bits in this register. Only

error conditions that are detected by the PCIC and resulted in a level 15 non-

maskable interrupt can be cleared by setting bits in this register.

The ASFR and the MFSR interrupts are not cleared with this register. Refer to the

section on the ASFR and MFSR on how these interrupts are cleared.

Bit 07, when set, clears all system interrupt pending interrupts that are set as a re-

sult of a PCIC detected error condition. This has the same effect as turning on bits

4 thorough 6.

Bit 06, when set, clears the PCIC PIO detected error.

Bit 05 is set, when set, clears the IOTLB translation error.

Bit 04, when set, clears the PCI SERR# interrupt.

Bit 03, when set, clears the PCI Reset interrupt.

1. Writing a one to the bit positions in this register clears the bit in the System Interrupt Pending
Register.

Table 9-42 PCIC Clear System Interrupt Pending Register (1 byte @ offset = 83)

Bit(s) Reset1 Field Name R/W

07 0 Clear All PCIC detected

System Interrupt Pending Lvl 15 Errors

W

06 0 Clear PCIC PIO detected error W

05 0 Clear PCIC DMA detected error W

04 0 Clear PCI SERR# signaled W

03: 00 0000 Reserved. Read as Zero. W
PCI Controller 171



9

9.7.4 PCIC System Interrupt Target Mask Register

The PCIC system interrupt target mask register occupies three addresses, one for

reading the current state of the interrupt mask (0x74, see Table 9-43), and one

each for setting (0x7c, see Table 9-44) and clearing (0x78, see Table 9-45) the mask

bits.

Table 9-43 PCIC System Interrupt Target Mask Register (4 bytes @ offset = 74)

Bit(s) Reset Field Name R/W

31 1 Mask All Interrupts, HW and/or SW R

30 1 Mask PCI PIO detected error R

29 1 Mask PCI DMA detected error R

28 1 Mask PCI SERR# signaled R

27 1 Mask Processor detected error (AFSR or MFSR) R

26 1 MASK PCI reset (as input) detected R

25:16 0 Reserved. Read as Zero. R

15:01 0x7f Mask assigned HW interrupts R

00 0 Reserved. Read as Zero. R

Table 9-44 PCIC System Interrupt Target Mask Clear Register (4 bytes @ offset = 78)

Bit(s) Reset Field Name R/W

31 0 Clear Mask All Interrupts, HW and/or SW W

30 0 Clear Mask PCI PIO detected error W

29 0 Clear Mask PCI DMA detected error W

28 0 Clear Mask PCI SERR# signaled W

27 0 Clear Mask Processor detected error (AFSR or MFSR) W

26 0 Clear Mask PCI reset (as input) detected W

25:16 0 Reserved. Read as Zero. W

15:01 0x0 Clear Mask assigned HW interrupts W

00 0 Reserved. Read as Zero. W
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Writing a one to any defined bit field in the mask set register will disable that in-

terrupt, and writing a one to the same field in the mask clear register will re-en-

able it. All pending interrupts are cleared, and all mask bits are set upon system

reset. (The state of the PCI_INT_L[7:0] lines that are driven by external sources

are defined by that external source. However the interrupt is masked in the PCIC

if the external source were driving it.)

The interrupts in bit positions 15:01 are only those hardware interrupts after hav-

ing the mapping priority assignment performed.

9.7.5 PCIC Processor Interrupt Pending Register

The PCIC processor interrupt pending register (see Table 9-46) is used to read sta-

tus information for any pending processor interrupts. These can be hardware or

software interrupts. This reflects the state of the currently unmasked interrupts.

The highest priority unmasked interrupt, hardware or software, is the one that is

generating the vector to the microSPARC-IIep processor. (The PCI RESET input

detected is latched and held until cleared.)

Table 9-45 PCIC System Interrupt Target Mask Set Register (4 bytes @ offset = 7C)

Bit(s) Reset Field Name R/W

31 0 Set Mask All Interrupts, HW and/or SW W

30 0 Set Mask PCI PIO detected error W

29 0 Set Mask PCI DMA detected error W

28 0 Set Mask PCI SERR# signaled W

27 0 Set Mask Processor detected error (AFSR or MFSR) W

26 0 Set Mask PCI reset (as input) detected W

25:16 0 Reserved. Read as Zero. W

15:01 0x0 Set Mask assigned HW interrupts W

00 0 Reserved. Read as Zero. W

Table 9-46 PCIC Processor Interrupt Pending Register (4 bytes @ offset = 64)

Bit(s) Reset Field Name R/W

31:17 0 Software Interrupts R

16 0 Reserved. Read as Zero R

15:01 0 Assigned unmasked HW interrupts R

00 00 Reserved. Read as Zero. R
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Using the default (reset) assignment interrupt mapping priorities, the interrupts

are assigned as shown in Table 9-47.

Note: The highest priority interrupt will generate a interrupt vector code to the

microSPARC-IIep processor. The microSPARC-IIep processor has the standard

SPARC version 8 interrupt processing features available to further process these

interrupts. The interrupt inputs on the processor IRL lines are sampled with two

clocks to determine that they are stable.

9.7.6 PCIC Software Interrupts

There are two registers that allow software to generate and clear software inter-

rupts. The software interrupts are read as part of the processor interrupt pending

register. However, the software interrupts are cleared by writing a one to the ap-

Table 9-47 PCIC Default (Reset) Interrupt Assignments

Interrupt Priority Level Hardware Interrupt

15* PCI PIO detected error (* not reassignable)

15* PCI DMA detected error (* not reassignable)

15* PCI Bus (SERR#) detected error (* not reassignable)

15* Processor detected error (AFSR,MFSR) (* not reassignable)

15* PCI reset (as input) detected (*not reassignable)

7 PCI_INTD# (PCI_INT_L[3])

5 PCI_INTC# (PCI_INT_L[2])

3 PCI_INTB# (PCI_INT_L[1])

2 PC_INTA# (PCI_INT_L[0])

0 (Disabled) PCI_INT_L[7]

0 (Disabled) PCI_INT_L[6]

0 (Disabled) PCI_INT_L[5]

0 (Disabled) PCI_INT_L[4]

0 (Disabled) Processor Counter Interrupt

0 (Disabled) System Counter Interrupt
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propriate bit positions in the PCIC software interrupt clear register (0x6a, see

Table 9-48) or set by writing to the PCIC software interrupt set register (0x6e, see

Table 9-49).

9.7.7 PCIC Hardware Interrupt Outputs

The microSPARC-IIep can signal interrupts to an external controller or drive out-

put status lines directly under processor register control. All eight interrupt lines

can be driven as outputs.

Note: These open drain drivers can be driven by multiple sources and require

an external pull-up. Therefore, even when the microSPARC-IIep has cleared a bit

of the hardware interrupt output register, other external devices may keep the

interrupt signal active.

Note: The interrupt lines that are not used to signal interrupts to the

microSPARC-IIep can be used as output interrupts to another processor or can be

used to control other functions. The functions that are programmable include

system status indicators, control selectors, and inter-processor interrupts.

The PCIC hardware interrupt output register (see Table 9-50) generates hardware

interrupt outputs. When a bit of the register is set, the interrupt output signal of

the microSPARC-IIep is activated. When a bit of the register is cleared, the exter-

nal pin is not activated by the microSPARC-IIep. In addition, the signaling of an

Table 9-48 PCIC Software Interrupt Clear Register (2 bytes @ offset = 6A)

Bit(s) Reset Field Name R/W

15:01 0 Clear Software Interrupt W

00 0 Reserved. Read as Zero. W

Table 9-49 PCIC Software Interrupt Set Register (2 bytes @ offset = 6E)

Bit(s) Reset Field Name R/W

15:01 0 Set Software Interrupt W

00 0 Reserved. Read as Zero. W
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interrupt on the external pin activates the input interrupt detection circuit of the

microSPARC-IIep. If the mask bit of the input interrupt is set, however, that inter-

rupt will not result in the microSPARC-IIep taking an interrupt that it generated.

9.8 Counters - Timers

The microSPARC-IIep features two programmable counter/timers designed to

provide a system timer and a single processor-specific set of timers. The features

of these two counter/timers are similar to that offered in the SLAVIO chip

(STP2001 Slave I/O Controller) used with the microSPARC-II. The system

counter is a 31-bit counter dedicated to the system timer function, and generates

an interrupt upon time-out. The processor counter can be configured to behave as

a 31-bit timer that generates an interrupt upon time-out, or to provide a real-time

63-bit counter for high-resolution user-performance analysis.

In the first mode behaving as a 31-bit timer, the processor counter can be used for

OS kernel profiling. In the second mode, the timer can be loaded upon each entry

into user mode, and saved on exit. It could also be loaded with a binary real time,

which will then track precisely with the time-of-day.

These registers should only be accessed as words. There are restrictions placed on

the sequence to access the user timer. That register requires two word accesses

and needs to be done as one snapshot operation by the hardware to prevent the

software visible counter from ticking between word accesses.

These timers have a tick rate of once every four processor clocks. A block dia-

gram of the system counter and processor counter/user timer is presented in

Figure 9-8.

Table 9-50 PCIC Software Interrupt Output Register (2 bytes @ offset = 8E)

Bit(s) Reset Field Name R/W

07 0 PCI_INT_L[7] enable interrupt R/W

06 0 PCI_INT_L[6] enable interrupt R/W

05 0 PCI_INT_L[5] enable interrupt R/W

04 0 PCI_INT_L[4] enable interrupt R/W

03 0 PCI INTD (PCI_INT_L[3]) enable interrupt R/W

02 0 PCI INTC (PCI_INT_L[2]) enable interrupt R/W

01 0 PCI INTB (PCI_INT_L[1]) enable interrupt R/W

00 0 PCI INTA (PCI_INT_L[0]) enable interrupt R/W
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Figure 9-8 Counter-Timer Block Diagram

Three addresses are associated with each counter: a count register, a limit register,

and a pseudo register that allows the limit to be loaded without resetting the

count. The registers are described in the following sections.

Each counter increments by one in bit position 0 every four processor clocks.

When the counter reaches the value in its corresponding limit register, it is reset

to 0x1, the limit-reached bits in both the counter and the limit registers are set,

and an interrupt is generated (if enabled) at the interrupt level specified in the

counter interrupt priority assignment register.

The interrupt is cleared and the limit bits reset by reading the appropriate limit

register. Reading the counter register does not change the state of the limit bit.

Writing the limit register resets the corresponding counter to 0x01.

The limit register can be loaded via the pseudo register without resetting the

count.
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If the count value is already higher than the new limit, the counter proceeds to

count to its maximum value, then reset and count up to the new limit value be-

fore generating the interrupt. This allows alarm-clock, rather than time-tick, us-

age of the counter.

Setting the limit register to 0x0 causes the corresponding counter to free-run. In-

terrupts will be generated when the counter overflows. All bits in the limit regis-

ter are cleared to zero on reset, and the counter is set to the value 0x01.

Table 9-51 shows the address map of the PCIC counter/timers.

9.8.1 Processor Counter Limit Register or User Timer MSW

The processor counter limit register or user timer most significant word (see

Table 9-52) occupy the same address decode.

The processor counter limit reached bit is set when the processor counter matches

the processor counter limit register. It is cleared by reading the processor counter

limit register.

Table 9-51 PCIC Counter-Timers Address Map

Address Offset/size Register R/W

0xAC word Processor Counter Limit Register or User Timer MSW R/W 1

0xB0 word Processor Counter Register or User Timer LSW R/W 1,2

0xB4 word Processor Counter Limit Register (non-resetting port) W

0xB8 word System Limit Register R/W

0xBC word System Counter Register R/W 1

0xC0 word System Limit Register (non-resetting port) W

0xC4 byte Processor Counter User Timer Start/Stop Register R/W

0xC5 byte Timer Configuration Register R/W

0xC6 byte Counter Interrupt Priority Assignment Level Register R/W

Table 9-52 Processor Counter Limit or User Timer MSW (Word only @ offset = AC)

Processor
Counter Mode

Bit(s) Reset Field Name R/W

Counter Mode 31 0 Processor Counter Limit Reached R

Counter Mode 30:00 0 Processor Counter Limit Register R/W

Timer Mode 31:00 0 User Timer Most Significant Word (MSW) R/W
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The user timer most significant word (MSW) contains a snapshot of the user tim-

er register. The user timer register is a 64-bit value. It can only be read by reading

two 32-bit registers. The user timer MSW contains a snapshot of the timer taken

at the time that the user timer least significant word (LSW) was read. This allows

a full 64-bit value to be reflected in the two 32-bit reads. The user timer LSW

should always be read first, which also transfers the value from the timer MSW

into the user timer MSW. Reading from the user timer MSW releases the snapshot

and allows the shadow register to be reloaded.

Writing to the user timer also involves transferring from two 32-bit registers into

the user timer. There is a sequence required for this write to happen as one up-

date to the user timer (see Table 9-53). The user timer MSW should be loaded

first, which actually loads a holding register. When the user timer LSW is written,

then the contents of the MSW holding register, along with the LSW are written

into the full 64-bit user timer register.

9.8.2 Processor Counter Register or User Timer LSW

The processor counter register or user timer least significant word (see Table 9-54)

occupy the same address decode.

The processor counter limit reached bit is set when the processor counter matches

the processor counter limit register. It is cleared by reading the processor counter

limit register.

Refer to Section 9.8.1, “Processor Counter Limit Register or User Timer MSW for

the sequence required to read or write the 64-bit user timer.

Table 9-53 User Timer Read/Write Sequence Required

User Timer 64 bit operation Read Write

User Timer Most Significant Word (MSW) 2nd 1st

User Timer Least Significant Word (LSW) 1st 2nd

Table 9-54 Processor Counter or User Timer LSW (Word Only @ offset = B0)

Processor
Counter Mode

Bit(s) Reset Field Name R/W

Counter Mode 31 0 Processor Counter Limit Reached R

Counter Mode 30:00 0 Processor Counter Register R/W

Timer Mode 31:00 0 User Timer Least Significant Word (LSW) R/W
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9.8.3 Processor Counter Limit Pseudo Register

The processor counter limit pseudo register (see Table 9-55) allows the limit regis-

ter to be reloaded without resetting the counter. This is a write-only register loca-

tion. Reads from this register return zeros.

9.8.4 System Counter Limit Register

The system counter limit register (see Table 9-56) operates the same as the proces-

sor counter limit register. The system counter limit reached bit is set when the

system counter matches the system counter limit register. It is cleared by reading

the system counter limit register.

9.8.5 System Counter Register

The system counter register (see Table 9-57) operates like the processor counter

register.

The system counter limit reached bit is set when the system counter matches the

system counter limit register. It is cleared by reading the system counter limit reg-

ister.

Table 9-55 Processor Counter Limit Pseudo Register (Word Only @ offset = B4)

Bit(s) Reset Field Name R/W

31:00 0 Processor Counter Limit Pseudo Register W

Table 9-56 System Counter Limit Register (Word Only @ offset = B8)

Bit(s) Reset Field Name R/W

31 0 System Counter Limit Reached bit R

30:00 0 System Counter Limit Register R/W

Table 9-57 System Counter Register (Word Only @ offset = BC)

Bit(s) Reset Field Name R/W

31 0 System Counter Limit Reached R

30:00 0 System Counter Register R/W
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9.8.6 System Counter Limit Pseudo Register

The system counter limit pseudo register (see Table 9-58) allows the limit register

to be reloaded without resetting the counter. This is a write-only register location.

Reads from this register return zeros.

9.8.7 User Timer Start/Stop Register

The user timer start/stop register (see Table 9-59) controls the user timer opera-

tion, and therefore only operates in user- timer mode. When bit zero is set, the

user timer has counting enabled, when reset to zero, the timer is frozen.

The user timer start/stop register is provided to allow fast trap handlers to stop

the user timer blindly during time-critical code, without the necessity of reading

and saving the count value. The timer must be restarted before reentering user

state. A software flag must be maintained to indicate if the user timer is in use, so

that the fast trap handler knows that it must be restarted. This register has no ef-

fect if the processor counter is configured as a counter.

Table 9-58 System Counter Limit or User Timer MSW (Word Only @ offset = C0)

Bit(s) Reset Field Name R/W

31:00 0 System Counter Limit Pseudo Register W

Table 9-59 User Timer Start/Stop Register (1 byte @ offset = C4)

Bit(s) Reset Field Name R/W

07:01 0 Unused read as zero R

00 0 User Timer Run Enable R/W
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9.8.8 Processor Counter or User Timer Configuration Register

The processor counter or user timer configuration register (see Table 9-60) con-

trols the mode of operation of the processor counter and allows writes to the

counter registers to affect the counter value.

When bit 0 is set, the processor counter operates in the user-timer mode. When

bit 0 is reset, the processor counter operates in counter mode.

When bit 6 is set, write operations to the processor counter result in the counter

being written. This allows diagnostic testing of the counter operation. When bit 6

is reset, writes to the counter are disabled and have no effect on the counter.

Note: Bit 6 is not used in the user timer mode. Writes cannot be disabled in the

user timer mode.

When bit 7 is set, write operations to the system counter result in the counter be-

ing written. This allows diagnostic testing of the counter operation. When bit 7 is

reset, writes to the counter are disabled and have no effect on the counter.

9.8.9 Counter Interrupt Priority Assignment Register

The counter interrupt priority assignment register (see Table 9-61) controls the

priority level for the processor counter and the system counter interrupts.

When the processor counter is operating in user timer mode, it cannot generate

an interrupt.

Table 9-60 Processor Counter/User Timer Configuration Register (1 byte @ offset = C5)

Bit(s) Reset Field Name R/W

07 0 Allow writes to System Counter R/W

06 0 Allow writes to Processor Counter R/W

05:01 0 Unused: read as zero R

00 0 User Timer Mode Enable R/W

Table 9-61 Counter Interrupt Priority Assignment Register (1 byte @ offset = C6)

Bit(s) Reset Field Name R/W

07:04 0 System Counter Interrupt Priority level R/W

03:00 0 Processor Counter Interrupt Priority level R/W
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Bits 07:04 assign the system counter interrupt priority. The interrupt priority as-

signed is used for masking, and generation of hardware interrupt levels for the

system counter. This register works like the interrupt assignment register for the

PCI interrupts. Multiple interrupts can be assigned the same priority level, and

would require software to determine the source of the interrupt. Assigning a in-

terrupt priority level of 0 disables the interrupt.

Bits 03:00 assign the processor counter interrupt priority. The interrupt priority

assigned is used for masking, and generation of hardware interrupt levels for the

processor counter. Assigning a interrupt priority level of 0 disables the interrupt.

When the processor counter is in the user timer mode, it can not generate an in-

terrupt.

9.9 System Status and System Control (Reset) Register

The system status and system control initiates and records the initialization of the

microSPARC-IIep.

The system status and system control (reset) register (see Table 9-62) records the

most recent reset. The reset register records the last set type. In addition, this reg-

ister allows the processor to simulate a system reset (software reset) and select a

response to a received PCI reset.

[7]: PCI Satellite Mode Pin Setting bit — reflects the hard-wired strapping of the

mode control pins that place the microSPARC-IIep in a PCI satellite mode (bit 7 =

1) or a PCI host mode (bit 7 = 0). In the satellite mode, the microSPARC-IIep

treats the PCI RESET pin as an input. In the host mode, the microSPARC-IIep

drives the PCI RESET pin as an output signal.

Table 9-62 System Status and Control Register (1 byte @ offset = D0)

Bit(s) Reset Field Name R/W

07 0/1 PCI satellite mode pin setting (satellite mode = 1) R

06 0/1 Enable PCI input reset (satellite mode only) R/W

05 0 PCI input reset status R/C

04 0 Processor watchdog reset R/C

03:02 0 Reserved R

01 0 Software reset status R/C

00 0 Software reset control W
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Note: The microSPARC-IIep can only be placed in satellite mode when the

phase-locked loop (PLL) is selected as the clock source. The PLL_BYP_L pin,

when tied high, selects the normal mode of operation for the PLL and allows the

EXT_CLK2 pin to select satellite mode (EXT_CLK2 tied high) or host mode

(EXT_CLK2 tied low). When the PLL_BYP_L pin is tied low, the PLL is bypassed

and EXT_CLK2 is used to generate internal CPU clocks. In this case, the PCI

satellite mode pin setting bit displays host mode as the default on reset.

[6]: Enable PCI Input Reset — When set and PCI satellite mode is set, an external-

ly generated PCI reset will force a reset to the microSPARC-IIep and set the PCI

reset status bit (bit 05). When clear, or if the microSPARC-IIep is in host mode, an

externally generated PCI reset will have no effect on the processor’s internal

state. Power-on reset will set this bit to match the same as bit 07, while watchdog

reset has no effect on this bit.

Note: While the PCI bus is being reset, the processor ignores external accesses.

Refer to Section 9.7, “PCIC Interrupts for a description of the level 15 interrupt

effects due to a PCI reset.

[5]: PCI Input Reset Status — This bit is set if there is an externally generated PCI

reset while Enable PCI Input Reset (bit 06) is asserted. This bit is cleared by a

power-on reset or by writing a 0 to this bit. Writing a 1 has no effect.

[4]: Processor Watchdog Reset — This bit is set when a watchdog reset is initiat-

ed. See Section 11.2, “Reset Logic on the causes of a watchdog reset. This bit is

cleared by either a power-on reset, a PCI reset, a software reset, or by writing a 0

to this bit. Writing a 1 has no effect.

Note: A watchdog reset does not propagate out to the PCI bus, but remains

internal to the microSPARC-IIep.

[3:2] are reserved and should not be written.

[1]: Software Reset Status — This bit is set when a software reset has been initiat-

ed by setting the software reset bit. Software reset has the same effects on the pro-

cessor state as power-on reset, with the exception that this bit is set for a software

reset. This bit is cleared by a power-on reset, a PCI reset, or by writing a 0 to this

bit. Writing a 1 has no effect.
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[0]: Software Reset Control — When set, a power-on reset is generated. When the

microSPARC-IIep is operating as the PCI host, a power-on reset will drive the re-

set output to the PCI bus. When the microSPARC-IIep is operating in satellite

mode, it only accepts PCI reset as an input.

9.10 PCI Control Space Registers

Aside from the control registers that reside in the PCI address space (i.e.,

PA[30:28]=0x3), there are two PCI-related registers that map into the control

space (i.e., PA[30:28]=0x1). The registers include those listed in Table 9-63.

9.10.1 Local Bus (PCIC Interface) Queue Level Register
(PA=0x1000.4000, 0x1000.6000)

The local bus (PCIC Interface) queue level register (see Figure 9-9) sets the thresh-

old for CPU local bus (PCIC interface) read hold off. If the number of operations

in the queue is greater than the threshold, new CPU local bus (PCIC interface)

operations will not be issued. The CPU is e held until the local bus queue is at a

level that would allow the operation to be issued. During this hold time DVMA

may freely access main memory. The threshold may only be set to 0x0, or 0x1.

Note that this register is accessed via two different addresses. For writing this

register, writes must be done to address 0x10004000. Writes to 0x10006000 will

not update the register contents. Reads must be done to address 0x1000.6000,

reads to 0x1000.4000 will not return the current register contents. All reserved

bits should be written as "0", and shall be read as "0". This register can be access-

ed using control space (0x1000.4000 for writes, and 0x1000.6000 for reads).

Figure 9-9 Local Bus Queue Level Register

Table 9-63 PCI Control Space Registers

PA[30:00] Device R/W

1000 4000 Local Bus Queue Level W

1000 6000 Local Bus Queue Level R/O

1000 7000 Local Bus Queue Status R/O

Reserved Lvl

31 01 00
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9.10.2 Local Bus (PCIC Interface) Queue Status Register
(PA=0x1000.7000)

The local bus (PCIC interface) queue status register (see Figure 9-10) is a read

only register that reflects the current number of local bus (PCIC interface) opera-

tions in the local bus queue. When read, this register should have a value of be-

tween 0x0 and 0x4. All reserved bits shall be read as "0".

Figure 9-10 Local Bus Queue Status Register

9.11 PCI Interface Signal Description

The PCIC interface does not implement LOCK and there is no support for PCI

locked operations.

Refer to the microSPARC-IIep Data Sheet for the PCI signals supported and the PCI
Local Bus Specification Revision 2.1 for the definition and usage of these signals.

9.12 PCI Protocol Fundamentals

Refer to the PCI Local Bus Specification Revision 2.1 for a description of the PCI bus

protocol.

PCI defines three physical address spaces: memory, I/O and configuration space.

The memory and I/O spaces are standard. The configuration address space has

been defined to support a standardized method of configuring PCI devices, and

is further defined by the PCI configuration space header. Each PCI device is re-

sponsible for its own address decoding. The microSPARC-IIep can communicate

to all three physical address spaces as a master, and will respond to memory and

I/O address spaces if enabled. The configuration registers of the microSPARC-

IIep are only available to the PCI host (not through PCI configuration cycles) but

the microSPARC-IIep can read or write other configuration registers as a PCI

master.

Q LVL

31 00
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Flash Memory Interface 10
The microSPARC-IIep flash memory interface provides a glueless connection to

28FxxxXX compatible flash memory devices. The interface has a programmable

latency, which is set to 45 processor cycles per access on power up. After power-

up, this latency can be reprogrammed if desired.

This field is set to 0xF on reset. The flash is a word interface or a byte interface,

and as such writes to the flash memory must be done as word writes or byte

writes. There is no byte collecting hardware to support the write operations. All

writes are to the flash device as a memory mapped device.

10.1 Flash Memory Programming Interface

The flash memory or PCI address space can be selected as the boot memory. Refer

to Section 11.7, Boot Options for selection of the boot address space. If the flash

memory space is not selected in boot mode, it can still be access through the mi-

croSPARC-IIep address space mapping with PA[30:28]=0x2 (see Table 5-19).

The flash memory space resides in cacheable memory space within the mi-

croSPARC-IIep, and subsequent references will be satisfied from the cache. Boot

mode accesses are non-cacheable while in boot mode. All load access widths are

supported. For stores, however, only the native access width is supported. Bits

22:21 of the TLB replacement control register indicate the native access width.

Values other than 0b01 indicate that the flash is 32 bits wide, while a value of

0b01 indicates that the flash is 8 bits wide.
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Table 10-1 details what is supported in the flash memory interface.

10.2 Flash Memory Speed

Refer to Section 5.9.5, MID Register (PA[30:0]=0x1000.2000) for more details on the

flash ROM parameter setup. The flash memory access time is set as follows:

 ((flash memory speed) - 1) x 3 x CPU cycle time = flash memory access time

If the flash memory speed is set to 0x0 or 0x1 the flash memory access time used

is 6 x CPU cycle time. These bits are readable and writable.

Table 10-1 Flash ROM Interface Support

In Boot Mode Dcache Enable Access Type Flash Width Supported?

No Yes ldub, ldsb 8 bit Yes

No Yes lduh, ldsh 8 bit Yes

No Yes ld 8 bit Yes

No Yes ldd 8 bit Yes

No No ldub, ldsb 8 bit Yes

No No lduh, ldsh 8 bit No

No No ld 8 bit No

No No ldd 8 bit Yes

Yes Don’t Care ldub, ldsb 8 bit Yes

Yes Don’t Care lduh, ldsh 8 bit No

Yes Don’t Care ld 8 bit No

Yes Don’t Care ldd 8 bit Yes

No Yes ldub, ldsb 32 bit Yes

No Yes lduh, ldsh 32 bit Yes

No Yes ld 32 bit Yes

No Yes ldd 32 bit Yes

No No ldub, ldsb 32 bit No

No No lduh, ldsh 32 bit No

No No ld 32 bit Yes

No No ldd 32 bit Yes

Yes Don’t Care ldub, ldsb 32 bit No

Yes Don’t Care lduh, ldsh 32 bit No

Yes Don’t Care ld 32 bit Yes

Yes Don’t Care ldd 32 bit Yes
188 microSPARC-IIep User’s Manual — April 1997



Mode, Timing, and Test Controls 11
11.1 Overview

This section will describe the following functions:

• Reset logic (Section 11.2)

• Phase-locked loop (Section 11.3)

• Power management (Section 11.4)

• Clock control logic (Section 11.5)

• JTAG architecture (Section 11.6)

• Boot options (Section 11.7)

The JTAG logic controls all the scan operation within the chip and in conjunction

with the clock start/stop logic, enables the single step operation of the chip for

debug purposes. All of the registers in the chip are scannable and are configured

as one single internal scan chain for testing as well as debugging the chip.

11.2 Reset Logic

11.2.1 General Reset and Watchdog Reset

When the reset input is active, the microSPARC-IIep CPU activates the PCI_RST#

when operating in PCI host mode. In satellite mode, the PCI_RST# signal is an in-

put pin and can reset the microSPARC-IIep if enabled (see Section 9.9, “System

Status and System Control (Reset) Register). All RAMs including the IU and FPU

register files, the data and instruction cache rams, and the TLB remain unchanged
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by the assertion of reset. On reset, state and pipeline registers internal to the IU

are programmed to predetermined states. All other registers in the microSPARC-

IIep CPU are reset to zero. See Section 9.9, “System Status and System Control

(Reset) Register.

The microSPARC-IIep reset controller performs the simple task of driving mi-

croSPARC-IIep’s internal reset lines, and inhibiting clocks during transitions on

those lines to avoid timing violations on the flip-flops being reset.

microSPARC-IIep has two reset operations:

1. General reset is triggered by:

• Assertion of INPUT_RESET_L input pin on powerup and or any

externally-triggered reset

• Programmed software reset (see Section 9.9, “System Status and

System Control (Reset) Register)

• Assertion of PCI_RST# while in PCI satellite mode and reset is

enabled (see Section 9.9, “System Status and System Control (Reset)

Register)

During general reset, all registers except those in clock and reset logic and

the TAP controller are reset. During scan-shift, INPUT_RESET_L is

disabled to prevent loss of non-resettable state.

2. Watchdog reset is triggered when the IU takes a trap and enters error state

while the ET bit of PSR is deasserted. However, the watchdog reset is

delayed until no loads, stores, or instructions are in progress.

During transitions on the reset lines, the reset controller has another output that

disables the outputs of the clock controller during transitions on the reset lines.

This allows the heavily-loaded reset signals to propagate throughout the chip

completely between clocks to avoid setup and hold time violations.
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Figure 11-1 Reset State Machine
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11
11.2.2 Reset Controller State Machine

The reset state machine is clocked at PCI_CLK. Assertion of RCC_RST synchro-

nously resets the state machine into the rst1 state from any other state. The state

machine will thus stay in state rst1 for as long as RCC_RST is asserted. After

completing a reset sequence, the state machine hangs in the idle state until either

IU_ERROR or RCC_RST is asserted. If IU_ERROR is asserted while in the idle

state, the state machine goes to state err1, waits there until MM_HOLD_RST is

deasserted, and then completes the reset sequence and returns to idle.

RESET_ANY and RESET_NONWD are asserted in states on2, on3, on4, rst1, rst2,

rst3, rst4, and off1; if the reset sequence was initiated by IU_ERROR, only

RESET_ANY is asserted; and if initiated by RCC_RST, both RESET_ANY and

RESET_NONWD are asserted.

Clocks are disabled in states on1, on2, on3, and on4 as the reset signal is turned

on; they are disabled again in states off1, off2, off3, and off4 as reset is turned off

again. This clock disabling does not put the clock state machine into the stopped

state; it merely gates off the clock outputs. The reset lines are always deasserted

during a clocks-disabled period, and for watchdog reset, they are asserted during

a clocks-disabled period.
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11.3 Phase-Locked Loop
microSPARC-IIep uses a phase-locked loop design to generate the internal high

frequency clock. Figure 11-2 shows the PLL block diagram.

.

Figure 11-2 Phase-Locked Loop Block Diagram

The ss_clock (REF_CLOCK) is the system clock inside microSPARC-IIep and is

targeted to be at 133 MHz. The PCI_CLK is the clock for some internal logic and

state machines that do not require a high frequency. The PCI input clock is used

in the PLL feedback loop such that the ss_clock is a multiple (3, 4, 5, or 6) of the

PCI input clock.

The REF_CLK has the same frequency as the ss_clock and is sent off chip for test-

ing purpose.
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The voltage controlled oscillator (VCO) generates a clock at twice the frequency

of ss_clock. Depending on PLL_BYP_L, different clock frequencies can be gener-

ated:

• PLL_BYP_L is asserted (i.e., tied to 0). EXT_CLK1 and EXT_CLK2 are XORed.

If they are 90 degrees out of phase, the clock generated from the XOR logic

runs at twice the frequency of EXT_CLK1. When PLL_BYP_L is asserted,

microSPARC-IIep operates in PCI host mode (i.e., microSPARC-IIep drives

PCI_CLK[3:0] output pins).

• PLL_BYP_L is deasserted (i.e., tied to 1).

• If EXT_CLK2 is tied to 1 at power-up, the microSPARC-IIep operates in

PCI satellite mode (i.e., an external PCI host droves the clock on the PCI

bus). In that case, the PCI clock supplied by the external PCI host is

connected to EXT_CLK1. The PCI_CLK[3:0] outputs of microSPARC-IIep

are unconnected.

• If EXT_CLK2 is not tied to 1 at power-up, then microSPARC-IIep operates

in PCI host mode (i.e., microSPARC-IIep drives PCI_CLK[3:0] output pins).

In that case the PCI_CLK[3:0] output pins are at the same frequency as that

of EXT_CLK1.

DIV_CNTL_ is used to select the divider ratio for the PCI_CLK (3, 4, 5, or 6).

The following expression summarizes the clock generation:

input_clk = PLL_BYP_L?(2x * DIV_CNTL * EXT_CLK1 frequency):(EXT_CLK1 XOR EXT_CLK2)

ss_clock will be half the frequency of input_clk.

Clock skew between ss_clock and PCI_CLK, ss_clock and REF_CLK should be

less than 1 ns. The PLL is designed to operate up to 400Mhz.

11.4 Power Management

List of microSPARC-IIep power management features:

• Cache RAM powerdown — Whenever the cache controllers detect that one of

the cache RAMs need not be accessed in a given clock cycle, that RAM is

automatically put into powerdown mode for that cycle. In this mode the RAM

consumes minimal power. This mode is used when the cache is disabled,

when the CPU is waiting for cache miss data to be returned from memory, or

when the chip is in standby mode.
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• The microSPARC-IIep includes a programmable bit in the MID register that

allows the processor to enter the power down mode internally, without the

need of an external monitor (see Section 5.9.3, “Memory Fault Status Register

(PA[30:0]=0x1000.1050)). When the processor sets the standby bit in the MID

register, all internal operations are allowed to complete, and if there is no

activity on the PCI bus, the processor will shutdown the internal clocks and

enter standby mode. While in standby, the processor parks the PCI bus at

itself if it is operating in the PCI host mode. Any request to use the PCI bus or

any interrupt activity (counters included) resets the bit of the MID register

and takes the processor out of standby mode.

DMA activity on the PCI bus takes the processor out of standby state by

resetting the MID register bit even though the processor is not involved. In

order for the processor to return to standby, the bit in the MID register must

be set again (i.e., idle loop).

• Self-refresh DRAM mode — In this mode, the DRAMs operate in self-refresh

mode (assuming that the DRAMs have self-refresh capability). It is controlled

by bit 13 of the PCR. After PCR[13] is written to 1, the DRAMs enter self-

refresh mode within 2 µs (see Section 5.3.1, “Processor Control Register

(VA[12:8]=0x00)).

11.5 Clock Control Logic

The microSPARC-IIep clock controller generates the clock signals used by all of

microSPARC-IIep (except the TAP controller) as well as the PCI_CLK[3:0].

PCI_CLK[3:0] drive external PCI devices when microSPARC-IIep is operating in

PCI host mode. Otherwise, these output pins are unconnected and clocks for PCI

devices are supplied by the external PCI host. Its operation is controlled by the

clock control register (CCR), a collection of internal register bits that is writable

only by JTAG. On reset, the CCR is cleared. Subsequent scan-shift operations can

be used to set bits of the CCR and alter the operation of clock state machine as

described in this section.

The microSPARC-IIep clock controller is designed to interface to a simple internal

cycle counter (ICC) for precise, at-speed control of system clocking. The ICC is a

simple binary counter, which increments on rising edges of PCI_CLK.

Note: The ICC is currently not accessible via scan or JTAG.
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The interface consists of three microSPARC-IIep I/O pins:

• PCI_CLKn — A clock output. This output is used to clock some external logic

as well as the ICC.

• ext_event (input) — This input is immediately registered in a PCI_CLK-

clocked flip-flop. Under control of some clock control register (CCR) bits, a

logic 1 in this flip-flop will cause clocks to stop either at the next rcc_clk edge

or the next PCI_CLK edge. This input should be driven by the terminal_count

output of the ICC, perhaps ORed with other externally-detected clock stop

signals. In a standard binary up-counter, the terminal count output is asserted

when the counter contains all 1's (i.e., a two's-complement value of -1).

• int_event (output) — This is the output of a PCI_CLK-clocked flip-flop. It is

asserted whenever an internally-detected event occurs (e.g., virtual address

match). These events can, under control of some CCR bits, stop clocks;

however, whether or not they stop clocks, they always cause assertion of the

int_event output. This output can be used to trigger a logic analyzer; in

addition, it can be used in conjunction with the ICC as described in Section

11.5.7, “Stop Clocks N Cycles after Internal Event.

In addition, there are two microSPARC-IIep input pins which control the internal

clock divider: it specifies the (RCC_CLK: PCI_CLK) frequency ratio D (see

Table 11-1).

The RCC_CLK range shown in Table 11-1 is the range of internal RCC_CLK fre-

quencies that is obtained when PCI_CLK spans its legal range up to 33 MHz. The

PHI[2:0] column shows the sequence of states traversed by the PHI[2:0] field of

the CCR in each PCI_CLK cycle: PHI[2:0] transitions to the next state in the se-

quence on each RCC_CLK rising edge, and the RCC_CLK rising edge which coin-

cides with the PCI_CLK rising edge always causes PHI[2:0] to transition to the 0

state.

Table 11-1 Internal Clock Divide Control

DIV_CTL[1:0]

 RCC_CLK Range

D (Clock Divide) RCC_CLK (MHz) PHI[2:0]

01 3 100 0,1,2

10 4 133 0,1,2,3

11 5 166 0,1,2,3,4

00 6 200 0,1,2,3,4,5
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The ICC/microSPARC-IIep interface runs at the PCI_CLK clock rate and the sig-

nal I/O connect directly to inputs or outputs of flip-flops within microSPARC-

IIep; thus, the ICC logic has nearly a full PCI cycle in which to set up its output

to the ext_event input.

11.5.1 Stopping Clocks

This does not require the use of the ICC. To stop clocks, set the stop_clocks CCR

bit.

11.5.2 Starting Clocks

This does not require the use of the ICC. To start clocks, set the start CCR bit.

11.5.3 Single-Step

This does not require the use of the ICC. From a clock-stopped state, set both the

stop_clocks and start bits of the CCR. A single active-low RCC_CLK pulse will be

issued, with a pulse width of 1/2 the normal RCC_CLK period; if the RCC_CLK

pulse causes PHI[2:0] to transition to the 0 state, a single active-low PCI_CLK

pulse will also be issued (its pulse width is 1/2 the normal PCI_CLK period and

its rising edge will coincide with the rising edge of RCC_CLK.

Figure 11-3 shows a divide-by-three example.
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Figure 11-3 Divide-by-3 Example

11.5.4 Counting Clocks

When the ICC is enabled, it increments on every rising edge of PIC_CLK[3:0].

Since the states of the ICC and the CCR are accessible via scan, the number of

clocks issued between any two points in time can be calculated by scanning out

the state information before clocks are started and again after they have been

stopped. The following formula can be used.

N = D*(ICC.after-ICC.before) + (phi.after-phi.before)

• D is the divider ratio (3, 4, 5, or 6) specified by DIV_CTL[1:0].

• ICC.before and ICC.after are the respective values of the external clock

counter before and after clocks have been issued.

• phi.before and phi.after are the corresponding values of the phi[2:0] bits of the

CCR.
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This formula assumes that ICC has not wrapped around; the ICC control logic

should contain a wraparound detector that can be read by scan.

11.5.5 Issuing N Clocks

The ICC can be used to issue exactly N system clocks, at full speed. N can be any

number from 1 to approximately D*(2^X), where D is the (rcc_clk: pci_clk) clock

divide ratio and X is the number of bits in ICC; for example, a 32-bit ICC lets us

control clocks over a 200-second range at 80-MHz operation in a divide-by-4

mode. This function does not require the use of the int_event output.

To issue N clocks from a clocks-stopped state, several CCR fields, as well as the

ICC register, are involved. You must scan a 1 into the start and stop_on_ext_event

control bits, copy (using scan) the current phi[2:0] field into the ref_phi[2:0] field,

and scan appropriate values into the extra_cycles[2:0] field and into the ICC. The

number of clocks issued is given by this formula:

N = D*(-ICC.before) + extra_cycles + 1;

where -ICC.before is the positive number gotten by taking the twos-complement

of the scanned-in ICC value. Thus, to issue N clocks, scan the twos-complement

of (N-1)/D into the ICC, and scan (N-1)%D into extra_cycles[2:0], where '/' is in-

teger divide with the remainder discarded, and '%' is the remainder of integer di-

vide. For example, to issue 17 clocks in divide-by-3 mode, you would scan -((17-

1)/3) = 0xfffffffb into the ICC, and (17-1)%3 = 1 into extra_cycles[2:0].

Because the value scanned into the ICC is treated as a negative number to be

counted up towards zero, the formula above works only when (N-1)/D > 0, i.e.

when (N > D). For (0 < N <= D), scan 00000000 into the ICC, scan 1 into the

ext_event_sb1 bit of the CCR, and scan (N-1)%D into extra_cycles[2:0].
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Here's a complete algorithm, including a few other CCR bits which must be set to

specific states:

if (N < 1)

error;

else {

ICC = -(N-1)/D;

CCR.extra_cycles = (N-1)%D;

CCR.ref_phi = CCR.phi;

if (N <= D)

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

CCR.start = 1; CCR.stop_on_ext_event = 1;

CCR.stop_int_to_ext = 0;

CCR.int_to_ext = 0;

CCR.ext_event_sb2 = 0;

}

11.5.6 Stop Clocks on Internal Event

This does not require the use of the ICC. To stop clocks on detection of an inter-

nal event, set the stop_on_int_event bit of the CCR and enable the desired inter-

nal event detection logic. Clocks will, with some limitations, stop at the end of

the rcc_clk cycle in which the input to the int_event flip-flop is asserted. The lim-

itation of this mode is that clocks cannot stop in phi==2 when D==3, phi==3

when D==4, or in phi==3 or 4 when D==5; if an internal event occurs in either of

these situations, clocks will stop one cycle later (i.e., in phi==0). Note that, since

the int_event flip-flop is clocked only on PCI_CLK edges, the int_event output

pin will not be set by the internal event which stops the clocks, unless clocks

have stopped in phi==0.

11.5.7 Stop Clocks N Cycles after Internal Event

In this mode, the ICC is held until an internal event occurs. The internal event

does not stop clocks, but causes assertion of the int_event output; the int_event

output will remain asserted until it is cleared by scan. The ICC is enabled to

count whenever int_event is asserted, so clocks will continue to run until
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ext_event is asserted, either by ICC or by another external event detector. The in-

tent of this mode is to issue exactly N more clocks than would have been issued

in stop_on_int_event mode (see above); i.e. exactly N clocks will be issued after

the first rcc_clock positive edge at which the input to the int_event flip-flop is as-

serted. Logic in the clock controller records the clock phase in which the internal

event occurred, and this information is factored into the subsequent clock stop on

external event, so that N can be any integer. Due to timing limitations, N must be

greater than D.

To support this mode, the ICC must have logic which, under scan control, holds

the count when int_event is not asserted.

To have clocks continue for exactly N cycles after the cycle in which the internal

event occurs, several CCR fields, as well as the ICC register, are involved. You

must scan a 1 into the start and int_to_ext CCR bits, scan a 0 into the

stop_on_ext_event and stop_int_to_ext CCR bits, and scan appropriate values

into the extra_cycles[2:0] field and into the ICC. The following formula gives the

number of additional clocks to be issued after the cycle in which the internal

event occurs:

N = D*(-ICC.before) + extra_cycles + D;

where -ICC.before is the positive number gotten by taking the twos-complement

of the scanned-in ICC value. Thus, to issue N clocks, scan the twos-complement

of (N/D - 1) into the ICC, and scan (N%D) into extra_cycles[2:0], where '/' is in-

teger divide with the remainder discarded, and '%' is the remainder of integer di-

vide. For example, to issue 35 clocks after an internal event in divide-by-4 mode,

you would scan -(35/4 - 1) = 0xfffffff9 into the ICC, and (35%4) = 3 into

extra_cycles[2:0]. As described for stop_on_ext_event mode, if the formula gives

an initial ICC value of 0, you must also scan a 1 into ext_event_sb1.
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Here's a complete algorithm:

if (N <= D)

error;

else {

ICC = -(N/D - 1);

CCR.extra_cycles = (N%D);

CCR.ref_phi = CCR.phi;

CCR.start = 1; CCR.int_to_ext = 1;

CCR.stop_on_ext_event = 0;

CCR.stop_int_to_ext = 0;

CCR.int_event = 0;

if (N < (2*D))

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

CCR.ext_event_sb2 = 0;

}

11.5.8 Stop Clocks after N Internal Events

In this mode clocks are stopped after the Nth detected internal event. Clocks are

stopped as described above for stop_on_int_event mode (see Section 11.5.7, “Stop

Clocks N Cycles after Internal Event), except that the first (N-1) PCI_CLK cycles

of int_event assertion are ignored. Due to the limited resolution of the ICC inter-

face, if more than one internal events occurs within a single PCI_CLK cycle, that

counts as only a single event.

This mode is enabled by the stop_nth_event CCR bit, and ICC needs a scannable

control bit which enables it to count only while int_event is active.
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To use this mode, you must load ICC with (2-N) and turn on stop_nth_event. As

with other modes described above, some special action is required if the initial

ICC value given by this formula is non-negative. Here is a complete algorithm:

if (N < 1)

error;

else {

ICC = (2 - N);

CCR.start = 1;

CCR.int_to_ext = 0;

CCR.stop_on_ext_event = 1;

CCR.stop_int_to_ext = 0;

CCR.int_event = 0; if (N == 1)

CCR.ext_event_sb2 = 1; else

CCR.ext_event_sb2 = 0;

if (N == 2)

CCR.ext_event_sb1 = 1;

else

CCR.ext_event_sb1 = 0;

}

11.5.9 Clock Control Register (CCR) Bits

Here is a list of the clock control register bits. These are accessible by scan only,

and their functionality is described above.

• start

• stop_clocks

• stop_on_int_event

• stop_on_ext_event

• stop_int_to_ext

• stop_nth_event

• extra_cycles[2:0]

• int_event

• ext_event_sb1

• ext_event_sb2

• phi[2:0] (Treat this as read only)

• ref_phi[2:0]
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11.6 JTAG Architecture

A variety of microSPARC-IIep test and diagnostic functions, including internal

scan, boundary scan and clock control, are controlled through an IEEE 1149.1

(JTAG) standard test access port (TAP). Commands and data are sent as serial

data between the JTAG master and the microSPARC-IIep chip (a JTAG slave), via

a 4 wire serial testability bus (JTAG bus). The TAP interfaces to the JTAG bus via

5 dedicated pins on the microSPARC-IIep chip. These pins are:

• TCK    - input - test clock

• TMS    - input - test mode select

• TDI    - input - test data input

• TRST_L - input - JTAG TAP reset (asynchronous)

• TDO    - output - test data output

For more details on the IEEE protocol, please refer to the IEEE document IEEE
Standard Test Access Port and Boundary-Scan Architecture, published by IEEE.

11.6.1 Board Level Architecture

Any microSPARC-IIep based system will contain several JTAG compatible chips.

These are connected using the minimum (single TMS signal) configuration as de-

scribed in the 1149.1 specification (Figure 3-1, IEEE 1149.1 standards manual).

This configuration contains three broadcast signals (TMS, TCK, and TRST,) which

are fed from the JTAG master to all JTAG slaves in parallel, and a serial path

formed by a daisy-chain connection of the serial test data pins (TDI and TDO) of

all slaves.

The TAP supports a BYPASS instruction which places a minimum shift path (1

bit) between the chip’s TDI and TDO pins. This allows efficient access to any sin-

gle chip in the daisy-chain without board-level multiplexing.

11.6.2 Test Access Port (TAP)

The TAP consists of a TAP controller, plus a number of shift registers including

an instruction register (IR) and multiple data registers.
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The TAP controller is a synchronous finite state machine which controls the se-

quence of operations of the JTAG test circuitry, in response to changes at the

JTAG bus. (Specifically, in response to changes at the TMS input with respect to

the TCK input.)

Note: The TAP controller is asynchronous with respect to the system clock(s),

and can therefore be used to control the clock control logic.

The TAP FSM implements the state (16 states) diagram as detailed in the 1149.1

protocol.

The IR is a 6-bit register which allows a test instruction to be shifted into mi-

croSPARC-IIep. The instruction selects the test to be performed and the test data

register to be accessed. The supported instructions are listed in Section 11.6.3,

“JTAG Instructions.

Although any number of loops may be supported by the TAP, the finite state ma-

chine in the TAP controller only distinguishes between the IR and a data register.

The specific data register can be decoded from the instruction in the IR.

The following data registers are supported in the microSPARC-IIep TAP:

• Bypass register — A single-bit shift register for efficient board-level scan

• Device I.D. register — A 32-bit register with the field shown in Figure 11-4

Figure 11-4 JDevice ID Register Contents

Field Definitions:

• [31:28]: Version — Represent the version number, which is 0x1 for this version

• [27:12]: Part ID — Represent part number as assigned by Vendor, which is

0x016d

• [11:01]: Manufacturer’s ID — Represent manufacturer’s ID as per JEDEC,

which is 0x36

• [0]: Const — Tied to a constant logic ’1’

0031 11

Ver

28 27 12

ConstManufacturer’s ID 0x36Part ID

01
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Value in ID Register: 32’h 00000009

• Data registers — A two bit clock control register to sample outputs from the

clock controller (CCR)

• Boundary Scan Register — A single scan chain consisting of all of the

boundary scan cells (input, output and in/out cells)

11.6.3 JTAG Instructions

The instruction listed in Table 11-2 are supported by the microSPARC-IIep TAP.

The table contains the bit-value and mnemonic, as well as which data register is

selected by that instruction.

Notes:

1. The TDO output becomes valid at the falling edge of TCK per the 1149.1

specifications. The TDI input (which is connected to TDO of the preceding

component) of the component to become stable to be clocked during the

rising edge of TCK.

2. The ATEINTEST operation is used to load the boundary scan flip-flops

after which, if it enters the run_test_idle state, the JTAG controller

generates a single TCK pulse.

Although, the capability exists to single step the chip through another

mechanism (using sys_clock itself), the ATEINTEST option provides the

capability to perform ICT on the ATE at a slow speed.

1. Encodings fixed by IEEE JTAG protocol.

Table 11-2 JTAG Instructions

Value Name of Instruction Data Register Scan Chains Accessed

0000001 EXTEST Boundary Scan Register Boundary Scan Chain

0000011 SAMPLE Boundary Scan Register Boundary Scan Chain

000010 INTEST Boundary Scan Register Boundary Scan Chain

000011 ATEINTEST Boundary Scan Register Boundary Scan Chain

100000 IDCODE JTAG ID Register ID Register Scan Chain

1111111 BYPASS Bypass Register Bypass Register

011110 SEC_CCR Clock Control Register Clock Control Register Chain

110000 CLD_RST Bypass Register Bypass Register
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3. The SEL_CCR is used to sample two bits (stopped) from the clock

controller block. These two bits are synchronized (2 stage synchronizer

using TCK) before being sampled during the shift-DR state.

11.6.4 JTAG Interface to MISC

The JTAG block provides two key signals to the clock controller section, two sig-

nals directly to the microSPARC-IIep core and a five wire control signal to the

boundary scan flip-flops.

11.6.4.1 Clock Controller Interface

Testclk and Testclken are the two signal that are generated in the JTAG block and

sent to the clock controller.

Testclken is an active high signal that switches the ss_clock (the 100MHz) to the

core from the normal 100MHz clock to the Testclk. This happens only for certain

JTAG instructions. They are:

SEL_INT_SCAN, SEL_DBG_SCAN, INTEST, ATEINTEST

For all other instructions (extest, sample, bypass, idcode, sel_ccr) testclken re-

mains inactive thus enabling the normal 70 MHz clock to microSPARC-IIep core.

The Testclken signal is synchronized inside the clock controller using the pci_clk

clock. By design Testclken is generated to be active at least three TCK cycles be-

fore the Testclk signal becomes active. Testclken signal changes state only during

the transition from exit1-IR state of the instruction scan cycle.

Testclk is a gated version of TCK and the gating signals are sel_instruction and

shift (function of shift_DR) and capture (capture-DR) states.

11.6.4.2 microSPARC-IIep Core Interface

Sys_sen (ss_scan_mode) and tg_strobe are two signals that go directly to the core

of microSPARC-IIep. Scan_mode signal is active high whenever the TAP enters

any of the four DR states: shift, exit1, pause or exit2.   During the last three states,

Testclk will not toggle and the state of the flip-flop remains the same as the last

bit scanned in during the shift state. It is necessary to activate the scan_mode sig-

nal during these three states, so that tri-states would remain disabled during re-

peat scan after going through exit1, pause, exit2 states. Sys_sen is a registered
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signal that is clocked on the falling TCK. This has been done to avoid race condi-

tions between the scan_mode signal and the shift clock (testclk) during the short-

est tap state traversal from select-DR to shift-DR.

Since the Sys_sen is a heavily loaded (goes to all flip-flops in the chip) signal, it

may have a longer rise time and not meet the setup time requirement for the

shortest tap state traversal to from select-DR to shift-DR. In such a case, the TCK

should not be run at greater than 5 MHz.

The tg_strobe signal is a pulse that is used as a self-timing trigger for the mega-

cells. It is generated during the update-DR state and adheres to the timing speci-

fied in the megacell document.

11.6.4.3 Boundary Control Interface

The five wire boundary control signal corresponds to: bin_cap, bout_cap, b_sen,

b_uen, b_mode.

bin_cap and bout_cap are generated during the capture-DR state and are used to

load the value on the pins or the output of the core to the boundary scan flip-flop.

b_sen is generated on the falling edge of the tck (to avoid race conditions) and is

used as a scan_en signal for the boundary scan flip-flop. b_uen is an update sig-

nal for the boundary scan update latch and it happens at the falling edge of TCK.

b_mode is a mux control signal that selects between the direct pin input and the

value in the update latch. This signal will change during the update-IR state and

when the tap goes back to test-logic-reset state on the falling edge of TCK.

11.6.4.4 RESET Mechanism

There is also an independent TRST_L signal which when active low would set the

TAP into the tap_logic_reset state. This signal will asynchronously set the TAP

state machine to the tap_logic_reset state. It adheres to the 1149.1 IEEE protocol

with respect to the initialization through reset mechanism. There is no minimum

active time requirement on this reset signal. If the board is not going to have an

extra oscillator for TCK, then the JTAG reset pin (TRST_L) can be tied to an active

low signal thus disabling JTAG operations in the chip.

The TDI and TMS inputs have pullups on the pad and when left unconnected

will be equivalent to a signal value ’1’ on these pins. With a free running TCK,

the TAP would get into the tap_logic_reset state at the end of five TCKs.
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11.6.5 JTAG Operation

The following are some of the basic operations which, when combined together

enables the user to run any of the JTAG instructions specified above. They are

provided here just for understanding the TAP state transitions during various

JTAG operations.

The JTAG I/O consists of TCK, TMS, TDI, TRST, and TDO. The first four are in-

puts and the last one is the output. All five are chip I/O. The other inputs to the

chip are either in a don’t care state or in a predetermined state. They should not

affect the operation of the JTAG controller. It should be noted, that, for a more ro-

bust operation of the chip, a proper procedure should be followed with regard to

getting in and out and back to JTAG operations.(for instance resetting the system

before and after JTAG operations. Once in the tap_logic_reset state, all outputs

from JTAG become inactive and the chip should be back to normal functional

mode.

The tap state encodings (in hex) are as follows:

f-test-logic-reset, c-run-test-idle, 7-select-DR, 6-capture-DR, 2-shift-DR, 1-exit1-
DR, 3-pause-DR, 0-exit2-DR, 5-update-DR, 4-select-IR, e-capture-IR, a-shift-IR,

9-exit1-IR, b-pause-IR, 8-exit2-IR, d-update-IR.

In order to run the JTAG instructions, the following TAP state traversal is done

for the various subtasks:

1. Instruction Scan

 f -->c -->7 -->4 --> e -->9 -->b -->8 -->a (for 6 clocks) --> 9

(the opcode is shifted thru tdi while in the shift-IR state)

2. Data Scan

9 -->b --> 8 --> d --> c -->7 -->6 -->1 --> 3 -->0 -->2(# of shifts equal to

length of scan chain) --> 1

(At state ’d’ the decode instruction is latched on the falling edge of TCK.

Data is shifted into appropriate data register during shift cycle and at the

end of shift exit to exit1-DR(1) state.)

3. Return to New Instruction

2 --> 1 -->3 --> 0 --> 5 --> c
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(wait in state c (run-test-idle) and go back to Instruction Scan step)

Figure 11-5 shows the JTAG logic block diagram. Figure 11-6 shows the JTAG

data and instruction registers.

Figure 11-5 JTAG Logic Block Diagram
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Figure 11-6 JTAG Data & Instruction Registers

11.6.6 CLK_RST TAP Instruction

The microSPARC-IIep clk_cntl block is a collection of non-scanned logic which

generates the various clock waveforms which are used both on and off the mi-

croSPARC-IIep chip. Although this logic is not directly scannable, microSPARC-

IIep implements a private TAP instruction for initializing the state of the flip-

flops in the clk_cntl block. This instruction is intended for use by a tester, since it

requires precise control of the waveforms driven onto the EXT_CLK1/EXT_CLK2

microSPARC-IIep input pins.
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The instruction mnemonic is CLK_RST, and its binary opcode is 110000. Its be-

havior is identical to that of the BYPASS instruction, except that the internal sig-

nal clk_rst_l is asserted whenever the CLK_RST opcode appears on the TAP

instruction register output latch (i.e. starting at the falling edge of JTAG_CK

when the TAP state machine is in the update-ir state — see IEEE Std 1149.1 for

details of the TAP state machine operation). While clk_rst_l is asserted, some of

the flip-flops in clk_cntl will be synchronously reset at the rising edge of the high-

speed input_clock.

It is intended that the CLK_RST operation (see Figure 11-7) be used only when

the microSPARC-IIep PLL_BYP_L input pin is driven to 0, i.e. when the internal

phase-locked-loop is being bypassed. In that mode, input_clock is equal to the

XOR of the EXT_CLK1 and EXT_CLK2 input pins. Here is an algorithm which

can be used to reset clk_cntl to a known state:

1. Apply clocks to JTAG_CK, drive JTAG_TDI=1, and drive PLL_BYP_L=0 for

the duration of the test. Drive EXT_CLK1=0 and EXT_CLK2=0 through

step 4 below, with the exception of a single 0->1->0 pulse on EXT_CLK1 in

step 4.

2. Assert JTAG_TRST_L, then de-assert it, to reset the TAP controller.

3. Apply this sequence of values to jtag_ms, applying a new value at each

negative edge of jtag_ck (the number below each value is a cycle count, for

reference):

(1, . . . 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, . . .) 0 1 2 3 4 5 6 7 8 9 10 11

Note that in cycle 5, the IR is parallel-loaded with 000001 (see rule 6.1.1.d).

In cycle 6 and 7, ones are shifted into the MSB end of the IR. The result is a

110000 in the IR.

4. In cycle 10 of the sequence above, apply a single 0->1->0 pulse to

EXT_CLK1. The rising edge of this pulse will reset the clk_cntl block.

5. After cycle 11 of the sequence above, clk_cntl has been reset and the TAP

controller is in the test-logic-reset state. You may now assert JTAG_TRST

and being applying clocks to EXT_CLK1 and EXT_CLK2 to start the test.
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Figure 11-7 JTAG Clk Reset Operation

11.7 Boot Options
The microSPARC-IIep provides 4 boot options (see Table 11-3). The options are

set via the BM_SEL[1:0] pins and these pins are programmer visible via bits 22:21

of the TLB replacement control register.

Options 00, 01 are described in Chapter 10, “Flash Memory Interface.

Options 10, 11 are intercepted by the PCIC.

• For option 10, the PCIC converts the boot address (0000.0000 - 00ff.ffff) to the

PCI address (f000.0000 - f0ff.ffff) directly in hardware and does not use any of

the AFX to PCI translation registers.

• For option 11, the PCIC converts the boot address (0000.0000 - 0000.ffff) to the

PCI address (7fff.0000 - 7fff.ffff) in hardware.

Table 11-3 Boot Mode Select (BM_SEL)

BM_SEL[1:0] Boot From:

00 32-Bit Flash memory on Memory Data Bus (cacheable)

01 8-Bit Flash memory on Memory Data Bus (cacheable)

10 PCI Bus, Addresses 0xf000.000 - 0xf0ff.ffff (non-cacheable)

11 PCI Bus, Addresses 0xffff.000 - 0xffff.ffff (non-cahceable)

jtag_ck

cycle                     0     1    2    3    4    5    6   7    8     9    10  11

jtag_ms

jtag_tdi

ext_clk1

ext_clk2

input_clock

clk_rst_l

clk_cntl FF
Mode, Timing, and Test Controls 213



11
Note: The above address conversions are for boot mode instruction accesses

only. Data accesses are treated normally and there are no restrictions while in

boot mode.
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Error Handling 12
The microSPARC-IIep CPU must detect and handle many kinds of errors and ex-

ceptions. The SPARC IU is interrupted by some type of trap in all CPU error cas-

es. DMA masters other than the CPU should cause their own IU trap via the

PCIC interrupt mechanism. Physical address references to nonexistent addresses

in any address space will either return garbage or cause timeouts. Table 12-1 de-

scribes what happens under various circumstances.

Table 12-1 Error Summary

Error Initiator Result Summary

Memory parity error

(Translation Error)

(Translation Error)

Instruction memory

access

set PE, FT=5, L, AT in SFSR

cause Instruction Access Error trap (D stage + 1)

IU, FPU read memory

access

set PE, ERR, CP, TYPE in MFSR

save PA in MFAR

cause L15 interrupt

IU, FPU write byte, half-

word memory access

(read-modify-write)

set PE, ERR, CP, TYPE in MFSR

save PA in MFAR

cause L15 interrupt

Tablewalk on instruction

memory access

set PE, FT=4, L, AT in SFSR

cause Instruction Access Error trap (D stage)

Tablewalk on IU, FPU

data memory access

set PE, FT=4, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Error trap (R stage)
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Note: When a parity error is detected on a DVMA memory read, the level 15

interrupt is set reporting that error and in addition, the MFSR may also

incorrectly attempt to report that same error. The information in the MFSR may

be invalid in this case and should be cleared and ignored.

Invalid address error ET=0 during tablewalk

on instruction memory

access

set FT=1, L, AT in SFSR

cause Instruction Access Exception trap (D stage)

ET=0 during tablewalk

on IU, FPU data memory

access

set FT=1, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Translation Error ET=3 during tablewalk

on instruction memory

access

set FT=4, L, AT in SFSR

cause Instruction Access Error trap (D stage)

ET=3 during tablewalk

on IU, FPU data memory

access

set FT=4, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Error trap (R stage)

Control space error CPU invalid ASI access set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

CPU invalid size of

access

set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

CPU invalid virtual

address during ASI

requiring VA

set FT=5, L, FAV, CS in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Privilege violation

error (S bit and not

ACC 6,7)

IU instruction memory

access

set FT=3, L, AT in SFSR

cause Instruction Access Exception trap (D stage)

Privilege Violation

Error (ACC and ASI

checked)

IU, FPU data memory

access

set FT=3, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Protection Error (Mem-

ory page ACC and the

ASI are checked)

IU, FPU data memory

access

set FT=2, L, AT, FAV in SFSR

save iu_dva in SFAR

cause Data Access Exception trap (R stage)

Protection Error (Mem-

ory page ACC is

checked)

IU, FPU data memory

access

set FT=2, L, AT, FAV in SFSR

cause Instruction Access Exception trap (D stage)

Table 12-1 Error Summary (Continued)

Error Initiator Result Summary
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ASI Map A
This chapter describes the microSPARC-IIep ASI map. The address space identifi-

er (ASI) is appended to the virtual address by the SPARC IU when it accesses

memory. The ASI encodes whether the processor is in supervisor or user mode,

and whether an access is to instruction or data memory. It is also used to perform

other internal CPU functions.
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Table A-1 lists all of the ASI values supported in a microSPARC-IIep system.

Only the least significant 6 bits of the ASI are decoded.

Table A-1 ASI’s Supported by microSPARC-IIep

ASI Function Acc Size Details

00 Reserved - -

01-02 Unassigned - -

03 Ref MMU Flush/Probe R/W Single Section 5.8

04 MMU Registers R/W Single Section 5.3

05 Unassigned - -

06 Ref MMU Diagnostics R/W Single Section 5.7

07 Unassigned - -

08 User Instruction R/W All

09 Supervisor Instruction R/W All

0A User Data R/W All

0B Supervisor Data R/W All

0C Instruction Cache Tag R/W Single Section 7.3, Section 7.5

0D Instruction Cache Data R/W Single Section 7.2

0E Data Cache Tag R/W Single Section 6.3, Section 6.7

0F Data Cache Data R/W Single Section 6.2

10 Flush I&D Cache Line (page) W Single Section 6.7

11 Flush I&D Cache Line (seg) W Single Section 6.7

12 Flush I&D Cache Line (reg) W Single Section 6.7

13 Flush I&D Cache Line (ctxt) W Single Section 6.7

14 Flush I&D Cache Line (user) W Single Section 6.7

15-1F Reserved - -

21-3F Reserved - -

40-FF Reserved - -
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ASI Descriptions:

• ASI=0x00

Reserved — This space is architecturally reserved.

• ASI=0x01-0x02

Unassigned — This space is unassigned and may be used in the future.

• ASI=0x03

Reference MMU Flush/Probe — This space is used for a flush or probe

operation.

A flush is caused by a single STA instruction and a probe by a single LDA

instruction. Flushes are used to maintain TLB consistency by conditionally

removing one or more page descriptors.

Probes cause the MMU to perform a table walk. The table walk will stop

when a PTE has been reached (see Table 5-17 on page 83).

• ASI=0x04

Reference MMU Registers — This space is used to read and write internal

MMU registers using the virtual address to reference them. Single word

accesses only should be used, others result in an error.

• ASI=0x05

Unassigned — This space is unassigned and may be used in the future.

• ASI=0x06

Reference MMU Diagnostics — Diagnostic reads and writes can be made

to the 32 TLB entries using the virtual address to specify which entry and

whether the PTE or Tag section is to be referenced.

• ASI=0x07

Unassigned — This space is unassigned and may be used in the future.

• ASI=0x08

User Instruction — This space is defined and reserved by SPARC for user

instructions.
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• ASI=0x09

Supervisor Instruction — This space is defined and reserved by SPARC for

supervisor instructions.

• ASI=0x0A

User Data — This space is defined and reserved by SPARC for user data.

• ASI=0x0B

Supervisor Data — This space is defined and reserved by SPARC for

supervisor data.

• ASI=0x0C

Instruction Cache Tag — This space is used for reading and writing

instruction cache tags by using the LDA and STA instructions at virtual

addresses in the range of 0x0 to 0x03FFF on modulo-32 boundaries.

• ASI=0x0D

Instruction Cache Data — This space is used for reading and writing

instruction cache data by using the LDA and STA instructions at virtual

addresses in the range of 0x0 to 0x03FFF.

• ASI=0x0E

Data Cache Tag — This space is used for reading and writing data cache

tags by using the LDA and STA instructions at virtual addresses in the

range of 0x0 to 0x01FFF on modulo-16 boundaries.

• ASI=0x0F

Data Cache Data — This space is used for reading and writing data cache

data by using the LDA and STA instructions in ASI 0xF at virtual addresses

in the range of 0x0 to 0x01FFF.

• ASI=0x10-0x14

Flush I & D Cache Line — These spaces are used to flush single cache lines

by using the STA instruction to one of these spaces.This results in a single

line being removed from both I and D caches.

• ASI=0x15-0x1F

Reserved — This space is architecturally reserved.
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• ASI=0x20

Reference MMU Bypass — The MMU does not perform an address

translation rather a physical address is formed from the least significant 31

bits of the virtual address (PA[30:00] = VA[30:00]).

• ASI=0x21-0x3F

Reserved — This space is architecturally reserved.

• ASI=0x40-0xFF

Reserved — Since the 2 high order bits are not decoded these encodings

should not be used. If they are used the two upper bits are ignored and

only the lower 6 bits will be decoded.
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Physical Memory Address Map B
The physical address space for microSPARC-IIep is mapped into eight address

spaces based on the upper three bits of the physical address(PA[30:28]). Table B-1

defines the address spaces and the corresponding address space.

Table B-1 Physical Address Space

PA[30:28] Address Space

000 Main Memory Space (256 MByte)

001 Control Space (Sun-4M system registers, 256 MByte)

010 Flash Memory Space (256 MByte)

011 PCI Space (256 MByte)

100 Reserved I/O Space: Should not be accessed.

101 Reserved I/O Space: Should not be accessed.

110 Reserved I/O Space: Should not be accessed.

111 Reserved I/O Space: Should not be accessed.
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EDO 113
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Error mode 40
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PCI retry counter 143
PCI status register 142
PCI trdy counter 143
PCIC arbitration assignment select register 160
PCIC arbitration control register 165
PCIC clear system interrupt pending register 171
PCIC configuration registers 138, 139
PCIC DVMA (IAFX master) control register 164
PCIC interrupt assignment select register 167
PCIC PIO (IAFX slave) control register 162
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PCIC slave interface 149, 152
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Performance counter B 94
Physical address 22
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R register 38
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RETT instruction 16, 27, 28, 35
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S
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Shifts 31
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TRAP instruction 28
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