
Intel® SSE4 Programming Reference

Reference Number: D91561-004
September 2007
i

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 2006-2007 Intel Corporation
ii

CHAPTER 1
STREAMING SIMD EXTENSIONS 4
1.1 INTRODUCTION . 1
1.2 SSE4 OVERVIEW. 1

CHAPTER 2
SSE4 FEATURES
2.1 NEW DATA TYPES . 3
2.2 SSE4.1 INSTRUCTION SET . 3
2.2.1 Dword Multiply Instructions. .3
2.2.2 Floating-Point Dot Product Instructions .3
2.2.3 Streaming Load Hint Instruction. .4
2.2.4 Packed Blending Instructions .4
2.2.5 Packed Integer MIN/MAX Instructions .5
2.2.6 Floating-Point Round Instructions with Selectable Rounding Mode5
2.2.7 Insertion and Extractions from XMM Registers. .6
2.2.8 Packed Integer Format Conversions .6
2.2.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks 7
2.2.10 Horizontal Search .8
2.2.11 Packed Test .8
2.2.12 Packed Qword Equality Comparisons .8
2.2.13 Dword Packing With Unsigned Saturation. .9
2.2.14 IEEE 754 Compliance. .9
2.3 SSE4.2 INSTRUCTION SET . 10
2.3.1 String and Text Processing Instructions .10
2.3.1.1 Memory Operand Alignment. .11
2.3.2 Packed Comparison SIMD integer Instruction .12
2.3.3 Application-Targeted Accelerator Instructions. .12

CHAPTER 3
APPLICATION PROGRAMMING MODEL
3.1 CPUID . 13
3.2 DETECTING SSE4 INSTRUCTIONS . 39
3.2.1 Detecting SSE4.1 Instructions Using CPUID. .39
3.2.2 Detecting SSE4.2 Instructions Using CPUID. .39
3.3 EXCEPTIONS AND SSE4 . 40

CHAPTER 4
SYSTEM PROGRAMMING MODEL
4.1 ENABLING SSE4 . 41
4.2 DEVICE NOT AVAILABLE (DNA) EXCEPTIONS . 41
4.3 SSE4 EMULATION . 42

CHAPTER 5
SSE4 INSTRUCTION SET
5.1 INSTRUCTION FORMATS . 43
5.2 NOTATIONS . 43
iii

5.3 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI /
PCMPISTRM . 44

5.3.1 General Description . 44
5.3.1.1 Source Data Format . 45
5.3.1.2 Aggregation Operation . 46
5.3.1.3 Polarity . 48
5.3.1.4 Output Selection . 48
5.3.1.5 Valid/Invalid Override of Comparisons . 49
5.3.1.6 Summary of Im8 Control byte . 50
5.3.1.7 Diagram Comparison and Aggregation Process . 51
5.4 INSTRUCTION REFERENCE. 51

BLENDPD — Blend Packed Double Precision Floating-Point Values. 52
BLENDPS — Blend Packed Single Precision Floating-Point Values. 54
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values 56
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values 58
CRC32 — Accumulate CRC32 Value . 61
DPPD — Dot Product of Packed Double Precision Floating-Point Values. 65
DPPS — Dot Product of Packed Single Precision Floating-Point Values. 68
EXTRACTPS — Extract Packed Single Precision Floating-Point Value 71
INSERTPS — Insert Packed Single Precision Floating-Point Value 74
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint 77
MPSADBW — Compute Multiple Packed Sums of Absolute Difference 80
PACKUSDW — Pack with Unsigned Saturation . 84
PBLENDVB — Variable Blend Packed Bytes . 87
PBLENDW — Blend Packed Words . 90
PCMPEQQ — Compare Packed Qword Data for Equal . 93
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index 95
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask 98
 PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 101
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask. 104
PCMPGTQ — Compare Packed Data for Greater Than . 107
PEXTRB — Extract Byte. 110
PEXTRD/PEXTRQ — Extract Dword/Qword . 112
PEXTRW — Extract Word . 115
PHMINPOSUW — Packed Horizontal Word Minimum . 118
PINSRB — Insert Byte . 121
PINSRD/PINSRQ — Insert Dword/Qword . 123
PMAXSB — Maximum of Packed Signed Byte Integers . 126
PMAXSD — Maximum of Packed Signed Dword Integers . 129
PMAXUD — Maximum of Packed Unsigned Dword Integers . 131
PMAXUW — Maximum of Packed Word Integers . 133
PMINSB — Minimum of Packed Signed Byte Integers . 136
PMINSD — Minimum of Packed Dword Integers . 139
PMINUD — Minimum of Packed Dword Integers . 141
PMINUW — Minimum of Packed Word Integers. 143
PMOVSX — Packed Move with Sign Extend. 146
PMOVZX — Packed Move with Zero Extend . 149
PMULDQ — Multiply Packed Signed Dword Integers. 152
iv

PMULLD — Multiply Packed Signed Dword Integers and Store Low Result154
POPCNT — Return the Count of Number of Bits Set to 1 .156
PTEST- Logical Compare. .159
ROUNDPD — Round Packed Double Precision Floating-Point Values161
ROUNDPS — Round Packed Single Precision Floating-Point Values165
ROUNDSD — Round Scalar Double Precision Floating-Point Values.168
ROUNDSS — Round Scalar Single Precision Floating-Point Values171

APPENDIX A
INSTRUCTION SUMMARY AND ENCODINGS
1.1 SSE4.1 INSTRUCTION SUMMARY AND ENCODINGS. 175
1.2 SSE4.2 INSTRUCTION SUMMARY AND ENCODINGS. 185

APPENDIX B
INSTRUCTION OPCODE MAP

FIGURES
Figure 2-1. MPSADBW Operation .8
Figure 3-1. Version Information Returned by CPUID in EAX .21
Figure 3-2. Extended Feature Information Returned in the ECX Register .24
Figure 3-3. Feature Information Returned in the EDX Register .26
Figure 3-4. Determination of Support for the Processor Brand String. .35
Figure 3-5. Algorithm for Extracting Maximum Processor Frequency .37
Figure 5-1. Operation of PCMPSTRx and PCMPESTRx .51
Figure 5-2. Bit Control Fields of Immediate Byte for ROUNDxx Instruction 161

TABLES
Table 2-1. Enhanced 32-bit SIMD Multiply Supported by SSE4.1 3
Table 2-2. Blend Field Size and Control Modes Supported by SSE4.1 5
Table 2-3. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1 5
Table 2-4. New SIMD Integer conversions supported by SSE4.1. 7
Table 2-5. New SIMD Integer Conversions Supported by SSE4.1 7
Table 2-6. Enhanced SIMD Pack support by SSE4.1 . 9
Table 2-7. SIMD numeric exceptions signaled by SSE4.1 . 10
Table 3-1. Information Returned by CPUID Instruction . 14
Table 3-2. Highest CPUID Source Operand for Intel 64 and IA-32 Processors 20
Table 3-3. Processor Type Field . 22
Table 3-4. More on Extended Feature Information Returned

in the ECX Register . 24
Table 3-5. More on Feature Information Returned in the EDX Register 26
Table 3-6. Encoding of Cache and TLB Descriptors . 30
Table 3-7. Processor Brand String Returned with Pentium 4 Processor. 36
Table 3-8. Mapping of Brand Indices; and

Intel 64 and IA-32 Processor Brand Strings. 38
Table 5-1. Source Data Format . 45
v

Table 5-2. Aggregation Operation. 46
Table 5-3. Aggregation Operation. 46
Table 5-4. Polarity . 48
Table 5-5. Ouput Selection . 48
Table 5-6. Output Selection . 48
Table 5-7. Comparison Result for Each Element Pair BoolRes[i.j] 49
Table 5-8. Summary of Imm8 Control Byte. 50
Table 5-9. Rounding Modes and Encoding of Rounding Control (RC) Field 162
Table A-1. SSE4.1 Instruction Set Summary . 175
Table A-2. Encodings of SSE4.1 instructions . 177
Table A-3. SSE4.2 Instruction Set Summary . 185
Table A-4. Encodings of SSE4.2 instructions . 186
Table B-1. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are 0F 38H) 189
Table B-2. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) 189
Table B-3. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are 0F 3AH) 190
Table B-4. Three-byte Opcode Map: 80H — FFH (First Two Bytes are 0F 3AH) 190
vi

STREAMING SIMD EXTENSIONS 4
CHAPTER 1
STREAMING SIMD EXTENSIONS 4

1.1 INTRODUCTION
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions in Intel
64 processors made from 45 nm process technology.

• 47 of the SSE4 instructions are available in 45 nm Intel processors based on the
successor of Intel CoreTM microarchitecture (code named Penryn). This subset of
47 SSE4 instruction is referred to as SSE4.1 in this document.

• SSE4.1 and seven other new SSE4 instructions are supported in 45 nm Intel
processors based on a new microarchitecture (code named Nehalem). The subset
of the 7 new SSE4 instructions available to Intel processors based on the
Nehalem microarchitecture is referred to as SSE4.2 in this document.

1.2 SSE4 OVERVIEW
SSE4.1 is targeted to improve the performance of media, imaging, and 3D work-
loads. SSE4.1 adds instructions that improve compiler vectorization and significantly
increase support for packed dword computation. The technology also provides a hint
that can improve memory throughput when reading from uncacheable WC memory
type.

The 47 SSE4.1 instructions (see Appendix A, “Instruction Summary and Encodings”)
include:

• Two instructions perform packed dword multiplies.

• Two instructions perform floating-point dot products with input/output selects.

• One instruction performs a load with a streaming hint.

• Six instructions simplify packed blending.

• Eight instructions expand support for packed integer MIN/MAX.

• Four instructions support floating-point round with selectable rounding mode and
precision exception override.

• Seven instructions improve data insertion and extractions from XMM registers

• Twelve instructions improve packed integer format conversions (sign and zero
extensions).

• One instruction improves SAD (sum absolute difference) generation for small
block sizes.

• One instruction aids horizontal searching operations.

• One instruction improves masked comparisons.
1

STREAMING SIMD EXTENSIONS 4
• One instruction adds qword packed equality comparisons.

• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions improve performance in the following areas:

• String and text processing that can take advantage of single-instruction multiple-
data programming techniques.

• Application-targeted accelerator (ATA) instructions.

• A SIMD integer instruction that enhances the capability of the 128-bit integer
SIMD capability in SSE4.1.

SSE4 requires no new OS support to save and restore the register state beyond what
is required by Streaming SIMD Extensions (SSE). There are six SSE4.1 instructions
which generate numeric (SIMD floating-point) exceptions, thus requiring the OS to
provide IEEE-754 compliant event handlers for post-compute exception (similar to
SSE/SSE2/SSE3 instructions). SSE4.2 instructions do not generate SIMD floating-
point exceptions. See Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 1 , Appendix E.

SSE4 is fully compatible with software written for previous generations of Intel 64
and IA-32 architecture microprocessors. All existing software continues to run
correctly without modification on microprocessors that incorporate SSE4, as well as
in the presence of existing and new applications that incorporate SSE4.
2

SSE4 FEATURES
CHAPTER 2
SSE4 FEATURES

2.1 NEW DATA TYPES
SSE4 does not introduce any new data types.

2.2 SSE4.1 INSTRUCTION SET
SSE4.1 instructions can use an XMM register as a source or destination. Program-
ming SSE4.1 is similar to programming 128-bit Integer SIMD and floating-point
SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does not provide any 64-bit
integer SIMD instructions.

2.2.1 Dword Multiply Instructions
SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four
simultaneous 32 bit by 32 bit multiplies. PMULLD returns a low 32-bits of the result
and PMULDQ returns a 64-bit signed result. These represent the most common
integer multiply operation. See Table 2-1.

2.2.2 Floating-Point Dot Product Instructions
SSE4.1 adds double-precision (for 2 elements; DPPD) and single-precision dot prod-
ucts (for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which
generally improves the usability. For example, a single DPPS instruction can be used
for a 2, 3, or 4 element dot product.

Table 2-1. Enhanced 32-bit SIMD Multiply Supported by SSE4.1

32 bit Integer Operation
unsigned x unsigned signed x signed

R
es

ul
t

Low 32-bit (not available) PMULLD
High 32-bit (not available) (not available)
64-bit PMULUDQ* PMULDQ

NOTE:
* Available prior to SSE4.1.
3

SSE4 FEATURES
2.2.3 Streaming Load Hint Instruction
Historically, CPU read accesses of WC memory type regions have significantly lower
throughput than accesses to cacheable memory.

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint
that can cause adjacent 16-byte items within an aligned 64-byte region (a streaming
line) to be fetched and held in a small set of temporary buffers (“streaming load buff-
ers”). Subsequent streaming loads to other aligned 16-byte items in the same
streaming line may be supplied from the streaming load buffer and can improve
throughput.

Programmers are advised to use the following practices to improve the efficiency of
MOVNTDQA streaming loads from WC memory:

• Streaming loads must be 16-byte aligned.

• Temporally group streaming loads of the same streaming cache line for effective
use of the streaming load buffers. Loads issued much later may cause the
streaming line to be refetched from memory.

• Temporally group streaming loads from at most a few streaming lines together.
The number of streaming load buffers is small; grouping a modest number of
streams will avoid running out of streaming load buffers and the resultant
refetching of streaming lines from memory.

• Avoid writing to a streaming line until all reads to 16-byte items have occurred.
Reading a 16-byte item from a streaming line that has been written, may cause
the streaming line to be refetched.

• Avoid reading a given 16-byte item within a streaming line more than once;
repeated loads of a particular 16-byte item are likely to cause the streaming line
to be refetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are
not required to be snooped by operations from other agents. Software should not
rely upon such coherency actions to provide any data coherency with respect to
other logical processors or bus agents. Rather, software must employ memory
fences (i.e. the MFENCE instruction) to insure the consistency of WC memory
accesses between producers and consumers.

• Streaming loads must not be used to reference memory addresses that are
mapped to I/O devices having side effects or when reads to these devices are
destructive. This is because MOVNTDQA is speculative in nature.

2.2.4 Packed Blending Instructions
SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS,
BLENDVPD, PBLENDVB, PBLENDW).

Blending conditionally copies a field in a source operand to the same field in the des-
tination. SSE4.1 instructions improve blending operations for most field sizes. A sin-
gle new SSE4.1 instruction can generally replace a sequence of 2 to 4 operations
using previous architectures.
4

SSE4 FEATURES
The variable blend instructions (BLENDVPS, PBLENDVPD, PBLENDW) introduce the
use of control bits stored in an implicit XMM register (XMM0). The most significant
bit in each field (the sign bit, for 2’s compliment integer or floating-point) is used as
a selector. See Table 2-2.

2.2.5 Packed Integer MIN/MAX Instructions
SSE4.1 adds 8 packed integer MIN and MAX instructions (PMINUW, PMINUD,
PMINSB, PMINSD; PMAXUW, PMAXUD, PMAXSB, PMAXSD).

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed
dwords. Two instructions operate on signed bytes. Two instructions operate on un-
signed words. See Table 2-3.

2.2.6 Floating-Point Round Instructions with Selectable Rounding Mode
High level languages and libraries often expose rounding operations having a variety

Table 2-2. Blend Field Size and Control Modes Supported by SSE4.1

Instructions

Packed
Double
FP

Packed
Single
FP

Packed
QWord

Packed
DWord

Packed
Word

Packed
Byte

Blend
Control

BLENDPS X Imm8
BLENDPD X Imm8
BLENDVPS X X(1) XMM0
BLENDVPD X X(1) XMM0
PBLENDVB (2) (2) (2) X XMM0
PBLENDW X X X Imm8
NOTE:
1. Use of floating-point SIMD instructions on integer data types may incur performance penalties.
2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend control.

Table 2-3. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1

Integer Width
Byte Word DWord

Integer
Format Unsigned

PMINUB*
PMAXUB*

PMINUW
PMAXUW

PMINUD
PMAXUD

Signed
PMINSB
PMAXSB

PMINSW*
PMAXSW*

PMINSD
PMAXSD

NOTE:
* Available prior to SSE4.1.
5

SSE4 FEATURES
of numeric rounding and exception behaviors. Using SSE/SSE2/SSE3 instructions to
mitigate the rounding-mode-related problem is sometimes not straight forward.

SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS,
ROUNDSD) that cover scalar and packed single- and double-precision floating-point
operands. The rounding mode can be selected using an immediate from one of the
IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current
rounding mode; or the the instruction can be forced to use the current rounding
mode. Another bit in the immediate is used to suppress inexact precision exceptions.

Rounding instructions in SSE4.1 generally permit single-instruction solutions to C99
functions ceil(), floor(), trunc(), rint(), nearbyint(). These instructions simplify the
implementations of half-way-away-from-zero rounding modes as used by C99
round() and F90’s nint().

2.2.7 Insertion and Extractions from XMM Registers
SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics)
that simplify data insertion and extraction between general-purpose register (GPR)
and XMM registers (EXTRACTPS, INSERTPS, PINSRB, PINSRD, PINSRQ, PEXTRB,
PEXTRW, PEXTRD, and PEXTRQ). When accessing memory, no alignment is required
for any of these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single-precision floating-point value from any offset in an
XMM register and stores the result to memory or a general-purpose register. IN-
SERTPS inserts a single floating-point value from either a 32-bit memory location or
from an XMM register. In addition, INSERTPS allows the insertion of +0.0f into des-
tination fields.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or qword values from 32/64 reg-
isters or memory into an XMM register. Word values were already supported by SSE2
(PINSRW).

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and qword from
an XMM register and insert the values into a general-purpose register or memory.

2.2.8 Packed Integer Format Conversions
A common type of operation on packed integers is the conversion by zero- or sign-
extension of packed integers into wider data types. SSE4.1 adds 12 instructions that
convert from a smaller packed integer type to a larger integer type (PMOVSXBW,
PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ,
PMOVZXBQ, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ).

The source operand is from either an XMM register or memory; the destination is an
XMM register. See Table 2-4.

When accessing memory, no alignment is required for any of the instructions unless
alignment checking is enabled. In which case, all conversions must be aligned to the
width of the memory reference. The number of elements converted (and width of
memory reference) is illustrated in Table 2-5. The alignment requirement is shown
6

SSE4 FEATURES
in parenthesis.

2.2.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD opera-
tions per instruction. Compared to PSADBW, MPSADBW operates on smaller chunks
(4-byte instead of 8-byte chunks); this makes the instruction better suited to video
coding standards such as VC.1 and H.264. MPSADBW performs four times the
number of absolute difference operations than that of PSADBW (per instruction). This
can improve performance for dense motion searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte
field within the 128-bit source operand is specified by two immediate control bits.
MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD result is formed from
overlapping pairs of 4 bytes in the destination with the 4-byte field from the source
operand. MPSADBW uses eleven consecutive bytes in the destination operand, its
offset is specified by a control bit in the immediate byte (i.e. the offset can be from
byte 0 or from byte 4). Figure 2-1 illustrates the operation of MPSADBW. MPSADBW
can simplify coding of dense motion estimation by providing source and destination
offset control, higher throughput of SAD operations, and the smaller chunk size.

Table 2-4. New SIMD Integer conversions supported by SSE4.1

Source Type
Byte Word Dword

D
es

tin
at

io
n

Ty
pe

Signed Word
Unsigned Word

PMOVSXBW
PMOVZXBW

Signed Dword
Unsigned Dword

PMOVSXBD
PMOVZXBD

PMOVSXWD
PMOVZXWD

Signed Qword
Unsigned Qword

PMOVSXBQ
PMOVZXBQ

PMOVSXWQ
PMOVZXWQ

PMOVSXDQ
PMOVZXDQ

Table 2-5. New SIMD Integer Conversions Supported by SSE4.1

Source Type
Byte Word Dword

D
es

tin
at

io
n

Ty
pe

Word 8 (64 bits)
Dword 4 (32 bits) 4 (64 bits)
Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)
7

SSE4 FEATURES
2.2.10 Horizontal Search
SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location
of the minimum unsigned word from one of 8 horizontally packed unsigned words.
The resulting value and location (offset within the source) are packed into the low
dword of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and
PHMINPOSUW can be used together to improve video encode.

2.2.11 Packed Test
The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy in-
struction TEST. With PTEST, the source argument is typically used like a bit mask.

PTEST performs a logical AND between the destination with this mask and sets the
ZF flag if the result is zero. The CF flag (zero for TEST) is set if the inverted mask
AND’d with the destination is all zero. Because the destination is not modified, PTEST
simplifies branching operations (such as branching on signs of packed floating-point
numbers, or branching on zero fields).

2.2.12 Packed Qword Equality Comparisons
SSE4.1 adds a 128-bit packed qword equality test. The new instruction (PCMPEQQ)
is identical to PCMPEQD, but has qword granularity.

Figure 2-1. MPSADBW Operation

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Source

Destination

0127 16

0127 96 64
8

SSE4 FEATURES
2.2.13 Dword Packing With Unsigned Saturation
SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack
instructions in the family of SIMD instruction extensions. PACKUSDW packs dword to
word with unsigned saturation. See Table 2-6 for the complete set of packing instruc-
tions for small integers.

2.2.14 IEEE 754 Compliance
The six SSE4.1 instructions that perform floating-point arithmetic are:

• DPPS

• DPPD

• ROUNDPS

• ROUNDPD

• ROUNDSS

• ROUNDSD

Dot Product operations are not specified in IEEE-754. When neither FTZ nor DAZ are
enabled, the dot product instructions resemble sequences of IEEE-754 multiplies and
adds (with rounding at each stage), except that the treatment of input NaN’s is
implementation specific (there will be at least one NaN in the output). The input
select fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply
and will suppress input exceptions that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or
DPPD leave the destination unmodified.

Round operations signal invalid and precision only.

Table 2-6. Enhanced SIMD Pack support by SSE4.1

Pack Type
DWord -> word Word -> Byte

Sa
tu

ra
tio

n
Ty

pe

Unsigned PACKUSDW (new!) PACKUSWB
Signed PACKSSDW PACKSSWB
9

SSE4 FEATURES
The other SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD,
BLENDVPS, BLENDVPD, INSERTPS, EXTRACTPS) do not signal any SIMD numeric
exceptions.

2.3 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
word compare SIMD instruction. Programming these five SSE4.2 instructions is
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not
provide any 64-bit integer SIMD instructions.

The remaining two SSE4.2 instructions uses general-purpose registers to perform
accelerated processing functions in specific application areas.

2.3.1 String and Text Processing Instructions
String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a
rich set of string and text processing capabilities that traditionally required many
more opcodes. These 4 instructions use XMM registers to process string or text
elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate
byte to support a rich set of programmable controls. A string-processing SSE4.2
instruction returns the result of processing each pair of string elements using either
an index or a mask.

The capabilities of the string/text processing instructions include:

• Handling string/text fragments consisting of bytes or words, either signed or
unsigned

Table 2-7. SIMD numeric exceptions signaled by SSE4.1

DPPS DPPD ROUNDPS
ROUNDSS

ROUNDPD
ROUNDSD

Overflow X X
Underflow X X
Invalid X X X (1) X (1)

Inexact Precision X X X (2) X (2)

Denormal X X
NOTE:
1. Invalid is signaled only if Src = SNaN.
2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1’.
10

SSE4 FEATURES
• Support for partial string or fragments less than 16 bytes in length, using either
explicit length or implicit null-termination

• Four types of string compare operations on word/byte elements

• Up to 256 compare operations performed in a single instruction on all string/text
element pairs

• Built-in aggregation of intermediate results from comparisons

• Programmable control of processing on intermediate results

• Programmable control of output formats in terms of an index or mask

• Bi-directional support for the index format

• Support for two mask formats: bit or natural element width

• Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:

• PCMPESTRI — Packed compare explict-length strings, return index in ECX/RCX

• PCMPESTRM — Packed compare explict-length strings, return mask in XMM0

• PCMPISTRI — Packed compare implict-length strings, return index in ECX/RCX

• PCMPISTRM — Packed compare implict-length strings, return mask in XMM0

All four require the use of an immediate byte to control operation. The two source
operands can be XMM registers or a combination of XMM register and memory
address. The immediate byte provides programmable control with the following
attributes:

• Input data format

• Compare operation mode

• Intermediate result processing

• Output selection

Depending on the output format associated with the instruction, the text/string
processing instructions implicitly uses either a general-purpose register (ECX/RCX)
or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly.
They use two general-purpose registers (EDX, EAX) to specify the number of valid
data elements (either word or byte) in the source operands. The other two instruc-
tions specify valid string elements using null termination. A data element is consid-
ered valid only if it has a lower index than the least significant null data element.

2.3.1.1 Memory Operand Alignment
The text and string processing instructions in SSE4.2 do not perform alignment
checking on memory operands. This is different from most other 128-bit SIMD
instructions accessing the XMM registers. The absence of an alignment check for
11

SSE4 FEATURES
these four instructions does not imply any modification to the existing definitions of
other instructions.

2.3.2 Packed Comparison SIMD integer Instruction
SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs
logical compare of greater-than on packed integer quadwords.

2.3.3 Application-Targeted Accelerator Instructions
There are two application-targeted accelerator instructions in SSE4.2:

• CRC32 — Provides hardware acceleration to calculate cyclic redundancy checks
for fast and efficient implementation of data integrity protocols.

• POPCNT — Accelerates software performance in the searching of bit patterns.
12

APPLICATION PROGRAMMING MODEL
CHAPTER 3
APPLICATION PROGRAMMING MODEL

The application programming environment for SSE4 is similar to that of Streaming
SIMD Extensions (SSE), SSE2, SSE3, and SSSE3.

3.1 CPUID
The CPUID instruction is extended to provide additional information, including three
feature flags that indicate support for SSE4 instructions. CPUID’s output is depen-
dent on the contents of the EAX register upon execution. For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-1 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-2 shows the maximum CPUID input value recognized for each
family of Intel 64 and IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value is entered for CPUID.EAX is invalid for a particular processor, the data for the
highest basic information leaf is returned. For example, using the Intel® Core™2 Duo
processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,
and memory for previous instructions are completed before the next instruction is
fetched and executed.

See also:

“Serializing Instructions” in Chapter 7, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)
13

APPLICATION PROGRAMMING MODEL
Table 3-1. Information Returned by CPUID Instruction
Initial EAX

Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-2)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Extended Family, Model, Extended
Model, and Stepping ID (see Figure 3-1)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of logical processors in this physical
package.
Bits 31-24: Initial APIC ID

Extended Feature Information (see Figure 3-2 and Table 3-4)
Feature Information (see Figure 3-3 and Table 3-5)

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-6)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTE:
Processor serial number (PSN) is not supported in the Pentium 4 processor
or later. On all models, use the PSN flag (returned using CPUID) to check
for PSN support before accessing the feature. See AP-485, Intel Processor
Identification and the CPUID Instruction (Order Number 241618) for
more information on PSN.
14

APPLICATION PROGRAMMING MODEL
CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTE:
04H output depends on the initial value in ECX. See also: “INPUT
EAX = 4: Returns Deterministic Cache Parameters for each level on
page 1-33.

EAX

EBX

Bits 4-0: Cache Type*
Bits 7-5: Cache Level (starts at 1)
Bit 8: Self Initializing cache level (does not need SW initialization)
Bit 9: Fully Associative cache
Bit 10: Write-Back Invalidate

0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 11:
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bits 13-12: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a physical
package (see note)**
Bits 31-26: Maximum number of processor cores in the physical package.
, *

Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

Table 3-1. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
15

APPLICATION PROGRAMMING MODEL
ECX

EDX

Bits 31-00: S = Number of Sets**

Reserved = 0

NOTES:

* Cache Type fields:
0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

** Add one to the return value to get the result.

*** The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.

MONITOR/MWAIT Leaf

5H EAX

EBX

ECX

EDX

Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported
Bits 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled
Bits 31 - 02: Reserved

Bits 03 - 00: Number of C0* sub C-states supported using MWait

Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0

* The definition of C0 through C4 states for MWAIT extension
are processor-specific C-states, not ACPI C-states.

Table 3-1. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
16

APPLICATION PROGRAMMING MODEL
Thermal and Power Management Leaf

6H EAX

EBX

ECX

EDX

Bits 00: Digital temperature sensor is supported if set
Bits 31 - 01: Reserved

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Bits 00: ACNT/MCNT. The capability to provide a measure of delivered
processor performance (since last reset of the counters), as a percentage of
expected processor performance at frequency specified in CPUID Brand
String
Bits 31 - 01: Reserved = 0

Reserved = 0

Architectural Performance Monitoring Leaf

0AH EAX

EBX

ECX
EDX

Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter
per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural
performance monitoring events

Bit 0: Core cycle event not available if 1
Bit 1: Instruction retired event not available if 1
Bit 2: Reference cycles event not available if 1
Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

Reserved = 0
Bits 04 - 00: Number of fixed-function performance counters (if Version
ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version
ID > 1)
Reserved = 0

Table 3-1. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
17

APPLICATION PROGRAMMING MODEL
Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see
Table 3-2).

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

EDX

Extended Processor Signature and Extended Feature Bits.

Reserved

Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved

Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Technology available = 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-1. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
18

APPLICATION PROGRAMMING MODEL
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the
Vendor Identification String
When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-2) and is processor specific.

80000006H EAX
EBX

ECX

EDX

Reserved = 0
Reserved = 0

Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units

Reserved = 0

NOTES:
*L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000008H EAX

EBX
ECX
EDX

Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical

address number supported should come from this field.

Table 3-1. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
19

APPLICATION PROGRAMMING MODEL
A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Informa-
tion
When CPUID executes with EAX set to 0, the processor returns the highest value the
processor recognizes for returning extended processor information. The value is
returned in the EAX register (see Table 3-2) and is processor specific.

Table 3-2. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II
Processors, Intel® Celeron®
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor supporting
Hyper-Threading Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000, 3200,
5100, 5300 Series

0AH 80000008H
20

APPLICATION PROGRAMMING MODEL
IA32_BIOS_SIGN_ID Returns Microcode Update Signature
For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper dword. For details, see Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information
When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-1). For example: extended family, extended model, model, family, and
processor type for the processor code-named Penryn is as follows:

• Extended Model — 0001B

• Extended Family — 0000_0000B

• Model — 0111B

• Family — 0110B

• Processor Type — 00B

See Table 3-3 for available processor type values. Stepping IDs are provided as
needed.

Figure 3-1. Version Information Returned by CPUID in EAX

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
21

APPLICATION PROGRAMMING MODEL
Extended family, extended model, model, family, and processor type for the
processor code-named Nehalem is as follows:

• Extended Model — 0001B

• Extended Family — 0000_0000B

• Model — 1010B

• Family — 0110B

• Processor Type — 00B

NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for
information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Inte-
grate the fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend Extended_Model_ID and Model_ID. *)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

Table 3-3. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B
22

APPLICATION PROGRAMMING MODEL
INPUT EAX = 1: Returns Additional Information in EBX
When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:

• Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.

• Figure 3-2 and Table 3-4 show encodings for ECX.

• Figure 3-3 and Table 3-5 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.

NOTE
Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.
23

APPLICATION PROGRAMMING MODEL
Figure 3-2. Extended Feature Information Returned in the ECX Register

Table 3-4. More on Extended Feature Information Returned
in the ECX Register

Bit # Mnemonic Description
0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the

processor supports this technology.
1-2 Reserved Reserved
3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports

this feature.
4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor

supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor
supports this technology.

6 Reserved Reserved
7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that

the processor supports this technology.
8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor

supports this technology.

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 Extensions

Reserved

CMPXCHG16B

VMX — Virtual Machine Technology

xTPR Update Control

SSSE3 — SSSE3 Extensions

SSE4.1
SSE4.2
POPCNT

PDCM — Perf/Debug Capability MSR
24

APPLICATION PROGRAMMING MODEL
9 SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3). A value of
1 indicates the processor supports this technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be
set to either adaptive mode or shared mode. A value of 0 indicates
this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

11-12 Reserved Reserved
13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is

available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in Volume 2A.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perf/Debug Capability MSR. A value of 1 indicates that the
processor supports the performance and debug feature indication
MSR

18 - 16 Reserved Reserved
19 SSE4.1 Streaming SIMD Extensions 4.1 (SSE4.1). A value of 1 indicates

the processor supports this technology.
20 SSE4.2 Streaming SIMD Extensions 4.2 (SSE4.2). A value of 1 indicates

the processor supports this technology.
22 - 21 Reserved Reserved
23 POPCNT POPCNT. A value of 1 indicates the processor supports the

POPCNT instruction.
31 - 24 Reserved Reserved

Table 3-4. More on Extended Feature Information Returned
in the ECX Register (Contd.)

Bit # Mnemonic Description
25

APPLICATION PROGRAMMING MODEL
Figure 3-3. Feature Information Returned in the EDX Register

Table 3-5. More on Feature Information Returned in the EDX Register
Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with the
software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.
26

APPLICATION PROGRAMMING MODEL
2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR
and WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte
pages if PAE bit is 1. The actual number of address bits beyond 32 is not
defined, and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define the
model-specific implementations of machine-check error logging, reporting, and
processor shutdowns. Machine Check exception handlers may have to depend
on processor version to do model specific processing of the exception, or test for
the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors permit
the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how many
variable MTRRs are supported, and whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to different
processes and need not be flushed. The CR4.PGE bit controls this feature.

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
27

APPLICATION PROGRAMMING MODEL
14 MCA Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium 4,
Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting MSRs
are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments
the Memory Type Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on a 4K granularity through a linear address.

17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into
a memory resident buffer. This feature is used by the branch trace store (BTS)
and precise event-based sampling (PEBS) facilities (see Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating point context.
Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
28

APPLICATION PROGRAMMING MODEL
INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs. The first member of the
family of Pentium 4 processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors. Table 3-6 shows the encoding of these descriptors. Note that the
order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that
is, specific bytes are not designated to contain descriptors for specific cache or
TLB types. The descriptors may appear in any order.

27 SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions issued to
the bus.

28 HTT Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to signal
the processor that an interrupt is pending and that the processor should return to
normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
29

APPLICATION PROGRAMMING MODEL
Table 3-6. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per
sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level
cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
30

APPLICATION PROGRAMMING MODEL
4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

Table 3-6. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value Cache or TLB Description
31

APPLICATION PROGRAMMING MODEL
Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates
that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 3-6. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value Cache or TLB Description
32

APPLICATION PROGRAMMING MODEL
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level
When CPUID executes with EAX set to 4 and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from 0.

Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of 0, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 3-1.

The CPUID leaf 4 also reports information about maximum number of cores in a
physical package. This information is constant for all valid index values. Software can
query maximum number of cores per physical package by executing CPUID with
EAX=4 and ECX=0.

INPUT EAX = 5: Returns MONITOR and MWAIT Features
When CPUID executes with EAX set to 5, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-1.

INPUT EAX = 6: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 6, the processor returns information about
thermal and power management features. See Table 3-1.

INPUT EAX = 10: Returns Architectural Performance Monitoring Features
When CPUID executes with EAX set to 10, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-1) is greater than Pn 0.
See Table 3-1.

For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
18, “Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.
33

APPLICATION PROGRAMMING MODEL
METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are avail-
able in early processors, see Section: “Identification of Earlier IA-32 Processors” in
Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

The Processor Brand String Method

Figure 3-4 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and IA-32
processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.
34

APPLICATION PROGRAMMING MODEL
How Brand Strings Work
To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-7 shows the brand string that is returned by the first processor in the Pentium
4 processor family.

Figure 3-4. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
35

APPLICATION PROGRAMMING MODEL
Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-5 provides an algorithm which software can use to extract the maximum
processor operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum
qualified frequency of the processor, not the frequency at which the
processor is currently running.

Table 3-7. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H

“ ”
“ ”
“ ”
“nI ”

80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H

“(let”
“P)R”
“itne”
“R(mu”

80000004H EAX = 20342029H
EBX = 20555043H
ECX = 30303531H
EDX = 007A484DH

“ 4)”
“ UPC”
“0051”
“\0zHM”
36

APPLICATION PROGRAMMING MODEL
The Processor Brand Index Method
The brand index method (introduced with Pentium® III Xeon® processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that
do not support the brand identification feature. Starting with processor signature

Figure 3-5. Algorithm for Extracting Maximum Processor Frequency
37

APPLICATION PROGRAMMING MODEL
family ID = 0FH, model = 03H, brand index method is no longer supported. Use
brand string method instead.

Table 3-8 shows brand indices that have identification strings associated with them.

Table 3-8. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h,
then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h,
then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III
38

APPLICATION PROGRAMMING MODEL
3.2 DETECTING SSE4 INSTRUCTIONS

3.2.1 Detecting SSE4.1 Instructions Using CPUID
In order for an application to use SSE4.1, the following conditions must exist. Other-
wise, an invalid opcode exception (Int 6) is generated:

• CR0.EM = 0 (emulation disabled)

• CR4.OSFXSR = 1(OS supports saving Streaming SIMD Extensions state during
context switches)

• CPUID.01H:ECX.SSE4_1 [bit 19]= 1 (processor supports SSE4.1)

An application can determine whether SSE4.1 is supported by checking the CPUID
feature flag at CPUID.01H:ECX[Bit 19]. The essential steps are illustrated in the
pseudo code below.

Checking for SSE4.1 Support

unsigned RegECX;

boolean SSE4_1_instructions_work = TRUE;
asm{ // pseudo operation illustrating

eax <- 1 // which CPUID feature flag to check
cpuid
RegECX <- ecx
}
if (RegECX[bit 19]) SSE4_1_instructions_work = TRUE;
// Add appropriate code as needed to ensure
// OS providing adequate support for context switching, etc...
return SSE4_1_instructions_work;

3.2.2 Detecting SSE4.2 Instructions Using CPUID
In order for an application to use PCMPGTQ and the text/string search instructions in
SSE4.2, the following conditions must exist. Otherwise, an invalid opcode exception
(Int 6) is generated:

• CR0.EM = 0 (emulation disabled)

• CR4.OSFXSR = 1(OS supports saving SSE state during context switches)

• CPUID.01H:ECX.SSE4_2 [bit 20]= 1 (processor supports SSE4.2)

An application can determine whether the desired SSE4.2 instructions are supported
by checking the CPUID feature flag at CPUID.01H:ECX[Bit 20]. The essential steps
are illustrated in the pseudo code below.
39

APPLICATION PROGRAMMING MODEL
Example 3-2. Detecting SSE4.2 using CPUID

unsigned RegECX;

boolean SSE4_2_instructions_work = TRUE;
asm{ // pseudo operation illustrating

eax <- 1 // which CPUID feature flag to check
cpuid
RegECX <- ecx
}
if (RegECX[bit 20]) SSE4_2_instructions_work = TRUE;
// Add appropriate code as needed to ensure
// OS providing adequate support for context switching, etc...
return SSE4_2_instructions_work;

In order for an application to use CRC32 instruction, the following condition must
exist. Otherwise, an invalid opcode exception (INT 6) is generated:

CPUID.01H:ECX.SSE4_2 [bit 20]= 1 (processor supports SSE4.2)

In order for an application to use POPCNT instruction, the following condition must
exist. Otherwise, an invalid opcode exception (INT 6) is generated:

CPUID.01H:ECX.SSE4_2 [bit 23]= 1 (processor supports POPCNT)

3.3 EXCEPTIONS AND SSE4
The SSE4.1 and SSE4.2 instruction sets do not introduce new types of exceptions.
40

SYSTEM PROGRAMMING MODEL
CHAPTER 4
SYSTEM PROGRAMMING MODEL

This chapter describes the interface of the SSE4 to the operating system.

4.1 ENABLING SSE4
SSE4.1 and SSE4.2 are extensions of SSE, SSE2, SSE3, and SSSE3.

To check if the processor supports SSE4.1, execute CPUID with EAX =1 as input. If
bit 19 of ECX is set, then the processor supports SSE4.1. If the bit is cleared, the
processor does not support SSE4.1.

To check if the processor supports SSE4.2 instructions for string/text processing,
PCMPGTQ, and CRC32, execute CPUID with EAX =1 as input. If bit 20 of ECX is set,
then the processor supports these SSE4.2 instructions. If the bit is cleared, the
processor does not support them.

Enabling OS support for SSE4.1, PCMPGTQ, string/text processing instructions of
SSE4.2 has the same requirements as for SSE. See Chapter 12, “System Program-
ming for Streaming SIMD Instruction Sets” of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

To check if the processor supports the POPCNT instruction, execute CPUID with EAX
=1 as input. If bit 23 of ECX is set, then the processor supports the POPCNT instruc-
tion. If the bit is cleared, the processor does not support it.

Operating system does not require special support to enable CRC32 or POPCNT
beyond normal requirements of Intel 64 architecture.

4.2 DEVICE NOT AVAILABLE (DNA) EXCEPTIONS

If CR0.TS is set, attempts to execute an SSE4.1 instruction will cause a DNA excep-
tion (#NM). Likewise, an attempt to execute PCMPGTQ or a string/text processing
instruction of SSE4.2 will cause a DNA exception (#NM).

If CPUID.01H:ECX.SSE4.1 [bit 19] is clear, execution of any SSE4.1 instruction
causes an invalid opcode fault regardless of the state of CR0.TS.

If CPUID.01H:ECX.SSE4.2 [bit 20] is clear, execution of PCMPGTQ or a string/text
processing instruction of SSE4.2 causes an invalid opcode fault regardless of the
state of CR0.TS.
41

SYSTEM PROGRAMMING MODEL
4.3 SSE4 EMULATION
The CR0.EM bit enables emulation of x87 floating-point instructions. It cannot be
used to emulate SSE4.1. Likewise, the bit cannot be used to emulate PCMPGTQ or
any of the string text processing instructions of SSE4.2.

If an SSE4.1 instruction is executed when CR0.EM is set, an Invalid Opcode exception
(Int 6) is generated instead of a Device Not Available exception (INT 7).

If PCMPGTQ or an SSE4.2 string text processing instruction is executed while
CR0.EM = 1, an Invalid Opcode exception (INT 6) is generated instead of a Device
Not Available exception (INT 7).

CRC32 and POPCNT are not impacted by CR0.TS or CR0.EM.
42

SSE4 INSTRUCTION SET
CHAPTER 5
SSE4 INSTRUCTION SET

5.1 INSTRUCTION FORMATS
SSE4 uses existing instruction formats. Instructions use the ModR/M format and, in
general, operations are not duplicated to provide two directions (i.e. separate load
and store variants).

5.2 NOTATIONS
Besides opcodes, the following notation describes information in the ModR/M byte:

• /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m
(register and memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

• /digitR: (digit between 0 and 7) indicates that the instruction uses only the
register operand (ie, mod=11). The reg field contains the digit that provides an
extension to the instruction’s opcode.

• /r: indicates that the ModR/M byte of an instruction contains both a register
operand and an r/m operand.

In addition, these abbreviations are used:

• r32: Intel Architecture 32-bit integer register

• xmm/m128: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 128-bit memory location.

• xmm/m64: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 64-bit memory location.

• xmm/m32: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 32-bit memory location.

• mm/m64: indicates a 64-bit integer MMX™ multimedia register or a 64-bit
memory location.

• imm8: indicates an immediate 8-bit operand.

• ib: indicates that an immediate byte operand follows the opcode, ModR/M byte or
scaled-indexing byte.

• <XMM0>: indicates implied use of the XMM0 register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.
43

SSE4 INSTRUCTION SET
Some instructions use the XMM0 register as the third source operand, indicated by
<XMM0>. The use of the third XMM register operand is implicit in the instruction
encoding and does not affect the ModR/M encoding.

5.3 IMM8 CONTROL BYTE OPERATION FOR
PCMPESTRI / PCMPESTRM / PCMPISTRI /
PCMPISTRM

The operation of the immediate control byte (see Section 2.3.1) is common to the
four string text processing instructions of SSE4.2. This section describes these
common operations. Some of the notations introduced in this section are referenced
in the reference pages of each instruction.

5.3.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.
However, the meanings of the flags have been overloaded from their typical mean-
ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

• Source data format — Byte/word data element granularity, signed or unsigned
elements
44

SSE4 INSTRUCTION SET
• Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

• Polarity — Specifies intermediate processing to be performed on the interme-
diate result

• Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

5.3.1.1 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

Table 5-1. Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed
bytes.

11b Signed words Both 128-bit sources are treated as packed, signed
words.
45

SSE4 INSTRUCTION SET
5.3.1.2 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

See Section 5.3.1.5 for a description of the overrideIfDataInvalid() function used in
Table 5-3.

Table 5-2. Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal”
between even indexed bytes/words of reg and each
byte/word of reg/mem.
Arithmetic comparison is “less than or equal” between
odd indexed bytes/words of reg and each byte/word of
reg/mem.
(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <=
reg[n] for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

Table 5-3. Aggregation Operation

Mode Pseudocode

Equal any
(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;
IntRes1 = 0;
For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])
46

SSE4 INSTRUCTION SET
Ranges
(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;
IntRes1 = 0;
For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i+=2
IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each
(string compare)

UpperBound = imm8[0] ? 7 : 15;
IntRes1 = 0;
For i = 0 to UpperBound, i++
IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered
(substring search)

UpperBound = imm8[0] ? 7 :15;
IntRes1 = imm8[0] ? 0xFF : 0xFFFF
For j = 0 to UpperBound, j++
For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

Table 5-3. Aggregation Operation (Contd.)
47

SSE4 INSTRUCTION SET
5.3.1.3 Polarity

IntRes1 may then be further modified by performing a 1’s compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

5.3.1.4 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Table 5-4. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

Table 5-5. Ouput Selection
Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit
in IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit
in IntRes2.

Table 5-6. Output Selection
Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits
of XMM0 with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on
imm8[1]) and placed in XMM0. The expansion is
performed by replicating each bit into all of the bits of the
byte/word of the same index.
48

SSE4 INSTRUCTION SET
Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

5.3.1.5 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 5-7.

Table 5-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm1
byte/ word

xmm2/ m128
byte/word

Imm8[3:2] =
00b
(equal any)

Imm8[3:2] =
01b (ranges)

Imm8[3:2] =
10b
(equal each)

Imm8[3:2] = 11b
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force
49

SSE4 INSTRUCTION SET
5.3.1.6 Summary of Im8 Control byte

Table 5-8. Summary of Imm8 Control Byte
Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s compliment).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding input
element validity).
IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding input
element validity).
Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.
50

SSE4 INSTRUCTION SET
5.3.1.7 Diagram Comparison and Aggregation Process

5.4 INSTRUCTION REFERENCE
The remainder of this chapter provides detailed descriptions of SSE4.1 and SSE4.2
instructions.

Figure 5-1. Operation of PCMPSTRx and PCMPESTRx

PCMP*STRM onlyPCMP*STRI only

String A (xmm1) String B (xmm2/mem)

Compare all pairs of
(Ai, Bj)

Determine end -of-
string and mark
invalid elements

PCMPESTR* only

EAX/RAX

EDX/RDX

Aggregation function

BoolRes[i,j]

Optional boolean
negation

IntRes1

Generate index

IntRes2

Generate mask

imm8[1:0] =
 00B: unsigned byte compares
 01B: unsigned word compares
 10B: signed byte compares
 11B: signed word compares

imm8[3:2] =
 00B: Equal any
 01B: Ranges
 10B: Equal each
 11B: Equal ordered

imm8[6:5] =
 x0B: don’t negate IntRes1
 01B: negate all bits of IntRes1
 11B: negate only bits of IntRes1
 corresponding to valid
 elements in String B

imm8[6] =
 0: Return zero-extended IntRes2
 1: expand IntRes2 to byte (word)
 mask

imm8[6] =
 0 : index encodes least signifi-
 cant true bit of IntRes 2
 1 : index encodes most signifi-
 cant true bit of IntRes 2

ECX(RCX) XMM0
51

SSE4 INSTRUCTION SET
BLENDPD — Blend Packed Double Precision Floating-Point Values

Description
Double Precision Floating-Point values from the source operand (second operand)
are conditionally written to the destination operand depending on bits in the imme-
diate operand. The immediate bits 0-1 (third operand) determine whether the corre-
sponding DP-FP value in the destination is copied from the source (second
argument).

If a bit in the mask, corresponding to a DP-FP value, is “1", then the DP-FP value is
copied, else the value is left is unchanged.

Operation

IF (imm8[0] == 1) THEN DEST[63:0] SRC[63:0];
ELSE DEST[63:0] DEST[63:0];

IF (imm8[1] == 1) THEN DEST[127:64] SRC[127:64];
ELSE DEST[127:64] DEST[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0D /r
ib

BLENDPD xmm1,
xmm2/m128, imm8

Valid Valid Select packed DP-FP values
from xmm1 and xmm2/m128
from mask specified in imm8
and store the values into xmm1.
52

SSE4 INSTRUCTION SET
#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
53

SSE4 INSTRUCTION SET
BLENDPS — Blend Packed Single Precision Floating-Point Values

Description
Single Precision Floating-Point values from the source operand (second operand) are
conditionally written to the destination operand (first operand) depending on mask
bits in the immediate operand. The immediate bits 0-3 (third operand) determine
whether the corresponding single precision floating-point value in the destination is
copied from the source. If a bit in the mask, corresponding to a single precision
floating-point value, is “1", then the single precision floating-point value is copied,
else it is unchanged.

Operation

IF (imm8[0] == 1) THEN DEST[31:0] SRC[31:0];
ELSE DEST[31:0] DEST[31:0];

IF (imm8[1] == 1) THEN DEST[63:32] SRC[63:32];
ELSE DEST[63:32] DEST[63:32];

IF (imm8[2] == 1) THEN DEST[95:64] SRC[95:64];
ELSE DEST[95:64] DEST[95:64];

IF (imm8[3] == 1) THEN DEST[127:96] SRC[127:96];
ELSE DEST[127:96] DEST[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0C /r
ib

BLENDPS xmm1,
xmm2/m128, imm8

Valid Valid Select packed single precision
floating-point values from
xmm1 and xmm2/m128 from
mask specified in imm8 and
store the values into xmm1.
54

SSE4 INSTRUCTION SET
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If not aligned on 16-byte boundary, regardless of segment

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
55

SSE4 INSTRUCTION SET
BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Description
Double-precision floating-point values from the source operand (second argument)
are conditionally written to the destination operand (first argument) depending on
bits in the implicit third register argument. The most significant bit in the corre-
sponding qword of XMM0 determines whether the destination DP FP value is copied
from the source . The presence of a "1" in the mask bit indicates that the DP FP value
is copied; otherwise it is left unchanged. The register assignment of the third
operand is defined to be the architectural register XMM0.

Operation

MASK XMM0;
IF (MASK[63] == 1)THEN DEST[63:0] SRC[63:0];

ELSE DEST[63:0] DEST[63:0];
IF (MASK[127] == 1) THEN DEST[127:64] SRC[127:64];

ELSE DEST[127:64] DEST[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 15 /r BLENDVPD xmm1,
xmm2/m128 , <XMM0>

Valid Valid Select packed DP FP
values from xmm1 and
xmm2 from mask
specified in XMM0 and
store the values in xmm1.
56

SSE4 INSTRUCTION SET
#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
57

SSE4 INSTRUCTION SET
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

Description
Single-precision floating-point values from the source operand (second argument)
are conditionally written to the destination operand (first argument) depending on
bits in the third register argument. The most significant bit in the corresponding
dword in the third register determines whether the destination single precision
floating-point value is copied from the source dword. The presence of a "1" in the
mask bit indicates that the single precision floating-point value is copied; otherwise
it is not copied. The register assignment of the third operand is defined to be the
architectural register XMM0.

Operation

MASK XMM0;
IF (MASK[31] == 1) THEN DEST[31:0] SRC[31:0];

ELSE DEST[31:0] DEST[31:0]);
IF (MASK[63] == 1) THEN DEST[63:32] SRC[63:32]);

ELSE DEST[63:32] DEST[63:32]);
IF (MASK[95] == 1)THEN DEST[95:64] SRC[95:64]);

ELSE DEST[95:64] DEST[95:64]);
IF (MASK[127] == 1)THEN DEST[127:96] SRC[127:96]);

ELSE DEST[127:96] DEST[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);

SIMD Floating-Point Exceptions
None

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 14 /r BLENDVPS xmm1,
xmm2/m128, <XMM0>

Valid Valid Select packed single precision
floating-point values from
xmm1 and xmm2/m128 from
mask specified in XMM0 and
store the values into xmm1.
58

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
59

SSE4 INSTRUCTION SET
CRC32 — Accumulate CRC32 Value

Description
Starting with an initial value in the first operand (destination operand), accumulates
a CRC32 (polynomial 0x11EDC6F41) value for the second operand (source operand)
and stores the result in the destination operand. The source operand can be a
register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the
least significant double word and 00000000H is stored in the most significant double
word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored
in the r32 register or the least significant double word of the r64 register. To incre-
mentally accumulate a CRC32 value, software retains the result of the previous
CRC32 operation in the destination operand, then executes the CRC32 instruction
again with new input data in the source operand. Data contained in the source
operand is processed in reflected bit order. This means that the most significant bit of
the source operand is treated as the least significant bit of the quotient, and so on,
for all the bits of the source operand. Likewise, the result of the CRC operation is
stored in the destination operand in reflected bit order. This means that the most
significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the
destination operand (bit 0), and so on, for all the bits of the CRC.

Operation
In the pseudocode below, BIT_REFLECT on an N-bit wide operand is the bit-by-bit
reflect operation from the most-significant bit to least-significant bit, as described in
the paragraph above.

Opcode Instruction
64-bit
Mode

Compat/
Leg Mode Description

F2 0F 38 F0 /r

F2 REX 0F 38 F0 /r

F2 0F 38 F1 /r

F2 0F 38 F1 /r

F2 REX.W 0F 38 F0
/r
F2 REX.W 0F 38 F1
/r

CRC32 r32, r/m8

CRC32 r32, r/m8*

CRC32 r32, r/m16

CRC32 r32, r/m32

CRC32 r64, r/m8

CRC32 r64, r/m64

Valid

Valid

Valid

Valid

Valid

Valid

Valid

N.E.

Valid

Valid

N.E.

N.E.

Accumulate CRC32 on
r/m8.
Accumulate CRC32 on
r/m8.
Accumulate CRC32 on
r/m16.
Accumulate CRC32 on
r/m32.
Accumulate CRC32 on
r/m8.
Accumulate CRC32 on
r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
60

SSE4 INSTRUCTION SET
CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] TEMP1[63-0] << 32
TEMP4[95-0] TEMP2[31-0] << 64
TEMP5[95-0] TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] TEMP1[31-0] << 32
TEMP4[63-0] TEMP2[31-0] << 32
TEMP5[63-0] TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] TEMP1[15-0] << 32
TEMP4[47-0] TEMP2[31-0] << 16
TEMP5[47-0] TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] << 32
TEMP4[39-0] TEMP2[31-0] << 8
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] << 32
TEMP4[39-0] TEMP2[31-0] << 8
61

SSE4 INSTRUCTION SET
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]

MOD2: Remainder from Polynomial division modulus 2

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)
unsinged __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

SIMD Floating Point Exceptions

None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
62

SSE4 INSTRUCTION SET
Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
63

SSE4 INSTRUCTION SET
DPPD — Dot Product of Packed Double Precision Floating-Point Values

Description
Conditionally multiplies the packed double precision floating-point values in the
destination operand (first operand) with the packed double-precision floating-point
values in the source(second operand) depending on a mask extracted from bits 4-5
of the immediate operand. Each of the two resulting double-precision values is
summed and this sum is conditionally broadcast to each of 2 positions in the destina-
tion operand if the corresponding bit of the mask selected from bits 0-1 of the imme-
diate operand is "1". If the corresponding low bit 0-1 of the mask is zero, the
destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

IF (imm8[4] == 1) THEN Temp1[63:0] DEST[63:0] * SRC[63:0];
ELSE Temp1[63:0] +0.0;

IF (imm8[5] == 1) THEN Temp1[127:64] DEST[127:64] * SRC[127:64];
ELSE Temp1[127:64] +0.0;

Temp2[63:0] Temp1[63:0] + Temp1[127:64];

IF (imm8[0] == 1) THEN DEST[63:0] Temp2[63:0];
ELSE DEST[63:0] +0.0;

IF (imm8[1] == 1) THEN DEST[127:64] Temp2[63:0];
ELSE DEST[127:64] +0.0;

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
41 /r ib

DPPD xmm1,
xmm2/m128, imm8

Valid Valid Selectively multiply packed DP
floating-point values from xmm1 with
packed DP floating-point values from
xmm2, add and selectively store the
packed DP floating-point values to
xmm1.
64

SSE4 INSTRUCTION SET
Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

DPPD __m128d _mm_dp_pd (__m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
65

SSE4 INSTRUCTION SET
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
66

SSE4 INSTRUCTION SET
DPPS — Dot Product of Packed Single Precision Floating-Point Values

Description
Conditionally multiplies the packed single precision floating-point values in the desti-
nation operand (first operand) with the packed single-precision floats in the source
(second operand) depending on a mask extracted from the high 4 bits of the imme-
diate operand (third operand). Each of the four resulting single-precision values is
summed and this sum is conditionally broadcast to each of 4 positions in the destina-
tion operand if the corresponding bit of the mask selected from the low 4 bits of the
immediate operand is "1". If the corresponding low bit 0-3 of the mask is zero, the
destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

IF (imm8[4] == 1) THEN Temp1[31:0] DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0] +0.0;

IF (imm8[5] == 1) THEN Temp1[63:32] DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32] +0.0;

IF (imm8[6] == 1) THEN Temp1[95:64] DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64] +0.0;

IF (imm8[7] == 1) THEN Temp1[127:96] DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96] +0.0;

Temp2[31:0] Temp1[31:0] + Temp1[63:32];
Temp3[31:0] Temp1[95:64] + Temp1[127:96];
Temp4[31:0] Temp2[31:0] + Temp3[31:0];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
40 /r ib

DPPS xmm1,
xmm2/m128, imm8

Valid Valid Selectively multiply packed SP
floating-point values from xmm1
with packed SP floating-point
values from xmm2, add and
selectively store the packed SP
floating-point values or zero values
to xmm1.
67

SSE4 INSTRUCTION SET
IF (imm8[0] == 1) THEN DEST[31:0] Temp4[31:0];
ELSE DEST[31:0] +0.0;

IF (imm8[1] == 1) THEN DEST[63:32] Temp4[31:0];
ELSE DEST[63:32] +0.0;

IF (imm8[2] == 1) THEN DEST[95:64] Temp4[31:0];
ELSE DEST[95:64] +0.0;

IF (imm8[3] == 1) THEN DEST[127:96] Temp4[31:0];
ELSE DEST[127:96] +0.0;

Intel C/C++ Compiler Intrinsic Equivalent

DPPS __m128 _mm_dp_ps (__m128 a, __m128 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.
68

SSE4 INSTRUCTION SET
#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
69

SSE4 INSTRUCTION SET
EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Description
Extract the single-precision floating-point value from the source xmm register
(second argument) at a 32 bit offset determined from imm8[1-0]. The extracted
single precision floating-point value is stored into the low 32-bits of the destination
register or to the 32-bit memory location. When a REX.W prefix is used in 64-bit
mode to a general purpose register (GPR), the packed single quantity is zero
extended to 64 bits.

Operation

IF (64-Bit Mode and REX.W used and the destination is a GPR)
THEN

SRC_OFFSET imm8[1:0];
r/m64[31:0] (SRC >> (32 * SRC_OFFSET)) AND 0FFFFFFFFh;
r/m64[63:32] ZERO_FILL;

ELSE
SRC_OFFSET imm8[1:0];
r/m32[31:0] (SRC >> (32 * SRC_OFFSET)) AND 0FFFFFFFFh;

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx);

SIMD Floating-Point Exceptions
None

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 17
/r ib

EXTRACTPS r/m32,
xmm2, imm8

Valid Valid Extract a single-precision
floating-point value from
xmm2 at the source offset
specified by imm8 and
store the result to r/m32.

66 REX.W 0F
3A 17 /r ib

EXTRACTPS r64/m32,
xmm2, imm8

Valid N.E. Extract a single-precision
floating-point value from
xmm2 at the source offset
specified by imm8 and
store the result to r64/m32.
Zero extend the result.
70

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
71

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
72

SSE4 INSTRUCTION SET
INSERTPS — Insert Packed Single Precision Floating-Point Value

Description
Select a single precision floating-point element from source register (second
operand, register form) as indicated by Count_S bits of the immediate operand (third
operand) or load a floating-point element from memory indicated by the source
(second operand, memory form) and insert it into the destination (first operand) at
the location indicated by the Count_D bits of the immediate operand. Zero out desti-
nation elements based on the ZMask bits of the immediate operand.

Operation

IF (SRC == REG) THEN COUNT_S imm8[7:6];
ELSE COUNT_S 0;

COUNT_D imm8[5:4];
ZMASK imm8[3:0];

CASE (COUNT_S) OF
0: TMP SRC[31:0];
1: TMP SRC[63:32];
2: TMP SRC[95:64];
3: TMP SRC[127:96];

CASE (COUNT_D) OF
0: TMP2[31:0] TMP;

TMP2[127:32] DEST[127:32];
1: TMP2[63:32] TMP;

TMP2[31:0] DEST[31:0];
TMP2[127:64] DEST[127:64];

2: TMP2[95:64] TMP;
TMP2[63:0] DEST[63:0];
TMP2[127:96] DEST[127:96];

3: TMP2[127:96] TMP;

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 21
/r ib

INSERTPS xmm1,
xmm2/m32, imm8

Valid Valid Insert a single precision floating-point
value selected by imm8 from
xmm2/m32 into xmm1 at the specified
destination element specified by imm8
and zero out destination elements in
xmm1 as indicated in imm8.
73

SSE4 INSTRUCTION SET
TMP2[95:0] DEST[95:0];

IF (ZMASK[0] == 1) THEN DEST[31:0] 00000000H;
ELSE DEST[31:0] TMP2[31:0];

IF (ZMASK[1] == 1) THEN DEST[63:32] 00000000H;
ELSE DEST[63:32] TMP2[63:32];

IF (ZMASK[2] == 1) THEN DEST[95:64] 00000000H;
ELSE DEST[95:64] TMP2[95:64];

IF (ZMASK[3] == 1) THEN DEST[127:96] 00000000H;
ELSE DEST[127:96] TMP2[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.
74

SSE4 INSTRUCTION SET
Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
75

SSE4 INSTRUCTION SET
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Description
MOVNTDQA loads a double quadword from the source operand (second operand) to
the destination operand (first operand) using a non-temporal hint if the memory
source is WC (write combining) memory type. For WC memory type, the non-
temporal hint may be implemented by loading a temporary internal buffer with the
equivalent of an aligned cache line without filling this data to the cache. Any
memory-type aliased lines in the cache will be snooped and flushed. Subsequent
MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be
flushed by the processor at any time for any reason, for example:

• A load operation other than a MOVNTDQA which references memory already
resident in a temporary internal buffer.

• A non-WC reference to memory already resident in a temporary internal buffer.

• Interleaving of reads and writes to a single temporary internal buffer.

• Repeated MOVNTDQA loads of a particular 16-byte item in a streaming line.

• Certain micro-architectural conditions including resource shortages, detection of
a mis-speculation condition, and various fault conditions

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when reading the data from memory. Using this protocol, the processor
does not read the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being read can override the non-temporal hint, if the memory address specified for
the non-temporal read is not a WC memory region. Information on non-temporal
reads and writes can be found in Chapter 10, “Memory Cache Control” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with a MFENCE instruction should be used in conjunc-
tion with MOVNTDQA instructions if multiple processors might use different memory
types for the referenced memory locations or in order to synchronize reads of a
processor with writes by other agents in the system. Because of the speculative
nature of fetching due to MOVNTDQA, software must not use MOVNTDQA to refer-
ence memory regions that are mapped to I/O devices having side effects or when
reads to these devices are destructive.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 2A
/r

MOVNTDQA xmm1,
m128

Valid Valid Move double quadword from m128
to xmm using non-temporal hint if
WC memory type.
76

SSE4 INSTRUCTION SET
A processor’s implementation of the streaming load hint does not override the effec-
tive memory type, but the implementation of the hint is processor dependent. For
example, a processor implementation may choose to ignore the hint and process the
instruction as a normal MOVDQA for any memory type. Alternatively, another imple-
mentation may optimize cache reads generated by MOVNTDQA on WB memory type
to reduce cache evictions.

Operation

DST SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA __m128i _mm_stream_load_si128 (__m128i *p);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.
77

SSE4 INSTRUCTION SET
Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
78

SSE4 INSTRUCTION SET
MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Description
MPSADBW sums the absolute difference of 4 unsigned bytes, selected by bits [0:1] of
the immediate byte (third operand), from the source (second operand) with sequen-
tial groups of 4 unsigned bytes in the destination operand. The first group of eight
sequential groups of bytes from the destination operand (first operand) start at an
offset determined by bit 2 of the immediate. The operation is repeated 8 times, each
time using the same source input but selecting the next group of 4 bytes starting at
the next higher byte in the destination. Each 16-bit sum is written to dest.

Operation

SRC_OFFSET imm8[1:0]*32
DEST_OFFSET imm8[2]*32
DEST_BYTE0 DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1 DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5 DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6 DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2 SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 ABS(DEST_BYTE0 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE1 - SRC_BYTE1)

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
42 /r ib

MPSADBW
xmm1,
xmm2/m128,
imm8

Valid Valid Sums absolute 8-bit integer difference of
adjacent groups of 4 byte integers in xmm1
and xmm2/m128 and writes the results in
xmm1. Starting offsets within xmm1 and
xmm2/m128 are determined by imm8.
79

SSE4 INSTRUCTION SET
TEMP2 ABS(DEST_BYTE2 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE1 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE2 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE3 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE2 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE3 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE5 - SRC_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE3 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE4 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE5 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE6 - SRC_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE4 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE5 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE6 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE5 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE6 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE7 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE8 - SRC_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE6 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE7 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE8 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE9 - SRC_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE7 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE8 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE9 - SRC_BYTE2)
80

SSE4 INSTRUCTION SET
TEMP3 ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.
81

SSE4 INSTRUCTION SET
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
82

SSE4 INSTRUCTION SET
PACKUSDW — Pack with Unsigned Saturation

Description
Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.

Operation

TMP[15:0] (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[63:48] (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[128:112] (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
2B /r

PACKUSDW xmm1,
xmm2/m128

Valid Valid Convert 4 packed signed doubleword
integers from xmm1 and 4 packed
signed doubleword integers from
xmm2/m128 into 8 packed unsigned
word integers in xmm1 using unsigned
saturation.
83

SSE4 INSTRUCTION SET
Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0): For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
84

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
85

SSE4 INSTRUCTION SET
PBLENDVB — Variable Blend Packed Bytes

Description
Bytes from the source operand (second operand) are conditionally written to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMM0. The most significant bit in the corresponding byte of
XMM0 determines whether the destination byte is copied from the source byte. The
presence of a "1" in the mask bit indicates that the byte is copied, else it is not copied
and destination byte remains unchanged. The register assignment of the implicit
third operand is defined to be the architectural register XMM0.

Operation

MASK XMM0;
IF (MASK[7] == 1) THEN DEST[7:0] SRC[7:0];

ELSE DEST[7:0] DEST[7:0];
IF (MASK[15] == 1) THEN DEST[15:8] SRC[15:8];

ELSE DEST[15:8] DEST[15:8];
IF (MASK[23] == 1) THEN DEST[23:16] SRC[23:16]

ELSE DEST[23:16] DEST[23:16];
IF (MASK[31] == 1) THEN DEST[31:24] SRC[31:24]

ELSE DEST[31:24] DEST[31:24];
IF (MASK[39] == 1) THEN DEST[39:32] SRC[39:32]

ELSE DEST[39:32] DEST[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] SRC[47:40]

ELSE DEST[47:40] DEST[47:40];
IF (MASK[55] == 1) THEN DEST[55:48] SRC[55:48]

ELSE DEST[55:48] DEST[55:48];
IF (MASK[63] == 1) THEN DEST[63:56] SRC[63:56]

ELSE DEST[63:56] DEST[63:56];
IF (MASK[71] == 1) THEN DEST[71:64] SRC[71:64]

ELSE DEST[71:64] DEST[71:64];
IF (MASK[79] == 1) THEN DEST[79:72] SRC[79:72]

ELSE DEST[79:72] DEST[79:72];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 10 /r PBLENDVB xmm1,
xmm2/m128, <XMM0>

Valid Valid Select byte values from xmm1 and
xmm2/m128 from mask specified
in the high bit of each byte in
XMM0 and store the values into
xmm1.
86

SSE4 INSTRUCTION SET
IF (MASK[87] == 1) THEN DEST[87:80] SRC[87:80]
ELSE DEST[87:80] DEST[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] SRC[95:88]
ELSE DEST[95:88] DEST[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] SRC[103:96]
ELSE DEST[103:96] DEST[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] SRC[111:104]
ELSE DEST[111:104] DEST[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] SRC[119:112]
ELSE DEST[119:112] DEST[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] SRC[127:120]
ELSE DEST[127:120] DEST[127:120])

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
87

SSE4 INSTRUCTION SET
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
88

SSE4 INSTRUCTION SET
PBLENDW — Blend Packed Words

Description
Words from the source operand (second operand) are conditionally written to the
destination operand (first operand) depending on bits in the immediate operand
(third operand). The immediate bits (bits 7-0) form a mask that determines whether
the corresponding word in the destination is copied from the source. If a bit in the
mask, corresponding to a word, is “1", then the word is copied, else the word is
unchanged.

Operation

IF (imm8[0] == 1) THEN DEST[15:0] SRC[15:0];
ELSE DEST[15:0] DEST[15:0];

IF (imm8[1] == 1) THEN DEST[31:16] SRC[31:16];
ELSE DEST[31:16] DEST[31:16]);

IF (imm8[2] == 1) THEN DEST[47:32] SRC[47:32];
ELSE DEST[47:32] DEST[47:32];

IF (imm8[3] == 1) THEN DEST[63:48] SRC[63:48];
ELSE DEST[63:48] DEST[63:48];

IF (imm8[4] == 1) THEN DEST[79:64] SRC[79:64];
ELSE DEST[79:64] DEST[79:64];

IF (imm8[5] == 1) THEN DEST[95:80] SRC[95:80];
ELSE DEST[95:80] DEST[95:80];

IF (imm8[6] == 1) THEN DEST[111:96] SRC[111:96];
ELSE DEST[111:96] DEST[111:96];

IF (imm8[7] == 1) THEN DEST[127:112] SRC[127:112];
ELSE DEST[127:112] DEST[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

Flags Affected
None

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0E
/r ib

PBLENDW xmm1,
xmm2/m128, imm8

Valid Valid Select words from xmm1 and
xmm2/m128 from mask specified in
imm8 and store the values into xmm1.
89

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
90

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
91

SSE4 INSTRUCTION SET
PCMPEQQ — Compare Packed Qword Data for Equal

Description
Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.

Operation

IF (DEST[63:0] == SRC[63:0]) THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0;

IF (DEST[127:64] == SRC[127:64]) THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 29
/r

PCMPEQQ xmm1,
xmm2/m128

Valid Valid Compare packed qwords in
xmm2/m128 and xmm1 for equality.
92

SSE4 INSTRUCTION SET
Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
93

SSE4 INSTRUCTION SET
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Description
The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 5.3), and generates an index
stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). The index of the first (or
last, according to imm8[6]) set bit of IntRes2 (see Section 5.3.1.4) is returned in
ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 61 /r
imm8

PCMPESTRI
xmm1,
xmm2/m128,
imm8

Valid Valid Perform a packed comparison
of string data with explicit
lengths, generating an index,
and storing the result in ECX.
94

SSE4 INSTRUCTION SET
Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

Operating mode/size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX
95

SSE4 INSTRUCTION SET
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
96

SSE4 INSTRUCTION SET
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 5.3), and generates a mask stored to
XMM0.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). As defined by imm8[6],
IntRes2 is then either stored to the least significant bits of XMM0 (zero extended to
128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 60 /r
imm8

PCMPESTRM
xmm1,
xmm2/m128,
imm8

Valid Valid Perform a packed comparison
of string data with explicit
lengths, generating a mask, and
storing the result in XMM0
97

SSE4 INSTRUCTION SET
Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

Operating
mode/size

Operand1 Operand2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
98

SSE4 INSTRUCTION SET
If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
99

SSE4 INSTRUCTION SET
 PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 5.3), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). The index of the first (or
last, according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in
IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
63 /r imm8

PCMPISTRI xmm1,
xmm2/m128, imm8

Valid Valid Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.
100

SSE4 INSTRUCTION SET
Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) Interrupt 13 If any part of the operand lies outside the effective
address space from 0 to FFFFH.

Operating mode/size Operand1 Operand2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX
101

SSE4 INSTRUCTION SET
#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
102

SSE4 INSTRUCTION SET
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Description

The instruction compares data from two strings based on the encoded value in the
imm8 byte (see Section 5.3) generating a mask stored to XMM0.

Each string is represented by a single value. The The value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte
or word data). Each input byte/word is augmented with a valid/invalid tag. A
byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). As defined by imm8[6],
IntRes2 is then either stored to the least significant bits of XMM0 (zero extended to
128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 62
/r imm8

PCMPISTRM xmm1,
xmm2/m128, imm8

Valid Valid Perform a packed comparison
of string data with implicit
lengths, generating a mask,
and storing the result in
XMM0.

Operating mode/size Operand1 Operand2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0
103

SSE4 INSTRUCTION SET
Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
104

SSE4 INSTRUCTION SET
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
105

SSE4 INSTRUCTION SET
PCMPGTQ — Compare Packed Data for Greater Than

Description
Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] 0;

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] 0;

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 38 37 /r PCMPGTQ
xmm1,xmm2/m128

Valid Valid Compare packed qwords in
xmm2/m128 and xmm1 for
greater than.
106

SSE4 INSTRUCTION SET
If LOCK prefix is used.

#NM If TS bit in CR0 is set.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

#NM If TS bit in CR0 is set.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

#NM If TS bit in CR0 is set.

#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

#NM If TS bit in CR0 is set.
107

SSE4 INSTRUCTION SET
108

SSE4 INSTRUCTION SET
PEXTRB — Extract Byte

Description
Extract a byte integer value from the source xmm register (second argument) at a
byte offset determined from imm8[3:0]. The extracted integer value is stored into
the low 8 bits of the destination. If the destination is a register, the upper bits of the
register are zero extended.

Operation

PEXTRB (dest=m8)
SRC_Offset Imm8[3:0];
Mem8 (Src >> Src_Offset*8);

PEXTRB (dest=r32)
IF (64-Bit Mode and REX.W used and 64-bit destination GPR)
THEN

SRC_Offset Imm8[3:0];
r64 Zero_Extend64((Src >> Src_Offset*8) AND 0FFh);

ELSE
SRC_Offset Imm8[3:0];
r32 Zero_Extend32((Src >> Src_Offset*8) AND 0FFh);

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 14
/r ib

PEXTRB r32/m8,
xmm2, imm8

Valid Valid Extract a byte integer value from
xmm2 at the source byte offset
specified by imm8 into r32/m8.

66 REX.W 0F
3A 14 /r ib

PEXTRB r64/m8,
xmm2, imm8

Valid N. E. Extract a byte integer value from
xmm2 at the source byte offset
specified by imm8 into r64/m8.
109

SSE4 INSTRUCTION SET
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
110

SSE4 INSTRUCTION SET
PEXTRD/PEXTRQ — Extract Dword/Qword

Description
PEXTRD extracts a dword integer value from the source xmm register (second argu-
ment) at a dword offset determined from imm8[1:0]. The extracted integer value is
stored into the low 32 bits of the destination. If the destination is a register, the
upper bits of the register are zero extended.

Operation

IF (64-Bit Mode and REX.W used and 64-bit destination operand)
THEN

Src_Offset Imm8[0];
r/m64= (Src >> Src_Offset * 64);

ELSE
Src_Offset Imm8[1:0];
r/m32 ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 16
/r ib

PEXTRD r/m32,
xmm2, imm8

Valid Valid Extract a dword integer value from
xmm2 at the source dword offset
specified by imm8 into r/m32.

66 REX.W 0F
3A 16
/r ib

PEXTRQ r/m64,
xmm2, imm8

Valid N. E. Extract a qword integer value from
xmm2 at the source dword offset
specified by imm8 into r/m64.
111

SSE4 INSTRUCTION SET
#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
112

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
113

SSE4 INSTRUCTION SET
PEXTRW — Extract Word

Description
Extract a word integer value from the source xmm register (second argument) at a
word offset determined from imm8[2:0]. The extracted integer value is stored into
the low 16 bits of the destination. If the destination is a register, the upper bits of the
register are zero extended.

Operation

PEXTRW (dest=m16)
SRC_Offset Imm8[2:0];
Mem16 (Src >> Src_Offset*16);

PEXTRW (dest=r32 or r64)
IF (64-Bit Mode and REX.W used and 64-bit destination GPR)

THEN
SRC_Offset Imm8[2:0];
r64 Zero_Extend64((Src >> Src_Offset*16) AND 0FFFFh);

ELSE
SRC_Offset Imm8[2:0];
r32 Zero_Extend32((Src >> Src_Offset*16) AND 0FFFFh);

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_epi16 (__m128i src, int ndx);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 15
/r ib

PEXTRW r32/m16,
xmm2, imm8

Valid Valid Extract a word integer value from
xmm2 at the source word offset
specified by imm8 into r32/m16.

66 REX.W 0F
3A 15 /r ib

PEXTRW r64/m16,
xmm2, imm8

Valid N.E.+ Extract a word integer value from
xmm2 at the source word offset
specified by imm8 into r64/m16.
114

SSE4 INSTRUCTION SET
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
115

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
116

SSE4 INSTRUCTION SET
PHMINPOSUW — Packed Horizontal Word Minimum

Description
Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

INDEX 0;
MIN SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX 1; MIN SRC[31:16];
IF (SRC[47:32] < MIN) THEN INDEX 2; MIN SRC[47:32];
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX 7; MIN SRC[127:112];
DEST[15:0] MIN;
DEST[18:16] INDEX;
DEST[127:19] 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 41
/r

PHMINPOSUW xmm1,
xmm2/m128

Valid Valid Find the minimum unsigned word
in xmm2/m128 and place its value
in the low word of xmm1 and its
index in the second-lowest word of
xmm1.
117

SSE4 INSTRUCTION SET
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
118

SSE4 INSTRUCTION SET
PINSRB — Insert Byte

Description
Copies a byte from the source operand (second operand) and inserts it into the desti-
nation operand (first operand) at the location specified with the immediate operand
(third operand). The other words in the destination register are left unchanged. The
byte select is specified by the 4 least-significant bits of the immediate.

Operation

SEL imm8[3:0];
MASK (0FFH << (SEL * 8)); // Shift in zeros from right
DEST (DEST AND NOT MASK) OR (((SRC << (SEL *8)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 20
/r ib

PINSRB xmm1,
r32/m8, imm8

Valid Valid Insert a byte integer value from r32/m8
into xmm1 at the destination element in
xmm1 specified by imm8.
119

SSE4 INSTRUCTION SET
Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
120

SSE4 INSTRUCTION SET
PINSRD/PINSRQ — Insert Dword/Qword

Description
Copies a dword from the source operand (second operand) and inserts it into the
destination operand (first operand) at the location specified by the immediate
operand (third operand). The other dwords in the destination register are left
unchanged. The dword select is specified by the 2 least-significant bits of the imme-
diate.

Operation

IF (64-Bit Mode and REX.W used)
THEN

SEL imm8[0]
MASK (0FFFFFFFFFFFFFFFFH << (SEL * 64)); // Shift in zeros from right
DEST (DEST AND NOT MASK) OR (((SRC << (SEL *64)) AND MASK);

ELSE
SEL imm8[1:0]
MASK (0FFFFFFFFH << (SEL * 32)); // Shift in zeros from right
DEST (DEST AND NOT MASK) OR (((SRC << (SEL *32)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRD __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected
None

Opcode Instruction Compat/
Leg Mode

64-bit
Mode

Description

66 0F 3A 22
/r ib

PINSRD xmm1,
r/m32, imm8

Valid Valid Insert a dword integer value from r/m32
into the xmm1 at the destination elements
specified by imm8.

66 REX.W
0F 3A 22 /r
ib

PINSRQ xmm1,
r/m64, imm8

N. E. Valid Insert a qword integer value from r/m32
into the xmm1 at the destination elements
specified by imm8.
121

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
122

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
123

SSE4 INSTRUCTION SET
PMAXSB — Maximum of Packed Signed Byte Integers

Description
Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] > SRC[7:0]) THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0];

IF (DEST[15:8] > SRC[15:8]) THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8];

IF (DEST[23:16] > SRC[23:16]) THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16];

IF (DEST[31:24] > SRC[31:24]) THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24];

IF (DEST[39:32] > SRC[39:32]) THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32];

IF (DEST[47:40] > SRC[47:40]) THEN DEST[47:40] DEST[47:40];
ELSE DEST[47:40] SRC[47:40];

IF (DEST[55:48] > SRC[55:48]) THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48];

IF (DEST[63:56] > SRC[63:56]) THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56];

IF (DEST[71:64] > SRC[71:64]) THEN DEST[71:64] DEST[71:64];
ELSE DEST[71:64] SRC[71:64];

IF (DEST[79:72] > SRC[79:72]) THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72];

IF (DEST[87:80] > SRC[87:80]) THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80];

IF (DEST[95:88] > SRC[95:88]) THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88];

IF (DEST[103:96] > SRC[103:96]) THEN DEST[103:96] DEST[103:96];
ELSE DEST[103:96] SRC[103:96];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3C /r

PMAXSB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte integers in
xmm1 and xmm2/m128 and store packed
maximum values in xmm1.
124

SSE4 INSTRUCTION SET
IF (DEST[111:104] > SRC[111:104]) THEN DEST[111:104] DEST[111:104];
ELSE DEST[111:104] SRC[111:104];

IF (DEST[119:112] > SRC[119:112]) THEN DEST[119:112] DEST[119:112];
ELSE DEST[119:112] SRC[119:112];

IF (DEST[127:120] > SRC[127:120]) THEN DEST[127:120] DEST[127:120];
ELSE DEST[127:120] SRC[127:120];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
125

SSE4 INSTRUCTION SET
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
126

SSE4 INSTRUCTION SET
PMAXSD — Maximum of Packed Signed Dword Integers

Description
Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0]) THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0];

IF (DEST[63:32] > SRC[63:32]) THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32];

IF (DEST[95:64] > SRC[95:64]) THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64];

IF (DEST[127:96] > SRC[127:96]) THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3D /r

PMAXSD xmm1,
xmm2/m128

Valid Valid Compare packed signed dword integers in
xmm1 and xmm2/m128 and store packed
maximum values in xmm1.
127

SSE4 INSTRUCTION SET
If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
128

SSE4 INSTRUCTION SET
PMAXUD — Maximum of Packed Unsigned Dword Integers

Description
Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0]) THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0];

IF (DEST[63:32] > SRC[63:32]) THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32];

IF (DEST[95:64] > SRC[95:64]) THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64];

IF (DEST[127:96] > SRC[127:96]) THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD __m128i _mm_max_epu32 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction 64-bit Mode Compat/
Leg Mode

Description

66 0F 38
3F /r

PMAXUD xmm1,
xmm2/m128

Valid Valid Compare packed unsigned
dword integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.
129

SSE4 INSTRUCTION SET
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
130

SSE4 INSTRUCTION SET
PMAXUW — Maximum of Packed Word Integers

Description
Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[15:0] > SRC[15:0]) THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0];

IF (DEST[31:16] > SRC[31:16]) THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16];

IF (DEST[47:32] > SRC[47:32]) THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32];

IF (DEST[63:48] > SRC[63:48]) THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48];

IF (DEST[79:64] > SRC[79:64]) THEN DEST[79:64] DEST[79:64];
ELSE DEST[79:64] SRC[79:64];

IF (DEST[95:80] > SRC[95:80]) THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80];

IF (DEST[111:96] > SRC[111:96]) THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96];

IF (DEST[127:112] > SRC[127:112]) THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epu16 (__m128i a, __m128i b);

Flags Affected
None

Opcode Instruction Compat/
Leg Mode

64-bit
Mode

Description

66 0F 38
3E /r

PMAXUW xmm1,
xmm2/m128

Valid Valid Compare packed unsigned word
integers in xmm1 and xmm2/m128 and
store packed maximum values in xmm1.
131

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
132

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
133

SSE4 INSTRUCTION SET
PMINSB — Minimum of Packed Signed Byte Integers

Description
Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] < SRC[7:0]) THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0];

IF (DEST[15:8] < SRC[15:8]) THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8];

IF (DEST[23:16] < SRC[23:16]) THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16];

IF (DEST[31:24] < SRC[31:24]) THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24];

IF (DEST[39:32] < SRC[39:32]) THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32];

IF (DEST[47:40] < SRC[47:40]) THEN DEST[47:40] DEST[47:40];
ELSE DEST[47:40] SRC[47:40];

IF (DEST[55:48] < SRC[55:48]) THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48];

IF (DEST[63:56] < SRC[63:56]) THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56];

IF (DEST[71:64] < SRC[71:64]) THEN DEST[71:64] DEST[71:64];
ELSE DEST[71:64] SRC[71:64];

IF (DEST[79:72] < SRC[79:72]) THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72];

IF (DEST[87:80] < SRC[87:80]) THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80];

IF (DEST[95:88] < SRC[95:88]) THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88];

IF (DEST[103:96] < SRC[103:96]) THEN DEST[103:96] DEST[103:96];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 38 /r PMINSB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte
integers in xmm1 and xmm2/m128
and store packed minimum values in
xmm1.
134

SSE4 INSTRUCTION SET
ELSE DEST[103:96] SRC[103:96];
IF (DEST[111:104] < SRC[111:104]) THEN DEST[111:104] DEST[111:104];

ELSE DEST[111:104] SRC[111:104];
IF (DEST[119:112] < SRC[119:112]) THEN DEST[119:112] DEST[119:112];

ELSE DEST[119:112] SRC[119:112];
IF (DEST[127:120] < SRC[127:120]) THEN DEST[127:120] DEST[127:120];

ELSE DEST[127:120] SRC[127:120];

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.
135

SSE4 INSTRUCTION SET
Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
136

SSE4 INSTRUCTION SET
PMINSD — Minimum of Packed Dword Integers

Description
Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0]) THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0];

IF (DEST[63:32] < SRC[63:32]) THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32];

IF (DEST[95:64] < SRC[95:64]) THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64];

IF (DEST[127:96] < SRC[127:96]) THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
39 /r

PMINSD xmm1,
xmm2/m128

Valid Valid Compare packed signed dword integers in
xmm1 and xmm2/m128 and store packed
mimum values in xmm1.
137

SSE4 INSTRUCTION SET
If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
138

SSE4 INSTRUCTION SET
PMINUD — Minimum of Packed Dword Integers

Description
Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0]) THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0];

IF (DEST[63:32] < SRC[63:32]) THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32];

IF (DEST[95:64] < SRC[95:64]) THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64];

IF (DEST[127:96] < SRC[127:96]) THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3B /r

PMINUD xmm1,
xmm2/m128

Valid Valid Compare packed unsigned dword
integers in xmm1 and xmm2/m128 and
store packed minimum values in xmm1.
139

SSE4 INSTRUCTION SET
If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
140

SSE4 INSTRUCTION SET
PMINUW — Minimum of Packed Word Integers

Description
Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[15:0] < SRC[15:0]) THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0];

IF (DEST[31:16] < SRC[31:16]) THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16];

IF (DEST[47:32] < SRC[47:32]) THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32];

IF (DEST[63:48] < SRC[63:48]) THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48];

IF (DEST[79:64] < SRC[79:64]) THEN DEST[79:64] DEST[79:64];
ELSE DEST[79:64] SRC[79:64];

IF (DEST[95:80] < SRC[95:80]) THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80];

IF (DEST[111:96] < SRC[111:96]) THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96];

IF (DEST[127:112] < SRC[127:112]) THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b);

Flags Affected
None

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 3A
/r

PMINUW xmm1,
xmm2/m128

Valid Valid Compare packed unsigned word
integers in xmm1 and xmm2/m128 and
store packed minimum values in
xmm1.
141

SSE4 INSTRUCTION SET
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
142

SSE4 INSTRUCTION SET
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
143

SSE4 INSTRUCTION SET
PMOVSX — Packed Move with Sign Extend

Description
Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are sign extended to word, dword, or quadword integers and stored as
packed data in the destination operand.

Operation

PMOVSXBW
DEST[15:0] SignExtend(SRC[7:0]);
DEST[31:16] SignExtend(SRC[15:8]);
DEST[47:32] SignExtend(SRC[23:16]);
DEST[63:48] SignExtend(SRC[31:24]);
DEST[79:64] SignExtend(SRC[39:32]);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0f 38 20
/r

PMOVSXBW xmm1,
xmm2/m64

Valid Valid Sign extend 8 packed signed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed signed 16-bit
integers in xmm1.

66 0f 38 21
/r

PMOVSXBD xmm1,
xmm2/m32

Valid Valid Sign extend 4 packed signed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed signed 32-bit
integers in xmm1.

66 0f 38 22
/r

PMOVSXBQ xmm1,
xmm2/m16

Valid Valid Sign extend 2 packed signed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed signed 64-bit
integers in xmm1.

66 0f 38 23
/r

PMOVSXWD xmm1,
xmm2/m64

Valid Valid Sign extend 4 packed signed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed signed 32-bit
integers in xmm1.

66 0f 38 24
/r

PMOVSXWQ xmm1,
xmm2/m32

Valid Valid Sign extend 2 packed signed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed signed 64-bit
integers in xmm1.

66 0f 38 25
/r

PMOVSXDQ xmm1,
xmm2/m64

Valid Valid Sign extend 2 packed signed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed signed 64-bit
integers in xmm1.
144

SSE4 INSTRUCTION SET
DEST[95:80] SignExtend(SRC[47:40]);
DEST[111:96] SignExtend(SRC[55:48]);
DEST[127:112] SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] SignExtend(SRC[7:0]);
DEST[63:32] SignExtend(SRC[15:8]);
DEST[95:64] SignExtend(SRC[23:16]);
DEST[127:96] SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] SignExtend(SRC[7:0]);
DEST[127:64] SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0] SignExtend(SRC[15:0]);
DEST[63:32] SignExtend(SRC[31:16]);
DEST[95:64] SignExtend(SRC[47:32]);
DEST[127:96] SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0] SignExtend(SRC[15:0]);
DEST[127:64] SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] SignExtend(SRC[31:0]);
DEST[127:64] SignExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (__m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (__m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (__m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 (__m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (__m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 (__m128i a);

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.
145

SSE4 INSTRUCTION SET
#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
146

SSE4 INSTRUCTION SET
PMOVZX — Packed Move with Zero Extend

Description
Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are zero extended to word, dword, or quadword integers and stored as
packed data in the destination operand.

Operation

PMOVZXBW
DEST[15:0] ZeroExtend(SRC[7:0]);
DEST[31:16] ZeroExtend(SRC[15:8]);
DEST[47:32] ZeroExtend(SRC[23:16]);
DEST[63:48] ZeroExtend(SRC[31:24]);
DEST[79:64] ZeroExtend(SRC[39:32]);
DEST[95:80] ZeroExtend(SRC[47:40]);
DEST[111:96] ZeroExtend(SRC[55:48]);
DEST[127:112] ZeroExtend(SRC[63:56]);

PMOVZXBD
DEST[31:0] ZeroExtend(SRC[7:0]);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0f 38
30 /r

PMOVZXBW xmm1,
xmm2/m64

Valid Valid Zero extend 8 packed 8-bit integers in the
low 8 bytes of xmm2/m64 to 8 packed 16-bit
integers in xmm1.

66 0f 38
31 /r

PMOVZXBD xmm1,
xmm2/m32

Valid Valid Zero extend 4 packed 8-bit integers in the
low 4 bytes of xmm2/m32 to 4 packed 32-bit
integers in xmm1.

66 0f 38
32 /r

PMOVZXBQ xmm1,
xmm2/m16

Valid Valid Zero extend 2 packed 8-bit integers in the
low 2 bytes of xmm2/m16 to 2 packed 64-bit
integers in xmm1.

66 0f 38
33 /r

PMOVZXWD xmm1,
xmm2/m64

Valid Valid Zero extend 4 packed 16-bit integers in the
low 8 bytes of xmm2/m64 to 4 packed 32-bit
integers in xmm1.

66 0f 38
34 /r

PMOVZXWQ xmm1,
xmm2/m32

Valid Valid Zero extend 2 packed 16-bit integers in the
low 4 bytes of xmm2/m32 to 2 packed 64-bit
integers in xmm1.

66 0f 38
35 /r

PMOVZXDQ xmm1,
xmm2/m64

Valid Valid Zero extend 2 packed 32-bit integers in the
low 8 bytes of xmm2/m64 to 2 packed 64-bit
integers in xmm1.
147

SSE4 INSTRUCTION SET
DEST[63:32] ZeroExtend(SRC[15:8]);
DEST[95:64] ZeroExtend(SRC[23:16]);
DEST[127:96] ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] ZeroExtend(SRC[7:0]);
DEST[127:64] ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] ZeroExtend(SRC[15:0]);
DEST[63:32] ZeroExtend(SRC[31:16]);
DEST[95:64] ZeroExtend(SRC[47:32]);
DEST[127:96] ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] ZeroExtend(SRC[15:0]);
DEST[127:64] ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] ZeroExtend(SRC[31:0]);
DEST[127:64] ZeroExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepu8_epi16 (__m128i a);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 (__m128i a);
PMOVZXBQ __m128i _mm_ cvtepu8_epi64 (__m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 (__m128i a);
PMOVZXWQ __m128i _mm_ cvtepu16_epi64 (__m128i a);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (__m128i a);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
148

SSE4 INSTRUCTION SET
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
149

SSE4 INSTRUCTION SET
PMULDQ — Multiply Packed Signed Dword Integers

Description
Performs a signed multiply of the first (low) and third packed signed dword integers
in the destination operand (first operand) and the first and third packed signed dword
integers in the source operand (second operand), and stores the 64 bit product in the
destination operand. If the source is a memory operand then all 128 bits will be
fetched from memory but the second and fourth dwords will not be used in the
computation.

Operation

DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 28
/r

PMULDQ xmm1,
xmm2/m128

Valid Valid Multiply the packed signed dword integers
in xmm1 and xmm2/m128 and store the
quadword product in xmm1.
150

SSE4 INSTRUCTION SET
Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
151

SSE4 INSTRUCTION SET
PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

Description
Performs a multiply of the packed signed dword integers in the destination operand
(first operand) and the source operand (second operand), and stores the low 32 bits
of each intermediate 64-bit product in the destination operand.

Operation

Temp0[63:0] DEST[31:0] * SRC[31:0];
Temp1[63:0] DEST[63:32] * SRC[63:32];
Temp2[63:0] DEST[95:64] * SRC[95:64];
Temp3[63:0] DEST[127:96] * SRC[127:96];
DEST[31:0] Temp0[31:0];
DEST[63:32] Temp1[31:0];
DEST[95:64] Temp2[31:0];
DEST[127:96] Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b);

Flags Affected
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 40 /r PMULLD xmm1,
xmm2/m128

Valid Valid Multiply the packed dword signed
integers in xmm1 and xmm2/m128 and
store the low 32 bits of each product in
xmm1.
152

SSE4 INSTRUCTION SET
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
153

SSE4 INSTRUCTION SET
POPCNT — Return the Count of Number of Bits Set to 1

Description
This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;

//16-bit case
For (i=0; i < (16);i++) {
IF src16[i] == 1

Then Count++
}
R16 Count;

//32-bit case
For (i=0; i < (32);i++) {
IF src32[i] == 1

THEN Count++
}
R32 Count;

//64-bit case
For (i=0; i < (64);i++) {
IF src64[i] == 1

THEN Count++
}
R64 Count;

Flags Affected
OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC == 0, otherwise ZF is cleared

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r
F3 0F B8 /r
F3 REX.W 0F B8
/r

POPCNT r16, r/m16
POPCNT r32, r/m32
POPCNT r64, r/m64

Valid
Valid
Valid

Valid
Valid
N.E.

POPCNT on r/m16
POPCNT on r/m32
POPCNT on r/m64
154

SSE4 INSTRUCTION SET
Intel C/C++ Compiler Intrinsic Equivalent

POPCNT int _mm_popcnt_u32(unsigned int a);

POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
155

SSE4 INSTRUCTION SET
#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
156

SSE4 INSTRUCTION SET
PTEST- Logical Compare

Description
Performs a bitwise AND of the destination operand (first operand) and the source
operand (second operand), then sets the ZF flag only if all bits in the result are 0.
PTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of the source
operand (second operand) and the bitwise logical NOT of the destination operand.

Operation

IF (SRC[127:0] bitwiseAND DEST[127:0] == 0)
THEN ZF 1;
ELSE ZF 0;

IF (SRC[127:0] bitwiseAND (bitwiseNOT DEST[127:0]) == 0)
THEN CF 1;
ELSE CF 0;

DEST[127:0] Unmodified;
AF = OF = PF = SF 0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
int _mm_testc_si128 (__m128i s1, __m128i s2);
int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected
The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 17 /r PTEST xmm1,
xmm2/m128

Valid Valid Set ZF if xmm2/m128 AND xmm1
result is all 0s. Set CF if xmm2/m128
AND NOT xmm1 result is all 0s.
157

SSE4 INSTRUCTION SET
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
158

SSE4 INSTRUCTION SET
ROUNDPD — Round Packed Double Precision Floating-Point Values

Description
Round the 2 double precision floating-point values in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds each input value to an integer value. The immediate operand specifies control
fields for the rounding operation, three bit fields are defined and shown in Figure 5-2.
Bit 3 of the immediate byte controls processor behavior for a precision exception, bit
2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Table 5-9 lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
09 /r ib

ROUNDPD xmm1,
xmm2/m128, imm8

Valid Valid Round packed double precision
floating-point values in xmm2/m128
and place the result in xmm1. The
rounding mode is determined by
imm8.

Figure 5-2. Bit Control Fields of Immediate Byte for ROUNDxx Instruction

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
159

SSE4 INSTRUCTION SET
Operation

IF (imm[2] == ‘1) THEN // rounding mode is determined by MXCSR.RC
DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] ConvertDPFPToInteger_I(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_I(SRC[127:64]);

FI // If SRC == SNaN then RoundToIntegralValue will set DEST QNaN
// The Precision exception is signaled only if imm[3] == ‘0
// The Precision exception is not signaled if imm[3] == ‘1

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128d s1);
__m128 mm_ceil_pd(__m128d s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

Table 5-9. Rounding Modes and Encoding of Rounding Control (RC) Field
Rounding
Mode

RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values
are equally close, the result is the even value (i.e., the integer value with
the least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the
infinitely precise result.
160

SSE4 INSTRUCTION SET
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.
161

SSE4 INSTRUCTION SET
If LOCK prefix is used.
162

SSE4 INSTRUCTION SET
ROUNDPS — Round Packed Single Precision Floating-Point Values

Description
Round the 4 single precision floating-point values in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds the input to an integral value and returns the result as a single precision
floating-point value. The immediate operand specifies control fields for the rounding
operation, three bit fields are defined and shown in Figure 5-2. Bit 3 of the immediate
byte controls processor behavior for a precision exception, bit 2 selects the source of
rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 5-9
lists the encoded values for rounding-mode field). The Precision Floating-Point
Exception is signaled according to the immediate operand. If any source operand is
an SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will
be converted to zero before rounding.

Operation

IF (imm[2] == ‘1) THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] ConvertSPFPToInteger_I(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_I(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_I(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_I(SRC[127:96]);

FI
// If SRC == SNaN then RoundToIntegralValue will set DEST QNaN
// The Precision exception is signaled only if imm[3] == ‘0
// The Precision exception is not signaled if imm[3] == ‘1

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 08
/r ib

ROUNDPS xmm1,
xmm2/m128, imm8

Valid Valid Round packed single precision
floating-point values in xmm2/m128
and place the result in xmm1. The
rounding mode is determined by
imm8.
163

SSE4 INSTRUCTION SET
Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128 s1);
__m128 mm_ceil_ps(__m128 s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.
164

SSE4 INSTRUCTION SET
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.
165

SSE4 INSTRUCTION SET
ROUNDSD — Round Scalar Double Precision Floating-Point Values

Description
Round the DP FP value in the source operand (second operand) by the rounding
mode specified in the immediate operand (third operand) and place the result in the
destination operand (first operand). The rounding process rounds the lowest double
precision floating-point input to an integral value and returns the result as a double
precision floating-point value in the lowest position. The upper double precision
floating-point value in the destination is retained. The immediate operand specifies
control fields for the rounding operation, three bit fields are defined and shown in
Figure 5-2. Bit 3 of the immediate byte controls processor behavior for a precision
exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-
sticky rounding-mode value (Table 5-9 lists the encoded values for rounding-mode
field). The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] == ‘1) THEN // rounding mode is determined by MXCSR.RC
DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] ConvertDPFPToInteger_I(SRC[63:0]);

FI
// If SRC == SNaN then RoundToIntegralValue will set DEST QNaN
// The Precision exception is signaled only if imm[3] == ‘0
// The Precision exception is not signaled if imm[3] == ‘1
// DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0B /r
ib

ROUNDSD xmm1,
xmm2/m64, imm8

Valid Valid Round the low packed double precision
floating-point value in xmm2/m64 and
place the result in xmm1. The rounding
mode is determined by imm8.
166

SSE4 INSTRUCTION SET
SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
167

SSE4 INSTRUCTION SET
#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
168

SSE4 INSTRUCTION SET
ROUNDSS — Round Scalar Single Precision Floating-Point Values

Description
Round the single precision floating-point value in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds the lowest single precision floating-point input to an integral value and
returns the result as a single precision floating-point value in the lowest position. The
upper three single precision floating-point values in the destination are retained. The
immediate operand specifies control fields for the rounding operation, three bit fields
are defined and shown in Figure 5-2. Bit 3 of the immediate byte controls processor
behavior for a precision exception, bit 2 selects the source of rounding mode control.
Bits 1:0 specify a non-sticky rounding-mode value (Table 5-9 lists the encoded
values for rounding-mode field). The Precision Floating-Point Exception is signaled
according to the immediate operand. If any source operand is an SNaN then it will be
converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero
before rounding.

Operation

IF (imm[2] == ‘1) THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] ConvertSPFPToInteger_I(SRC[31:0]);

FI
// If SRC == SNaN then RoundToIntegralValue will set DEST QNaN
// The Precision exception is signaled only if imm[3] == ‘0
// The Precision exception is not signaled if imm[3] == ‘1
// DEST[127:32] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0A /r
ib

ROUNDSS xmm1,
xmm2/m32, imm8

Valid Valid Round the low packed single
precision floating-point value in
xmm2/m32 and place the result
in xmm1. The rounding mode is
determined by imm8.
169

SSE4 INSTRUCTION SET
SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault:code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
170

SSE4 INSTRUCTION SET
#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.
171

SSE4 INSTRUCTION SET
172

INSTRUCTION SUMMARY AND ENCODINGS
APPENDIX A
INSTRUCTION SUMMARY AND ENCODINGS

1.1 SSE4.1 INSTRUCTION SUMMARY AND
ENCODINGS

Table A-1. SSE4.1 Instruction Set Summary
Opcodes Instruction Description

66 0F 3A 0D BLENDPD xmm1, xmm2/m128,
imm8

Blend Packed Double Precision Floating-Point
Values

66 0F 3A 0C BLENDPS xmm1, xmm2/m128,
imm8

Blend Packed Single Precision Floating-Point
Values

66 0F 38 15 BLENDVPD xmm1,
xmm2/m128, <XMM0>

Variable Blend Packed Double Precsion
Floating-Point Values

66 0F 38 14 BLENDVPS xmm1,
xmm2/m128, <XMM0>

Variable Blend Packed Single Precision
Floating-Point Values

66 0F 3A 41 DPPD xmm1, xmm2/m128
imm8

Dot Product of Packed Double Precision
Floating Point Values

66 0F 3A 40 DPPS xmm1, xmm2/m128.
imm8

Dot Product of Packed Single Precision Floating
Point Values

66 0F 3A 17 EXTRACTPS r/m32, xmm
imm8

Extract Packed Single Precision Floating-Point
Value

66 0F 3A 21 INSERTPS xmm1, xmm2/m32,
imm8

Insert Packed Single Precision Floating-Point
Value

66 0F 38 2A MOVNTDQA xmm, m128 Load Double Quadword Non-Temporal Aligned
Hint

66 0F 3A 42 MPSADBW xmm1,
xmm2/m128, imm8

Compute Multiple Packed Sums of Absolute
Difference

66 0F 38 2B PACKUSDW xmm1,
xmm2/m128

Pack with Unsigned Saturation

66 0F 38 10 PBLENDVB xmm1,
xmm2/m128, <XMM0>

Variable Blend Packed Bytes

66 0F 3A 0E PBLENDW xmm1,
xmm2/m128, imm8

Blend Packed Words

66 0F 38 29 PCMPEQQ xmm1, xmm2/m128 Compare Packed Qword Data for Equal
175

INSTRUCTION SUMMARY AND ENCODINGS
66 0F 3A 14 PEXTRB r32/m8, xmm, imm8 Extract Byte

66 0F 3A 16 PEXTRD r/m32, xmm, imm8 Extract Dword

66 REX.w 0F
3A 16

PEXTRQ r/m64, xmm, imm8 Extract Qword

66 0F 3A 15 PEXTRW r/m16, xmm, imm8 Extract Word

66 0F 38 41 PHMINPOSUW xmm1,
xmm2/m128

Packed Horizontal Word Minimum

66 0F 3A 20 PINSRB xmm1, r32/m8, imm8 Insert Byte

66 0F 3A 22 PINSRD xmm1, r/m32, imm8 Insert Dword

66 REX.w 0F
3A 22

PINSRQ xmm1, r/m64, imm8 Insert Qword

66 0F 38 3C PMAXSB xmm1, xmm2/m128 Maximum of Packed Signed Byte Integers

66 0F 38 3D PMAXSD xmm1, xmm2/m128 Maximum of Packed Signed Dword Integers

66 0F 38 3F PMAXUD xmm1, xmm2/m128 Maximum of Packed Unsigned Dword Integers

66 0F 38 3E PMAXUW xmm1, xmm2/m128 Maximum of Packed Unsigned Word Integers

66 0F 38 38 PMINSB xmm1, xmm2/m128 Minimum of Packed Signed Byte Integers

66 0F 38 39 PMINSD xmm1, xmm2/m128 Minimum of Packed Signed Dword Integers

66 0F 38 3B PMINUD xmm1, xmm2/m128 Minimum of Packed Unsigned Dword Integers

66 0F 38 3A PMINUW xmm1, xmm2/m128 Minimum of Packed Unsigned Word Integers

66 0F 38 21 PMOVSXBD xmm1,
xmm2/m32

Packed Move with Sign Extend - Byte to Dword

66 0F 38 22 PMOVSXBQ xmm1,
xmm2/m16

Packed Move with Sign Extend - Byte to Qword

66 0F 38 20 PMOVSXBW xmm1,
xmm2/m64

Packed Move with Sign Extend - Byte to Word

66 0F 38 23 PMOVSXWD xmm1,
xmm2/m64

Packed Move with Sign Extend - Word to
Dword

66 0F 38 24 PMOVSXWQ xmm1,
xmm2/m32

Packed Move with Sign Extend - Word to
Qword

66 0F 38 25 PMOVSXDQ xmm1,
xmm2/m64

Packed Move with Sign Extend - Dword to
Qword

66 0F 38 31 PMOVZXBD xmm1,
xmm2/m32

Packed Move with Zero Extend - Byte to Dword

Table A-1. SSE4.1 Instruction Set Summary
Opcodes Instruction Description
176

INSTRUCTION SUMMARY AND ENCODINGS
Table A-2 provides SSE4.1 formats and encodings. Some SSE4.1 instructions require
a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes
are included in the tables.

In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W
prefix in the opcode sequence is shown.

66 0F 38 32 PMOVZXBQ xmm1,
xmm2/m16

Packed Move with Zero Extend - Byte to Qword

66 0F 38 30 PMOVZXBW xmm1,
xmm2/m64

Packed Move with Zero Extend - Byte to Word

66 0F 38 33 PMOVZXWD xmm1,
xmm2/m64

Packed Move with Zero Extend - Word to
Dword

66 0F 38 34 PMOVZXWQ xmm1,
xmm2/m32

Packed Move with Zero Extend - Word to
Qword

66 0F 38 35 PMOVZXDQ xmm1,
xmm2/m64

Packed Move with Zero Extend - Dword to
Qword

66 0F 38 28 PMULDQ xmm1, xmm2/m128 Multiply Packed Signed Dword Integers

66 0F 38 40 PMULLD xmm1, xmm2/m128 Multiply Packed Signed Dword Integers and
Store Low Result

66 0F 38 17 PTEST xmm1, xmm2/m128 Logical Compare

66 0F 3A 09 ROUNDPD xmm1,
xmm2/m128, imm8

Round Packed Double Precision Floating-Point
Values

66 0F 3A 08 ROUNDPS xmm1, xmm2/m128,
imm8

Round Packed Single Precision Floating-Point
Values

66 0F 3A 0B ROUNDSD xmm1, xmm2/m64,
imm8

Round Scalar Double Precision Floating-Point
Values

66 0F 3A 0A ROUNDSS xmm1, xmm2/m32,
imm8

Round Scalar Single Precision Floating-Point
Values

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding

BLENDPD — Blend Packed Double-
Precision Floats

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101:11 xmmreg1
xmmreg2

Table A-1. SSE4.1 Instruction Set Summary
Opcodes Instruction Description
177

INSTRUCTION SUMMARY AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod xmmreg
r/m

BLENDPS — Blend Packed Single-
Precision Floats

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod xmmreg
r/m

BLENDVPD — Variable Blend Packed
Double-Precision Floats

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod
xmmreg r/m

BLENDVPS — Variable Blend Packed
Single-Precision Floats

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod
xmmreg r/m

DPPD — Packed Double-Precision Dot
Products

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod
xmmreg r/m: imm8

DPPS — Packed Single-Precision Dot
Products

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod
xmmreg r/m: imm8

EXTRACTPS — Extract From Packed
Single-Precision Floats

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 reg
xmmreg: imm8

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
178

INSTRUCTION SUMMARY AND ENCODINGS
 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod r/m
xmmreg: imm8

INSERTPS — Insert Into Packed Single-
Precision Floats

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod
xmmreg r/m: imm8

MOVNTDQA — Load Double
Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m
xmmreg2

MPSADBW — Multiple Packed Sums of
Absolute Difference

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod
xmmreg r/m: imm8

PACKUSDW — Pack with Unsigned
Saturation

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod xmmreg
r/m

PBLENDVB — Variable Blend Packed
Bytes

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod
xmmreg r/m

PBLENDW — Blend Packed Words

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod xmmreg
r/m: imm8

PCMPEQQ — Compare Packed Qword
Data of Equal

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
179

INSTRUCTION SUMMARY AND ENCODINGS
 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod
xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 reg
xmmreg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod
xmmreg r/m: imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 reg
xmmreg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110:11
reg xmmreg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg
xmmreg: imm8

 mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod
xmmreg r/m: imm8

PHMINPOSUW — Packed Horizontal
Word Minimum

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod
xmmreg r/m

PINSRB — Extract Byte

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11 xmmreg
reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod
xmmreg r/m: imm8

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
180

INSTRUCTION SUMMARY AND ENCODINGS
PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11 xmmreg
reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010:11
xmmreg reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PMAXSB — Maximum of Packed
Signed Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod xmmreg
r/m

PMAXSD — Maximum of Packed
Signed Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod xmmreg
r/m

PMAXUD — Maximum of Packed
Unsigned Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod xmmreg
r/m

PMAXUW — Maximum of Packed
Unsigned Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod xmmreg
r/m

PMINSB — Minimum of Packed Signed
Byte Integers

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
181

INSTRUCTION SUMMARY AND ENCODINGS
 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod xmmreg
r/m

PMINSD — Minimum of Packed Signed
Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod xmmreg
r/m

PMINUD — Minimum of Packed
Unsigned Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod xmmreg
r/m

PMINUW — Minimum of Packed
Unsigned Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod xmmreg
r/m

PMOVSXBD — Packed Move Sign
Extend - Byte to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod
xmmreg r/m

PMOVSXBQ — Packed Move Sign
Extend - Byte to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod
xmmreg r/m

PMOVSXBW — Packed Move Sign
Extend - Byte to Word

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
182

INSTRUCTION SUMMARY AND ENCODINGS
 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod
xmmreg r/m

PMOVSXWD — Packed Move Sign
Extend - Word to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod xmmreg
r/m

PMOVSXWQ — Packed Move Sign
Extend - Word to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod
xmmreg r/m

PMOVSXDQ — Packed Move Sign
Extend - Dword to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod
xmmreg r/m

PMOVZXBD — Packed Move Zero
Extend - Byte to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod xmmreg
r/m

PMOVZXBQ — Packed Move Zero
Extend - Byte to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod xmmreg
r/m

PMOVZXBW — Packed Move Zero
Extend - Byte to Word

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
183

INSTRUCTION SUMMARY AND ENCODINGS
 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod xmmreg
r/m

PMOVZXWD — Packed Move Zero
Extend - Word to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod xmmreg
r/m

PMOVZXWQ — Packed Move Zero
Extend - Word to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod xmmreg
r/m

PMOVZXDQ — Packed Move Zero
Extend - Dword to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod xmmreg
r/m

PMULDQ — Multiply Packed Signed
Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod
xmmreg r/m

PMULLD — Multiply Packed Signed
Dword Integers, Store low Result

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod
xmmreg r/m

PTEST — Logical Compare

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111:11 xmmreg1
xmmreg2

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
184

INSTRUCTION SUMMARY AND ENCODINGS
1.2 SSE4.2 INSTRUCTION SUMMARY AND
ENCODINGS

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod xmmreg
r/m

ROUNDPD — Round Packed Double-
Precision Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod
xmmreg r/m: imm8

ROUNDPS — Round Packed Single-
Precision Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod
xmmreg r/m: imm8

ROUNDSD — Round Scalar Double-
Precision Value

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod xmmreg
r/m: imm8

ROUNDSS — Round Scalar Single-
Precision Value

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod
xmmreg r/m: imm8

Table A-3. SSE4.2 Instruction Set Summary
Opcodes Instruction Description

F2 0F 38 F0 /r CRC32 r32, r/m8 Accumulate CRC32 on r/m8

Table A-2. Encodings of SSE4.1 instructions
Instruction and Format Encoding
185

INSTRUCTION SUMMARY AND ENCODINGS
Table A-4 provides SSE4.2 formats and encodings. Some SSE4.2 instructions require
a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes
are included in the tables. In 64-bit mode, some instructions requires REX.W, the
byte sequence of REX.W prefix in the opcode sequence is shown.

F2 REX.W 0F
38 F0 /r

CRC32 r64, r/m8 Accumulate CRC32 on r/m8

F2 0F 38 F1 /r CRC32 r32, r/m16 Accumulate CRC32 on r/m16

F2 0F 38 F1 /r CRC32 r32, r/m32 Accumulate CRC32 on r/m32

F2 REX.W 0F
38 F1 /r

CRC32 r64, r/m64 Accumulate CRC32 on r/m64

66 0F 3A 61 /r
imm8

PCMPESTRI xmm1,
xmm2/m128, imm8

Perform a packed comparison of string data with
explicit lengths, generating an index in ECX

66 0F 3A 60 /r
imm8

PCMPESTRM xmm1,
xmm2/m128, imm8

Perform a packed comparison of string data with
explicit lengths, generating a mask in XMM0

66 0F 3A 63 /r
imm8

PCMPISTRI xmm1,
xmm2/m128, imm8

Perform a packed comparison of string data with
implicit lengths, generating an index in ECX

66 0F 3A 62 /r
imm8

PCMPISTRM xmm1,
xmm2/m128, imm8

Perform a packed comparison of string data with
implicit lengths, generating a mask in XMM0

66 0F 38 37 /r PCMPGTQ xmm1, xmm2/m128 Compare packed qwords in xmm2/m128 and
xmm1 for greater than

F3 0F B8 /r POPCNT r16, r/m16 Calculate the number of bits set to 1 from
r/m16bb

F3 0F B8 /r POPCNT r32, r/m32 Calculate the number of bits set to 1 from r/m32

F3 REX.W 0F
B8 /r

POPCNT r64, r/m64 Calculate the number of bits set to 1 from r/m64

Table A-4. Encodings of SSE4.2 instructions
Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m

Table A-3. SSE4.2 Instruction Set Summary
Opcodes Instruction Description
186

INSTRUCTION SUMMARY AND ENCODINGS
 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000
:11 reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :
mod reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0000
:11 qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0000 :
mod qwreg r/m

PCMPESTRI— Packed Compare
Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg
r/m

PCMPESTRM— Packed Compare
Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg
r/m

PCMPISTRI— Packed Compare
Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg
r/m

PCMPISTRM— Packed Compare
Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg
r/m

PCMPGTQ— Packed Compare Greater
Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1
xmmreg2

Table A-4. Encodings of SSE4.2 instructions
Instruction and Format Encoding
187

INSTRUCTION SUMMARY AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg
r/m

POPCNT— Return Number of Bits Set to
1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m

Table A-4. Encodings of SSE4.2 instructions
Instruction and Format Encoding
188

INSTRUCTION OPCODE MAP
APPENDIX B
INSTRUCTION OPCODE MAP

SSE4.1 opcodes are indicated by blue table cells. SSE4.1 are indicated by yellow
table cells.

Table B-1. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are 0F 38H)

0 1 2 3 4 5 6 7

0 pshufb
Pq, Qq

pshufb (66)
Vdq, Wdq

phaddw
Pq, Qq

phaddw (66)
Vdq, Wdq

phaddd
Pq, Qq

phaddd (66)
Vdq, Wdq

phaddsw
Pq, Qq

phaddsw (66)
Vdq, Wdq

pmaddubsw
Pq, Qq

pmaddubsw
(66)

Vdq, Wdq

phsubw
Pq, Qq

phsubw (66)
Vdq, Wdq

phsubd
Pq, Qq

phsubd (66)
Vdq, Wdq

phsubsw
Pq, Qq

phsubsw (66)
Vdq, Wdq

1 pblendvb
(66)

Vdq, Wdq

blendvps
(66)

Vdq, Wdq

blendvpd
(66)

Vdq, Wdq

ptest
(66)

Vdq, Wdq

2 pmovsxbw
(66)

Vdq, Wdq

pmovsxbd
(66)

Vdq, Wdq

pmovsxbq
(66)

Vdq, Wdq

pmovsxwd
(66)

Vdq, Wdq

pmovsxwq
(66)

Vdq, Wdq

pmovsxdq
(66)

Vdq, Wdq

3 pmovzxbw
(66)

 Vdq, Wdq

pmovzxbd
(66)

Vdq, Wdq

pmovzxbq
(66)

Vdq, Wdq

pmovzxwd
(66)

Vdq, Wdq

pmovzxwq
(66)

Vdq, Wdq

pmovzxdq
(66)

Vdq, Wdq

pcmpgtq
(66)

Vdq, Wdq

4 pmulld
(66)

Vdq, Wdq

phminposuw
(66)

Vdq, Wdq

5-E ...No changes or additions...

F crc32
(F2)

Gv, Eb

crc32
(F2)

Gv, Ev

Table B-2. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H)

8 9 A B C D E F

0 psignb
Pq, Qq

psignb (66)
Vdq, Wdq

psignw
Pq, Qq

psignw (66)
Vdq, Wdq

psignd
Pq, Qq

psignd (66)
Vdq, Wdq

pmulhrsw
Pq, Qq

pmulhrsw
(66)

Vdq, Wdq

1 psabsb
Pq, Qq

pabsb (66)
Vdq, Wdq

psabsw
Pq, Qq

pabsw (66)
Vdq, Wdq

psabsd
Pq, Qq

pabsd (66)
Vdq, Wdq
187

INSTRUCTION OPCODE MAP
NOTE: Instructions pinsrq and pextrq require a REX.w prefix. If the REX.w prefix is
not present then these instructions will be treated as pinsrd and pextrd.

2 pmuldq
(66)

Vdq, Wdq

pcmpeqq
(66)

Vdq, Wdq

movntdqa
(66)

Mdq,Vdq

packusdw
(66)

Vdq, Wdq

3 pminsb
(66)

Vdq, Wdq

pminsd
(66)

Vdq, Wdq

pminuw
(66)

Vdq, Wdq

pminud (66)
Vdq, Wdq

pmaxsb
(66)

Vdq, Wdq

pmaxsd
(66)

Vdq, Wdq

pmaxuw
(66)

Vdq, Wdq

pmaxud (66)
Vdq, Wdq

4-F ...No changes or additions...

Table B-3. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are 0F 3AH)

0 1 2 3 4 5 6 7

0

1 pextrb
(66)

Rd/Mb, Vdq,
Ib

pextrw
(66)

Rd/Mw, Vdq,
Ib

pextrd/pextr
q

(66)
Ed/q, Vdq, Ib

extractps
(66)

Ed, Vdq, Ib

2 pinsrb
(66)

Vdq, Eb, Ib

insertps
(66)
Vdq,

Udq/Md, Ib

pinsrd/pinsr
q

(66)
Vdq, Ed/q, Ib

3

4 dpps
(66)

Vdq, Wdq, Ib

dppd
(66)

Vdq, Wdq, Ib

mpsadbw
(66)

Vdq, Wdq, Ib

5

6 pcmpestrm
(66)

Vdq,Wdq,Ib

pcmpestri
(66)

Vdq,Wdq,Ib

pcmpistrm
(66)

Vdq,Wdq,Ib

pcmpistrm
(66)

Vdq,Wdq,Ib

7-FNo changes or additions...

Table B-4. Three-byte Opcode Map: 80H — FFH (First Two Bytes are 0F 3AH)

8 9 A B C D E F

0 roundps
(66)

Vdq, Wdq, Ib

roundpd
(66)

Vdq, Wdq, Ib

roundss
(66)

Vss, Wss, Ib

roundsd
(66)

Vsd, Wsd, Ib

blendps
(66)

Vdq, Wdq, Ib

blendpd
(66)

Vdq, Wdq, Ib

pblendw
(66)

Vdq, Wdq, Ib

palign
Pq, Qq, Ib
palign (66)

Vdq, Wdq, Ib

1-F ...No changes or additions...

Table B-2. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) (Contd.)

8 9 A B C D E F
188

INSTRUCTION OPCODE MAP
Table B-5. Two-byte Opcode Map: B8H (First Byte is 0FH)

8

B JMPE
(reserved for emulator on IPF)

POPCNT
(F3)

Gv, Ev
189

INSTRUCTION OPCODE MAP
190

	Chapter 1 Streaming SIMD Extensions 4
	1.1 Introduction
	1.2 SSE4 Overview

	Chapter 2 SSE4 Features
	2.1 New Data Types
	2.2 SSE4.1 Instruction Set
	2.2.1 Dword Multiply Instructions
	2.2.2 Floating-Point Dot Product Instructions
	2.2.3 Streaming Load Hint Instruction
	2.2.4 Packed Blending Instructions
	2.2.5 Packed Integer MIN/MAX Instructions
	2.2.6 Floating-Point Round Instructions with Selectable Rounding Mode
	2.2.7 Insertion and Extractions from XMM Registers
	2.2.8 Packed Integer Format Conversions
	2.2.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
	2.2.10 Horizontal Search
	2.2.11 Packed Test
	2.2.12 Packed Qword Equality Comparisons
	2.2.13 Dword Packing With Unsigned Saturation
	2.2.14 IEEE 754 Compliance

	2.3 SSE4.2 Instruction Set
	2.3.1 String and Text Processing Instructions
	2.3.1.1 Memory Operand Alignment

	2.3.2 Packed Comparison SIMD integer Instruction
	2.3.3 Application-Targeted Accelerator Instructions

	Chapter 3 APPLICATION PROGRAMMING MODEL
	3.1 CPUID
	3.2 Detecting SSE4 Instructions
	3.2.1 Detecting SSE4.1 Instructions Using CPUID
	3.2.2 Detecting SSE4.2 Instructions Using CPUID

	3.3 Exceptions and SSE4

	Chapter 4 System Programming Model
	4.1 Enabling SSE4
	4.2 Device Not Available (DNA) Exceptions
	4.3 SSE4 Emulation

	Chapter 5 SSE4 Instruction Set
	5.1 Instruction Formats
	5.2 Notations
	5.3 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM
	5.3.1 General Description
	5.3.1.1 Source Data Format
	5.3.1.2 Aggregation Operation
	5.3.1.3 Polarity
	5.3.1.4 Output Selection
	5.3.1.5 Valid/Invalid Override of Comparisons
	5.3.1.6 Summary of Im8 Control byte
	5.3.1.7 Diagram Comparison and Aggregation Process

	5.4 Instruction Reference
	BLENDPD - Blend Packed Double Precision Floating-Point Values
	BLENDPS - Blend Packed Single Precision Floating-Point Values
	BLENDVPD - Variable Blend Packed Double Precision Floating-Point Values
	BLENDVPS - Variable Blend Packed Single Precision Floating-Point Values
	CRC32 - Accumulate CRC32 Value
	DPPD - Dot Product of Packed Double Precision Floating-Point Values
	DPPS - Dot Product of Packed Single Precision Floating-Point Values
	EXTRACTPS - Extract Packed Single Precision Floating-Point Value
	INSERTPS - Insert Packed Single Precision Floating-Point Value
	MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint
	MPSADBW - Compute Multiple Packed Sums of Absolute Difference
	PACKUSDW - Pack with Unsigned Saturation
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCMPEQQ - Compare Packed Qword Data for Equal
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PCMPGTQ - Compare Packed Data for Greater Than
	PEXTRB - Extract Byte
	PEXTRD/PEXTRQ - Extract Dword/Qword
	PEXTRW - Extract Word
	PHMINPOSUW - Packed Horizontal Word Minimum
	PINSRB - Insert Byte
	PINSRD/PINSRQ - Insert Dword/Qword
	PMAXSB - Maximum of Packed Signed Byte Integers
	PMAXSD - Maximum of Packed Signed Dword Integers
	PMAXUD - Maximum of Packed Unsigned Dword Integers
	PMAXUW - Maximum of Packed Word Integers
	PMINSB - Minimum of Packed Signed Byte Integers
	PMINSD - Minimum of Packed Dword Integers
	PMINUD - Minimum of Packed Dword Integers
	PMINUW - Minimum of Packed Word Integers
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Signed Dword Integers
	PMULLD - Multiply Packed Signed Dword Integers and Store Low Result
	POPCNT - Return the Count of Number of Bits Set to 1
	PTEST- Logical Compare
	ROUNDPD - Round Packed Double Precision Floating-Point Values
	ROUNDPS - Round Packed Single Precision Floating-Point Values
	ROUNDSD - Round Scalar Double Precision Floating-Point Values
	ROUNDSS - Round Scalar Single Precision Floating-Point Values

	Appendix A Instruction Summary and Encodings
	1.1 SSE4.1 Instruction Summary and Encodings
	1.2 SSE4.2 Instruction Summary and Encodings

	Appendix B Instruction Opcode Map

