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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: 
Basic Architecture (order number 253665) is part of a set that describes the architec-
ture and programming environment of Intel® 64 and IA-32 architecture processors. 
Other volumes in this set are:

• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
3A & 3B: System Programming Guide (order number 253668 and 253669).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who 
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support 
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for 
classes of software that host operating systems. 

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN 
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 
and IA-32 processors, which include: 

• Pentium® processors

• P6 family processors

• Pentium® 4 processors

• Pentium® M processors

• Intel® Xeon® processors

• Pentium® D processors

• Pentium® processor Extreme Editions

• 64-bit Intel® Xeon® processors

• Intel® CoreTM Duo processor

• Intel® CoreTM Solo processor
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• Dual-Core Intel® Xeon® processor LV

• Intel® CoreTM2 Duo processor

• Intel® CoreTM2 Quad processor

• Intel® Xeon® processor 3000, 3200 series

• Intel® Xeon® processor 5000 series

• Intel® Xeon® processor 5100, 5300 series

• Intel® CoreTM2 Extreme processor

• Intel® CoreTM2 Extreme Quad-core processor

• Intel® Xeon® processor 7100, 7300 series

• Intel® Pentium® Dual-Core processor

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 5100, 5300 and 7300 series, Intel® Pentium® 
dual-core, Intel® CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2 Extreme 
processors are based on Intel® CoreTM microarchitecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5300, 7100, 7300 series, 
Intel® CoreTM2 Duo, Intel® CoreTM2 Extreme processors, Intel Core 2 Quad proces-
sors, , Pentium® D processors, Pentium® Dual-Core processor, newer generations of 
Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. 

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible 
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:
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Chapter 1 — About This Manual. Gives an overview of all five volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and 
IA-32 architectures along with the families of Intel processors that are based on 
these architectures. It also gives an overview of the common features found in these 
processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory 
organization and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recog-
nized by the processor; provides an overview of real numbers and floating-point 
formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, 
divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the proce-
dure stack and mechanisms provided for making procedure calls and for servicing 
interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes 
basic load and store, program control, arithmetic, and string instructions that 
operate on basic data types, general-purpose and segment registers; also describes 
system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point 
unit (FPU), including floating-point registers and data types; gives an overview of the 
floating-point instruction set and describes the processor's floating-point exception 
conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel 
MMX technology, including MMX registers and data types; also provides an overview 
of the MMX instruction set. 

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). 
Describes SSE extensions, including XMM registers, the MXCSR register, and packed 
single-precision floating-point data types; provides an overview of the SSE instruc-
tion set and gives guidelines for writing code that accesses the SSE extensions. 

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). 
Describes SSE2 extensions, including XMM registers and packed double-precision 
floating-point data types; provides an overview of the SSE2 instruction set and gives 
guidelines for writing code that accesses SSE2 extensions. This chapter also 
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 
instructions. It also provides general guidelines for incorporating support for SSE and 
SSE2 extensions into operating system and applications code.
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Chapter 12 — Programming with SSE3 and Supplemental SSE3. Describes 
SSE3 extensions; provides an overview of the SSE3 instruction set, Supplemental 
SSE3 and guidelines for writing code that accesses these extensions.

Chapter 13 — Input/Output. Describes the processor’s I/O mechanism, including 
I/O port addressing, I/O instructions, and I/O protection mechanisms.

Chapter 14 — Processor Identification and Feature Determination. Describes 
how to determine the CPU type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions 
affect the flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, 
move, and ‘byte set on condition code’ instructions use condition code flags (OF, CF, 
ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions 
raised by the x87 FPU floating-point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes 
how to design and write MS-DOS* compatible exception handling facilities for FPU 
exceptions (includes software and hardware requirements and assembly-language 
code examples). This appendix also describes general techniques for writing robust 
FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception 
Handlers. Gives guidelines for writing exception handlers for exceptions generated 
by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. This notation is 
described below.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this 
means the bytes of a word are numbered starting from the least significant byte. See 
Figure 1-1.
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1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. 

Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of 
registers that contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a 
register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated 
in the documentation, if any, or reload them with values previously read from the 
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in 
Intel 64 and IA-32 registers. Depending upon the values of reserved 
register bits will make software dependent upon the unspecified 
manner in which the processor handles these bits. Programs that 
depend upon reserved values risk incompatibility with future 
processors.

Figure 1-1.  Bit and Byte Order
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1.3.2.1  Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly 
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have 
the same function.

• The operands argument1, argument2, and argument3 are optional. There 
may be from zero to three operands, depending on the opcode. When present, 
they take the form of either literals or identifiers for data items. Operand 
identifiers are either reserved names of registers or are assumed to be assigned 
to data items declared in another part of the program (which may not be shown 
in the example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, 0F82EH). A hexadecimal digit is a char-
acter from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
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For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment: 

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a new syntax to represent this information. See Figure 1-2.
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1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions that produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 

http://developer.intel.com/products/processor/manuals/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 

• The data sheet for a particular Intel 64 or IA-32 processor

• The specification update for a particular Intel 64 or IA-32 processor

• Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® 64 and IA-32 Architectures Optimization Reference Manual 
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/support/processors/sb/cs-009861.htm

• TLBs, Paging-Structure Caches, and Their Invalidation, 
http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide, http://www.intel.com/technology/security/index.htm

• Intel® SSE4 Programming Reference, 
http://developer.intel.com/products/processor/manuals/index.htm

• Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
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• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

• Software network link:

http://softwarecommunity.intel.com/isn/home/

• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

• Processor support general link:

http://www.intel.com/support/processors/

• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm

• Intel® Multi-Core Technology:

http://developer.intel.com/multi-core/index.htm

• Hyper-Threading Technology (HT Technology):

http://developer.intel.com/technology/hyperthread/
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CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer 
one of the most important forces shaping business and society. Intel 64 and IA-32 
architectures have been at the forefront of the computer revolution and is today the 
preferred computer architecture, as measured by computers in use and the total 
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 
ARCHITECTURE

The following sections provide a summary of the major technical evolutions from 
IA-32 to Intel 64 architecture: starting from the Intel 8086 processor to the latest 
Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 5300 and 7300 series. 
Object code created for processors released as early as 1978 still executes on the 
latest processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)
The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 
8088. The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit 
addressing giving a 1-MByte address space. The 8088 is similar to the 8086 except it 
has an 8-bit external data bus. 

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmenta-
tion, a 16-bit segment register contains a pointer to a memory segment of up to 
64 KBytes. Using four segment registers at a time, 8086/8088 processors are able to 
address up to 256 KBytes without switching between segments. The 20-bit 
addresses that can be formed using a segment register and an additional 16-bit 
pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)
The Intel 286 processor introduced protected mode operation into the IA-32 archi-
tecture. Protected mode uses the segment register content as selectors or pointers 
into descriptor tables. Descriptors provide 24-bit base addresses with a physical 
memory size of up to 16 MBytes, support for virtual memory management on a 
segment swapping basis, and a number of protection mechanisms. These mecha-
nisms include: 

• Segment limit checking
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• Read-only and execute-only segment options

• Four privilege levels 

2.1.3 The Intel386™ Processor (1985)
The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. 
It introduced 32-bit registers for use both to hold operands and for addressing. The 
lower half of each 32-bit Intel386 register retains the properties of the 16-bit regis-
ters of earlier generations, permitting backward compatibility. The processor also 
provides a virtual-8086 mode that allows for even greater efficiency when executing 
programs created for 8086/8088 processors. 

In addition, the Intel386 processor has support for:

• A 32-bit address bus that supports up to 4-GBytes of physical memory

• A segmented-memory model and a flat memory model

• Paging, with a fixed 4-KByte page size providing a method for virtual memory 
management

• Support for parallel stages

2.1.4 The Intel486™ Processor (1989)
The Intel486™ processor added more parallel execution capability by expanding the 
Intel386 processor’s instruction decode and execution units into five pipelined 
stages. Each stage operates in parallel with the others on up to five instructions in 
different stages of execution. 

In addition, the processor added:

• An 8-KByte on-chip first-level cache that increased the percent of instructions 
that could execute at the scalar rate of one per clock

• An integrated x87 FPU

• Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)
The introduction of the Intel Pentium processor added a second execution pipeline to 
achieve superscalar performance (two pipelines, known as u and v, together can 
execute two instructions per clock). The on-chip first-level cache doubled, with 8 
KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses 
the MESI protocol to support more efficient write-back cache in addition to the write-
through cache previously used by the Intel486 processor. Branch prediction with an 
on-chip branch table was added to increase performance in looping constructs. 

In addition, the processor added:
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• Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte 
as well as 4-KByte pages

• Internal data paths of 128 and 256 bits add speed to internal data transfers

• Burstable external data bus was increased to 64 bits

• An APIC to support systems with multiple processors

• A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the 
Pentium Processor with MMX technology). Intel MMX technology uses the single-
instruction, multiple-data (SIMD) execution model to perform parallel computations 
on packed integer data contained in 64-bit registers. 

See Section 2.2.4, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)
The P6 family of processors was based on a superscalar microarchitecture that set 
new performance standards; see also Section 2.2.1, “P6 Family Microarchitecture.” 
One of the goals in the design of the P6 family microarchitecture was to exceed the 
performance of the Pentium processor significantly while using the same 0.6-
micrometer, four-layer, metal BICMOS manufacturing process. Members of this 
family include the following: 

• The Intel Pentium Pro processor is three-way superscalar. Using parallel 
processing techniques, the processor is able on average to decode, dispatch, and 
complete execution of (retire) three instructions per clock cycle. The Pentium Pro 
introduced the dynamic execution (micro-data flow analysis, out-of-order 
execution, superior branch prediction, and speculative execution) in a 
superscalar implementation. The processor was further enhanced by its caches. 
It has the same two on-chip 8-KByte 1st-Level caches as the Pentium processor 
and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family 
processors along with new packaging and several hardware enhancements. The 
processor core is packaged in the single edge contact cartridge (SECC). The Level 
l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache 
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed 
backside bus connects the Level 2 cache to the processor. Multiple low-power 
states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to 
conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of 
previous generations of Intel processors. This includes: 4-way, 8-way (and up) 
scalability and a 2 MByte 2nd-Level cache running on a full-clock speed backside 
bus.

• The Intel Celeron processor family focused on the value PC market segment. 
Its introduction offers an integrated 128 KBytes of Level 2 cache and a plastic pin 
grid array (P.P.G.A.) form factor to lower system design cost.
Vol. 1 2-3



INTEL® 64 AND IA-32 ARCHITECTURES
• The Intel Pentium III processor introduced the Streaming SIMD Extensions 
(SSE) to the IA-32 architecture. SSE extensions expand the SIMD execution 
model introduced with the Intel MMX technology by providing a new set of 128-
bit registers and the ability to perform SIMD operations on packed single-
precision floating-point values. See Section 2.2.4, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32 
processors with the enhancement of a full-speed, on-die, and Advanced Transfer 
Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006) 
The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; 
see Section 2.2.2, “Intel NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see 
Section 2.2.4, “SIMD Instructions.” The Intel Pentium 4 processor 3.40 GHz, 
supporting Hyper-Threading Technology introduced Streaming SIMD Extensions 3 
(SSE3); see Section 2.2.4, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition 
supporting Hyper-Threading Technology and in the Intel Pentium 4 Processor 6xx and 
5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 
processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001-2006)
Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel 
Xeon processor 5100 series) are based on the Intel NetBurst microarchitecture; see 
Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, this group of IA-32 
processors (more recently Intel 64 processors) is designed for use in multi-processor 
server systems and high-performance workstations. 

The Intel Xeon processor MP introduced support for Hyper-Threading Technology; 
see Section 2.2.5, “Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to 
introduce Intel 64 architecture. The Dual-Core Intel Xeon processor includes dual 
core technology. The Intel Xeon processor 70xx series includes Intel Virtualization 
Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance 
Intel Core microarchitecture. This processor is based on Intel 64 architecture; it 
includes Intel Virtualization Technology and dual-core technology. The Intel Xeon 
processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon 
processor 5300 series introduces four processor cores in a physical package, they are 
also based on Intel Core microarchitecture. 
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2.1.9 The Intel® Pentium® M Processor (2003-Current)
The Intel Pentium M processor family is a high performance, low power mobile 
processor family with microarchitectural enhancements over previous generations of 
IA-32 Intel mobile processors. This family is designed for extending battery life and 
seamless integration with platform innovations that enable new usage models (such 
as extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:

• Support for Intel Architecture with Dynamic Execution

• A high performance, low-power core manufactured using Intel’s advanced 
process technology with copper interconnect

• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache

• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Archi-
tecture

• Advanced Branch Prediction and Data Prefetch Logic

• Support for MMX technology, Streaming SIMD instructions, and the SSE2 
instruction set

• A 400 or 533 MHz, Source-Synchronous Processor System Bus

• Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007) 
The Intel Pentium processor Extreme Edition introduced dual-core technology. This 
technology provides advanced hardware multi-threading support. The processor is 
based on Intel NetBurst microarchitecture and supports SSE, SSE2, SSE3, Hyper-
Threading Technology, and Intel 64 architecture.

See also:

• Section 2.2.2, “Intel NetBurst® Microarchitecture”

• Section 2.2.3, “Intel® Core™ Microarchitecture”

• Section 2.2.4, “SIMD Instructions”

• Section 2.2.5, “Hyper-Threading Technology”

• Section 2.2.6, “Multi-Core Technology”

• Section 2.2.7, “Intel® 64 Architecture”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors 
(2006-Current)

The Intel Core Duo processor offers power-efficient, dual-core performance with a 
low-power design that extends battery life. This family and the single-core Intel Core 
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Solo processor offer microarchitectural enhancements over Pentium M processor 
family.

Its enhanced microarchitecture includes:

• Intel® Smart Cache which allows for efficient data sharing between two 
processor cores

• Improved decoding and SIMD execution

• Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce 
power consumption

• Intel® Advanced Thermal Manager which features digital thermal sensor 
interfaces

• Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as 
Intel Core Duo processor, and supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and 
Intel® Core™2 Processor Family (2006-Current)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Core 2 
Extreme, Intel Core 2 Quad processors, and Intel Core 2 Duo processor family 
support Intel 64 architecture; and they are based on the high-performance, power-
efficient Intel® Core microarchitecture. The Intel Core microarchitecture includes the 
following innovative features:

• Intel® Wide Dynamic Execution to increase performance and execution 
throughput

• Intel® Intelligent Power Capability to reduce power consumption

• Intel® Advanced Smart Cache which allows for efficient data sharing between 
two processor cores

• Intel® Smart Memory Access to increase data bandwidth and hide latency of 
memory accesses

• Intel® Advanced Digital Media Boost which improves application performance 
using multiple generations of Streaming SIMD extensions 

The Intel Xeon processor 5300 series, Intel Core 2 Extreme Quad-core processor, and 
Intel Core 2 Quad processors support Intel quad-core technology.

2.2 MORE ON SPECIFIC ADVANCES
The following sections provide more information on major innovations.
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2.2.1 P6 Family Microarchitecture
The Pentium Pro processor introduced a new microarchitecture commonly referred to 
as P6 processor microarchitecture. The P6 processor microarchitecture was later 
enhanced with an on-die, Level 2 cache, called Advanced Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way 
superscalar means that by using parallel processing techniques, the processor is able 
on average to decode, dispatch, and complete execution of (retire) three instructions 
per clock cycle. To handle this level of instruction throughput, the P6 processor family 
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction 
execution. 

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline 
with the Advanced Transfer Cache enhancement. 
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To ensure a steady supply of instructions and data for the instruction execution pipe-
line, the P6 processor microarchitecture incorporates two cache levels. The Level 1 
cache provides an 8-KByte instruction cache and an 8-KByte data cache, both closely 
coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 
1-MByte static RAM that is coupled to the core processor through a full clock-speed 
64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution 
mechanism called dynamic execution. Dynamic execution incorporates three data-
processing concepts:

• Deep branch prediction allows the processor to decode instructions beyond 
branches to keep the instruction pipeline full. The P6 processor family 
implements highly optimized branch prediction algorithms to predict the direction 
of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data 
through the processor to determine dependencies and to detect opportunities for 
out-of-order instruction execution. The out-of-order execution core can monitor 
many instructions and execute these instructions in the order that best optimizes 

Figure 2-1.  The P6 Processor Microarchitecture with Advanced Transfer Cache 
Enhancement
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the use of the processor’s multiple execution units, while maintaining the data 
integrity.

• Speculative execution refers to the processor’s ability to execute instructions 
that lie beyond a conditional branch that has not yet been resolved, and 
ultimately to commit the results in the order of the original instruction stream. To 
make speculative execution possible, the P6 processor microarchitecture 
decouples the dispatch and execution of instructions from the commitment of 
results. The processor’s out-of-order execution core uses data-flow analysis to 
execute all available instructions in the instruction pool and store the results in 
temporary registers. The retirement unit then linearly searches the instruction 
pool for completed instructions that no longer have data dependencies with other 
instructions or unresolved branch predictions. When completed instructions are 
found, the retirement unit commits the results of these instructions to memory 
and/or the IA-32 registers (the processor’s eight general-purpose registers and 
eight x87 FPU data registers) in the order they were originally issued and retires 
the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture
The Intel NetBurst microarchitecture provides:

• The Rapid Execution Engine

— Arithmetic Logic Units (ALUs) run at twice the processor frequency 

— Basic integer operations can dispatch in 1/2 processor clock tick

• Hyper-Pipelined Technology

— Deep pipeline to enable industry-leading clock rates for desktop PCs and 
servers

— Frequency headroom and scalability to continue leadership into the future

• Advanced Dynamic Execution

— Deep, out-of-order, speculative execution engine

• Up to 126 instructions in flight

• Up to 48 loads and 24 stores in pipeline1

— Enhanced branch prediction capability

• Reduces the misprediction penalty associated with deeper pipelines 

• Advanced branch prediction algorithm

• 4K-entry branch target array

• New cache subsystem

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process 
can handle more than 24 stores in flight.
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— First level caches

• Advanced Execution Trace Cache stores decoded instructions

• Execution Trace Cache removes decoder latency from main execution 
loops

• Execution Trace Cache integrates path of program execution flow into a 
single line

• Low latency data cache

— Second level cache

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache

• Bandwidth and performance increases with processor frequency

• High-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective 
speed

— Capable of delivering up to 8.5 GBytes of bandwidth per second

• Superscalar issue to enable parallelism

• Expanded hardware registers with renaming to avoid register name space 
limitations

• 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitec-
ture pipeline is made up of three sections: (1) the front end pipeline, (2) the out-of-
order execution core, and (3) the retirement unit. 
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2.2.2.1  The Front End Pipeline
The front end supplies instructions in program order to the out-of-order execution 
core. It performs a number of functions:

• Prefetches instructions that are likely to be executed

• Fetches instructions that have not already been prefetched

• Decodes instructions into micro-operations

• Generates microcode for complex instructions and special-purpose code

• Delivers decoded instructions from the execution trace cache

• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined 
microprocessors. Two of these problems contribute to major sources of delays:

• time to decode instructions fetched from the target

Figure 2-2.  The Intel NetBurst Microarchitecture
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• wasted decode bandwidth due to branches or branch target in the middle of 
cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are 
constantly being fetched and decoded by the translation engine (part of the 
fetch/decode logic) and built into sequences of µops called traces. At any time, 
multiple traces (representing prefetched branches) are being stored in the trace 
cache. The trace cache is searched for the instruction that follows the active branch. 
If the instruction also appears as the first instruction in a pre-fetched branch, the 
fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hard-
ware. Branch targets are predicted based on their linear addresses using branch 
target buffers (BTBs) and fetched as soon as possible.

2.2.2.2  Out-Of-Order Execution Core
The out-of-order execution core’s ability to execute instructions out of order is a key 
factor in enabling parallelism. This feature enables the processor to reorder instruc-
tions so that if one µop is delayed, other µops may proceed around it. The processor 
employs several buffers to smooth the flow of µops.

The core is designed to facilitate parallel execution. It can dispatch up to six µops per 
cycle (this exceeds trace cache and retirement µop bandwidth). Most pipelines can 
start executing a new µop every cycle, so several instructions can be in flight at a 
time for each pipeline. A number of arithmetic logical unit (ALU) instructions can 
start at two per cycle; many floating-point instructions can start once every two 
cycles. 

2.2.2.3  Retirement Unit
The retirement unit receives the results of the executed µops from the out-of-order 
execution core and processes the results so that the architectural state updates 
according to the original program order. 

When a µop completes and writes its result, it is retired. Up to three µops may be 
retired per cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers 
completed µops, updates the architectural state in order, and manages the ordering 
of exceptions. The retirement section also keeps track of branches and sends 
updated branch target information to the BTB. The BTB then purges pre-fetched 
traces that are no longer needed.

2.2.3 Intel® Core™ Microarchitecture
Intel Core microarchitecture introduces the following features that enable high 
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:
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• Intel® Wide Dynamic Execution enable each processor core to fetch, 
dispatch, execute in high bandwidths to support retirement of up to four instruc-
tions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle 

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure 
entries and exits

• Intel® Advanced Smart Cache delivers higher bandwidth from the second 
level cache to the core, and optimal performance and flexibility for single-
threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data 
cache

• Intel® Smart Memory Access prefetches data from memory in response to 
data access patterns and reduces cache-miss exposure of out-of-order 
execution.

— Hardware prefetchers to reduce effective latency of second-level cache 
misses

— Hardware prefetchers to reduce effective latency of first-level data cache 
misses

— Memory disambiguation to improve efficiency of speculative execution 
execution engine

• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction 
with single-cycle throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions

— Up to eight floating-point operation per cycle

— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 
series implement two processor cores based on the Intel Core microarchitecture, the 
functionality of the subsystems in each core are depicted in Figure 2-3. 
Vol. 1 2-13
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2.2.3.1  The Front End
The front end of Intel Core microarchitecture provides several enhancements to feed 
the Intel Wide Dynamic Execution engine:

• Instruction fetch unit prefetches instructions into an instruction queue to 
maintain steady supply of instruction to the decode units.

• Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per 
cycle with Macrofusion.

• Macrofusion fuses common sequence of two instructions as one decoded 
instruction (micro-ops) to increase decoding throughput.

• Microfusion fuses common sequence of two micro-ops as one micro-ops to 
improve retirement throughput.

• Instruction queue provides caching of short loops to improve efficiency.

• Stack pointer tracker improves efficiency of executing procedure/function entries 
and exits.

Figure 2-3.  The Intel Core Microarchitecture Pipeline Functionality
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• Branch prediction unit employs dedicated hardware to handle different types of 
branches for improved branch prediction.

• Advanced branch prediction algorithm directs instruction fetch unit to fetch 
instructions likely in the architectural code path for decoding.

2.2.3.2  Execution Core 
The execution core of the Intel Core microarchitecture is superscalar and can process 
instructions out of order to increases the overall rate of instructions executed per 
cycle (IPC). The execution core employs the following feature to improve execution 
throughput and efficiency:

• Up to six micro-ops can be dispatched to execute per cycle

• Up to four instructions can be retired per cycle

• Three full arithmetic logical units

• SIMD instructions can be dispatched through three issue ports

• Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instruc-
tions)

• Up to eight floating-point operation per cycle

• Many long-latency computation operation are pipelined in hardware to increase 
overall throughput

• Reduced exposure to data access delays using Intel Smart Memory Access

2.2.4 SIMD Instructions
Beginning with the Pentium II and Pentium with Intel MMX technology processor 
families, five extensions have been introduced into the Intel 64 and IA-32 architec-
tures to perform single-instruction multiple-data (SIMD) operations. These exten-
sions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 
extensions, and Supplemental Streaming SIMD Extensions 3. Each of these exten-
sions provides a group of instructions that perform SIMD operations on packed 
integer and/or packed floating-point data elements. 

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD 
floating-point operations use 128-bit XMM registers. Figure 2-4 shows a summary of 
the various SIMD extensions (MMX technology, SSE, SSE2, SSE3, and SSSE3), the 
data types they operate on, and how the data types are packed into MMX and XMM 
registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX 
technology processor families. MMX instructions perform SIMD operations on packed 
byte, word, or doubleword integers located in MMX registers. These instructions are 
useful in applications that operate on integer arrays and streams of integer data that 
lend themselves to SIMD processing.
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SSE extensions were introduced in the Pentium III processor family. SSE instructions 
operate on packed single-precision floating-point values contained in XMM registers 
and on packed integers contained in MMX registers. Several SSE instructions provide 
state management, cache control, and memory ordering operations. Other SSE 
instructions are targeted at applications that operate on arrays of single-precision 
floating-point data elements (3-D geometry, 3-D rendering, and video encoding and 
decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2 
instructions operate on packed double-precision floating-point values contained in 
XMM registers and on packed integers contained in MMX and XMM registers. SSE2 
integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD 
integer operations and by expanding existing 64-bit SIMD integer operations to 
128-bit XMM capability. SSE2 instructions also provide new cache control and 
memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-
Threading Technology (built on 90 nm process technology). SSE3 offers 13 instruc-
tions that accelerate performance of Streaming SIMD Extensions technology, 
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and 
Intel Core 2 processor family. SSSE3 offers 32 instructions to accelerate processing 
of SIMD integer data.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up 
to 16 XMM registers. IA-32 architecture provides 8 XMM registers.

See also: 

• Section 5.4, “MMX™ Instructions,” and Chapter 9, “Programming with Intel® 
MMX™ Technology”

• Section 5.5, “SSE Instructions,” and Chapter 10, “Programming with Streaming 
SIMD Extensions (SSE)”

• Section 5.6, “SSE2 Instructions,” and Chapter 11, “Programming with Streaming 
SIMD Extensions 2 (SSE2)”

• Section 5.7, “SSE3 Instructions,” and Chapter 12, “Programming with SSE3 and 
Supplemental SSE3”
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Figure 2-4.  SIMD Extensions, Register Layouts, and Data Types
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2.2.5 Hyper-Threading Technology
Hyper-Threading (HT) Technology was developed to improve the performance of 
IA-32 processors when executing multi-threaded operating system and application 
code or single-threaded applications under multi-tasking environments. The tech-
nology enables a single physical processor to execute two or more separate code 
streams (threads) concurrently using shared execution resources. 

HT Technology is one form of hardware multi-threading capability in IA-32 processor 
families. It differs from multi-processor capability using separate physically distinct 
packages with each physical processor package mated with a physical socket. 
HT Technology provides hardware multi-threading capability with a single physical 
package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports HT Technology consists of two or 
more logical processors, each of which has its own IA-32 architectural state. Each 
logical processor consists of a full set of IA-32 data registers, segment registers, 
control registers, debug registers, and most of the MSRs. Each also has its own 
advanced programmable interrupt controller (APIC). 

Figure 2-5 shows a comparison of a processor that supports HT Technology (imple-
mented with two logical processors) and a traditional dual processor system. 

Unlike a traditional MP system configuration that uses two or more separate physical 
IA-32 processors, the logical processors in an IA-32 processor supporting HT Tech-
nology share the core resources of the physical processor. This includes the execution 

Figure 2-5.  Comparison of an IA-32 Processor Supporting Hyper-Threading 
Technology and a Traditional Dual Processor System
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engine and the system bus interface. After power up and initialization, each logical 
processor can be independently directed to execute a specified thread, interrupted, 
or halted.

HT Technology leverages the process and thread-level parallelism found in contem-
porary operating systems and high-performance applications by providing two or 
more logical processors on a single chip. This configuration allows two or more 
threads1 to be executed simultaneously on each a physical processor. Each logical 
processor executes instructions from an application thread using the resources in the 
processor core. The core executes these threads concurrently, using out-of-order 
instruction scheduling to maximize the use of execution units during each clock cycle.

2.2.5.1  Some Implementation Notes
All HT Technology configurations require:

• A processor that supports HT Technology

• A chipset and BIOS that utilize the technology

• Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors 
in a processor supporting HT Technology are the same as those for a traditional DP or 
MP platform. The mechanisms that are described in the Multiprocessor Specification, 
Version 1.4 to power-up and initialize physical processors in an MP system also apply 
to logical processors in a processor that supports HT Technology. 

An operating system designed to run on a traditional DP or MP platform may use 
CPUID to determine the presence of hardware multi-threading support feature and 
the number of logical processors they provide.

Although existing operating system and application code should run correctly on a 
processor that supports HT Technology, some code modifications are recommended 
to get the optimum benefit. These modifications are discussed in Chapter 7, 
“Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

2.2.6 Multi-Core Technology
Multi-core technology is another form of hardware multi-threading capability in IA-32 
processor families. Multi-core technology enhances hardware multi-threading capa-
bility by providing two or more execution cores in a physical package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 
processor family to introduce multi-core technology. The processor provides hard-

1. In the remainder of this document, the term “thread” will be used as a general term for the terms 
“process” and “thread.”
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ware multi-threading support with both two processor cores and Hyper-Threading 
Technology. This means that the Intel Pentium processor Extreme Edition provides 
four logical processors in a physical package (two logical processors for each 
processor core). The Dual-Core Intel Xeon processor features multi-core, Hyper-
Threading Technology and supports multi-processor platforms. 

The Intel Pentium D processor also features multi-core technology. This processor 
provides hardware multi-threading support with two processor cores but does not 
offer Hyper-Threading Technology. This means that the Intel Pentium D processor 
provides two logical processors in a physical package, with each logical processor 
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 and 5100 series, and 
Intel Core Duo processor offer power-efficient multi-core technology. The processor 
contains two cores that share a smart second level cache. The Level 2 cache enables 
efficient data sharing between two cores to reduce memory traffic to the system bus.

Figure 2-6.  Intel 64 and IA-32 Processors that Support Dual-Core 

Architectual 
State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual 
State

Bus Interface Bus Interface

Local APIC Local APIC

Architectual 
State

Architectual 
State

Pentium Processor Extreme Edition

System Bus

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Intel Core Duo Processor
Intel Core 2 Duo Processor

Intel Pentium dual-core Processor

Second Level Cache

Architectual State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface Bus Interface

Pentium D Processor

OM19809
2-20 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES
The Pentium® dual-core processor is based on the same technology as the Intel Core 
2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-
Core processor, and Intel Core 2 Quad processors support Intel quad-core tech-
nology. The Quad-core Intel Xeon processors and the Quad-Core Intel Core 2 
processor family are also in Figure 2-7. 

2.2.7 Intel® 64 Architecture
Intel 64 architecture increases the linear address space for software to 64 bits and 
supports physical address space up to 40 bits. The technology also introduces a new 
operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 
64-bit operating system to run most legacy 32-bit software unmodified, (2) 64-bit 
mode enables a 64-bit operating system to run applications written to access 64-bit 
address space. 

Figure 2-7.  Intel 64 Processors that Support Quad-Core 
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In the 64-bit mode, applications may access:

• 64-bit flat linear addressing

• 8 additional general-purpose registers (GPRs)

• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and 
SSSE3)

• 64-bit-wide GPRs and instruction pointers

• uniform byte-register addressing

• fast interrupt-prioritization mechanism

• a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able 
to run all non-64-bit legacy modes supported by IA-32 architecture. Most existing 
IA-32 applications also run in compatibility mode.

2.2.8 Intel® Virtualization Technology (Intel® VT)
Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide exten-
sions that support virtualization. The extensions are referred to as Virtual Machine 
Extensions (VMX). An Intel 64 or IA-32 platform with VMX can function as multiple 
virtual systems (or virtual machines). Each virtual machine can run operating 
systems and applications in separate partitions. 

VMX also provides programming interface for a new layer of system software (called 
the Virtual Machine Monitor (VMM)) used to manage the operation of virtual 
machines. Information on VMX and on the programming of VMMs is in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B. Chapter 5, “VMX 
Instruction Reference,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, provides information on VMX instructions. 

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS
In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this 
observation: “the number of transistors that would be incorporated on a silicon die 
would double every 18 months for the next several years.” Over the past three and 
half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per 
processor) of Intel architecture processors has grown in close relation to Moore's law. 
By taking advantage of new process technology and new microarchitecture designs, 
each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon 
processor MP, Pentium III processor, and Pentium III Xeon processor with advanced 
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transfer cache are shown in Table 2-1. Older generation IA-32 processors, which do 
not employ on-die Level 2 cache, are shown in Table 2-2. 

Table 2-1.  Key Features of Most Recent IA-32 Processors 

Intel 
Processor

Date 
Intro-
duced

Micro-
architecture

Top-Bin 
Clock Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes1

NOTES:
1. The register size and external data bus size are given in bits.

Syste
m Bus 
Band-
width

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but 
does not include the trace cache.

Intel Pentium M
Processor 7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate 
features within each processor family, not across different processor families. 
See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M 
Processor

2.00 GHz 140 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor 
T26003

2006 Improved Intel Pentium 
M Processor 
Microarchitecture; Dual 
Core;
Intel Smart Cache, 
Advanced Thermal 
Manager

2.16 GHz  152M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB (2MB 
Total)
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Table 2-2.  Key Features of Most Recent Intel 64 Processors

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-
ture

Top-Bin 
Clock Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus 
Band-
width

Max. 
Extern
. Addr. 
Space

On-Die 
Caches

64-bit Intel Xeon
Processor with 
800 MHz System 
Bus

2004 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel Xeon
Processor MP 
with 8MB L3

2005 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture 

3.33 GHz 675M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB 
(1 TB)

12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3

Intel Pentium 4
Processor 
Extreme Edition 
Supporting 
Hyper-Threading 
Technology

2005 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture 

3.73 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium 
Processor 
Extreme Edition 
840

2005 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture;
Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1MB L2 (2MB 
Total)

Dual-Core Intel 
Xeon 
Processor 7041

2005 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture;
Dual-core 3

3.00 GHz  321M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 (4MB 
Total)

Intel Pentium 4
Processor 672

2005 Intel NetBurst 
Microarchitecture; 
Hyper-Threading 
Technology; Intel 
64 Architecture;
Intel Virtualization 
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 

Intel Pentium 
Processor 
Extreme Edition 
955

2006 Intel NetBurst 
Microarchitecture; 
Intel 64 
Architecture; Dual 
Core;
Intel Virtualization 
Technology.

3.46 GHz  376M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 
(4MB Total)

Intel Core 2 
Extreme 
Processor 
X6800

2006 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology.

2.93 GHz  291M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Intel Xeon
Processor 5160

2006 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology.

3.00 GHz  291M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)
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Intel Xeon
Processor 7140

2006 Intel NetBurst 
Microarchitecture; 
Dual Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology.

3.40 GHz  1.3 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1MB (2MB 
Total)
L3: 16 MB 
(16MB Total)

Intel Core 2 
Extreme 
Processor 
QX6700

2006 Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology.

2.66 GHz 582M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Quad-core Intel 
Xeon
Processor 5355

2006 Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

21.2 GB/s 64 GB L1: 64 KB
L2: 4MB (8 MB 
Total)

Intel Core 2 Duo 
Processor 
E6850

2007 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 
Architecture;
Intel Virtualization 
Technology;
Intel Trusted 
Execution 
Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

NOTES:
1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a 

dual system bus; this creates a platform bandwidth with 10.6 GBytes.
2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The

total size of L2 in the physical package in 2 MBytes.
3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total

size of L2 in the physical package in 4 MBytes.

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-
ture

Top-Bin 
Clock Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus 
Band-
width

Max. 
Extern
. Addr. 
Space

On-Die 
Caches
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NOTE:
1. The register size and external data bus size are given in bits. Note also that each 32-bit general-

purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-3.  Key Features of Previous Generations of IA-32 Processors

Intel 
Processor

Date 
Intro-
duced

Max. Clock 
Frequency/
Technology at 
Introduction

Tran-
sistors

Register 
Sizes1

Ext. Data 
Bus 
Size2

Max. 
Extern
. Addr. 
Space

Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16 KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or 
512 KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or 
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and Pentium 
III Xeon Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 512KB

Intel Xeon Processor 2002 2.20 GHz, Intel NetBurst 
Microarchitecture, 
HyperThreading 
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 512KB

Pentium M Processor 2003 1.60 GHz, Intel NetBurst 
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64KB
L2: 1 MB

Intel Pentium 4
Processor Supporting 
Hyper-Threading 
Technology at 90 nm 
process

2004 3.40 GHz, Intel NetBurst 
Microarchitecture, 
HyperThreading 
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 16KB
L2: 1 MB
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CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 
processor as seen by assembly-language programmers. It describes how the 
processor executes instructions and how it stores and manipulates data. The execu-
tion environment described here includes memory (the address space), general-
purpose data registers, segment registers, the flag register, and the instruction 
pointer register.

3.1 MODES OF OPERATION
The IA-32 architecture supports three basic operating modes: protected mode, real-
address mode, and system management mode. The operating mode determines 
which instructions and architectural features are accessible:

• Protected mode — This mode is the native state of the processor. Among the 
capabilities of protected mode is the ability to directly execute “real-address 
mode” 8086 software in a protected, multi-tasking environment. This feature is 
called virtual-8086 mode, although it is not actually a processor mode. Virtual-
8086 mode is actually a protected mode attribute that can be enabled for any 
task. 

• Real-address mode — This mode implements the programming environment of 
the Intel 8086 processor with extensions (such as the ability to switch to 
protected or system management mode). The processor is placed in real-address 
mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating 
system or executive with a transparent mechanism for implementing platform-
specific functions such as power management and system security. The 
processor enters SMM when the external SMM interrupt pin (SMI#) is activated 
or an SMI is received from the advanced programmable interrupt controller 
(APIC). 

In SMM, the processor switches to a separate address space while saving the 
basic context of the currently running program or task. SMM-specific code may 
then be executed transparently. Upon returning from SMM, the processor is 
placed back into its state prior to the system management interrupt. SMM was 
introduced with the Intel386™ SL and Intel486™ SL processors and became a 
standard IA-32 feature with the Pentium processor family. 
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BASIC EXECUTION ENVIRONMENT
3.1.1 Intel® 64 Architecture
Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes. These 
are:

• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode 
permits most legacy 16-bit and 32-bit applications to run without re-compilation 
under a 64-bit operating system. For brevity, the compatibility sub-mode is 
referred to as compatibility mode in IA-32 architecture. The execution 
environment of compatibility mode is the same as described in Section 3.2. 
Compatibility mode also supports all of the privilege levels that are supported in 
64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or 
use hardware task management will not work in this mode. 

Compatibility mode is enabled by the operating system (OS) on a code segment 
basis. This means that a single 64-bit OS can support 64-bit applications running 
in 64-bit mode and support legacy 32-bit applications (not recompiled for 
64-bits) running in compatibility mode.

Compatibility mode is similar to 32-bit protected mode. Applications access only 
the first 4 GByte of linear-address space. Compatibility mode uses 16-bit and 32-
bit address and operand sizes. Like protected mode, this mode allows applica-
tions to access physical memory greater than 4 GByte using PAE (Physical 
Address Extensions). 

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit 
operating system to run applications written to access 64-bit linear address 
space. For brevity, the 64-bit sub-mode is referred to as 64-bit mode in IA-32 
architecture.

64-bit mode extends the number of general purpose registers and SIMD 
extension registers from 8 to 16. General purpose registers are widened to 64 
bits. The mode also introduces a new opcode prefix (REX) to access the register 
extensions. See Section 3.2.1 for a detailed description.

64-bit mode is enabled by the operating system on a code-segment basis. Its 
default address size is 64 bits and its default operand size is 32 bits. The default 
operand size can be overridden on an instruction-by-instruction basis using a REX 
opcode prefix in conjunction with an operand size override prefix. 

REX prefixes allow a 64-bit operand to be specified when operating in 64-bit 
mode. By using this mechanism, many existing instructions have been promoted 
to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION 
ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for 
executing instructions and for storing code, data, and state information. These 
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BASIC EXECUTION ENVIRONMENT
resources (described briefly in the following paragraphs and shown in Figure 3-1) 
make up the basic execution environment for an IA-32 processor. 

An Intel 64 processor supports the basic execution environment of an IA-32 
processor, and a similar environment under IA-32e mode that can execute 64-bit 
programs (64-bit sub-mode) and 32-bit programs (compatibility sub-mode). 

The basic execution environment is used jointly by the application programs and the 
operating system or executive running on the processor.

• Address space — Any task or program running on an IA-32 processor can 
address a linear address space of up to 4 GBytes (232 bytes) and a physical 
address space of up to 64 GBytes (236 bytes). See Section 3.3.6, “Extended 
Physical Addressing in Protected Mode,” for more information about addressing 
an address space greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, 
the six segment registers, the EFLAGS register, and the EIP (instruction pointer) 
register comprise a basic execution environment in which to execute a set of 
general-purpose instructions. These instructions perform basic integer arithmetic 
on byte, word, and doubleword integers, handle program flow control, operate on 
bit and byte strings, and address memory. See Section 3.4, “Basic Program 
Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control 
register, the status register, the x87 FPU instruction pointer register, the x87 FPU 
operand (data) pointer register, the x87 FPU tag register, and the x87 FPU opcode 
register provide an execution environment for operating on single-precision, 
double-precision, and double extended-precision floating-point values, word 
integers, doubleword integers, quadword integers, and binary coded decimal 
(BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more 
information about these registers.

• MMX registers — The eight MMX registers support execution of single-
instruction, multiple-data (SIMD) operations on 64-bit packed byte, word, and 
doubleword integers. See Section 9.2, “The MMX Technology Programming 
Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support 
execution of SIMD operations on 128-bit packed single-precision and double-
precision floating-point values and on 128-bit packed byte, word, doubleword, 
and quadword integers. See Section 10.2, “SSE Programming Environment,” for 
more information about these registers.
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Figure 3-1.  IA-32 Basic Execution Environment for Non-64-bit Modes
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BASIC EXECUTION ENVIRONMENT
• Stack — To support procedure or subroutine calls and the passing of parameters 
between procedures or subroutines, a stack and stack management resources 
are included in the execution environment. The stack (not shown in Figure 3-1) is 
located in memory. See Section 6.2, “Stacks,” for more information about stack 
structure.

In addition to the resources provided in the basic execution environment, the IA-32 
architecture provides the following resources as part of its system-level architecture. 
They provide extensive support for operating-system and system-development soft-
ware. Except for the I/O ports, the system resources are described in detail in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

• I/O ports — The IA-32 architecture supports a transfers of data to and from 
input/output (I/O) ports. See Chapter 13, “Input/Output,” in this volume.

• Control registers — The five control registers (CR0 through CR4) determine the 
operating mode of the processor and the characteristics of the currently 
executing task. See Chapter 2, “System Architecture Overview,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR 
specify the locations of data structures used in protected mode memory 
management. See Chapter 2, “System Architecture Overview,” in the .

• Debug registers — The debug registers (DR0 through DR7) control and allow 
monitoring of the processor’s debugging operations. See  in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign 
memory types to regions of memory. See the sections on MTRRs in the .

• Machine specific registers (MSRs) — The processor provides a variety of 
machine specific registers that are used to control and report on processor 
performance. Virtually all MSRs handle system related functions and are not 
accessible to an application program. One exception to this rule is the time-
stamp counter. The MSRs are described in Appendix B, “Model-Specific Registers 
(MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B.

• Machine check registers — The machine check registers consist of a set of 
control, status, and error-reporting MSRs that are used to detect and report on 
hardware (machine) errors. See Chapter 14, “Machine-Check Architecture,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters 
allow processor performance events to be monitored. See Chapter 18, 
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address 
space, the basic program execution registers, and addressing modes. Refer to the 
following chapters in this volume for descriptions of the other program execution 
resources shown in Figure 3-1:
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• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”

• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ 
Technology.”

• XMM registers — See Chapter 10, “Programming with Streaming SIMD 
Extensions (SSE),” Chapter 11, “Programming with Streaming SIMD Extensions 2 
(SSE2),” and Chapter 12, “Programming with SSE3 and Supplemental SSE3.”

• Stack implementation and procedure calls — See Chapter 6, “Procedure 
Calls, Interrupts, and Exceptions.”

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 
3.2. The following paragraphs describe the differences that apply. 

• Address space — A task or program running in 64-bit mode on an IA-32 
processor can address linear address space of up to 264 bytes (subject to the 
canonical addressing requirement described in Section 3.3.7.1) and physical 
address space of up to 240 bytes. Software can query CPUID for the physical 
address size supported by a processor.

• Basic program execution registers — The number of general-purpose 
registers (GPRs) available is 16. GPRs are 64-bits wide and they support 
operations on byte, word, doubleword and quadword integers. Accessing byte 
registers is done uniformly to the lowest 8 bits. The instruction pointer register 
becomes 64 bits. The EFLAGS register is extended to 64 bits wide, and is referred 
to as the RFLAGS register. The upper 32 bits of RFLAGS is reserved. The lower 32 
bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See 
Section 10.2, “SSE Programming Environment,” for more information about 
these registers.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in 
the SS descriptor (as it is in non-64-bit modes) nor can the pointer size be 
overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register 
(the task priority register: CR8 or TPR) has been added. See Chapter 2, “Intel® 
64 and IA-32 Architectures,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

• Debug registers — Debug registers expand to 64 bits. See Chapter 18, 
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

• Descriptor table registers — The global descriptor table register (GDTR) and 
interrupt descriptor table register (IDTR) expand to 10 bytes so that they can 
3-6 Vol. 1



BASIC EXECUTION ENVIRONMENT
hold a full 64-bit base address. The local descriptor table register (LDTR) and the 
task register (TR) also expand to hold a full 64-bit base address.

Figure 3-2.  64-Bit Mode Execution Environment
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3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. 
Physical memory is organized as a sequence of 8-bit bytes. Each byte is assigned a 
unique address, called a physical address. The physical address space ranges 
from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support 
Intel 64 architecture. Intel 64 architecture introduces a changes in physical and 
linear address space; these are described in Section 3.3.3, Section 3.3.4, and 
Section 3.3.7.

Virtually any operating system or executive designed to work with an IA-32 or Intel 
64 processor will use the processor’s memory management facilities to access 
memory. These facilities provide features such as segmentation and paging, which 
allow memory to be managed efficiently and reliably. Memory management is 
described in detail in Chapter 3, “Protected-Mode Memory Management,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. The 
following paragraphs describe the basic methods of addressing memory when 
memory management is used.

3.3.1 IA-32 Memory Models
When employing the processor’s memory management facilities, programs do not 
directly address physical memory. Instead, they access memory using one of three 
memory models: flat, segmented, or real address mode:

• Flat memory model — Memory appears to a program as a single, continuous 
address space (Figure 3-3). This space is called a linear address space. Code, 
data, and stacks are all contained in this address space. Linear address space is 
byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 
64-bit mode). An address for any byte in linear address space is called a linear 
address.

• Segmented memory model — Memory appears to a program as a group of 
independent address spaces called segments. Code, data, and stacks are 
typically contained in separate segments. To address a byte in a segment, a 
program issues a logical address. This consists of a segment selector and an 
offset (logical addresses are often referred to as far pointers). The segment 
selector identifies the segment to be accessed and the offset identifies a byte in 
the address space of the segment. Programs running on an IA-32 processor can 
address up to 16,383 segments of different sizes and types, and each segment 
can be as large as 232 bytes.

Internally, all the segments that are defined for a system are mapped into the 
processor’s linear address space. To access a memory location, the processor 
thus translates each logical address into a linear address. This translation is 
transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of 
programs and systems. For example, placing a program’s stack in a separate 
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segment prevents the stack from growing into the code or data space and 
overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel 
8086 processor. It is supported to provide compatibility with existing programs 
written to run on the Intel 8086 processor. The real-address mode uses a specific 
implementation of segmented memory in which the linear address space for the 
program and the operating system/executive consists of an array of segments of 
up to 64 KBytes in size each. The maximum size of the linear address space in 
real-address mode is 220 bytes. 

See also: Chapter 15, “8086 Emulation,” Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

Figure 3-3.  Three Memory Management Models
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3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into 
the processor’s physical address space either directly or through paging. When using 
direct mapping (paging disabled), each linear address has a one-to-one correspon-
dence with a physical address. Linear addresses are sent out on the processor’s 
address lines without translation. 

When using the IA-32 architecture’s paging mechanism (paging enabled), linear 
address space is divided into pages which are mapped to virtual memory. The pages 
of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an 
application program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that 
support:

• Page Address Extensions (PAE) to address physical address space greater than 
4 GBytes.

• Page Size Extensions (PSE) to map linear address to physical address in 
4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode
Intel 64 architecture supports physical address space greater than 64 GBytes; the 
actual physical address size of IA-32 processors is implementation specific. In 64-bit 
mode, there is architectural support for 64-bit linear address space. However, 
processors supporting Intel 64 architecture may implement less than 64-bits (see 
Section 3.3.7.1). The linear address space is mapped into the processor physical 
address space through the PAE paging mechanism.

3.3.4 Modes of Operation vs. Memory Model
When writing code for an IA-32 or Intel 64 processor, a programmer needs to know 
the operating mode the processor is going to be in when executing the code and the 
memory model being used. The relationship between operating modes and memory 
models is as follows:

• Protected mode — When in protected mode, the processor can use any of the 
memory models described in this section. (The real-addressing mode memory 
model is ordinarily used only when the processor is in the virtual-8086 mode.) 
The memory model used depends on the design of the operating system or 
executive. When multitasking is implemented, individual tasks can use different 
memory models.
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• Real-address mode — When in real-address mode, the processor only supports 
the real-address mode memory model.

• System management mode — When in SMM, the processor switches to a 
separate address space, called the system management RAM (SMRAM). The 
memory model used to address bytes in this address space is similar to the real-
address mode model. See Chapter 24, “System Management,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more 
information on the memory model used in SMM.

• Compatibility mode — Software that needs to run in compatibility mode should 
observe the same memory model as those targeted to run in 32-bit protected 
mode. The effect of segmentation is the same as it is in 32-bit protected mode 
semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled, 
creating a flat 64-bit linear-address space. Specifically, the processor treats the 
segment base of CS, DS, ES, and SS as zero in 64-bit mode (this makes a linear 
address equal an effective address). Segmented and real address modes are not 
available in 64-bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes
IA-32 processors in protected mode can be configured for 32-bit or 16-bit address 
and operand sizes. With 32-bit address and operand sizes, the maximum linear 
address or segment offset is FFFFFFFFH (232-1); operand sizes are typically 8 bits or 
32 bits. With 16-bit address and operand sizes, the maximum linear address or 
segment offset is FFFFH (216-1); operand sizes are typically 8 bits or 16 bits. 

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit 
segment selector and a 32-bit offset; when using 16-bit addressing, an address 
consists of a 16-bit segment selector and a 16-bit offset. 

Instruction prefixes allow temporary overrides of the default address and/or operand 
sizes from within a program.

When operating in protected mode, the segment descriptor for the currently 
executing code segment defines the default address and operand size. A segment 
descriptor is a system data structure not normally visible to application code. Assem-
bler directives allow the default addressing and operand size to be chosen for a 
program. The assembler and other tools then set up the segment descriptor for the 
code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 
bits. An address-size override can be used in real-address mode to enable 32-bit 
addressing. However, the maximum allowable 32-bit linear address is still 000FFFFFH 
(220-1).
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3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of 
up to 64 GBytes (236 bytes) of physical memory. A program or task could not 
address locations in this address space directly. Instead, it addresses individual linear 
address spaces of up to 4 GBytes that mapped to 64-GByte physical address space 
through a virtual memory management mechanism. Using this mechanism, an oper-
ating system can enable a program to switch 4-GByte linear address spaces within 
64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in 
protected mode and the operating system to provide a virtual memory management 
system. See “36-Bit Physical Addressing Using the PAE Paging Mechanism” in 
Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 
64-bit mode (if there is no address-size override), the size of effective address calcu-
lations is 64 bits. An effective-address calculation uses a 64-bit base and index regis-
ters and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective 
addresses because the base address is zero. In the event that FS or GS segments are 
used with a non-zero base, this rule does not hold. In 64-bit mode, the effective 
address components are added and the effective address is truncated (See for 
example the instruction LEA) before adding the full 64-bit segment base. The base is 
never truncated, regardless of addressing mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 
64-bit instruction pointer is called the RIP. Table 3-1 shows the relationship between 
RIP, EIP, and IP.

Table 3-1.  Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. 
They are still limited to 32 bits and sign-extended during effective-address calcula-
tions. In 64-bit mode, however, support is provided for 64-bit displacement and 
immediate forms of the MOV instruction. 

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 
64-bit addresses. Address calculations are first truncated to the effective address 

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP
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size of the current mode (64-bit mode or compatibility mode), as overridden by any 
address-size prefix. The result is then zero-extended to the full 64-bit address width. 
Because of this, 16-bit and 32-bit applications running in compatibility mode can 
access only the low 4 GBytes of the 64-bit mode effective addresses. Likewise, a 
32-bit address generated in 64-bit mode can access only the low 4 GBytes of the 
64-bit mode effective addresses.

3.3.7.1  Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63 
through to the most-significant implemented bit by the microarchitecture are set to 
either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support 
less. The first implementation of IA-32 processors with Intel 64 architecture supports 
a 48-bit linear address. This means a canonical address must have bits 63 through 48 
set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should 
check bits 63 through the most-significant implemented bit to see if the address is in 
canonical form. If a linear-memory reference is not in canonical form, the implemen-
tation should generate an exception. In most cases, a general-protection exception 
(#GP) is generated. However, in the case of explicit or implied stack references, a 
stack fault (#SS) is generated. 

Instructions that have implied stack references, by default, use the SS segment 
register. These include PUSH/POP-related instructions and instructions using 
RSP/RBP as base registers. In these cases, the canonical fault is #SF. 

If an instruction uses base registers RSP/RBP and uses a segment override prefix to 
specify a non-SS segment, a canonical fault generates a #GP (instead of an #SF). In 
64-bit mode, only FS and GS segment-overrides are applicable in this situation. 
Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also 
means that an SS segment-override applied to a “non-stack” register reference is 
ignored. Such a sequence still produces a #GP for a canonical fault (and not an #SF).

3.4 BASIC PROGRAM EXECUTION REGISTERS
IA-32 architecture provides 16 basic program execution registers for use in general 
system and application programing (see Figure 3-4). These registers can be grouped 
as follows:

• General-purpose registers. These eight registers are available for storing 
operands and pointers.

• Segment registers. These registers hold up to six segment selectors.
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• EFLAGS (program status and control) register. The EFLAGS register report 
on the status of the program being executed and allows limited (application-
program level) control of the processor. 

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer 
to the next instruction to be executed. 

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP 
are provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers

Although all of these registers are available for general storage of operands, results, 
and pointers, caution should be used when referencing the ESP register. The ESP 
register holds the stack pointer and as a general rule should not be used for another 
purpose. 

Many instructions assign specific registers to hold operands. For example, string 
instructions use the contents of the ECX, ESI, and EDI registers as operands. When 
using a segmented memory model, some instructions assume that pointers in certain 
registers are relative to specific segments. For instance, some instructions assume 
that a pointer in the EBX register points to a memory location in the DS segment. 
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The special uses of general-purpose registers by instructions are described in 
Chapter 5, “Instruction Set Summary,” in this volume. See also: Chapter 3 and 
Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A & 2B. The following is a summary of special uses:

• EAX — Accumulator for operands and results data

• EBX — Pointer to data in the DS segment

• ECX — Counter for string and loop operations

• EDX — I/O pointer

• ESI — Pointer to data in the segment pointed to by the DS register; source 
pointer for string operations

• EDI — Pointer to data (or destination) in the segment pointed to by the ES 
register; destination pointer for string operations

• ESP — Stack pointer (in the SS segment)

Figure 3-4.  General System and Application Programming Registers
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• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map 
directly to the register set found in the 8086 and Intel 286 processors and can be 
referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each of the lower two 
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, 
BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1  General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size 
is 32 bits. However, general-purpose registers are able to work with either 32-bit or 
64-bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI, 
EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, 
RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent 
eight new general-purpose registers. All of these registers can be accessed at the 
byte, word, dword, and qword level. REX prefixes are used to generate 64-bit 
operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit 
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions 
from 64-bit mode through compatibility mode to legacy or real mode and then back 
through compatibility mode to 64-bit mode.

Figure 3-5.  Alternate General-Purpose Register Names
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In 64-bit mode, there are limitations on accessing byte registers. An instruction 
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the 
new byte registers at the same time (for example: the low byte of the RAX register). 
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or 
DL) and new byte registers at the same time (for example: the low byte of the R8 
register, or RBP). The architecture enforces this limitation by changing high-byte 
references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8 
bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the desti-
nation general-purpose register: 

• 64-bit operands generate a 64-bit result in the destination general-purpose 
register.

• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the 
destination general-purpose register.

• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 
48 bits (respectively) of the destination general-purpose register are not be 
modified by the operation. If the result of an 8-bit or 16-bit operation is intended 
for 64-bit address calculation, explicitly sign-extend the register to the full 
64-bits. 

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit 
modes, the upper 32 bits of any general-purpose register are not preserved when 
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility 
mode). Software must not depend on these bits to maintain a value after a 64-bit to 
32-bit mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. 
A segment selector is a special pointer that identifies a segment in memory. To 
access a particular segment in memory, the segment selector for that segment must 
be present in the appropriate segment register.

Table 3-2.  Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, 
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL, 
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - 
R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, 
EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP, 
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, 
RBP, RSP, R8 - R15
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When writing application code, programmers generally create segment selectors 
with assembler directives and symbols. The assembler and other tools then create 
the actual segment selector values associated with these directives and symbols. If 
writing system code, programmers may need to create segment selectors directly. 
See Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

How segment registers are used depends on the type of memory management model 
that the operating system or executive is using. When using the flat (unsegmented) 
memory model, segment registers are loaded with segment selectors that point to 
overlapping segments, each of which begins at address 0 of the linear address space 
(see Figure 3-6). These overlapping segments then comprise the linear address 
space for the program. Typically, two overlapping segments are defined: one for code 
and another for data and stacks. The CS segment register points to the code 
segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily 
loaded with a different segment selector so that each segment register points to a 
different segment within the linear address space (see Figure 3-7). At any time, a 
program can thus access up to six segments in the linear address space. To access a 
segment not pointed to by one of the segment registers, a program must first load 
the segment selector for the segment to be accessed into a segment register.

Figure 3-6.  Use of Segment Registers for Flat Memory Model
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Each of the segment registers is associated with one of three types of storage: code, 
data, or stack. For example, the CS register contains the segment selector for the 
code segment, where the instructions being executed are stored. The processor 
fetches instructions from the code segment, using a logical address that consists of 
the segment selector in the CS register and the contents of the EIP register. The EIP 
register contains the offset within the code segment of the next instruction to be 
executed. The CS register cannot be loaded explicitly by an application program. 
Instead, it is loaded implicitly by instructions or internal processor operations that 
change program control (such as, procedure calls, interrupt handling, or task 
switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of 
four data segments permits efficient and secure access to different types of data 
structures. For example, four separate data segments might be created: one for the 
data structures of the current module, another for the data exported from a higher-
level module, a third for a dynamically created data structure, and a fourth for data 
shared with another program. To access additional data segments, the application 
program must load segment selectors for these segments into the DS, ES, FS, and 
GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the 
procedure stack is stored for the program, task, or handler currently being executed. 
All stack operations use the SS register to find the stack segment. Unlike the CS 
register, the SS register can be loaded explicitly, which permits application programs 
to set up multiple stacks and switch among them.

Figure 3-7.  Use of Segment Registers in Segmented Memory Model
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See Section 3.3, “Memory Organization,” for an overview of how the segment regis-
ters are used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment regis-
ters found in the Intel 8086 and Intel 286 processors and the FS and GS registers 
were introduced into the IA-32 Architecture with the Intel386™ family of processors.

3.4.2.1  Segment Registers in 64-Bit Mode
In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless 
of the value of the associated segment descriptor base. This creates a flat address 
space for code, data, and stack. FS and GS are exceptions. Both segment registers 
may be used as additional base registers in linear address calculations (in the 
addressing of local data and certain operating system data structures). 

Even though segmentation is generally disabled, segment register loads may cause 
the processor to perform segment access assists. During these activities, enabled 
processors will still perform most of the legacy checks on loaded values (even if the 
checks are not applicable in 64-bit mode). Such checks are needed because a 
segment register loaded in 64-bit mode may be used by an application running in 
compatibility mode. 

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a 
group of system flags. Figure 3-8 defines the flags within this register. Following 
initialization of the processor (either by asserting the RESET pin or the INIT pin), the 
state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this 
register are reserved. Software should not use or depend on the states of any of 
these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-
purpose instructions (described in the following sections). There are no instructions 
that allow the whole register to be examined or modified directly. 

The following instructions can be used to move groups of flags to and from the proce-
dure stack or the EAX register: LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After 
the contents of the EFLAGS register have been transferred to the procedure stack or 
EAX register, the flags can be examined and modified using the processor’s bit 
manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor 
automatically saves the state of the EFLAGS register in the task state segment (TSS) 
for the task being suspended. When binding itself to a new task, the processor loads 
the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor 
automatically saves the state of the EFLAGS registers on the procedure stack. When 
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an interrupt or exception is handled with a task switch, the state of the EFLAGS 
register is saved in the TSS for the task being suspended.

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, 
but the function and placement of existing flags have remained the same from one 
family of the IA-32 processors to the next. As a result, code that accesses or modifies 
these flags for one family of IA-32 processors works as expected when run on later 
families of processors.

3.4.3.1  Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results 
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The 
status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or 
a borrow out of the most-significant bit of the result; cleared 

Figure 3-8.  EFLAGS Register
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otherwise. This flag indicates an overflow condition for 
unsigned-integer arithmetic. It is also used in multiple-precision 
arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result 
contains an even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry 
or a borrow out of bit 3 of the result; cleared otherwise. This flag 
is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, 
which is the sign bit of a signed integer. (0 indicates a positive 
value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive 
number or too small a negative number (excluding the sign-bit) 
to fit in the destination operand; cleared otherwise. This flag 
indicates an overflow condition for signed-integer (two’s 
complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, 
and CMC instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a spec-
ified bit into the CF flag.

The status flags allow a single arithmetic operation to produce results for three 
different data types: unsigned integers, signed integers, and BCD integers. If the 
result of an arithmetic operation is treated as an unsigned integer, the CF flag indi-
cates an out-of-range condition (carry or a borrow); if treated as a signed integer 
(two’s complement number), the OF flag indicates a carry or borrow; and if treated 
as a BCD digit, the AF flag indicates a carry or borrow. The SF flag indicates the sign 
of a signed integer. The ZF flag indicates either a signed- or an unsigned-integer 
zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in 
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instruc-
tions to propagate a carry or borrow from one computation to the next. 

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condi-
tion code cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status 
flags as condition codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2  DF Flag
The direction flag (DF, located in bit 10 of the EFLAGS register) controls string 
instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the 
string instructions to auto-decrement (to process strings from high addresses to low 
addresses). Clearing the DF flag causes the string instructions to auto-increment 
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.
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3.4.3.3  System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or 
executive operations. They should not be modified by application programs. 
The functions of the system flags are as follows:

TF (bit 8) Trap flag — Set to enable single-step mode for debugging; 
clear to disable single-step mode.

IF (bit 9) Interrupt enable flag — Controls the response of the 
processor to maskable interrupt requests. Set to respond to 
maskable interrupts; cleared to inhibit maskable interrupts.

IOPL (bits 12 and 13)
I/O privilege level field — Indicates the I/O privilege level of 
the currently running program or task. The current privilege 
level (CPL) of the currently running program or task must be 
less than or equal to the I/O privilege level to access the I/O 
address space. This field can only be modified by the POPF and 
IRET instructions when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and 
called tasks. Set when the current task is linked to the previ-
ously executed task; cleared when the current task is not linked 
to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug 
exceptions.

VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; 
clear to return to protected mode without virtual-8086 mode 
semantics.

AC (bit 18) Alignment check flag — Set this flag and the AM bit in the CR0 
register to enable alignment checking of memory references; 
clear the AC flag and/or the AM bit to disable alignment 
checking.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in 
conjunction with the VIP flag. (To use this flag and the VIP flag 
the virtual mode extensions are enabled by setting the VME flag 
in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an inter-
rupt is pending; clear when no interrupt is pending. (Software 
sets and clears this flag; the processor only reads it.) Used in 
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear 
this flag indicates support for the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory 
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A. 
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3.4.3.4  RFLAGS Register in 64-Bit Mode
In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits 
of RFLAGS register is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER
The instruction pointer (EIP) register contains the offset in the current code segment 
for the next instruction to be executed. It is advanced from one instruction boundary 
to the next in straight-line code or it is moved ahead or backwards by a number of 
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions. 

The EIP register cannot be accessed directly by software; it is controlled implicitly by 
control-transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and 
exceptions. The only way to read the EIP register is to execute a CALL instruction and 
then read the value of the return instruction pointer from the procedure stack. The 
EIP register can be loaded indirectly by modifying the value of a return instruction 
pointer on the procedure stack and executing a return instruction (RET or IRET). See 
Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an 
instruction address read from the bus during an instruction load does not match the 
value in the EIP register. Even though different processor generations use different 
prefetching mechanisms, the function of the EIP register to direct program flow 
remains fully compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode
In 64-bit mode, the RIP register becomes the instruction pointer. This register holds 
the 64-bit offset of the next instruction to be executed. 64-bit mode also supports a 
technique called RIP-relative addressing. Using this technique, the effective address 
is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When the processor is executing in protected mode, every code segment has a 
default operand-size attribute and address-size attribute. These attributes are 
selected with the D (default size) flag in the segment descriptor for the code segment 
(see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A). When the D flag is set, the 
32-bit operand-size and address-size attributes are selected; when the flag is clear, 
the 16-bit size attributes are selected. When the processor is executing in real-
address mode, virtual-8086 mode, or SMM, the default operand-size and address-
size attributes are always 16 bits.
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The operand-size attribute selects the size of operands. When the 16-bit operand-
size attribute is in force, operands can generally be either 8 bits or 16 bits, and when 
the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 
bits.

The address-size attribute selects the sizes of addresses used to address memory: 
16 bits or 32 bits. When the 16-bit address-size attribute is in force, segment offsets 
and displacements are 16 bits. This restriction limits the size of a segment to 64 
KBytes. When the 32-bit address-size attribute is in force, segment offsets and 
displacements are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden 
for a particular instruction by adding an operand-size and/or address-size prefix to 
an instruction. See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A. The effect of this prefix applies 
only to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in 
protected mode or compatibility mode) depending on the settings of the D flag and 
the operand-size and address-size prefixes.

3.6.1 Operand Size and Address Size in 64-Bit Mode
In 64-bit mode, the default address size is 64 bits and the default operand size is 32 
bits. Defaults can be overridden using prefixes. Address-size and operand-size 
prefixes allow mixing of 32/64-bit data and 32/64-bit addresses on an instruction-
by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix 
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit 
mode. Note that 16-bit addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the 
REX prefixes is referred to as REX.W. If the REX.W field is properly set, the prefix 
specifies an operand size override to 64 bits. Note that software can still use the 
operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W 
takes precedence over the operand-size prefix (66H) when both are used.

Table 3-3.  Effective Operand- and Address-Size Attributes
D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
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In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H 
prefixes are mandatory for opcode extensions. In such a case, there is no interaction 
between a valid REX.W prefix and a 66H opcode extension prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

3.7 OPERAND ADDRESSING
IA-32 machine-instructions act on zero or more operands. Some operands are spec-
ified explicitly and others are implicit. The data for a source operand can be located 
in:

• the instruction itself (an immediate operand)

• a register

• a memory location

• an I/O port

When an instruction returns data to a destination operand, it can be returned to:

• a register

• a memory location

• an I/O port

3.7.1 Immediate Operands
Some instructions use data encoded in the instruction itself as a source operand. 
These operands are called immediate operands (or simply immediates). For 

Table 3-4.  Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment 
Descriptor 1 1 1 1 1 1 1 1 

REX.W Prefix 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
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example, the following ADD instruction adds an immediate value of 14 to the 
contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source 
operand to be an immediate value. The maximum value allowed for an immediate 
operand varies among instructions, but can never be greater than the maximum 
value of an unsigned doubleword integer (232).

3.7.2 Register Operands
Source and destination operands can be any of the following registers, depending on 
the instruction being executed:

• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)

• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)

• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)

• segment registers (CS, DS, SS, ES, FS, and GS)

• EFLAGS register

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)

• XMM registers (XMM0 through XMM7) and the MXCSR register

• control registers (CR0, CR2, CR3, and CR4) and system table pointer registers 
(GDTR, LDTR, IDTR, and task register)

• debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)

• MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands 
contained in a pair of 32-bit registers. Register pairs are represented with a colon 
separating them. For example, in the register pair EDX:EAX, EDX contains the high 
order bits and EAX contains the low order bits of a quadword operand. 

Several instructions (such as the PUSHFD and POPFD instructions) are provided to 
load and store the contents of the EFLAGS register or to set or clear individual flags 
in this register. Other instructions (such as the Jcc instructions) use the state of the 
status flags in the EFLAGS register as condition codes for branching or other decision 
making operations.

The processor contains a selection of system registers that are used to control 
memory management, interrupt and exception handling, task management, 
processor management, and debugging activities. Some of these system registers 
are accessible by an application program, the operating system, or the executive 
through a set of system instructions. When accessing a system register with a 
system instruction, the register is generally an implied operand of the instruction.
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3.7.2.1  Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:

• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or 
R8-R15)

• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or 
R8D-R15D)

• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)

• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-
R15L are available using REX prefixes; AL, BL, CL, DL, AH, BH, CH, DH are 
available without using REX prefixes.

• Segment registers (CS, DS, SS, ES, FS, and GS)

• RFLAGS register

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)

• XMM registers (XMM0 through XMM15) and the MXCSR register

• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer 
registers (GDTR, LDTR, IDTR, and task register)

• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)

• MSR registers

• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment 
selector and an offset (see Figure 3-9). Segment selectors specify the segment 
containing the operand. Offsets specify the linear or effective address of the operand. 
Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented 
by the notation m16:16).

3.7.3.1  Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an 
offset. The offset can be 16 bits, 32 bits or 64 bits (see Figure 3-10).

Figure 3-9.  Memory Operand Address

Offset (or Linear Address)
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3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most 
common method of specifying a segment selector is to load it in a segment register 
and then allow the processor to select the register implicitly, depending on the type 
of operation being performed. The processor automatically chooses a segment 
according to the rules given in Table 3-5. 

When storing data in memory or loading data from memory, the DS segment default 
can be overridden to allow other segments to be accessed. Within an assembler, the 
segment override is generally handled with a colon “:” operator. For example, the 
following MOV instruction moves a value from register EAX into the segment pointed 
to by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix, 
which is a byte placed at the beginning of an instruction. The following default 
segment selections cannot be overridden:

• Instruction fetches must be made from the code segment.

• Destination strings in string instructions must be stored in the data segment 
pointed to by the ES register.

• Push and pop operations must always reference the SS segment.

Figure 3-10.  Memory Operand Address in 64-Bit Mode

Table 3-5.  Default Segment Selection Rules

Reference 
Type

Register 
Used

Segment 
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP 
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or 
string destination.

Destination 
Strings

ES Data Segment 
pointed to with 
the ES register

Destination of string instructions.

Offset (or Linear Address)
015

Segment
630

Selector
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Some instructions require a segment selector to be specified explicitly. In these 
cases, the 16-bit segment selector can be located in a memory location or in a 16-bit 
register. For example, the following MOV instruction moves a segment selector 
located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in 
memory. Here, the first doubleword in memory contains the offset and the next word 
contains the segment selector.

3.7.4.1  Segmentation in 64-Bit Mode
In IA-32e mode, the effects of segmentation depend on whether the processor is 
running in compatibility mode or 64-bit mode. In compatibility mode, segmentation 
functions just as it does in legacy IA-32 mode, using the 16-bit or 32-bit protected 
mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a 
flat 64-bit linear-address space. The processor treats the segment base of CS, DS, 
ES, SS as zero, creating a linear address that is equal to the effective address. The 
exceptions are the FS and GS segments, whose segment registers (which hold the 
segment base) can be used as additional base registers in some linear address calcu-
lations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called 
a displacement) or through an address computation made up of one or more of the 
following components:

• Displacement — An 8-, 16-, or 32-bit value.

• Base — The value in a general-purpose register.

• Index — The value in a general-purpose register.

• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective 
address. Each of these components can have either a positive or negative (2s 
complement) value, with the exception of the scaling factor. Figure 3-11 shows all 
the possible ways that these components can be combined to create an effective 
address in the selected segment.
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The uses of general-purpose registers as base or index components are restricted in 
the following manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default 
segment. In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and 
any of these components can be NULL. A scale factor may be used only when an 
index also is used. Each possible combination is useful for data structures commonly 
used by programmers in high-level languages and assembly language. 

The following addressing modes suggest uses for common combinations of address 
components.

• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset 
to the operand. Because the displacement is encoded in the instruction, this form 
of an address is sometimes called an absolute or static address. It is commonly 
used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the value 
in the base register can change, it can be used for dynamic storage of variables 
and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used 
together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The 
displacement component encodes the static offset to the beginning of the 
array. The base register holds the results of a calculation to determine the 
offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the 
beginning of the record, while the displacement is a static offset to the field.

An important special case of this combination is access to parameters in a 
procedure activation record. A procedure activation record is the stack frame 

Figure 3-11.  Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement
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created when a procedure is entered. Here, the EBP register is the best choice for 
the base register, because it automatically selects the stack segment. This is a 
compact encoding for this common function.

• (Index ∗ Scale) + Displacement ⎯ This address mode offers an efficient way to 
index into a static array when the element size is 2, 4, or 8 bytes. The 
displacement locates the beginning of the array, the index register holds the 
subscript of the desired array element, and the processor automatically converts 
the subscript into an index by applying the scaling factor.

• Base + Index + Displacement ⎯ Using two registers together supports either 
a two-dimensional array (the displacement holds the address of the beginning of 
the array) or one of several instances of an array of records (the displacement is 
an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement ⎯ Using all the addressing 
components together allows efficient indexing of a two-dimensional array when 
the elements of the array are 2, 4, or 8 bytes in size.

3.7.5.1  Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a 
static value or through an address computation made up of one or more of the 
following components:

• Displacement — An 8-bit, 16-bit, or 32-bit value.

• Base — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.

• Index — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose 
register.

• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose 
registers in most cases. See Chapter 2, “Instruction Format,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

The following unique combination of address components is also available.

• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed 
32-bit displacement to calculate the effective address of the next instruction by 
sign-extend the 32-bit value and add to the 64-bit value in RIP.

3.7.6 Assembler and Compiler Addressing Modes
At the machine-code level, the selected combination of displacement, base register, 
index register, and scale factor is encoded in an instruction. All assemblers permit a 
programmer to use any of the allowable combinations of these addressing compo-
nents to address operands. High-level language compilers will select an appropriate 
combination of these components based on the language construct a programmer 
defines.
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3.7.7 I/O Port Addressing
The processor supports an I/O address space that contains up to 65,536 8-bit I/O 
ports. Ports that are 16-bit and 32-bit may also be defined in the I/O address space. 
An I/O port can be addressed with either an immediate operand or a value in the DX 
register. See Chapter 13, “Input/Output,” for more information about I/O port 
addressing.
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CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. 
A section at the end of this chapter describes the real-number and floating-point 
concepts used in x87 FPU, SSE, SSE2, SSE3 and SSSE3 extensions.

4.1 FUNDAMENTAL DATA TYPES
The fundamental data types are bytes, words, doublewords, quadwords, and double 
quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits), a 
doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quad-
word is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates 
on these fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 
processor; the double quadword data type was introduced in the Pentium III 
processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bits 0 through 7) of each data type 
occupies the lowest address in memory and that address is also the address of the 
operand.

Figure 4-1.  Fundamental Data Types
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4.1.1 Alignment of Words, Doublewords, Quadwords, and Double 
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural 
boundaries. The natural boundaries for words, double words, and quadwords are 
even-numbered addresses, addresses evenly divisible by four, and addresses evenly 
divisible by eight, respectively. However, to improve the performance of programs, 
data structures (especially stacks) should be aligned on natural boundaries when-
ever possible. The reason for this is that the processor requires two memory 
accesses to make an unaligned memory access; aligned accesses require only one 
memory access. A word or doubleword operand that crosses a 4-byte boundary or a 
quadword operand that crosses an 8-byte boundary is considered unaligned and 
requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be 
aligned on a natural boundary. These instructions generate a general-protection 
exception (#GP) if an unaligned operand is specified. A natural boundary for a double 
quadword is any address evenly divisible by 16. Other instructions that operate on 
double quadwords permit unaligned access (without generating a general-protection 
exception). However, additional memory bus cycles are required to access unaligned 
data from memory.

Figure 4-2.  Bytes, Words, Doublewords, Quadwords, and Double Quadwords in 
Memory
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4.2 NUMERIC DATA TYPES
Although bytes, words, and doublewords are fundamental data types, some instruc-
tions support additional interpretations of these data types to allow operations to be 
performed on numeric data types (signed and unsigned integers, and floating-point 
numbers). See Figure 4-3. 

Figure 4-3.  Numeric Data Types
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4.2.1 Integers
The Intel 64 and IA-32 architectures define two types of integers: unsigned and 
signed. Unsigned integers are ordinary binary values ranging from 0 to the maximum 
positive number that can be encoded in the selected operand size. Signed integers 
are two’s complement binary values that can be used to represent both positive and 
negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) 
operate on either unsigned or signed integer operands. Other integer instructions 
(such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of 
integers.

4.2.1.1  Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, word, double-
word, and quadword. Their values range from 0 to 255 for an unsigned byte integer, 
from 0 to 65,535 for an unsigned word integer, from 0 to 232 – 1 for an unsigned 
doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer. 
Unsigned integers are sometimes referred to as ordinals.

4.2.1.2  Signed Integers
Signed integers are signed binary numbers held in a byte, word, doubleword, or 
quadword. All operations on signed integers assume a two's complement representa-
tion. The sign bit is located in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in 
a doubleword integer, and bit 63 in a quadword integer (see the signed integer 
encodings in Table 4-1).
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The sign bit is set for negative integers and cleared for positive integers and zero. 
Integer values range from –128 to +127 for a byte integer, from –32,768 to +32,767 
for a word integer, from –231 to +231 – 1 for a doubleword integer, and from –263 to 
+263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive 
bytes; doubleword integers are stored in 4 consecutive bytes; and quadword inte-
gers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU 
when operating on integer values. For more information, see Section 8.2.1, “Indefi-
nites.”

4.2.2 Floating-Point Data Types
The IA-32 architecture defines and operates on three floating-point data types: 
single-precision floating-point, double-precision floating-point, and double-extended 
precision floating-point (see Figure 4-3). The data formats for these data types 
correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-
Point Arithmetic. 

Table 4-2 gives the length, precision, and approximate normalized range that can be 
represented by each of these data types. Denormal values are also supported in each 
of these types.

Table 4-1.  Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →
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NOTE
Section 4.8, “Real Numbers and Floating-Point Formats,” gives an 
overview of the IEEE Standard 754 floating-point formats and defines 
the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, 
normalized finite numbers, infinites, and NaNs for each of the three floating-point 
data types. It also gives the format for the QNaN floating-point indefinite value. (See 
Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the 
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the 
significand is encoded. The integer is assumed to be 1 for all numbers except 0 and 
denormalized finite numbers. For the double extended-precision format, the integer 
is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer 
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero 
and denormalized numbers.

Table 4-2.  Length, Precision, and Range of Floating-Point Data Types
Data Type Length Precision

(Bits)
Approximate Normalized Range

Binary Decimal

Single Precision 32 24 2–126 to 2127 1.18 ×  10–38 to 3.40 ×  1038

Double Precision 64 53 2–1022 to 21023 2.23 ×  10–308 to 1.79 ×  
10308

Double Extended 
Precision

80 64 2–16382 to 
216383

3.37 ×  10–4932 to 1.18 ×  
104932

Table 4-3.  Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00
4-6 Vol. 1



DATA TYPES
The exponent of each floating-point data type is encoded in biased format; see 
Section 4.8.2.2, “Biased Exponent.” The biasing constant is 127 for the single-
precision format, 1023 for the double-precision format, and 16,383 for the double 
extended-precision format.

When storing floating-point values in memory, single-precision values are stored in 4 
consecutive bytes in memory; double-precision values are stored in 8 consecutive 
bytes; and double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on 
by x87 FPU, and SSE/SSE2/SSE3 instructions. The double-extended-precision 
floating-point format is only operated on by the x87 FPU. See Section 11.6.8, 
“Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a discussion of 
the compatibility of single-precision and double-precision floating-point data types 
between the x87 FPU and SSE/SSE2/SSE3 extensions.

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals 1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

-• 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN 
Floating-Point 
Indefinite

1 11..11 1 10..00

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 8 Bits →
← 11 Bits →
← 15 Bits →

← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:
1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

Table 4-3.  Floating-Point Number and NaN Encodings
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4.3 POINTER DATA TYPES
Pointers are addresses of locations in memory. 

In non-64-bit modes, the architecture defines two types of pointers: a near pointer 
and a far pointer. A near pointer is a 32-bit (or 16-bit) offset (also called an effec-
tive address) within a segment. Near pointers are used for all memory references in 
a flat memory model or for references in a segmented model where the identity of 
the segment being accessed is implied. 

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit 
(or 16-bit) offset. Far pointers are used for memory references in a segmented 
memory model where the identity of a segment being accessed must be specified 
explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

4.3.1 Pointer Data Types in 64-Bit Mode
In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This 
equates to an effective address. Far pointers in 64-bit mode can be one of three 
forms: 

• 16-bit segment selector, 16-bit offset if the operand size is 32 bits 

• 16-bit segment selector, 32-bit offset if the operand size is 32 bits 

• 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

Figure 4-4.  Pointer Data Types
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4.4 BIT FIELD DATA TYPE
A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit 
position of any byte in memory and can contain up to 32 bits.

4.5 STRING DATA TYPES
Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string 
can begin at any bit position of any byte and can contain up to 232 – 1 bits. A byte 
string can contain bytes, words, or doublewords and can range from zero to 232 – 1 
bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES
Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit 
packed data type for use in SIMD operations. These data types consist of funda-

Figure 4-5.  Pointers in 64-Bit Mode

Figure 4-6.  Bit Field Data Type
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mental data types (packed bytes, words, doublewords, and quadwords) and numeric 
interpretations of fundamental types for use in packed integer and packed floating-
point operations.

4.6.1 64-Bit SIMD Packed Data Types
The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the 
Intel MMX technology. They are operated on in MMX registers. The fundamental 
64-bit packed data types are packed bytes, packed words, and packed doublewords 
(see Figure 4-7). When performing numeric SIMD operations on these data types, 
these data types are interpreted as containing byte, word, or doubleword integer 
values.

4.6.2 128-Bit Packed SIMD Data Types
The 128-bit packed SIMD data types were introduced into the IA-32 architecture in 
the SSE extensions and used with SSE2, SSE3 and SSSE3 extensions. They are oper-
ated on primarily in the 128-bit XMM registers and memory. The fundamental 128-bit 
packed data types are packed bytes, packed words, packed doublewords, and 
packed quadwords (see Figure 4-8). When performing SIMD operations on these 

Figure 4-7.  64-Bit Packed SIMD Data Types
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fundamental data types in XMM registers, these data types are interpreted as 
containing packed or scalar single-precision floating-point or double-precision 
floating-point values, or as containing packed byte, word, doubleword, or quadword 
integer values.

Figure 4-8.  128-Bit Packed SIMD Data Types
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4.7 BCD AND PACKED BCD INTEGERS
Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid 
values ranging from 0 to 9. IA-32 architecture defines operations on BCD integers 
located in one or more general-purpose registers or in one or more x87 FPU registers 
(see Figure 4-9).

When operating on BCD integers in general-purpose registers, the BCD values can be 
unpacked (one BCD digit per byte) or packed (two BCD digits per byte). The value of 
an unpacked BCD integer is the binary value of the low half-byte (bits 0 through 3). 
The high half-byte (bits 4 through 7) can be any value during addition and subtrac-
tion, but must be zero during multiplication and division. Packed BCD integers allow 
two BCD digits to be contained in one byte. Here, the digit in the high half-byte is 
more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in 
an 80-bit format and referred to as decimal integers. In this format, the first 9 bytes 
hold 18 BCD digits, 2 digits per byte. The least-significant digit is contained in the 
lower half-byte of byte 0 and the most-significant digit is contained in the upper half-
byte of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive 
and 1 = negative; bits 0 through 6 of byte 10 are don’t care bits). Negative decimal 
integers are not stored in two's complement form; they are distinguished from posi-
tive decimal integers only by the sign bit. The range of decimal integers that can be 
encoded in this format is –1018 + 1 to 1018 – 1. 

The decimal integer format exists in memory only. When a decimal integer is loaded 
in an x87 FPU data register, it is automatically converted to the double-extended-
precision floating-point format. All decimal integers are exactly representable in 
double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9.  BCD Data Types
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The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by 
the FBSTP instruction in response to a masked floating-point invalid-operation 
exception. Attempting to load this value with the FBLD instruction produces an unde-
fined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS
This section describes how real numbers are represented in floating-point format in 
x87 FPU and SSE/SSE2/SSE3 floating-point instructions. It also introduces terms 
such as normalized numbers, denormalized numbers, biased exponents, signed 
zeros, and NaNs. Readers who are already familiar with floating-point processing 
techniques and the IEEE Standard 754 for Binary Floating-Point Arithmetic may wish 
to skip this section.

Table 4-4.  Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed 
BCD 
Integer 
Indefinit
e

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →
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4.8.1 Real Number System
As shown in Figure 4-10, the real-number system comprises the continuum of real 
numbers from minus infinity (−∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only 
a subset of the real-number continuum can be used in real-number (floating-point) 
calculations. As shown at the bottom of Figure 4-10, the subset of real numbers that 
the IA-32 architecture supports represents an approximation of the real number 
system. The range and precision of this real-number subset is determined by the 
IEEE Standard 754 floating-point formats. 

4.8.2 Floating-Point Format
To increase the speed and efficiency of real-number computations, computers and 
microprocessors typically represent real numbers in a binary floating-point format. 
In this format, a real number has three parts: a sign, a significand, and an exponent 
(see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or nega-
tive (1). The significand has two parts: a 1-bit binary integer (also referred to as 
the J-bit) and a binary fraction. The integer-bit is often not represented, but instead 
is an implied value. The exponent is a binary integer that represents the base-2 
power by which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored 
in IEEE Standard 754 floating-point format. The table lists a progression of real 
number notations that leads to the single-precision, 32-bit floating-point format. In 
this format, the significand is normalized (see Section 4.8.2.1, “Normalized 
Numbers”) and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For 
the single-precision floating-point format, the biasing constant is +127.
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Figure 4-10.  Binary Real Number System

Figure 4-11.  Binary Floating-Point Format

Table 4-5.  Real and Floating-Point Number Notation

Notation Value

Binary Real Number System

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

ς ς ς ς
-100 -10 -1 0 1 10 100

ς ς ς ς
-100 -10 -1 0 1 10 100

Sign

Integer or J-Bit

Exponent Significand

Fraction
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4.8.2.1  Normalized Numbers
In most cases, floating-point numbers are encoded in normalized form. This means 
that except for zero, the significand is always made up of an integer of 1 and the 
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero elimi-
nated, the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits 
that can be accommodated in a significand of a given width. To summarize, a normal-
ized real number consists of a normalized significand that represents a real number 
between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2  Biased Exponent
In the IA-32 architecture, the exponents of floating-point numbers are encoded in a 
biased form. This means that a constant is added to the actual exponent so that the 
biased exponent is always a positive number. The value of the biasing constant 
depends on the number of bits available for representing exponents in the floating-
point format being used. The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that 
the IA-32 architecture uses for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings
A variety of real numbers and special values can be encoded in the IEEE Standard 
754 floating-point format. These numbers and values are generally divided into the 
following classes:

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 
2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision Format Sign Biased Exponent Normalized Significand

0 10000110 0110010001000000000000
0

          1. (Implied)

Table 4-5.  Real and Floating-Point Number Notation
4-16 Vol. 1



DATA TYPES
• Signed zeros

• Denormalized finite numbers

• Normalized finite numbers

• Signed infinities

• NaNs

• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into 
the real number continuum. The encodings shown here are for the IEEE single-preci-
sion floating-point format. The term “S” indicates the sign bit, “E” the biased expo-
nent, and “Sig” the significand. The exponent values are given in decimal. The 
integer bit is shown for the significands, even though the integer bit is implied in 
single-precision floating-point format.

An IA-32 processor can operate on and/or return any of these values, depending on 
the type of computation being performed. The following sections describe these 
number and non-number classes.

Figure 4-12.  Real Numbers and NaNs

1 0
S E Sig1

−0

1 0 −Denormalized
Finite

NaN

1 1...254 −Normalized
Finite

1 255 −∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+ 0

+Denormalized
Finite

+Normalized
Finite

+∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

−Denormalized Finite
−Normalized Finite −0− ∞ +∞

+ Denormalized Finite
+ Normalized Finite+ 0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.
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4.8.3.1  Signed Zeros
Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings 
are equal in value. The sign of a zero result depends on the operation being 
performed and the rounding mode being used. Signed zeros have been provided to 
aid in implementing interval arithmetic. The sign of a zero may indicate the direction 
from which underflow occurred, or it may indicate the sign of an ∞ that has been 
reciprocated.

4.8.3.2  Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized. 
The normalized finite numbers comprise all the non-zero finite values that can be 
encoded in a normalized real number format between zero and ∞. In the single-preci-
sion floating-point format shown in Figure 4-12, this group of numbers includes all 
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent 
range is from −12610 to +12710).

When floating-point numbers become very close to zero, the normalized-number 
format can no longer be used to represent the numbers. This is because the range of 
the exponent is not large enough to compensate for shifting the binary point to the 
right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by 
making the integer bit (and perhaps other leading bits) of the significand zero. The 
numbers in this range are called denormalized (or tiny) numbers. The use of 
leading zeros with denormalized numbers allows smaller numbers to be represented. 
However, this denormalization causes a loss of precision (the number of significant 
bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor 
normally operates on normalized numbers and produces normalized numbers as 
results. Denormalized numbers represent an underflow condition. The exact condi-
tions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. 
Table 4-6 gives an example of gradual underflow in the denormalization process. 
Here the single-precision format is being used, so the minimum exponent (unbiased) 
is −12610. The true result in this example requires an exponent of −12910 in order to 
have a normalized number.   Since  −12910 is beyond the allowable exponent range, 
the result is denormalized by inserting leading zeros until the minimum exponent of −
12610 is reached.
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In the extreme case, all the significant bits are shifted out to the right by leading 
zeros, creating a zero result. 

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to 
detect cases when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures 
or programs to detect when denormals are being used as source operands for 
computations.

4.8.3.3  Signed Infinities
The two infinities, + ∞ and −∞, represent the maximum positive and negative real 
numbers, respectively, that can be represented in the floating-point format. Infinity 
is always represented by a significand of 1.00...00 (the integer bit may be implied) 
and the maximum biased exponent allowed in the specified format (for example, 
25510 for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are 
always interpreted in the affine sense; that is, –∞ is less than any finite number and 
+∞ is greater than any finite number. Arithmetic on infinities is always exact. Excep-
tions are generated only when the use of an infinity as a source operand constitutes 
an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ 
numbers may represent the result of an overflow condition. Here, the normalized 
result of a computation has a biased exponent greater than the largest allowable 
exponent for the selected result format.

4.8.3.4  NaNs
Since NaNs are non-numbers, they are not part of the real number line. In 
Figure 4-12, the encoding space for NaNs in the floating-point formats is shown 

Table 4-6.  Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.
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above the ends of the real number line. This space includes any value with the 
maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored 
for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and 
signaling NaNs (SNaNs). A QNaN is a NaN with the most significant fraction bit set; 
an SNaN is a NaN with the most significant fraction bit clear. QNaNs are allowed to 
propagate through most arithmetic operations without signaling an exception. 
SNaNs generally signal a floating-point invalid-operation exception whenever they 
appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be 
inserted by software; that is, the processor never generates an SNaN as a result of a 
floating-point operation.

4.8.3.5  Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result 
of the operation is either a QNaN delivered to the destination operand or the genera-
tion of a floating-point invalid operating exception, depending on the following rules:

• If one of the source operands is an SNaN and the floating-point invalid-operating 
exception is not masked (see Section 4.9.1.1, “Invalid Operation Exception 
(#I)”), the a floating-point invalid-operation exception is signaled and no result is 
stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-
operation exception is masked, the result is as shown in Table 4-7. When an 
SNaN is converted to a QNaN, the conversion is handled by setting the most-
significant fraction bit of the SNaN to 1. Also, when one of the source operands is 
an SNaN, the floating-point invalid-operation exception flag it set. Note that for 
some combinations of source operands, the result is different for x87 FPU 
operations and for SSE/SSE2/SSE3 operations.

• When neither of the source operands is a NaN, but the operation generates a 
floating-point invalid-operation exception (see Tables 8-10 and 11-1), the result 
is commonly an SNaN source operand converted to a QNaN or the QNaN floating-
point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section 
8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” and Section 11.5.2.1, “Invalid 
Operation Exception (#I).”
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4.8.3.6  Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding 
SNaNs and QNaNs, software is free to use the bits in the significand of a NaN for any 
purpose. Both SNaNs and QNaNs can be encoded to carry and store data, such as 
diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling 
NaNs to trap to the exception handler. The generality of this approach and the large 
number of NaN values that are available provide the sophisticated programmer with 
a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) 
array elements. The compiler can preinitialize each array element with a signaling 
NaN whose significand contained the index (relative position) of the element. Then, 
if an application program attempts to access an element that it had not initialized, it 
can use the NaN placed there by the compiler. If the invalid operation exception is 
unmasked, an interrupt will occur, and the exception handler will be invoked. The 
exception handler can determine which element has been accessed, since the 

Table 4-7.  Rules for Handling NaNs 

Source Operands Result1

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3 — First operand (if this operand is 
an SNaN, it is converted to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger 
significand, converted into a QNaN

SSE/SSE2/SSE3 — First operand converted to a 
QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand

SSE/SSE2/SSE3 — First operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one 
operand)

SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one 
operand)

QNaN source operand

NOTE:
1. For SSE/SSE2/SSE3 instructions, the first operand is generally a source operand that becomes 

the destination operand. Within the Result column, the x87 FPU notation also applies to the 
FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instructions.
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operand address field of the exception pointer will point to the NaN, and the NaN will 
contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a 
program often contains multiple errors. An exception handler can be written to save 
diagnostic information in memory whenever it was invoked. After storing the diag-
nostic data, it can supply a quiet NaN as the result of the erroneous instruction, and 
that NaN can point to its associated diagnostic area in memory. The program will 
then continue, creating a different NaN for each error. When the program ends, the 
NaN results can be used to access the diagnostic data saved at the time the errors 
occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an 
undetected QNaN can invalidate all subsequent results. Such applications should 
therefore periodically check for QNaNs and provide a recovery mechanism to be used 
if a QNaN result is detected. 

4.8.3.7  QNaN Floating-Point Indefinite
For the floating-point data type encodings (single-precision, double-precision, and 
double-extended-precision), one unique encoding (a QNaN) is reserved for repre-
senting the special value QNaN floating-point indefinite. The x87 FPU and the 
SSE/SSE2/SSE3 extensions return these indefinite values as responses to some 
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN 
floating-point indefinite.

4.8.4 Rounding
When performing floating-point operations, the processor produces an infinitely 
precise floating-point result in the destination format (single-precision, double-preci-
sion, or double extended-precision floating-point) whenever possible. However, 
because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infi-
nitely precise result cannot be encoded exactly in the format of the destination 
operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of 
this fraction (the underlined bit) cannot be encoded exactly in the single-precision 
format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and 
c that most closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101
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The processor then sets the result to b or to c according to the selected rounding 
mode. Rounding introduces an error in a result that is less than one unit in the last 
place (the least significant bit position of the floating-point value) to which the result 
is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to 
nearest, round up, round down, and round toward zero. The default rounding mode 
(for the Intel 64 and IA-32 architectures) is round to nearest. This mode provides the 
most accurate and statistically unbiased estimate of the true result and is suitable for 
most applications. 

The round up and round down modes are termed directed rounding and can be 
used to implement interval arithmetic. Interval arithmetic is used to determine upper 
and lower bounds for the true result of a multistep computation, when the interme-
diate results of the computation are subject to rounding. 

The round toward zero mode (sometimes called the “chop” mode) is commonly used 
when performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an 
inexact result, the floating-point precision (inexact) flag (PE) is set (see Section 
4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that 
produce exact results, or operations that produce NaN results.

4.8.4.1  Rounding Control (RC) Fields
In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit 
rounding-control (RC) field (Table 4-8 shows the encoding of this field). The RC field 
is implemented in two different locations: 

• x87 FPU control register (bits 10 and 11)

Table 4-8.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two 
values are equally close, the result is the even value (that is, the 
one with the least-significant bit of zero). Default

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely 
precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise 
result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than 
the infinitely precise result.
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• The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for 
different execution environments within the processor. The RC field in the x87 FPU 
control register controls rounding for computations performed with the x87 FPU 
instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2  Truncation with SSE and SSE2 Conversion Instructions
The following SSE/SSE2 instructions automatically truncate the results of conver-
sions from floating-point values to integers when the result it inexact: CVTTPD2DQ, 
CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation 
means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS
The following section provides an overview of floating-point exceptions and their 
handling in the IA-32 architecture. For information specific to the x87 FPU and to the 
SSE/SSE2/SSE3 extensions, refer to the following sections:

• Section 8.4, “x87 FPU Floating-Point Exception Handling”

• Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and 
detects six classes of exception conditions:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is 
used in this manual to indicate exception conditions. It is merely a short-hand form 
and is not related to assembler mnemonics.

NOTE
All of the exceptions listed above except the denormal-operand 
exception (#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-
computation exceptions (that is, they are detected before any arithmetic operation 
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occurs). The numeric-underflow, numeric-overflow and precision exceptions are 
post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or 
PE) and mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point 
exception conditions are detected, the processor sets the appropriate flag bits, then 
takes one of two possible courses of action, depending on the settings of the corre-
sponding mask bits:

• Mask bit set. Handles the exception automatically, producing a predefined (and 
often times usable) result, while allowing program execution to continue undis-
turbed.

• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reason-
able result for each exception condition and are generally satisfactory for most 
floating-point applications. By masking or unmasking specific floating-point excep-
tions, programmers can delegate responsibility for most exceptions to the processor 
and reserve the most severe exception conditions for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the 
exceptions that have occurred since they were last cleared. A programmer can thus 
mask all exceptions, run a calculation, and then inspect the exception flags to see if 
any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are imple-
mented in two different locations: 

• x87 FPU status word and control word. The flag bits are located at bits 0 through 
5 of the x87 FPU status word and the mask bits are located at bits 0 through 5 of 
the x87 FPU control word (see Figures 8-4 and 8-6).

• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR 
register and the mask bits are located at bits 7 through 12 of the register (see 
Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report 
on and control exceptions for different execution environments within the processor. 
The flag and mask bits in the x87 FPU status and control words control exception 
reporting and masking for computations performed with the x87 FPU instructions; 
the companion bits in the MXCSR register control exception reporting and masking 
for SIMD floating-point computations performed with the SSE/SSE2/SSE3 instruc-
tions.

Note that when exceptions are masked, the processor may detect multiple excep-
tions in a single instruction, because it continues executing the instruction after 
performing its masked response. For example, the processor can detect a denormal-
ized operand, perform its masked response to this exception, and then detect 
numeric underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.
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4.9.1 Floating-Point Exception Conditions
The following sections describe the various conditions that cause a floating-point 
exception to be generated and the masked response of the processor when these 
conditions are detected. The Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for 
each floating-point instruction.

4.9.1.1  Invalid Operation Exception (#I)
The processor reports an invalid operation exception in response to one or more 
invalid arithmetic operands. If the invalid operation exception is masked, the 
processor sets the IE flag and returns an indefinite value or a QNaN. This value over-
writes the destination register specified by the instruction. If the invalid operation 
exception is not masked, the IE flag is set, a software exception handler is invoked, 
and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about 
the result returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded 
in a program. These operations generally indicate a programming error, such as 
dividing ∞by ∞ . See the following sections for information regarding the invalid-
operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3 
instructions:

• x87 FPU; Section 8.5.1, “Invalid Operation Exception”

• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception 
(#I)”

4.9.1.2  Denormal Operand Exception (#D)
The processor reports the denormal-operand exception if an arithmetic instruction 
attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and 
Denormalized Finite Numbers”). When the exception is masked, the processor sets 
the DE flag and proceeds with the instruction. Operating on denormal numbers will 
produce results at least as good as, and often better than, what can be obtained 
when denormal numbers are flushed to zero. Programmers can mask this exception 
so that a computation may proceed, then analyze any loss of accuracy when the final 
result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software 
exception handler is invoked, and the operands remain unaltered. When denormal 
operands have reduced significance due to loss of low-order bits, it may be advisable 
to not operate on them. Precluding denormal operands from computations can be 
accomplished by an exception handler that responds to unmasked denormal-
operand exceptions.
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See the following sections for information regarding the denormal-operand exception 
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:

• x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”

• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception 
(#D)”

4.9.1.3  Divide-By-Zero Exception (#Z)
The processor reports the floating-point divide-by-zero exception whenever an 
instruction attempts to divide a finite non-zero operand by 0. The masked response 
for the divide-by-zero exception is to set the ZE flag and return an infinity signed with 
the exclusive OR of the sign of the operands. If the divide-by-zero exception is not 
masked, the ZE flag is set, a software exception handler is invoked, and the operands 
remain unaltered.

See the following sections for information regarding the divide-by-zero exception 
when detected while executing x87 FPU or SSE/SSE2 instructions:

• x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z)”

• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception 
(#Z)”

4.9.1.4  Numeric Overflow Exception (#O)
The processor reports a floating-point numeric overflow exception whenever the 
rounded result of an instruction exceeds the largest allowable finite value that will fit 
into the destination operand. Table 4-9 shows the threshold range for numeric over-
flow for each of the floating-point formats; overflow occurs when a rounded result 
falls at or outside this threshold range.
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When a numeric-overflow exception occurs and the exception is masked, the 
processor sets the OE flag and returns one of the values shown in Table 4-10, 
according to the current rounding mode. See Section 4.8.4, “Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, 
the OE flag is set, a software exception handler is invoked, and the source and desti-
nation operands either remain unchanged or a biased result is stored in the destina-
tion operand (depending whether the overflow exception was generated during an 
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception 
when detected while executing x87 FPU instructions or while executing 
SSE/SSE2/SSE3 instructions:

• x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O)”

• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception 
(#O)”

4.9.1.5  Numeric Underflow Exception (#U)
The processor detects a floating-point numeric underflow condition whenever the 
result of rounding with unbounded exponent (taking into account precision control 
for x87) is tiny; that is, less than the smallest possible normalized, finite value that 
will fit into the destination operand. Table 4-11 shows the threshold range for 

Table 4-9.  Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10.  Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
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numeric underflow for each of the floating-point formats (assuming normalized 
results); underflow occurs when a rounded result falls strictly within the threshold 
range. The ability to detect and handle underflow is provided to prevent a vary small 
result from propagating through a computation and causing another exception (such 
as overflow during division) to be generated at a later time.

How the processor handles an underflow condition, depends on two related condi-
tions:

• creation of a tiny result

• creation of an inexact result; that is, a result that cannot be represented exactly 
in the destination format

Which of these events causes an underflow exception to be reported and how the 
processor responds to the exception condition depends on whether the underflow 
exception is masked:

• Underflow exception masked — The underflow exception is reported (the UE 
flag is set) only when the result is both tiny and inexact. The processor returns a 
denormalized result to the destination operand, regardless of inexactness.

• Underflow exception not masked — The underflow exception is reported 
when the result is tiny, regardless of inexactness. The processor leaves the 
source and destination operands unaltered or stores a biased result in the 
designating operand (depending whether the underflow exception was generated 
during an SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and 
invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception 
when detected while executing x87 FPU instructions or while executing 
SSE/SSE2/SSE3 instructions:

• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”

• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception 
(#U)”

4.9.1.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. For example, 
the fraction 1/3 cannot be precisely represented in binary floating-point form. This 

Table 4-11.  Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.
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exception occurs frequently and indicates that some (normally acceptable) accuracy 
will be lost due to rounding. The exception is supported for applications that need to 
perform exact arithmetic only. Because the rounded result is generally satisfactory 
for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and 
a numeric overflow or underflow condition has not occurred, the processor sets the 
PE flag and stores the rounded result in the destination operand. The current 
rounding mode determines the method used to round the result. See Section 4.8.4, 
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and 
numeric overflow or underflow has not occurred, the PE flag is set, the rounded result 
is stored in the destination operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of 
the following operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE flag 
or UE flag and the PE flag are set and the result is stored as described for the 
overflow or underflow exceptions; see Section 4.9.1.4, “Numeric Overflow 
Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the 
inexact result exception is unmasked, the processor also invokes a software 
exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the 
destination operand is a register, the OE or UE flag and the PE flag are set, the 
result is stored as described for the overflow or underflow exceptions, and a 
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination 
operand is a memory location (which can happen only for a floating-point store), the 
inexact-result condition is not reported and the C1 flag is cleared.

See the following sections for information regarding the inexact-result exception 
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:

• x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”

• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception 
(#Z)”

4.9.2 Floating-Point Exception Priority
The processor handles exceptions according to a predetermined precedence. When 
an instruction generates two or more exception conditions, the exception precedence 
sometimes results in the higher-priority exception being handled and the lower-
priority exceptions being ignored. For example, dividing an SNaN by zero can poten-
tially signal an invalid-operation exception (due to the SNaN operand) and a divide-
by-zero exception. Here, if both exceptions are masked, the processor handles the 
higher-priority exception only (the invalid-operation exception), returning a QNaN to 
the destination. Alternately, a denormal-operand or inexact-result exception can 
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accompany a numeric underflow or overflow exception with both exceptions being 
handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the 
double extended-precision floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand 
has precedence over lower-priority exceptions. For example, a QNaN divided by 
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero 
exception.

4. Denormal-operand exception. If masked, then instruction execution continues 
and a lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the 
inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before 
a floating-point operation begins. Overflow, underflow, and precision exceptions are 
not detected until a true result has been computed. When an unmasked pre-opera-
tion exception is detected, the destination operand has not yet been updated, and 
appears as if the offending instruction has not been executed. When an unmasked 
post-operation exception is detected, the destination operand may be updated with 
a result, depending on the nature of the exception (except for SSE/SSE2/SSE3 
instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler
After the floating-point exception handler is invoked, the processor handles the 
exception in the same manner that it handles non-floating-point exceptions. The 
floating-point exception handler is normally part of the operating system or execu-
tive software, and it usually invokes a user-registered floating-point exception 
handle. 

A typical action of the exception handler is to store state information in memory. 
Other typical exception handler actions include:

• Examining the stored state information to determine the nature of the error

• Taking actions to correct the condition that caused the error
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• Clearing the exception flags

• Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:

• Increment in software an exception counter for later display or printing

• Print or display diagnostic information (such as the state information)

• Halt further program execution
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. 
Instructions are divided into the following groups:

• General purpose

• x87 FPU

• x87 FPU and SIMD state management

• Intel MMX technology

• SSE extensions

• SSE2 extensions

• SSE3 extensions

• SSSE3 extensions

• System instructions

• IA-32e mode: 64-bit mode instructions

• VMX instructions

Table 5-1 lists the groups and IA-32 processors that support each group. Within 
these groups, most instructions are collected into functional subgroups.

Table 5-1.  Instruction Groups and IA-32 Processors

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium 
Pro, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, 
Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core 
Duo, Intel Core 2 Duo processors 

x87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, 
Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel 
Core 2 Duo processors 

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, 
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors 

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, 
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core 
Duo, Intel Core 2 Duo processors
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The following sections list instructions in each major group and subgroup. Given for 
each instruction is its mnemonic and descriptive names. When two or more 
mnemonics are given (for example, CMOVA/CMOVNBE), they represent different 
mnemonics for the same instruction opcode. Assemblers support redundant 
mnemonics for some instructions to make it easier to read code listings. For instance, 
CMOVA (Conditional move if above) and CMOVNBE (Conditional move if not below or 
equal) represent the same condition. For detailed information about specific instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 3A & 3B.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions preform basic data movement, arithmetic, logic, 
program flow, and string operations that programmers commonly use to write appli-
cation and system software to run on Intel 64 and IA-32 processors. They operate on 
data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address 
information contained in memory, the general-purpose registers, and the segment 
registers (CS, DS, SS, ES, FS, and GS). 

This group of instructions includes the data transfer, binary integer arithmetic, 
decimal arithmetic, logic operations, shift and rotate, bit and byte operations, 
program control, string, flag control, segment register operations, and miscellaneous 
subgroups. The sections that following introduce each subgroup. 

For more detailed information on general purpose-instructions, see Chapter 7, 
“Programming With General-Purpose Instructions.”

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process 
technology), Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors

SSSE3 Extensions Intel Xeon processor 5100 series, Intel Core Solo, Intel Core Duo, Intel 
Core 2 Duo processors

IA-32e mode: 64-bit 
mode instructions

All Intel 64 processors

System Instructions All Intel 64 and IA-32 processors 

VMX Instructions All Intel 64 and IA-32 processors supporting Intel Virtualization 
Technology

Table 5-1.  Instruction Groups and IA-32 Processors (Contd.)

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support
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5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose 
and segment registers. They also perform specific operations such as conditional 
moves, stack access, and data conversion.

MOV Move data between general-purpose registers; move 
data between memory and general-purpose or 
segment registers; move immediates to general-
purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not 
zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not 
below or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move 
if not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not 
above or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move 
if not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not 
less or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move 
if not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not 
greater or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if 
not greater

CMOVC Conditional move if carry

CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity 
even
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CMOVNP/CMOVPO Conditional move if not parity/Conditional move if 
parity odd

XCHG Exchange

BSWAP Byte swap

XADD Exchange and add

CMPXCHG Compare and exchange

CMPXCHG8B Compare and exchange 8 bytes

PUSH Push onto stack

POP Pop off of stack

PUSHA/PUSHAD Push general-purpose registers onto stack

POPA/POPAD Pop general-purpose registers from stack

CWD/CDQ Convert word to doubleword/Convert doubleword to 
quadword

CBW/CWDE Convert byte to word/Convert word to doubleword in 
EAX register

MOVSX Move and sign extend

MOVZX Move and zero extend

5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on 
byte, word, and doubleword integers located in memory and/or the general purpose 
registers.

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply

MUL Unsigned multiply

IDIV Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare
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5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded 
decimal (BCD) data.

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust before division

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on 
byte, word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR

NOT Perform bitwise logical NOT

5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword 
operands.

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left

SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. 
Byte instructions set the value of a byte operand to indicate the status of flags in the 
EFLAGS register.
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BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set 
byte if not carry

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set 
byte if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal 

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow

SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and 
return operations to control program flow.

JMP Jump 

JE/JZ Jump if equal/Jump if zero

JNE/JNZ Jump if not equal/Jump if not zero
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JA/JNBE Jump if above/Jump if not below or equal

JAE/JNB Jump if above or equal/Jump if not below

JB/JNAE Jump if below/Jump if not above or equal

JBE/JNA Jump if below or equal/Jump if not above

JG/JNLE Jump if greater/Jump if not less or equal

JGE/JNL Jump if greater or equal/Jump if not less

JL/JNGE Jump if less/Jump if not greater or equal

JLE/JNG Jump if less or equal/Jump if not greater

JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

JS Jump if sign (negative)

JNS Jump if not sign (non-negative)

JPO/JNP Jump if parity odd/Jump if not parity

JPE/JP Jump if parity even/Jump if parity

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero

LOOP Loop with ECX counter

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not 
equal

CALL Call procedure

RET Return

IRET Return from interrupt

INT Software interrupt

INTO Interrupt on overflow

BOUND Detect value out of range

ENTER High-level procedure entry

LEAVE High-level procedure exit
Vol. 1 5-7



INSTRUCTION SET SUMMARY
5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and 
from memory.

MOVS/MOVSB Move string/Move byte string

MOVS/MOVSW Move string/Move word string

MOVS/MOVSD Move string/Move doubleword string

CMPS/CMPSB Compare string/Compare byte string

CMPS/CMPSW Compare string/Compare word string

CMPS/CMPSD Compare string/Compare doubleword string

SCAS/SCASB Scan string/Scan byte string

SCAS/SCASW Scan string/Scan word string

SCAS/SCASD Scan string/Scan doubleword string

LODS/LODSB Load string/Load byte string

LODS/LODSW Load string/Load word string

LODS/LODSD Load string/Load doubleword string

STOS/STOSB Store string/Store byte string

STOS/STOSW Store string/Store word string

STOS/STOSD Store string/Store doubleword string

REP Repeat while ECX not zero

REPE/REPZ Repeat while equal/Repeat while zero

REPNE/REPNZ Repeat while not equal/Repeat while not zero

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or 
memory.

IN Read from a port

OUT Write to a port

INS/INSB Input string from port/Input byte string from port

INS/INSW Input string from port/Input word string from port

INS/INSD Input string from port/Input doubleword string from port

OUTS/OUTSB Output string to port/Output byte string to port

OUTS/OUTSW Output string to port/Output word string to port

OUTS/OUTSD Output string to port/Output doubleword string to port
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5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-
structured languages.

ENTER High-level procedure entry

LEAVE High-level procedure exit

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHF/PUSHFD Push EFLAGS onto stack

POPF/POPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be 
loaded into the segment registers.

LDS Load far pointer using DS

LES Load far pointer using ES

LFS Load far pointer using FS

LGS Load far pointer using GS

LSS Load far pointer using SS

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective 
address, executing a “no-operation,” and retrieving processor identification informa-
tion.

LEA Load effective address

NOP No operation
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UD2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor Identification

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions 
operate on floating-point, integer, and binary-coded decimal (BCD) operands. For 
more detail on x87 FPU instructions, see Chapter 8, “Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load 
constants, and FPU control instructions. The sections that follow introduce each 
subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between 
memory and the x87 FPU registers. They also perform conditional move operations 
on floating-point operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop

FILD Load integer

FIST Store integer

FISTP1 Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal

FCMOVNE Floating-point conditional move if not equal

FCMOVB Floating-point conditional move if below

FCMOVBE Floating-point conditional move if below or equal

FCMOVNB Floating-point conditional move if not below

FCMOVNBE Floating-point conditional move if not below or equal

FCMOVU Floating-point conditional move if unordered

FCMOVNU Floating-point conditional move if not unordered

1. SSE3 provides an instruction FISTTP for integer conversion.
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5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-
point and integer operands.

FADD Add floating-point

FADDP Add floating-point and pop

FIADD Add integer

FSUB Subtract floating-point

FSUBP Subtract floating-point and pop

FISUB Subtract integer

FSUBR Subtract floating-point reverse

FSUBRP Subtract floating-point reverse and pop

FISUBR Subtract integer reverse

FMUL Multiply floating-point

FMULP Multiply floating-point and pop

FIMUL Multiply integer

FDIV Divide floating-point

FDIVP Divide floating-point and pop

FIDIV Divide integer

FDIVR Divide floating-point reverse

FDIVRP Divide floating-point reverse and pop

FIDIVR Divide integer reverse

FPREM Partial remainder

FPREM1 IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.

FCOM Compare floating-point

FCOMP Compare floating-point and pop

FCOMPP Compare floating-point and pop twice

FUCOM Unordered compare floating-point
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FUCOMP Unordered compare floating-point and pop

FUCOMPP Unordered compare floating-point and pop twice

FICOM Compare integer

FICOMP Compare integer and pop

FCOMI Compare floating-point and set EFLAGS

FUCOMI Unordered compare floating-point and set EFLAGS

FCOMIP Compare floating-point, set EFLAGS, and pop

FUCOMIP Unordered compare floating-point, set EFLAGS, and pop

FTST Test floating-point (compare with 0.0)

FXAM Examine floating-point

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic opera-
tions on floating-point operands.

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x − 1
FYL2X y∗log2x

FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π,  into the x87 
floating-point registers.

FLD1 Load +1.0

FLDZ Load +0.0

FLDPI Load π
FLDL2E Load log2e

FLDLN2 Load loge2

FLDL2T Load log210

FLDLG2 Load log102
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5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and 
restore the x87 FPU state.

FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free floating-point register
FINIT Initialize FPU after checking error conditions
FNINIT Initialize FPU without checking error conditions
FCLEX Clear floating-point exception flags after checking for error 

conditions
FNCLEX Clear floating-point exception flags without checking for error 

conditions
FSTCW Store FPU control word after checking error conditions
FNSTCW Store FPU control word without checking error conditions
FLDCW Load FPU control word
FSTENV Store FPU environment after checking error conditions
FNSTENV Store FPU environment without checking error conditions
FLDENV Load FPU environment
FSAVE Save FPU state after checking error conditions
FNSAVE Save FPU state without checking error conditions
FRSTOR Restore FPU state
FSTSW Store FPU status word after checking error conditions
FNSTSW Store FPU status word without checking error conditions
WAIT/FWAIT Wait for FPU
FNOP FPU no operation

5.3 X87 FPU AND SIMD STATE MANAGEMENT 
INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with 
the Pentium II processor family:

FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to 
perform a fast save and restore, respectively, of the x87 FPU and MMX state. With the 
introduction of SSE extensions in the Pentium III processor family, these instructions 
were expanded to also save and restore the state of the XMM and MXCSR registers. 
Intel 64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.
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5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 
processors to perform single-instruction multiple-data (SIMD) operations. These 
extensions include the MMX technology, SSE extensions, SSE2 extensions, and SSE3 
extensions. For a discussion that puts SIMD instructions in their historical context, 
see Section 2.2.4, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer 
operands contained in memory, in MMX registers, and/or in general-purpose regis-
ters. For more detail on these instructions, see Chapter 9, “Programming with Intel® 
MMX™ Technology.” 

MMX instructions can only be executed on Intel 64 and IA-32 processors that support 
the MMX technology. Support for these instructions can be detected with the CPUID 
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction 
Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, 
packed arithmetic, comparison, logical, shift and rotate, and state management 
instructions. The sections that follow introduce each subgroup.

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between 
MMX registers and between MMX registers and memory.

MOVD Move doubleword
MOVQ Move quadword

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords

PACKSSWB Pack words into bytes with signed saturation

PACKSSDW Pack doublewords into words with signed saturation

PACKUSWB Pack words into bytes with unsigned saturation.

PUNPCKHBW Unpack high-order bytes

PUNPCKHWD Unpack high-order words

PUNPCKHDQ Unpack high-order doublewords

PUNPCKLBW Unpack low-order bytes

PUNPCKLWD Unpack low-order words

PUNPCKLDQ Unpack low-order doublewords
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5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed 
byte, word, and doubleword integers.

PADDB Add packed byte integers
PADDW Add packed word integers
PADDD Add packed doubleword integers
PADDSB Add packed signed byte integers with signed saturation
PADDSW Add packed signed word integers with signed saturation
PADDUSB Add packed unsigned byte integers with unsigned saturation
PADDUSW Add packed unsigned word integers with unsigned saturation
PSUBB Subtract packed byte integers
PSUBW Subtract packed word integers
PSUBD Subtract packed doubleword integers
PSUBSB Subtract packed signed byte integers with signed saturation
PSUBSW Subtract packed signed word integers with signed saturation
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation
PSUBUSW Subtract packed unsigned word integers with unsigned 

saturation
PMULHW Multiply packed signed word integers and store high result
PMULLW Multiply packed signed word integers and store low result
PMADDWD Multiply and add packed word integers

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal
PCMPEQW Compare packed words for equal
PCMPEQD Compare packed doublewords for equal
PCMPGTB Compare packed signed byte integers for greater than
PCMPGTW Compare packed signed word integers for greater than
PCMPGTD Compare packed signed doubleword integers for greater than

5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quad-
word operands.

PAND Bitwise logical AND
PANDN Bitwise logical AND NOT
POR Bitwise logical OR
PXOR Bitwise logical exclusive OR
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5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or double-
words, or quadwords in 64-bit operands.

PSLLW Shift packed words left logical

PSLLD Shift packed doublewords left logical

PSLLQ Shift packed quadword left logical

PSRLW Shift packed words right logical

PSRLD Shift packed doublewords right logical

PSRLQ Shift packed quadword right logical

PSRAW Shift packed words right arithmetic

PSRAD Shift packed doublewords right arithmetic

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.

EMMS Empty MMX state

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced 
with the MMX technology. For more detail on these instructions, see Chapter 10, 
“Programming with Streaming SIMD Extensions (SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support 
SSE extensions. Support for these instructions can be detected with the CPUID 
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction 
Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has 
subordinate subgroups of its own):

• SIMD single-precision floating-point instructions that operate on the XMM 
registers

• MXSCR state management instructions

• 64-bit SIMD integer instructions that operate on the MMX registers

• Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.
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5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point 
values located in XMM registers and/or memory. This subgroup is further divided into 
the following subordinate subgroups: data transfer, packed arithmetic, comparison, 
logical, shuffle and unpack, and conversion instructions.

5.5.1.1  SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point 
operands between XMM registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values 
between XMM registers or between and XMM register and 
memory

MOVUPS Move four unaligned packed single-precision floating-point 
values between XMM registers or between and XMM register and 
memory

MOVHPS Move two packed single-precision floating-point values to an 
from the high quadword of an XMM register and memory

MOVHLPS Move two packed single-precision floating-point values from the 
high quadword of an XMM register to the low quadword of 
another XMM register

MOVLPS Move two packed single-precision floating-point values to an 
from the low quadword of an XMM register and memory

MOVLHPS Move two packed single-precision floating-point values from the 
low quadword of an XMM register to the high quadword of 
another XMM register

MOVMSKPS Extract sign mask from four packed single-precision floating-
point values

MOVSS Move scalar single-precision floating-point value between XMM 
registers or between an XMM register and memory

5.5.1.2  SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations 
on packed and scalar single-precision floating-point operands.

ADDPS Add packed single-precision floating-point values

ADDSS Add scalar single-precision floating-point values

SUBPS Subtract packed single-precision floating-point values

SUBSS Subtract scalar single-precision floating-point values

MULPS Multiply packed single-precision floating-point values

MULSS Multiply scalar single-precision floating-point values

DIVPS Divide packed single-precision floating-point values
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DIVSS Divide scalar single-precision floating-point values

RCPPS Compute reciprocals of packed single-precision floating-point 
values

RCPSS Compute reciprocal of scalar single-precision floating-point 
values

SQRTPS Compute square roots of packed single-precision floating-point 
values

SQRTSS Compute square root of scalar single-precision floating-point 
values

RSQRTPS Compute reciprocals of square roots of packed single-precision 
floating-point values

RSQRTSS Compute reciprocal of square root of scalar single-precision 
floating-point values

MAXPS Return maximum packed single-precision floating-point values

MAXSS Return maximum scalar single-precision floating-point values

MINPS Return minimum packed single-precision floating-point values

MINSS Return minimum scalar single-precision floating-point values

5.5.1.3  SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point 
operands.

CMPPS Compare packed single-precision floating-point values

CMPSS Compare scalar single-precision floating-point values

COMISS Perform ordered comparison of scalar single-precision floating-
point values and set flags in EFLAGS register

UCOMISS Perform unordered comparison of scalar single-precision 
floating-point values and set flags in EFLAGS register

5.5.1.4  SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on 
packed single-precision floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-
point values

ANDNPS Perform bitwise logical AND NOT of packed single-precision 
floating-point values

ORPS Perform bitwise logical OR of packed single-precision floating-
point values

XORPS Perform bitwise logical XOR of packed single-precision floating-
point values
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5.5.1.5  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-
point values in packed single-precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point 
operands

UNPCKHPS Unpacks and interleaves the two high-order values from two 
single-precision floating-point operands

UNPCKLPS Unpacks and interleaves the two low-order values from two 
single-precision floating-point operands

5.5.1.6  SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into 
packed and scalar single-precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision 
floating-point values

CVTSI2SS Convert doubleword integer to scalar single-precision floating-
point value

CVTPS2PI Convert packed single-precision floating-point values to packed 
doubleword integers

CVTTPS2PI Convert with truncation packed single-precision floating-point 
values to packed doubleword integers

CVTSS2SI Convert a scalar single-precision floating-point value to a 
doubleword integer

CVTTSS2SI Convert with truncation a scalar single-precision floating-point 
value to a scalar doubleword integer

5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the 
MXCSR control and status register.

LDMXCSR Load MXCSR register

STMXCSR Save MXCSR register state

5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed 
bytes, words, or doublewords contained in MMX registers. They represent enhance-
ments to the MMX instruction set described in Section 5.4, “MMX™ Instructions.”

PAVGB Compute average of packed unsigned byte integers

PAVGW Compute average of packed unsigned word integers
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PEXTRW Extract word

PINSRW Insert word

PMAXUB Maximum of packed unsigned byte integers

PMAXSW Maximum of packed signed word integers

PMINUB Minimum of packed unsigned byte integers

PMINSW Minimum of packed signed word integers

PMOVMSKB Move byte mask

PMULHUW Multiply packed unsigned integers and store high result

PSADBW Compute sum of absolute differences

PSHUFW Shuffle packed integer word in MMX register

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering 
Instructions

The cacheability control instructions provide control over the caching of non-
temporal data when storing data from the MMX and XMM registers to memory. The 
PREFETCHh allows data to be prefetched to a selected cache level. The SFENCE 
instruction controls instruction ordering on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into 
memory

MOVNTQ Non-temporal store of quadword from an MMX register into 
memory

MOVNTPS Non-temporal store of four packed single-precision floating-
point values from an XMM register into memory

PREFETCHh Load 32 or more of bytes from memory to a selected level of the 
processor’s cache hierarchy

SFENCE Serializes store operations

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced 
with MMX technology and the SSE extensions. SSE2 instructions operate on packed 
double-precision floating-point operands and on packed byte, word, doubleword, and 
quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that 
support the SSE2 extensions. Support for these instructions can be detected with the 
CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.
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These instructions are divided into four subgroups (note that the first subgroup is 
further divided into subordinate subgroups):

• Packed and scalar double-precision floating-point instructions

• Packed single-precision floating-point conversion instructions

• 128-bit SIMD integer instructions

• Cacheability-control and instruction ordering instructions

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point 
Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into 
the following subordinate subgroups: data movement, arithmetic, comparison, 
conversion, logical, and shuffle operations on double-precision floating-point oper-
ands. These are introduced in the sections that follow.

5.6.1.1  SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data 
between XMM registers and between XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values 
between XMM registers or between and XMM register and 
memory

MOVUPD Move two unaligned packed double-precision floating-point 
values between XMM registers or between and XMM register and 
memory

MOVHPD Move high packed double-precision floating-point value to an 
from the high quadword of an XMM register and memory

MOVLPD Move low packed single-precision floating-point value to an from 
the low quadword of an XMM register and memory

MOVMSKPD Extract sign mask from two packed double-precision floating-
point values

MOVSD Move scalar double-precision floating-point value between XMM 
registers or between an XMM register and memory

5.6.1.2  SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square 
root, and maximum/minimum operations on packed and scalar double-precision 
floating-point operands.

ADDPD Add packed double-precision floating-point values
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ADDSD Add scalar double precision floating-point values

SUBPD Subtract scalar double-precision floating-point values

SUBSD Subtract scalar double-precision floating-point values

MULPD Multiply packed double-precision floating-point values

MULSD Multiply scalar double-precision floating-point values

DIVPD Divide packed double-precision floating-point values

DIVSD Divide scalar double-precision floating-point values

SQRTPD Compute packed square roots of packed double-precision 
floating-point values

SQRTSD Compute scalar square root of scalar double-precision floating-
point values

MAXPD Return maximum packed double-precision floating-point values

MAXSD Return maximum scalar double-precision floating-point values

MINPD Return minimum packed double-precision floating-point values

MINSD Return minimum scalar double-precision floating-point values

5.6.1.3  SSE2 Logical Instructions
SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed 
double-precision floating-point values.

ANDPD Perform bitwise logical AND of packed double-precision floating-
point values

ANDNPD Perform bitwise logical AND NOT of packed double-precision 
floating-point values

ORPD Perform bitwise logical OR of packed double-precision floating-
point values

XORPD Perform bitwise logical XOR of packed double-precision floating-
point values

5.6.1.4  SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination 
operand or to the EFLAGS register.

CMPPD Compare packed double-precision floating-point values

CMPSD Compare scalar double-precision floating-point values

COMISD Perform ordered comparison of scalar double-precision floating-
point values and set flags in EFLAGS register

UCOMISD Perform unordered comparison of scalar double-precision 
floating-point values and set flags in EFLAGS register.
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5.6.1.5  SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-
point values in packed double-precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point 
operands

UNPCKHPD Unpacks and interleaves the high values from two packed 
double-precision floating-point operands

UNPCKLPD Unpacks and interleaves the low values from two packed 
double-precision floating-point operands

5.6.1.6  SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into 
packed and scalar double-precision floating-point values and vice versa. They also 
convert between packed and scalar single-precision and double-precision floating-
point values.

CVTPD2PI Convert packed double-precision floating-point values to packed 
doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point 
values to packed doubleword integers

CVTPI2PD Convert packed doubleword integers to packed double-precision 
floating-point values

CVTPD2DQ Convert packed double-precision floating-point values to packed 
doubleword integers

CVTTPD2DQ Convert with truncation packed double-precision floating-point 
values to packed doubleword integers

CVTDQ2PD Convert packed doubleword integers to packed double-precision 
floating-point values

CVTPS2PD Convert packed single-precision floating-point values to packed 
double-precision floating-point values

CVTPD2PS Convert packed double-precision floating-point values to packed 
single-precision floating-point values

CVTSS2SD Convert scalar single-precision floating-point values to scalar 
double-precision floating-point values

CVTSD2SS Convert scalar double-precision floating-point values to scalar 
single-precision floating-point values

CVTSD2SI Convert scalar double-precision floating-point values to a 
doubleword integer

CVTTSD2SI Convert with truncation scalar double-precision floating-point 
values to scalar doubleword integers

CVTSI2SD Convert doubleword integer to scalar double-precision floating-
point value
Vol. 1 5-23



INSTRUCTION SET SUMMARY
5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion opera-
tions on single-precision floating-point and integer operands. These instructions 
represent enhancements to the SSE single-precision floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single-precision 
floating-point values

CVTPS2DQ Convert packed single-precision floating-point values to packed 
doubleword integers

CVTTPS2DQ Convert with truncation packed single-precision floating-point 
values to packed doubleword integers

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words, 
doublewords, and quadwords contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword

MOVQ2DQ Move quadword integer from MMX to XMM registers

MOVDQ2Q Move quadword integer from XMM to MMX registers

PMULUDQ Multiply packed unsigned doubleword integers

PADDQ Add packed quadword integers

PSUBQ Subtract packed quadword integers

PSHUFLW Shuffle packed low words

PSHUFHW Shuffle packed high words

PSHUFD Shuffle packed doublewords

PSLLDQ Shift double quadword left logical

PSRLDQ Shift double quadword right logical

PUNPCKHQDQ Unpack high quadwords

PUNPCKLQDQ Unpack low quadwords

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of 
non-temporal data when storing data from XMM registers to memory. LFENCE and 
MFENCE provide additional control of instruction ordering on store operations.

CLFLUSH Flushes and invalidates a memory operand and its associated 
cache line from all levels of the processor’s cache hierarchy

LFENCE Serializes load operations

MFENCE Serializes load and store operations
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PAUSE Improves the performance of “spin-wait loops”

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into 
memory

MOVNTPD Non-temporal store of two packed double-precision floating-
point values from an XMM register into memory

MOVNTDQ Non-temporal store of double quadword from an XMM register 
into memory

MOVNTI Non-temporal store of a doubleword from a general-purpose 
register into memory

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming 
SIMD Extensions technology, Streaming SIMD Extensions 2 technology, and x87-FP 
math capabilities. These instructions can be grouped into the following categories:

• One x87FPU instruction used in integer conversion

• One SIMD integer instruction that addresses unaligned data loads

• Two SIMD floating-point packed ADD/SUB instructions

• Four SIMD floating-point horizontal ADD/SUB instructions

• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions

• Two thread synchronization instructions

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that 
support SSE3 extensions. Support for these instructions can be detected with the 
CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespec-

tive of the rounding mode specified in the floating-point control 
word (FCW)

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line 

splits
Vol. 1 5-25



INSTRUCTION SET SUMMARY
5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth 

pairs of 32-bit data elements within the operands; single-preci-
sion subtraction on the first and third pairs

ADDSUBPD Performs double-precision addition on the second pair of quad-
words, and double-precision subtraction on the first pair

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data 

elements. The first data element of the result is obtained by 
adding the first and second elements of the first operand; the 
second element by adding the third and fourth elements of the 
first operand; the third by adding the first and second elements 
of the second operand; and the fourth by adding the third and 
fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by 
subtracting the second element of the first operand from the 
first element of the first operand; the second element by 
subtracting the fourth element of the first operand from the third 
element of the first operand; the third by subtracting the second 
element of the second operand from the first element of the 
second operand; and the fourth by subtracting the fourth 
element of the second operand from the third element of the 
second operand.

HADDPD Performs a double-precision addition on contiguous data 
elements. The first data element of the result is obtained by 
adding the first and second elements of the first operand; the 
second element by adding the first and second elements of the 
second operand.

HSUBPD Performs a double-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by 
subtracting the second element of the first operand from the 
first element of the first operand; the second element by 
subtracting the second element of the second operand from the 
first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE 
Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit 
data elements
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MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data 
elements

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and 
returns the same 64 bits in both the lower and upper halves of 
the 128-bit result register; duplicates the 64 bits from the 
source

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores 

MWAIT Enables a logical processor to enter into an optimized state while 
waiting for a write-back store to the address range set up by the 
MONITOR instruction

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 
(SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate compu-
tations on packed integers. These include:

• Twelve instructions that perform horizontal addition or subtraction operations.

• Six instructions that evaluate absolute values.

• Two instructions that perform multiply and add operations and speed up the 
evaluation of dot products.

• Two instructions that accelerate packed-integer multiply operations and produce 
integer values with scaling.

• Two instructions that perform a byte-wise, in-place shuffle according to the 
second shuffle control operand.

• Six instructions that negate packed integers in the destination operand if the 
signs of the corresponding element in the source operand is less than zero.

• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that 
support SSSE3 extensions. Support for these instructions can be detected with the 
CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.
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5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the 

source and destination operands and packs the signed 16-bit 
results to the destination operand.

PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the 
source and destination operands and packs the signed, satu-
rated 16-bit results to the destination operand.

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the 
source and destination operands and packs the signed 32-bit 
results to the destination operand.

PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit 
signed integers by subtracting the most significant word from 
the least significant word of each pair in the source and destina-
tion operands. The signed 16-bit results are packed and written 
to the destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit 
signed integers by subtracting the most significant word from 
the least significant word of each pair in the source and destina-
tion operands. The signed, saturated 16-bit results are packed 
and written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit 
signed integers by subtracting the most significant doubleword 
from the least significant double word of each pair in the source 
and destination operands. The signed 32-bit results are packed 
and written to the destination operand.

5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.

PABSW Computes the absolute value of each signed 16-bit data 
element.

PABSD Computes the absolute value of each signed 32-bit data 
element. 

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding 

signed byte value to produce an intermediate, 16-bit signed 
integer. Each adjacent pair of 16-bit signed values are added 
horizontally. The signed, saturated 16-bit results are packed to 
the destination operand.
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5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destina-

tion operand with the corresponding signed 16-bit integer of the 
source operand, producing intermediate, signed 32-bit integers. 
Each intermediate 32-bit integer is truncated to the 18 most 
significant bits. Rounding is always performed by adding 1 to the 
least significant bit of the 18-bit intermediate result. The final 
result is obtained by selecting the 16 bits immediately to the 
right of the most significant bit of each 18-bit intermediate 
result and packed to the destination operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control 

mask. The least significant three or four bits of each shuffle 
control byte of the control mask form the shuffle index. The 
shuffle mask is unaffected. If the most significant bit (bit 7) of a 
shuffle control byte is set, the constant zero is written in the 
result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand 

if the sign of the corresponding data element in the source 
operand is less than zero.

5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand 

forming an intermediate value of twice the width of an operand. 
The result is extracted from the intermediate value into the 
destination operand by selecting the 128 bit or 64 bit value that 
are right-aligned to the byte offset specified by the immediate 
value.

5.9 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor 
that are provided to support for operating systems and executives.

LGDT Load global descriptor table (GDT) register

SGDT Store global descriptor table (GDT) register

LLDT Load local descriptor table (LDT) register
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SLDT Store local descriptor table (LDT) register

LTR Load task register

STR Store task register

LIDT Load interrupt descriptor table (IDT) register

SIDT Store interrupt descriptor table (IDT) register

MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word

CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, no writeback

WBINVD Invalidate cache, with writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SMM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter

SYSENTER Fast System Call, transfers to a flat protected mode kernel at 
CPL = 0

SYSEXIT Fast System Call, transfers to a flat protected mode kernel at 
CPL = 3

5.10 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of 
IA-32e mode.

CDQE Convert doubleword to quadword

CMPSQ Compare string operands

CMPXCHG16B Compare RDX:RAX with m128

LODSQ Load qword at address (R)SI into RAX
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MOVSQ Move qword from address (R)SI to (R)DI

MOVZX (64-bits) Move doubleword to quadword, zero-extension

STOSQ Store RAX at address RDI

SWAPGS Exchanges current GS base register value with value in MSR 
address C0000102H

SYSCALL Fast call to privilege level 0 system procedures

SYSRET Return from fast system call

5.11 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the 
referenced VMCS active and current.

VMPTRST Takes a single 64-bit destination operand that is in memory. 
Current-VMCS pointer is stored into the destination operand.

VMCLEAR Takes a single 64-bit operand in memory. The instruction sets 
the launch state of the VMCS referenced by the operand to 
“clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the refer-
enced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is 
given in a register operand) and stores it into a destination 
operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is 
given in a register operand) from a source operand.

The behavior of the VMX management instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for 
service. A VM exit occurs, transferring control to the VMM.

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry 
occurs, transferring control to the VM.

VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry 
occurs, transferring control to the VM.

VMXOFF Causes the processor to leave VMX operation.

VMXON Takes a single 64-bit source operand in memory. It causes a 
logical processor to enter VMX root operation and to use the 
memory referenced by the operand to support VMX operation.
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CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for 
executing calls to procedures or subroutines. It also describes how interrupts and 
exceptions are handled from the perspective of an application programmer.

6.1 PROCEDURE CALL TYPES
The processor supports procedure calls in the following two different ways:

• CALL and RET instructions.

• ENTER and LEAVE instructions, in conjunction with the CALL and RET 
instructions.

Both of these procedure call mechanisms use the procedure stack, commonly 
referred to simply as “the stack,” to save the state of the calling procedure, pass 
parameters to the called procedure, and store local variables for the currently 
executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those 
used by the CALL and RET instructions.

6.2 STACKS
The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained 
in a segment and identified by the segment selector in the SS register. When using 
the flat memory model, the stack can be located anywhere in the linear address 
space for the program. A stack can be up to 4 GBytes long, the maximum size of a 
segment.

Items are placed on the stack using the PUSH instruction and removed from the 
stack using the POP instruction. When an item is pushed onto the stack, the 
processor decrements the ESP register, then writes the item at the new top of stack. 
When an item is popped off the stack, the processor reads the item from the top of 
stack, then increments the ESP register. In this manner, the stack grows down in 
memory (towards lesser addresses) when items are pushed on the stack and shrinks 
up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in 
multitasking systems, each task can be given its own stack. The number of stacks in 
a system is limited by the maximum number of segments and the available physical 
memory. 
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When a system sets up many stacks, only one stack—the current stack—is avail-
able at a time. The current stack is the one contained in the segment referenced by 
the SS register.

The processor references the SS register automatically for all stack operations. For 
example, when the ESP register is used as a memory address, it automatically points 
to an address in the current stack. Also, the CALL, RET, PUSH, POP, ENTER, and 
LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack
To set a stack and establish it as the current stack, the program or operating 
system/executive must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a 
MOV, POP, or LSS instruction.

Figure 6-1.  Stack Structure
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3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or 
LSS instruction. The LSS instruction can be used to load the SS and ESP registers 
in one operation.

See “Segment Descriptors” in of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, for information on how to set up a segment 
descriptor and segment limits for a stack segment.

6.2.2 Stack Alignment
The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit 
(double-word) boundaries, depending on the width of the stack segment. The D flag 
in the segment descriptor for the current code segment sets the stack-segment width 
(see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). 
The PUSH and POP instructions use the D flag to determine how much to decrement 
or increment the stack pointer on a push or pop operation, respectively. When the 
stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit 
increments; when the width is 32 bits, the stack pointer is incremented or decre-
mented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide stack can 
result in stack misaligned (that is, the stack pointer is not aligned on a doubleword 
boundary). One exception to this rule is when the contents of a segment register (a 
16-bit segment selector) are pushed onto a 32-bit wide stack. Here, the processor 
automatically aligns the stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the 
programs, tasks, and system procedures running on the processor to maintain 
proper alignment of stack pointers. Misaligning a stack pointer can cause serious 
performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses
Instructions that use the stack implicitly (such as the PUSH and POP instructions) 
have two address-size attributes each of either 16 or 32 bits. This is because they 
always have the implicit address of the top of the stack, and they may also have an 
explicit memory address (for example, PUSH Array1[EBX]). The attribute of the 
explicit address is determined by the D flag of the current code segment and the 
presence or absence of the 67H address-size prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is 
used for the stack access. Stack operations with an address-size attribute of 16 use 
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH; 
stack operations with an address-size attribute of 32 bits use the 32-bit ESP register 
and can use a maximum address of FFFFFFFFH. The default address-size attribute for 
data segments used as stacks is controlled by the B flag of the segment’s descriptor. 
When this flag is clear, the default address-size attribute is 16; when the flag is set, 
the address-size attribute is 32.
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6.2.4 Procedure Linking Information
The processor provides two pointers for linking of procedures: the stack-frame base 
pointer and the return instruction pointer. When used in conjunction with a standard 
software procedure-call technique, these pointers permit reliable and coherent 
linking of procedures.

6.2.4.1  Stack-Frame Base Pointer
The stack is typically divided into frames. Each stack frame can then contain local 
variables, parameters to be passed to another procedure, and procedure linking 
information. The stack-frame base pointer (contained in the EBP register) identifies a 
fixed reference point within the stack frame for the called procedure. To use the 
stack-frame base pointer, the called procedure typically copies the contents of the 
ESP register into the EBP register prior to pushing any local variables on the stack. 
The stack-frame base pointer then permits easy access to data structures passed on 
the stack, to the return instruction pointer, and to local variables added to the stack 
by the called procedure.

Like the ESP register, the EBP register automatically points to an address in the 
current stack segment (that is, the segment specified by the current contents of the 
SS register). 

6.2.4.2  Return Instruction Pointer
Prior to branching to the first instruction of the called procedure, the CALL instruction 
pushes the address in the EIP register onto the current stack. This address is then 
called the return-instruction pointer and it points to the instruction where execution 
of the calling procedure should resume following a return from the called procedure. 
Upon returning from a called procedure, the RET instruction pops the return-instruc-
tion pointer from the stack back into the EIP register. Execution of the calling proce-
dure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It 
is thus up to the programmer to insure that stack pointer is pointing to the return-
instruction pointer on the stack, prior to issuing a RET instruction. A common way to 
reset the stack pointer to the point to the return-instruction pointer is to move the 
contents of the EBP register into the ESP register. If the EBP register is loaded with 
the stack pointer immediately following a procedure call, it should point to the return 
instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the 
calling procedure. Prior to executing the RET instruction, the return instruction 
pointer can be manipulated in software to point to any address in the current code 
segment (near return) or another code segment (far return). Performing such an 
operation, however, should be undertaken very cautiously, using only well defined 
code entry points.
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6.2.5 Stack Behavior in 64-Bit Mode
In 64-bit mode, address calculations that reference SS segments are treated as if the 
segment base is zero. Fields (base, limit, and attribute) in segment descriptor regis-
ters are ignored. SS DPL is modified such that it is always equal to CPL. This will be 
true even if it is the only field in the SS descriptor that is modified. 

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, 
and RBP respectively. Some forms of segment load instructions are invalid (for 
example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When 
the contents of a segment register is pushed onto 64-bit stack, the pointer is auto-
matically aligned to 64 bits (as with a stack that has a 32-bit width).

6.3 CALLING PROCEDURES USING CALL AND RET
The CALL instruction allows control transfers to procedures within the current code 
segment (near call) and in a different code segment (far call). Near calls usually 
provide access to local procedures within the currently running program or task. Far 
calls are usually used to access operating system procedures or procedures in a 
different task. See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, 
A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far 
versions of the CALL instruction. In addition, the RET instruction allows a program to 
increment the stack pointer on a return to release parameters from the stack. The 
number of bytes released from the stack is determined by an optional argument (n) 
to the RET instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction 
Set Reference, N-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation
When executing a near call, the processor does the following (see Figure 6-2):

1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register.

3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack.

3. Resumes execution of the calling procedure.
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6.3.2 Far CALL and RET Operation
When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes the current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in 
the CS register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being 
returned to) into the CS register.

3. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack.

4. Resumes execution of the calling procedure.
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6.3.3 Parameter Passing
Parameters can be passed between procedures in any of three ways: through 
general-purpose registers, in an argument list, or on the stack.

6.3.3.1  Passing Parameters Through the General-Purpose Registers
The processor does not save the state of the general-purpose registers on procedure 
calls. A calling procedure can thus pass up to six parameters to the called procedure 
by copying the parameters into any of these registers (except the ESP and EBP regis-
ters) prior to executing the CALL instruction. The called procedure can likewise pass 
parameters back to the calling procedure through general-purpose registers.

6.3.3.2  Passing Parameters on the Stack
To pass a large number of parameters to the called procedure, the parameters can be 
placed on the stack, in the stack frame for the calling procedure. Here, it is useful to 

Figure 6-2.  Stack on Near and Far Calls
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use the stack-frame base pointer (in the EBP register) to make a frame boundary for 
easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the 
calling procedure.

6.3.3.3  Passing Parameters in an Argument List
An alternate method of passing a larger number of parameters (or a data structure) 
to the called procedure is to place the parameters in an argument list in one of the 
data segments in memory. A pointer to the argument list can then be passed to the 
called procedure through a general-purpose register or the stack. Parameters can 
also be passed back to the calling procedure in this same manner.

6.3.4 Saving Procedure State Information
The processor does not save the contents of the general-purpose registers, segment 
registers, or the EFLAGS register on a procedure call. A calling procedure should 
explicitly save the values in any of the general-purpose registers that it will need 
when it resumes execution after a return. These values can be saved on the stack or 
in memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the 
general-purpose registers. PUSHA pushes the values in all the general-purpose 
registers on the stack in the following order: EAX, ECX, EDX, EBX, ESP (the value 
prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction 
pops all the register values saved with a PUSHA instruction (except the ESP value) 
from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it 
should restore them to their former values before executing a return to the calling 
procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save 
and restore all or part of the register using the PUSHF/PUSHFD and POPF/POPFD 
instructions. The PUSHF instruction pushes the lower word of the EFLAGS register on 
the stack, while the PUSHFD instruction pushes the entire register. The POPF instruc-
tion pops a word from the stack into the lower word of the EFLAGS register, while the 
POPFD instruction pops a double word from the stack into the register.

6.3.5 Calls to Other Privilege Levels
The IA-32 architecture’s protection mechanism recognizes four privilege levels, 
numbered from 0 to 3, where a greater number mean less privilege. The reason to 
use privilege levels is to improve the reliability of operating systems. For example, 
Figure 6-3 shows how privilege levels can be interpreted as rings of protection. 
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In this example, the highest privilege level 0 (at the center of the diagram) is used for 
segments that contain the most critical code modules in the system, usually the 
kernel of an operating system. The outer rings (with progressively lower privileges) 
are used for segments that contain code modules for less critical software. 

Code modules in lower privilege segments can only access modules operating at 
higher privilege segments by means of a tightly controlled and protected interface 
called a gate. Attempts to access higher privilege segments without going through a 
protection gate and without having sufficient access rights causes a general-protec-
tion exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call 
to a procedure that is in a more privileged protection level than the calling procedure 
is handled in a similar manner as a far call (see Section 6.3.2, “Far CALL and RET 
Operation”). The differences are as follows:

• The segment selector provided in the CALL instruction references a special data 
structure called a call gate descriptor. Among other things, the call gate 
descriptor provides the following:

— access rights information

— the segment selector for the code segment of the called procedure

— an offset into the code segment (that is, the instruction pointer for the called 
procedure)

Figure 6-3.  Protection Rings
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• The processor switches to a new stack to execute the called procedure. Each 
privilege level has its own stack. The segment selector and stack pointer for the 
privilege level 3 stack are stored in the SS and ESP registers, respectively, and 
are automatically saved when a call to a more privileged level occurs. The 
segment selectors and stack pointers for the privilege level 2, 1, and 0 stacks are 
stored in a system segment called the task state segment (TSS). 

The use of a call gate and the TSS during a stack switch are transparent to the calling 
procedure, except when a general-protection exception is raised.

6.3.6 CALL and RET Operation Between Privilege Levels
When making a call to a more privileged protection level, the processor does the 
following (see Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP 
registers.

Figure 6-4.  Stack Switch on a Call to a Different Privilege Level
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3. Loads the segment selector and stack pointer for the new stack (that is, the stack 
for the privilege level being called) from the TSS into the SS and ESP registers 
and switches to the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack 
onto the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. A 
value in the call gate descriptor determines how many parameters to copy to the 
new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the 
new stack.

7. Loads the segment selector for the new code segment and the new instruction 
pointer from the call gate into the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs 
these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack. If the call gate descriptor specifies that one or more parameters be 
copied from one stack to the other, a RET n instruction must be used to release 
the parameters from both stacks. Here, the n operand specifies the number of 
bytes occupied on each stack by the parameters. On a return, the processor 
increments ESP by n for each stack to step over (effectively remove) these 
parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a 
switch back to the stack of the calling procedure.

5. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack (see explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 4, “Protection,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, for detailed information on calls to privileged levels 
and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode
The 64-bit extensions expand branching mechanisms to accommodate branches in 
64-bit linear-address space. These are:

• Near-branch semantics are redefined in 64-bit mode
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• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls 
are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, 
and LOOP) is forced to 64 bits. These instructions update the 64-bit RIP without the 
need for a REX operand-size prefix. 

The following aspects of near branches are controlled by the effective operand size:

• Truncation of the size of the instruction pointer

• Size of a stack pop or push, due to a CALL or RET

• Size of a stack-pointer increment or decrement, due to a CALL or RET

• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand 
size prefixes (operand size prefixes are silently ignored). However, the displacement 
field for relative branches is still limited to 32 bits and the address size for near 
branches is not forced in 64-bit mode. 

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the 
address calculation for memory indirect branches. Such addresses are 64 bits by 
default; but they can be overridden to 32 bits by an address size prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 
architecture provides the call-gate mechanism to allow software to branch from one 
privilege level to another, although call gates can also be used for branches that do 
not change privilege levels. When call gates are used, the selector portion of the 
direct or indirect pointer references a gate descriptor (the offset in the instruction is 
ignored). The offset to the destination’s code segment is taken from the call-gate 
descriptor. 

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit 
call gate descriptor and expands the size of the 64-bit descriptor to hold a 64-bit 
offset. The 64-bit mode call-gate descriptor allows far branches that reference any 
location in the supported linear-address space. These call gates also hold the target 
code selector (CS), allowing changes to privilege level and default size as a result of 
the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a 
full 64-bit absolute RIP in 64-bit mode is with an indirect branch. For this reason, 
direct far branches are eliminated from the instruction set in 64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions 
so that the instructions operate within a 64-bit memory space. The mode also intro-
duces two new instructions: SYSCALL and SYSRET (which are valid only in 64-bit 
mode). For details, see “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return 
from Fast System Call” in Chapter 4, “Instruction Set Reference, N-Z,” of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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6.4 INTERRUPTS AND EXCEPTIONS
The processor provides two mechanisms for interrupting program execution, inter-
rupts and exceptions:

• An interrupt is an asynchronous event that is typically triggered by an I/O 
device.

• An exception is a synchronous event that is generated when the processor 
detects one or more predefined conditions while executing an instruction. The 
IA-32 architecture specifies three classes of exceptions: faults, traps, and aborts. 

The processor responds to interrupts and exceptions in essentially the same way. 
When an interrupt or exception is signaled, the processor halts execution of the 
current program or task and switches to a handler procedure that has been written 
specifically to handle the interrupt or exception condition. The processor accesses 
the handler procedure through an entry in the interrupt descriptor table (IDT). When 
the handler has completed handling the interrupt or exception, program control is 
returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts 
and exceptions independently from application programs or tasks. Application 
programs can, however, access the interrupt and exception handlers incorporated in 
an operating system or executive through assembly-language calls. The remainder 
of this section gives a brief overview of the processor’s interrupt and exception 
handling mechanism. See Chapter 5, “Interrupt and Exception Handling,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for a 
description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user 
defined interrupts, which are associated with entries in the IDT. Each interrupt and 
exception in the IDT is identified with a number, called a vector. Table 6-1 lists the 
interrupts and exceptions with entries in the IDT and their respective vector 
numbers. Vectors 0 through 8, 10 through 14, and 16 through 19 are the predefined 
interrupts and exceptions, and vectors 32 through 255 are the user-defined inter-
rupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to 
entries in the IDT; the most notable of these interrupts is the SMI interrupt. See 
Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B, for more information about the 
interrupts and exceptions.

When the processor detects an interrupt or exception, it does one of the following 
things:

• Executes an implicit call to a handler procedure.

• Executes an implicit call to a handler task.
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6.4.1 Call and Return Operation for Interrupt or Exception 
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to 
another protection level (see Section 6.3.6, “CALL and RET Operation Between Privi-
lege Levels”). Here, the interrupt vector references one of two kinds of gates: an 
interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in 
that they provide the following information:

• Access rights information

• The segment selector for the code segment that contains the handler procedure

• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt 
or exception handler is called through an interrupt gate, the processor clears the 
interrupt enable (IF) flag in the EFLAGS register to prevent subsequent interrupts 
from interfering with the execution of the handler. When a handler is called through 
a trap gate, the state of the IF flag is not changed.

Table 6-1.  Exceptions and Interrupts
Vector No. Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined 
Opcode)

UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT 
instruction.

 8 #DF Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 #MF CoProcessor Segment Overrun 
(reserved)

Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing 
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other 
protection checks.
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If the code segment for the handler procedure has the same privilege level as the 
currently executing program or task, the handler procedure uses the current stack; if 
the handler executes at a more privileged level, the processor switches to the stack 
for the handler’s privilege level. 

If no stack switch occurs, the processor does the following when calling an interrupt 
or exception handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) 
on the stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction 
pointer (from the interrupt gate or trap gate) into the CS and EIP registers, 
respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math 
Fault)

Floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model 
dependent.4

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction5

20-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n 
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.

Table 6-1.  Exceptions and Interrupts (Contd.)
Vector No. Mnemonic Description Source
Vol. 2 6-15



PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, 
and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack 
for the privilege level being called) from the TSS into the SS and ESP registers 
and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the 
interrupted procedure’s stack onto the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction 
pointer (from the interrupt gate or trap gate) into the CS and EIP registers, 
respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

Figure 6-5.  Stack Usage on Transfers to Interrupt and Exception Handling Routines
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A return from an interrupt or exception handler is initiated with the IRET instruction. 
The IRET instruction is similar to the far RET instruction, except that it also restores 
the contents of the EFLAGS register for the interrupted procedure. When executing a 
return from an interrupt or exception handler from the same privilege level as the 
interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or 
exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately.

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different priv-
ilege level than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or 
exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or 
exception, resulting in a stack switch back to the stack of the interrupted 
procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks
Interrupt and exception handler routines can also be executed in a separate task. 
Here, an interrupt or exception causes a task switch to a handler task. The handler 
task is given its own address space and (optionally) can execute at a higher protec-
tion level than application programs or tasks. 

The switch to the handler task is accomplished with an implicit task call that refer-
ences a task gate descriptor. The task gate provides access to the address space 
for the handler task. As part of the task switch, the processor saves complete state 
information for the interrupted program or task. Upon returning from the handler 
task, the state of the interrupted program or task is restored and execution 
continues. See Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information 
on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode
When operating in real-address mode, the processor responds to an interrupt or 
exception with an implicit far call to an interrupt or exception handler. The processor 
uses the interrupt or exception vector number as an index into an interrupt table. The 
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interrupt table contains instruction pointers to the interrupt and exception handler 
procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS 
register, and an optional error code on the stack before switching to the handler 
procedure.

A return from the interrupt or exception handler is carried out with the IRET 
instruction. 

See Chapter 15, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for more information on handling interrupts 
and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions
The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly 
call an interrupt or exception handler. The INT n instruction uses an interrupt vector 
as an argument, which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the over-
flow flag (OF) in the EFLAGS register is set. The OF flag indicates overflow on arith-
metic instructions, but it does not automatically raise an overflow exception. An 
overflow exception can only be raised explicitly in either of the following ways:

• Execute the INTO instruction.

• Test the OF flag and execute the INT n instruction with an argument of 4 (the 
vector number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for 
overflow at specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) 
handler if an operand is found to be not within predefined boundaries in memory. 
This instruction is provided for checking references to arrays and other data struc-
tures. Like the overflow exception, the BOUND-range exceeded exception can only 
be raised explicitly with the BOUND instruction or the INT n instruction with an argu-
ment of 5 (the vector number of the bounds-check exception). The processor does 
not implicitly perform bounds checks and raise the BOUND-range exceeded excep-
tion.

6.4.5 Handling Floating-Point Exceptions
When operating on individual or packed floating-point values, the IA-32 architecture 
supports a set of six floating-point exceptions. These exceptions can be generated 
during operations performed by the x87 FPU instructions or by SSE/SSE2/SSE3 
instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) 
generates one or more of these exceptions, it in turn generates floating-point error 
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exception (#MF); when an SSE/SSE2/SSE3 instruction generates a floating-point 
exception, it in turn generates SIMD floating-point exception (#XM). 

See the following sections for further descriptions of the floating-point exceptions, 
how they are generated, and how they are handled:

• Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical 
Actions of a Floating-Point Exception Handler”

• Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87 
FPU Floating-Point Exception Conditions”

• Section 11.5.1, “SIMD Floating-Point Exceptions”

• Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode
64-bit extensions expand the legacy IA-32 interrupt-processing and exception-
processing mechanism to allow support for 64-bit operating systems and applica-
tions. Changes include:

• All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the 
SMI handler).

• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, 
zero extended stores.

• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy 
environments, this push is conditional and based on a change in current privilege 
level (CPL).

• The new SS is set to NULL if there is a change in CPL.

• IRET behavior changes.

• There is a new interrupt stack-switch mechanism.

• The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED 
LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls 
with the ENTER (enter procedure) and LEAVE (leave procedure) instructions. These 
instructions automatically create and release, respectively, stack frames for called 
procedures. The stack frames have predefined spaces for local variables and the 
necessary pointers to allow coherent returns from called procedures. They also allow 
scope rules to be implemented so that procedures can access their own local vari-
ables and some number of other variables located in other stack frames.
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ENTER and LEAVE offer two benefits:

• They provide machine-language support for implementing block-structured 
languages, such as C and Pascal. 

• They simplify procedure entry and exit in compiler-generated code.

6.5.1 ENTER Instruction
The ENTER instruction creates a stack frame compatible with the scope rules typically 
used in block-structured languages. In block-structured languages, the scope of a 
procedure is the set of variables to which it has access. The rules for scope vary 
among languages. They may be based on the nesting of procedures, the division of 
the program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on 
the stack for dynamic storage for the procedure being called. Dynamic storage is the 
memory allocated for variables created when the procedure is called, also known as 
automatic variables. The second parameter is the lexical nesting level (from 0 to 31) 
of the procedure. The nesting level is the depth of a procedure in a hierarchy of 
procedure calls. The lexical level is unrelated to either the protection privilege level or 
to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack 
and sets up pointers to two previous stack frames in the stack frame for this proce-
dure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into 
the new stack frame from the preceding frame. A stack frame pointer is a doubleword 
used to access the variables of a procedure. The set of stack frame pointers used by 
a procedure to access the variables of other procedures is called the display. The first 
doubleword in the display is a pointer to the previous stack frame. This pointer is 
used by a LEAVE instruction to undo the effect of an ENTER instruction by discarding 
the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the 
dynamic local variables for the procedure by decrementing the contents of the ESP 
register by the number of bytes specified in the first parameter. This new value in the 
ESP register serves as the initial top-of-stack for all PUSH and POP operations within 
the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP 
register pointing to the first doubleword in the display. Because stacks grow down, 
this is actually the doubleword with the highest address in the display. Data manipu-
lation instructions that specify the EBP register as a base register automatically 
address locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical 
level is 0, the non-nested form is used. The non-nested form pushes the contents of 
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the EBP register on the stack, copies the contents of the ESP register into the EBP 
register, and subtracts the first operand from the contents of the ESP register to allo-
cate dynamic storage. The non-nested form differs from the nested form in that no 
stack frame pointers are copied. The nested form of the ENTER instruction occurs 
when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. 
STORAGE is the number of bytes of dynamic storage to allocate for local variables, 
and LEVEL is the lexical nesting level.

PUSH EBP;
FRAME_PTR ← ESP;
IF LEVEL > 0 

THEN
DO (LEVEL − 1) times

EBP ← EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;
PUSH FRAME_PTR;

FI;
EBP ← FRAME_PTR;
ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the 
highest lexical level, level 1. The first procedure it calls operates at the next deeper 
lexical level, level 2. A level 2 procedure can access the variables of the main 
program, which are at fixed locations specified by the compiler. In the case of level 1, 
the ENTER instruction allocates only the requested dynamic storage on the stack 
because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called 
procedure access to the variables of the caller. The ENTER instruction provides this 
access by placing a pointer to the calling procedure's stack frame in the display.

A procedure that calls another procedure at the same lexical level should not give 
access to its variables. In this case, the ENTER instruction copies only that part of the 
display from the calling procedure which refers to previously nested procedures 
operating at higher lexical levels. The new stack frame does not include the pointer 
for addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the 
same lexical level. In this case, each succeeding iteration of the re-entrant procedure 
can address only its own variables and the variables of the procedures within which it 
is nested. A re-entrant procedure always can address its own variables; it does not 
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the 
ENTER instruction makes certain that procedures access only those variables of 
higher lexical levels, not those at parallel lexical levels (see Figure 6-6).
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Block-structured languages can use the lexical levels defined by ENTER to control 
access to the variables of nested procedures. In Figure 6-6, for example, if procedure 
A calls procedure B which, in turn, calls procedure C, then procedure C will have 
access to the variables of the MAIN procedure and procedure A, but not those of 
procedure B because they are at the same lexical level. The following definition 
describes the access to variables for the nested procedures in Figure 6-6.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B 
cannot access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C 
cannot access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. 
Procedure D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates 
three doublewords of dynamic storage for MAIN, but copies no pointers from other 
stack frames. The first doubleword in the display holds a copy of the last value in the 
EBP register before the ENTER instruction was executed. The second doubleword 
holds a copy of the contents of the EBP register following the ENTER instruction. After 
the instruction is executed, the EBP register points to the first doubleword pushed on 
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see 
Figure 6-8). The first doubleword is the last value held in MAIN's EBP register. The 
second doubleword is a pointer to MAIN's stack frame which is copied from the 
second doubleword in MAIN's display. This happens to be another copy of the last 
value held in MAIN’s EBP register. Procedure A can access variables in MAIN because 
MAIN is at level 1. 

Figure 6-6.  Nested Procedures
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Procedure A (Lexical Level 2) 
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Therefore the base address for the dynamic storage used in MAIN is the current 
address in the EBP register, plus four bytes to account for the saved contents of 
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from 
this value. 

When procedure A calls procedure B, the ENTER instruction creates a new display 
(see Figure 6-9). The first doubleword holds a copy of the last value in procedure A’s 
EBP register. The second and third doublewords are copies of the two stack frame 
pointers in procedure A’s display. Procedure B can access variables in procedure A 
and MAIN by using the stack frame pointers in its display.

Figure 6-7.  Stack Frame After Entering the MAIN Procedure

Figure 6-8.  Stack Frame After Entering Procedure A
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When procedure B calls procedure C, the ENTER instruction creates a new display for 
procedure C (see Figure 6-10). The first doubleword holds a copy of the last value in 
procedure B’s EBP register. This is used by the LEAVE instruction to restore procedure 
B’s stack frame. The second and third doublewords are copies of the two stack frame 
pointers in procedure A’s display. If procedure C were at the next deeper lexical level 
from procedure B, a fourth doubleword would be copied, which would be the stack 
frame pointer to procedure B’s local variables. 

Note that procedure B and procedure C are at the same level, so procedure C is not 
intended to access procedure B’s variables. This does not mean that procedure C is 
completely isolated from procedure B; procedure C is called by procedure B, so the 
pointer to the returning stack frame is a pointer to procedure B’s stack frame. In 
addition, procedure B can pass parameters to procedure C either on the stack or 
through variables global to both procedures (that is, variables in the scope of both 
procedures).

Figure 6-9.  Stack Frame After Entering Procedure B
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6.5.2 LEAVE Instruction
The LEAVE instruction, which does not have any operands, reverses the action of the 
previous ENTER instruction. The LEAVE instruction copies the contents of the EBP 
register into the ESP register to release all stack space allocated to the procedure. 
Then it restores the old value of the EBP register from the stack. This simultaneously 
restores the ESP register to its original value. A subsequent RET instruction then can 
remove any arguments and the return address pushed on the stack by the calling 
program for use by the procedure.

Figure 6-10.  Stack Frame After Entering Procedure C
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CHAPTER 7
PROGRAMMING WITH

GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that repre-
sent the fundamental instruction set for the Intel IA-32 processors. These instruc-
tions were introduced into the IA-32 architecture with the first IA-32 processors (the 
Intel 8086 and 8088). Additional instructions were added to the general-purpose 
instruction set in subsequent families of IA-32 processors (the Intel 286, Intel386, 
Intel486, Pentium, Pentium Pro, and Pentium II processors). 

Intel 64 architecture further extends the capability of most general-purpose instruc-
tions so that they are able to handle 64-bit data in 64-bit mode. A small number of 
general-purpose instructions (still supported in non-64-bit modes) are not supported 
in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing, 
arithmetic and logical, program flow control, input/output, and string operations on a 
set of integer, pointer, and BCD data types. This chapter provides an overview of the 
general-purpose instructions. See Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 3A & 3B, for detailed descriptions of individual instruc-
tions.

7.1 PROGRAMMING ENVIRONMENT FOR GP 
INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the 
set of registers and address space. The environment includes the following items:

• General-purpose registers — Eight 32-bit general-purpose registers (see 
Section 3.4.1, “General-Purpose Registers”) are used in non-64-bit modes to 
address operands in memory. These registers are referenced by the names EAX, 
EBX, ECX, EDX, EBP, ESI EDI, and ESP. 

• Segment registers — The six 16-bit segment registers contain segment 
pointers for use in accessing memory (see Section 3.4.2, “Segment Registers”). 
These registers are referenced by the names CS, DS, SS, ES, FS, and GS.

• EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”) 
is used to provide status and control for basic arithmetic, compare, and system 
operations. 

• EIP register — This 32-bit register contains the current instruction pointer (see 
Section 3.4.3, “EFLAGS Register”). 

General-purpose instructions operate on the following data types. The width of valid 
data types is dependent on processor mode (see Chapter 4):
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• Bytes, words, doublewords

• Signed and unsigned byte, word, doubleword integers

• Near and far pointers

• Bit fields

• BCD integers

7.2 PROGRAMMING ENVIRONMENT FOR GP 
INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is 
similar to that described in Section 7.1.

• General-purpose registers — In 64-bit mode, sixteen general-purpose 
registers available. These include the eight GPRs described in Section 7.1 and 
eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX prefix. All 
sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as 
RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP and R8-R15 (see Section 3.4.1.1, 
“General-Purpose Registers in 64-Bit Mode”). Promotion to 64-bit operand 
requires REX prefix encodings.

• Segment registers — In 64-bit mode, segmentation is available but it is set up 
uniquely (see Section 3.4.2.1, “Segment Registers in 64-Bit Mode”).

• Flags and Status register — When the processor is running in 64-bit mode, 
EFLAGS becomes the 64-bit RFLAGS register (see Section 3.4.3, “EFLAGS 
Register”).

• Instruction Pointer register — In 64-bit mode, the EIP register becomes the 
64-bit RIP register (see Section 3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The 
width of valid data types is dependent on default operand size, address size, or a 
prefix that overrides the default size:

• Bytes, words, doublewords, quadwords

• Signed and unsigned byte, word, doubleword, quadword integers

• Near and far pointers

• Bit fields

See also: 

• Chapter 3, “Basic Execution Environment,” for more information about IA-32e 
modes.

• Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for more detailed information about 
REX prefixes.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B for a complete listing of all instructions. This information documents the 
behavior of individual instructions in the 64-bit mode context.

7.3 SUMMARY OF GP INSTRUCTIONS
General purpose instructions are divided into the following subgroups: 

• Data transfer

• Binary arithmetic

• Decimal arithmetic

• Logical

• Shift and rotate

• Bit and byte

• Control transfer

• String

• I/O

• Enter and Leave

• Flag control

• Segment register

• Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-
64-bit mode operation first. Changes in 64-bit mode beyond those affected by the 
use of the REX prefixes are discussed in separate sub-sections within each subgroup. 
For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions
The data transfer instructions move bytes, words, doublewords, or quadwords both 
between memory and the processor’s registers and between registers. For the 
purpose of this discussion, these instructions are divided into subordinate subgroups 
that provide for:

• General data movement

• Exchange

• Stack manipulation

• Type conversion
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7.3.1.1  General Data Movement Instructions
Move instructions — The MOV (move) and CMOVcc (conditional move) instructions 
transfer data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between 
memory and the processor’s registers and data movement operations between regis-
ters. It handles data transfers along the paths listed in Table 7-1. (See “MOV—Move 
to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for information on moving data to and from the 
control and debug registers.) 

The MOV instruction cannot move data from one memory location to another or from 
one segment register to another segment register. Memory-to-memory moves are 
performed with the MOVS (string move) instruction (see Section 7.3.9, “String Oper-
ations”). 

Conditional move instructions — The CMOVcc instructions are a group of instruc-
tions that check the state of the status flags in the EFLAGS register and perform a 
move operation if the flags are in a specified state. These instructions can be used to 
move a 16-bit or 32-bit value from memory to a general-purpose register or from 
one general-purpose register to another. The flag state being tested is specified with 
a condition code (cc) associated with the instruction. If the condition is not satisfied, 
a move is not performed and execution continues with the instruction following the 
CMOVcc instruction.

Table 7-1.  Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register

Memory location → Segment register

From a register to memory General-purpose register → Memory location

Segment register → Memory location

Between registers General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
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Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested 
for each instruction. The condition code mnemonics are appended to the letters 
“CMOV” to form the mnemonics for CMOVcc instructions. The instructions listed in 
Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the 
same instruction. The assembler provides these alternate names to make it easier to 
read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help 
eliminate branching overhead for IF statements and the possibility of branch mispre-
dictions by the processor. 

These conditional move instructions are supported in the P6 family, Pentium 4, and 
Intel Xeon processors. Software can check if CMOVcc instructions are supported by 
checking the processor’s feature information with the CPUID instruction.

7.3.1.2  Exchange Instructions 
The exchange instructions swap the contents of one or more operands and, in some 
cases, perform additional operations such as asserting the LOCK signal or modifying 
flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruc-
tion takes the place of three MOV instructions and does not require a temporary loca-
tion to save the contents of one operand location while the other is being loaded. 
When a memory operand is used with the XCHG instruction, the processor’s LOCK 
signal is automatically asserted. This instruction is thus useful for implementing 
semaphores or similar data structures for process synchronization. See “Bus 
Locking” in Chapter 7, “Multiple-Processor Management,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on bus 
locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register 
operand. Bit positions 0 through 7 are exchanged with 24 through 31, and bit posi-
tions 8 through 15 are exchanged with 16 through 23. Executing this instruction 
twice in a row leaves the register with the same value as before. The BSWAP instruc-
tion is useful for converting between “big-endian” and “little-endian” data formats. 
This instruction also speeds execution of decimal arithmetic. (The XCHG instruction 
can be used to swap the bytes in a word.)
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The XADD (exchange and add) instruction swaps two operands and then stores the 
sum of the two operands in the destination operand. The status flags in the EFLAGS 
register indicate the result of the addition. This instruction can be combined with the 
LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set 
Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A) in a multiprocessing system to allow multiple processors to 
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 
8 bytes) instructions are used to synchronize operations in systems that use 
multiple processors. The CMPXCHG instruction requires three operands: a source 
operand in a register, another source operand in the EAX register, and a destination 
operand. If the values contained in the destination operand and the EAX register are 
equal, the destination operand is replaced with the value of the other source 
operand (the value not in the EAX register). Otherwise, the original value of the 
destination operand is loaded in the EAX register. The status flags in the EFLAGS 

Table 7-2.  Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

  CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

  CMOVAE/CMOVNB CF = 0 Above or equal/not below

  CMOVNC CF = 0 Not carry

  CMOVB/CMOVNAE CF = 1 Below/not above or equal

  CMOVC CF = 1 Carry

  CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

  CMOVE/CMOVZ ZF = 1 Equal/zero

  CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

  CMOVP/CMOVPE PF = 1 Parity/parity even

  CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

  CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

  CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

  CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  CMOVO OF = 1 Overflow

  CMOVNO OF = 0 Not overflow

  CMOVS SF = 1 Sign (negative)

  CMOVNS SF = 0 Not sign (non-negative)
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register reflect the result that would have been obtained by subtracting the destina-
tion operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. 
It checks to see if a semaphore is free. If the semaphore is free, it is marked allo-
cated; otherwise it gets the ID of the current owner. This is all done in one uninter-
ruptible operation. In a single-processor system, the CMPXCHG instruction 
eliminates the need to switch to protection level 0 (to disable interrupts) before 
executing multiple instructions to test and modify a semaphore. 

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to 
perform the compare and exchange operation atomically. (See “Locked Atomic Oper-
ations” in Chapter 7, “Multiple-Processor Management,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on 
atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in 
EDX:EAX, a 64-bit value in ECX:EBX, and a destination operand in memory. The 
instruction compares the 64-bit value in the EDX:EAX registers with the destination 
operand. If they are equal, the 64-bit value in the ECX:EBX register is stored in the 
destination operand. If the EDX:EAX register and the destination are not equal, the 
destination is loaded in the EDX:EAX register. The CMPXCHG8B instruction can be 
combined with the LOCK prefix to perform the operation atomically.

7.3.1.3  Exchange Instructions in 64-Bit Mode 
The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of 
the functionality provided by CMPXCHG8B that operates on 128-bits of data.

7.3.1.4  Stack Manipulation Instructions
The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions 
move data to and from the stack. The PUSH instruction decrements the stack pointer 
(contained in the ESP register), then copies the source operand to the top of stack 
(see Figure 7-1). It operates on memory operands, immediate operands, and 
register operands (including segment registers). The PUSH instruction is commonly 
used to place parameters on the stack before calling a procedure. It can also be used 
to reserve space on the stack for temporary variables.
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The PUSHA instruction saves the contents of the eight general-purpose registers on 
the stack (see Figure 7-2). This instruction simplifies procedure calls by reducing the 
number of instructions required to save the contents of the general-purpose regis-
ters. The registers are pushed on the stack in the following order: EAX, ECX, EDX, 
EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. 

The POP instruction copies the word or doubleword at the current top of stack (indi-
cated by the ESP register) to the location specified with the destination operand. It 
then increments the ESP register to point to the new top of stack (see Figure 7-3). 
The destination operand may specify a general-purpose register, a segment register, 
or a memory location. 

Figure 7-1.  Operation of the PUSH Instruction

Figure 7-2.  Operation of the PUSHA Instruction
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The POPA instruction reverses the effect of the PUSHA instruction. It pops the top 
eight words or doublewords from the top of the stack into the general-purpose regis-
ters, except for the ESP register (see Figure 7-4). If the operand-size attribute is 32, 
the doublewords on the stack are transferred to the registers in the following order: 
EDI, ESI, EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is 
restored by the action of popping the stack. If the operand-size attribute is 16, the 
words on the stack are transferred to the registers in the following order: DI, SI, BP, 
ignore word, BX, DX, CX, and AX.

7.3.1.5  Stack Manipulation Instructions in 64-Bit Mode
In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an 
instruction prefix. In implicit stack references, address-size overrides are ignored. 
Pushes and pops of 32-bit values on the stack are not possible in 64-bit mode. 16-bit 

Figure 7-3.  Operation of the POP Instruction

Figure 7-4.  Operation of the POPA Instruction
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pushes and pops are supported by using the 66H operand-size prefix. PUSHA, 
PUSHAD, POPA, and POPAD are not supported.

7.3.1.6  Type Conversion Instructions
The type conversion instructions convert bytes into words, words into doublewords, 
and doublewords into quadwords. These instructions are especially useful for 
converting integers to larger integer formats, because they perform sign extension 
(see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move 
and convert.
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Simple conversion — The CBW (convert byte to word), CWDE (convert word to 
doubleword extended), CWD (convert word to doubleword), and CDQ (convert 
doubleword to quadword) instructions perform sign extension to double the size of 
the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit 
position of the upper byte of the AX register. The CWDE instruction copies the sign 
(bit 15) of the word in the AX register into every bit position of the high word of the 
EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every 
bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the 
doubleword in the EAX register into every bit position in the EDX register. The CWD 
instruction can be used to produce a doubleword dividend from a word before a word 
division, and the CDQ instruction can be used to produce a quadword dividend from 
a doubleword before doubleword division.

Move with sign or zero extension — The MOVSX (move with sign extension) and 
MOVZX (move with zero extension) instructions move the source operand into a 
register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit 
value to a 32-bit value by sign extending the source operand, as shown in Figure 7-5. 
The MOVZX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit 
value to a 32-bit value by zero extending the source operand.

7.3.1.7  Type Conversion Instructions in 64-Bit Mode
The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64 
bits. This instruction is not encodable in non-64-bit modes.

Figure 7-5.  Sign Extension
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7.3.2 Binary Arithmetic Instructions
Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded 
as signed or unsigned binary integers. The binary arithmetic instructions may also be 
used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided subordinate 
subgroups of instructions that:

• Add and subtract

• Increment and decrement

• Compare and change signs

• Multiply and divide

7.3.2.1  Addition and Subtraction Instructions
The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and 
SBB (subtract integers with borrow) instructions perform addition and subtraction 
operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands. 

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag 
is set. This instruction is used to propagate a carry when adding numbers in stages. 

The SUB instruction computes the difference of two integer operands. 

The SBB instruction computes the difference of two integer operands, minus 1 if the 
CF flag is set. This instruction is used to propagate a borrow when subtracting 
numbers in stages.

7.3.2.2  Increment and Decrement Instructions
The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from 
an unsigned integer operand, respectively. A primary use of these instructions is for 
implementing counters.

7.3.2.3  Increment and Decrement Instructions in 64-Bit Mode
The INC and DEC instructions are supported in 64-bit mode. However, some forms of 
INC and DEC (the register operand being encoded using register extension field in 
the MOD R/M byte) are not encodable in 64-bit mode because the opcodes are 
treated as REX prefixes.

7.3.2.4  Comparison and Sign Change Instruction
The CMP (compare) instruction computes the difference between two integer oper-
ands and updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The 
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source operands are not modified, nor is the result saved. The CMP instruction is 
commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) 
instruction, with the latter instructions performing an action based on the result of a 
CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The 
effect of the NEG instruction is to change the sign of a two's complement operand 
while keeping its magnitude.

7.3.2.5  Multiplication and Divide Instructions
The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL 
signed multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed 
divide).

The MUL instruction multiplies two unsigned integer operands. The result is 
computed to twice the size of the source operands (for example, if word operands are 
being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed 
to twice the size of the source operands; however, in some cases the result is trun-
cated to the size of the source operands (see “IMUL—Signed Multiply” in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A).

The DIV instruction divides one unsigned operand by another unsigned operand and 
returns a quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a 
signed division.

7.3.3 Decimal Arithmetic Instructions
Decimal arithmetic can be performed by combining the binary arithmetic instructions 
ADD, SUB, MUL, and DIV (discussed in Section 7.3.2, “Binary Arithmetic Instruc-
tions”) with the decimal arithmetic instructions. The decimal arithmetic instructions 
are provided to carry out the following operations:

• To adjust the results of a previous binary arithmetic operation to produce a valid 
BCD result.

• To adjust the operands of a subsequent binary arithmetic operation so that the 
operation will produce a valid BCD result. 

These instructions operate on both packed and unpacked BCD values. For the 
purpose of this discussion, the decimal arithmetic instructions are divided subordi-
nate subgroups of instructions that provide:

• Packed BCD adjustments

• Unpacked BCD adjustments
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7.3.3.1  Packed BCD Adjustment Instructions
The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) 
instructions adjust the results of operations performed on packed BCD integers 
(see Section 4.7, “BCD and Packed BCD Integers”). Adding two packed BCD values 
requires two instructions: an ADD instruction followed by a DAA instruction. The ADD 
instruction adds (binary addition) the two values and stores the result in the AL 
register. The DAA instruction then adjusts the value in the AL register to obtain a 
valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as 
the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction 
followed by a DAS instruction. The SUB instruction subtracts (binary subtraction) one 
BCD value from another and stores the result in the AL register. The DAS instruction 
then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value 
and sets the CF flag if a decimal borrow occurred as the result of the subtraction. 

7.3.3.2  Unpacked BCD Adjustment Instructions
The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM 
(ASCII adjust after multiplication), and AAD (ASCII adjust before division) instruc-
tions adjust the results of arithmetic operations performed in unpacked BCD 
values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions 
assume that the value to be adjusted is stored in the AL register or, in one instance, 
the AL and AH registers. 

The AAA instruction adjusts the contents of the AL register following the addition of 
two unpacked BCD values. It converts the binary value in the AL register into a 
decimal value and stores the result in the AL register in unpacked BCD format (the 
decimal number is stored in the lower 4 bits of the register and the upper 4 bits are 
cleared). If a decimal carry occurred as a result of the addition, the CF flag is set and 
the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction 
of two unpacked BCD values. Here again, a binary value is converted into an 
unpacked BCD value. If a borrow was required to complete the decimal subtract, the 
CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication 
of two unpacked BCD values. It converts the binary value in the AL register into a 
decimal value and stores the least significant digit of the result in the AL register (in 
unpacked BCD format) and the most significant digit, if there is one, in the AH 
register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided 
with the DIV instruction, a valid unpacked BCD result is obtained. The instruction 
converts the BCD value in registers AH (most significant digit) and AL (least signifi-
cant digit) into a binary value and stores the result in register AL. When the value in 
AL is divided by an unpacked BCD value, the quotient and remainder will be automat-
ically encoded in unpacked BCD format.
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7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
Decimal arithmetic instructions are not supported in 64-bit mode, They are either 
invalid or not encodable.

7.3.5 Logical Instructions
The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard 
Boolean operations for which they are named. The AND, OR, and XOR instructions 
require two operands; the NOT instruction operates on a single operand.

7.3.6 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand. For the 
purpose of this discussion, these instructions are further divided subordinate 
subgroups of instructions that:

• Shift bits

• Double-shift bits (move them between operands)

• Rotate bits

7.3.6.1  Shift Instructions
The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), 
SHR (shift logical right) instructions perform an arithmetic or logical shift of the bits 
in a byte, word, or doubleword. 

The SAL and SHL instructions perform the same operation (see Figure 7-6). They 
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are 
cleared. The CF flag is loaded with the last bit shifted out of the operand.
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The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see 
Figure 7-7). As with the SHL/SAL instruction, the empty bit positions are cleared and 
the CF flag is loaded with the last bit shifted out of the operand.

Figure 7-6.  SHL/SAL Instruction Operation

Figure 7-7.  SHR Instruction Operation
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After 1-bit SHR Instruction

0

0  0  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0 0

After 10-bit SHR Instruction

Operand
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The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see 
Figure 7-8). This instruction differs from the SHR instruction in that it preserves the 
sign of the source operand by clearing empty bit positions if the operand is positive or 
setting the empty bits if the operand is negative. Again, the CF flag is loaded with the 
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 
2 (see “SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 4, “Instruction Set Refer-
ence, N-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B).

7.3.6.2  Double-Shift Instructions
The SHLD (shift left double) and SHRD (shift right double) instructions shift a speci-
fied number of bits from one operand to another (see Figure 7-9). They are provided 
to facilitate operations on unaligned bit strings. They can also be used to implement a 
variety of bit string move operations. 

Figure 7-8.  SAR Instruction Operation

0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1 X

Initial State (Positive Operand) CF

0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1 1

After 1-bit SAR Instruction

1  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1 X

Initial State (Negative Operand)

Operand

1  1  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1 1

After 1-bit SAR Instruction

CF
Vol. 1 7-17



PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The SHLD instruction shifts the bits in the destination operand to the left and fills the 
empty bit positions (in the destination operand) with bits shifted out of the source 
operand. The destination and source operands must be the same length (either 
words or doublewords). The shift count can range from 0 to 31 bits. The result of this 
shift operation is stored in the destination operand, and the source operand is not 
modified. The CF flag is loaded with the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are 
shifted to the right in the destination operand, with the empty bit positions filled with 
bits shifted out of the source operand.

7.3.6.3  Rotate Instructions
The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR 
(rotate through carry right) instructions rotate the bits in the destination operand out 
of one end and back through the other end (see Figure 7-10). Unlike a shift, no bits 
are lost during a rotation. The rotate count can range from 0 to 31.

Figure 7-9.  SHLD and SHRD Instruction Operations

Destination (Memory or Register)CF

31 0

Source (Register)

31 0

Destination (Memory or Register) CF

31 0

Source (Register)

31 0

SHRD Instruction

SHLD Instruction
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The ROL instruction rotates the bits in the operand to the left (toward more signifi-
cant bit locations). The ROR instruction rotates the operand right (toward less signif-
icant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. 
This instruction treats the CF flag as a one-bit extension on the upper end of the 
operand. Each bit that exits from the most significant bit location of the operand 
moves into the CF flag. At the same time, the bit in the CF flag enters the least signif-
icant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag. 

For all the rotate instructions, the CF flag always contains the value of the last bit 
rotated out of the operand, even if the instruction does not use the CF flag as an 
extension of the operand. The value of this flag can then be tested by a conditional 
jump instruction (JC or JNC).

Figure 7-10.  ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction
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7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, 
they are further divided subordinate subgroups that:

• Test and modify a single bit

• Scan a bit string

• Set a byte given conditions

• Test operands and report results

7.3.7.1  Bit Test and Modify Instructions
The bit test and modify instructions (see Table 7-3) operate on a single bit, which can 
be in an operand. The location of the bit is specified as an offset from the least signif-
icant bit of the operand. When the processor identifies the bit to be tested and modi-
fied, it first loads the CF flag with the current value of the bit. Then it assigns a new 
value to the selected bit, as determined by the modify operation for the instruction. 

7.3.7.2  Bit Scan Instructions
The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in 
a source operand for a set bit and store the bit index of the first set bit found in a 
destination register. The bit index is the offset from the least significant bit (bit 0) in 
the bit string to the first set bit. The BSF instruction scans the source operand low-to-
high (from bit 0 of the source operand toward the most significant bit); the BSR 
instruction scans high-to-low (from the most significant bit toward the least signifi-
cant bit).

7.3.7.3  Byte Set on Condition Instructions
The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 
1, depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the 
EFLAGS register. The suffix (cc) added to the SET mnemonic determines the condi-
tion being tested for. 

For example, the SETO instruction tests for overflow. If the OF flag is set, the desti-
nation byte is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B, 

Table 7-3.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and 
Complement)

CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
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“EFLAGS Condition Codes,” lists the conditions it is possible to test for with this 
instruction.

7.3.7.4  Test Instruction
The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and 
PF flags according to the results. The flags can then be tested by the conditional jump 
or loop instructions or the SETcc instructions. The TEST instruction differs from the 
AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions
The processor provides both conditional and unconditional control transfer instruc-
tions to direct the flow of program execution. Conditional transfers are taken only for 
specified states of the status flags in the EFLAGS register. Unconditional control 
transfers are always executed.

For the purpose of this discussion, these instructions are further divided subordinate 
subgroups that process:

• Unconditional transfers

• Conditional transfers

• Software interrupts

7.3.8.1  Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer program control to another 
location (destination address) in the instruction stream. The destination can be 
within the same code segment (near transfer) or in a different code segment (far 
transfer).

Jump instruction — The JMP (jump) instruction unconditionally transfers program 
control to a destination instruction. The transfer is one-way; that is, a return address 
is not saved. A destination operand specifies the address (the instruction pointer) of 
the destination instruction. The address can be a relative address or an absolute 
address.

A relative address is a displacement (offset) with respect to the address in the EIP 
register. The destination address (a near pointer) is formed by adding the displace-
ment to the address in the EIP register. The displacement is specified with a signed 
integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in 
either of the following ways:

• An address in a general-purpose register — This address is treated as a near 
pointer, which is copied into the EIP register. Program execution then continues at 
the new address within the current code segment.
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• An address specified using the standard addressing modes of the 
processor — Here, the address can be a near pointer or a far pointer. If the 
address is for a near pointer, the address is translated into an offset and copied 
into the EIP register. If the address is for a far pointer, the address is translated 
into a segment selector (which is copied into the CS register) and an offset 
(which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, 
and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from 
procedure) instructions allow a jump from one procedure (or subroutine) to another 
and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling proce-
dure) to another procedure (the called procedure). To allow a subsequent return to 
the calling procedure, the CALL instruction saves the current contents of the EIP 
register on the stack before jumping to the called procedure. The EIP register (prior 
to transferring program control) contains the address of the instruction following the 
CALL instruction. When this address is pushed on the stack, it is referred to as the 
return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the proce-
dure being jumped to) is specified in a CALL instruction the same way as it is in a JMP 
instruction (see “Jump instruction” on page 7-21). The address can be specified as a 
relative address or an absolute address. If an absolute address is specified, it can be 
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being 
executed (the called procedure) back to the procedure that called it (the calling 
procedure). Transfer of control is accomplished by copying the return instruction 
pointer from the stack into the EIP register. Program execution then continues with 
the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the 
contents of the ESP register as part of the return operation. This operand allows the 
stack pointer to be incremented to remove parameters from the stack that were 
pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on 
the mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it 
performs an implicit call to an interrupt-handling procedure. The IRET (return from 
interrupt) instruction returns program control from an interrupt handler to the inter-
rupted procedure (that is, the procedure that was executing when the interrupt 
occurred). The IRET instruction performs a similar operation to the RET instruction 
(see “Call and return instructions” on page 7-22) except that it also restores the 
EFLAGS register from the stack. The contents of the EFLAGS register are automati-
cally stored on the stack along with the return instruction pointer when the processor 
services an interrupt.
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7.3.8.2  Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program 
control to another instruction in the instruction stream if specified conditions are 
met. The conditions for control transfer are specified with a set of condition codes 
that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS 
register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer 
program control to a destination instruction if the conditions specified with the condi-
tion code (cc) associated with the instruction are satisfied (see Table 7-4). If the 
condition is not satisfied, execution continues with the instruction following the Jcc 
instruction. As with the JMP instruction, the transfer is one-way; that is, a return 
address is not saved.

Table 7-4.  Conditional Jump Instructions 
Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

  JA/JNBE (CF or ZF) = 0 Above/not below or equal

  JAE/JNB CF = 0 Above or equal/not below

  JB/JNAE CF = 1 Below/not above or equal

  JBE/JNA (CF or ZF) = 1 Below or equal/not above

  JC CF = 1 Carry

  JE/JZ ZF = 1 Equal/zero

  JNC CF = 0 Not carry

  JNE/JNZ ZF = 0 Not equal/not zero

  JNP/JPO PF = 0 Not parity/parity odd

  JP/JPE PF = 1 Parity/parity even

  JCXZ CX = 0 Register CX is zero

  JECXZ ECX = 0 Register ECX is zero

Signed Conditional Jumps

  JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

  JGE/JNL (SF xor OF) = 0 Greater or equal/not less

  JL/JNGE (SF xor OF) = 1 Less/not greater or equal

  JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  JNO OF = 0 Not overflow

  JNS SF = 0 Not sign (non-negative)

  JO OF = 1 Overflow

  JS SF = 1 Sign (negative)
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The destination operand specifies a relative address (a signed offset with respect to 
the address in the EIP register) that points to an instruction in the current code 
segment. The Jcc instructions do not support far transfers; however, far transfers can 
be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if 
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being 
tested for each instruction. The condition code mnemonics are appended to the letter 
“J” to form the mnemonic for a Jcc instruction. The instructions are divided into two 
groups: unsigned and signed conditional jumps. These groups correspond to the 
results of operations performed on unsigned and signed integers respectively. Those 
instructions listed as pairs (for example, JA/JNBE) are alternate names for the same 
instruction. Assemblers provide alternate names to make it easier to read program 
listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead 
of one or more status flags. See “Jump if zero instructions” on page 7-25 for more 
information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), 
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are 
conditional jump instructions that use the value of the ECX register as a count for the 
number of times to execute a loop. All the loop instructions decrement the count in 
the ECX register each time they are executed and terminate a loop when zero is 
reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also accept the ZF 
flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, 
if the address-size attribute is 16), then tests the register for the loop-termination 
condition. If the count in the ECX register is non-zero, program control is transferred 
to the instruction address specified by the destination operand. The destination 
operand is a relative address (that is, an offset relative to the contents of the EIP 
register), and it generally points to the first instruction in the block of code that is to 
be executed in the loop. When the count in the ECX register reaches zero, program 
control is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the 
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH, 
causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are 
mnemonics for the same instruction). These instructions operate the same as the 
LOOP instruction, except that they also test the ZF flag. 

If the count in the ECX register is not zero and the ZF flag is set, program control is 
transferred to the destination operand. When the count reaches zero or the ZF flag is 
clear, the loop is terminated by transferring program control to the instruction imme-
diately following the LOOPE/LOOPZ instruction.
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The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate 
the same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if 
the ZF flag is set. 

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the 
location specified in the destination operand if the ECX register contains the value 
zero. This instruction can be used in combination with a loop instruction (LOOP, 
LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a 
loop. As described in “Loop instructions on page 7-24, the loop instructions decre-
ment the contents of the ECX register before testing for zero. If the value in the ECX 
register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ 
instruction can be inserted at the beginning of the code block for the loop, causing a 
jump out the loop if the EAX register count is initially zero. When used with repeated 
string scan and compare instructions, the JECXZ instruction can determine whether 
the loop terminated because the count reached zero or because the scan or compare 
conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction 
when the 16-bit address-size attribute is used. Here, the CX register is tested for 
zero.

7.3.8.3  Control Transfer Instructions in 64-Bit Mode
In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, 
and LOOP) is forced to 64 bits. The listed instructions update the 64-bit RIP without 
need for a REX operand-size prefix. 

Near branches in the following operations are forced to 64-bits (regardless of 
operand size prefixes):

• Truncation of the size of the instruction pointer

• Size of a stack pop or push, due to CALL or RET

• Size of a stack-pointer increment or decrement, due to CALL or RET

• Indirect-branch operand size

Note that the displacement field for relative branches is still limited to 32 bits and the 
address size for near branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It 
also impacts the address calculation for memory indirect branches. Addresses size is 
64 bits by default, although it can be over-ridden to 32 bits (using a prefix).

7.3.8.4  Software Interrupt Instructions
The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect 
value out of range) instructions allow a program to explicitly raise a specified inter-
rupt or exception, which in turn causes the handler routine for the interrupt or excep-
tion to be called.
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The INT n instruction can raise any of the processor’s interrupts or exceptions by 
encoding the vector number or the interrupt or exception in the instruction. This 
instruction can be used to support software generated interrupts or to test the oper-
ation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure. The IRET instruction performs a similar 
operation to the RET instruction. 

The CALL (call procedure) and RET (return from procedure) instructions allow a jump 
from one procedure to another and a subsequent return to the calling procedure. 
EFLAGS register contents are automatically stored on the stack along with the return 
instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is 
clear, execution continues without raising the exception. This instruction allows soft-
ware to access the overflow exception handler explicitly to check for overflow condi-
tions.

The BOUND instruction compares a signed value against upper and lower bounds, 
and raises the “BOUND range exceeded” exception if the value is less than the lower 
bound or greater than the upper bound. This instruction is useful for operations such 
as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5  Software Interrupt Instructions in 64-bit Mode and Compatibility 
Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the 
stack. SS:RSP pops unconditionally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations
The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load 
string), and STOS (Store string) instructions permit large data structures, such as 
alphanumeric character strings, to be moved and examined in memory. These 
instructions operate on individual elements in a string, which can be a byte, word, or 
doubleword. The string elements to be operated on are identified with the ESI 
(source string element) and EDI (destination string element) registers. Both of these 
registers contain absolute addresses (offsets into a segment) that point to a string 
element. 

By default, the ESI register addresses the segment identified with the DS segment 
register. A segment-override prefix allows the ESI register to be associated with the 
CS, SS, ES, FS, or GS segment register. The EDI register addresses the segment 
identified with the ES segment register; no segment override is allowed for the EDI 
register. The use of two different segment registers in the string instructions permits 
operations to be performed on strings located in different segments. Or by associ-
ating the ESI register with the ES segment register, both the source and destination 
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strings can be located in the same segment. (This latter condition can also be 
achieved by loading the DS and ES segment registers with the same segment 
selector and allowing the ESI register to default to the DS register.)

The MOVS instruction moves the string element addressed by the ESI register to the 
location addressed by the EDI register. The assembler recognizes three “short forms” 
of this instruction, which specify the size of the string to be moved: MOVSB (move 
byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string 
element and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS 
register according to the results. Neither string element is written back to memory. 
The assembler recognizes three “short forms” of the CMPS instruction: CMPSB 
(compare byte strings), CMPSW (compare word strings), and CMPSD (compare 
doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of 
the EAX, AX, or AL register (depending on operand length) and updates the status 
flags according to the results. The string element and register contents are not modi-
fied. The following “short forms” of the SCAS instruction specify the operand length: 
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword 
string).

The LODS instruction loads the source string element identified by the ESI register 
into the EAX register (for a doubleword string), the AX register (for a word string), or 
the AL register (for a byte string). The “short forms” for this instruction are LODSB 
(load byte string), LODSW (load word string), and LODSD (load doubleword string). 
This instruction is usually used in a loop, where other instructions process each 
element of the string after they are loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword 
string), AX (word string), or AL (byte string) register into the memory location iden-
tified with the EDI register. The “short forms” for this instruction are STOSB (store 
byte string), STOSW (store word string), and STOSD (store doubleword string). This 
instruction is also normally used in a loop. Here a string is commonly loaded into 
the register with a LODS instruction, operated on by other instructions, and then 
stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.3.11, “I/O Instructions”) also perform operations 
on strings in memory.

7.3.9.1  Repeating String Operations
The string instructions described in Section 7.3.9, “String Operations”, perform one 
iteration of a string operation. To operate strings longer than a doubleword, the 
string instructions can be combined with a repeat prefix (REP) to create a repeating 
instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incre-
mented or decremented after each iteration of an instruction to point to the next 
element (byte, word, or doubleword) in the string. String operations can thus begin 
Vol. 1 7-27



PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
at higher addresses and work toward lower ones, or they can begin at lower 
addresses and work toward higher ones. The DF flag in the EFLAGS register controls 
whether the registers are incremented (DF = 0) or decremented (DF = 1). The STD 
and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX 
register to cause a string instruction to repeat:

• REP — Repeat while the ECX register not zero.

• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.

• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the 
termination conditions specified by the prefix is satisfied. The REPE/REPZ and 
REPNE/REPNZ prefixes are used only with the CMPS and SCAS instructions. Also, 
note that a REP STOS instruction is the fastest way to initialize a large block of 
memory.

7.3.10 String Operations in 64-Bit Mode
The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), 
LODS (Load string), and STOS (Store string) instructions in 64-bit mode is similar to 
their behavior in non-64-bit modes, with the following differences:

• The source operand is specified by RSI or DS:ESI, depending on the address size 
attribute of the operation. 

• The destination operand is specified by RDI or DS:EDI, depending on the address 
size attribute of the operation. 

• Operation on 64-bit data is supported by using the REX.W prefix.

7.3.10.1  Repeating String Operations in 64-bit Mode
When using REP prefixes for string operations in 64-bit mode, the repeat count is 
specified by RCX or ECX (depending on the address size attribute of the operation). 
The default address size is 64 bits.

7.3.11 I/O Instructions
The IN (input from port to register), INS (input from port to string), OUT (output 
from register to port), and OUTS (output string to port) instructions move data 
between the processor’s I/O ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the 
EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. 
The I/O port being read or written to is specified with an immediate operand or an 
address in the DX register. 
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The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) 
between an I/O port and memory. These instructions operate similar to the string 
instructions (see Section 7.3.9, “String Operations”). The ESI and EDI registers are 
used to specify string elements in memory and the repeat prefixes (REP) are used to 
repeat the instructions to implement block moves. The assembler recognizes the 
following alternate mnemonics for these instructions: INSB (input byte), INSW (input 
word), and INSD (input doubleword), and OUTB (output byte), OUTW (output word), 
and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O 
port to be read or written to.

7.3.12 I/O Instructions in 64-Bit Mode
For I/O instructions to and from memory, the differences in 64-bit mode are:

• The source operand is specified by RSI or DS:ESI, depending on the address size 
attribute of the operation. 

• The destination operand is specified by RDI or DS:EDI, depending on the address 
size attribute of the operation. 

• Operation on 64-bit data is not encodable and REX prefixes are silently ignored.

7.3.13 Enter and Leave Instructions
The ENTER and LEAVE instructions provide machine-language support for procedure 
calls in block-structured languages, such as C and Pascal. These instructions and the 
call and return mechanism that they support are described in detail in Section 6.5, 
“Procedure Calls for Block-Structured Languages”.

7.3.14 Flag Control (EFLAG) Instructions
The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS 
register to be read or modified. For the purpose of this discussion, these instructions 
are further divided subordinate subgroups of instructions that manipulate:

• Carry and direction flags

• The EFLAGS register

• Interrupt flags

7.3.14.1  Carry and Direction Flag Instructions
The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) 
instructions allow the CF flags in the EFLAGS register to be modified directly. They 
are typically used to initialize the CF flag to a known state before an instruction that 
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uses the flag in an operation is executed. They are also used in conjunction with the 
rotate-with-carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF 
flag in the EFLAGS register to be modified directly. The DF flag determines the direc-
tion in which index registers ESI and EDI are stepped when executing string 
processing instructions. If the DF flag is clear, the index registers are incremented 
after each iteration of a string instruction; if the DF flag is set, the registers are 
decremented.

7.3.14.2  EFLAGS Transfer Instructions
The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be 
copied to a register or memory or be loaded from a register or memory. 

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on 
five of the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies 
the status flags to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents 
of the remaining bits in the register (bits 5, 3, and 1) are undefined, and the contents 
of the EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4, 
2, and 0 from the AH register into the SF, ZF, AF, PF, and CF flags, respectively in the 
EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD 
(pop flags double) instructions copy the flags in the EFLAGS register to and from the 
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the 
stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register 
onto the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 
11, 10, 8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this 
instruction. If the current privilege level (CPL) of the current code segment is 0 (most 
privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level 
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is 
affected. 

Figure 7-11.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions
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The POPFD instruction pops a doubleword into the EFLAGS register. This instruction 
can change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits 
affected by a POPF instruction. The restrictions for changing the IOPL bits and the IF 
flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.14.3  Interrupt Flag Instructions
The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the inter-
rupt IF flag in the EFLAGS register to be modified directly. The IF flag controls the 
servicing of hardware-generated interrupts (those received at the processor’s INTR 
pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is 
clear, hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the 
processor and the current privilege level (CPL) of the program or task attempting to 
execute these instructions.

7.3.15 Flag Control (RFLAG) Instructions in 64-Bit Mode
In 64-bit mode, the LAHF and SAHF instructions are supported if 
CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD 
always pushes 64-bit RFLAGS onto the stack (with the RF and VM flags read as clear). 
POPFD always pops a 64-bit value from the top of the stack and loads the lower 32 
bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.16 Segment Register Instructions
The processor provides a variety of instructions that address the segment registers 
of the processor directly. These instructions are only used when an operating system 
or executive is using the segmented or the real-address mode memory model. 

For the purpose of this discussion, these instructions are divided subordinate 
subgroups of instructions that allow:

• Segment-register load and store

• Far control transfers

• Software interrupt calls

• Handling of far pointers

7.3.16.1  Segment-Register Load and Store Instructions
The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement 
Instructions”) and the PUSH and POP instructions (introduced in Section 7.3.1.4, 
“Stack Manipulation Instructions”) can transfer 16-bit segment selectors to and from 
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segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or 
from a segment register and a general-purpose register or memory. Transfers 
between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far 
control-transfer versions of the JMP, CALL, and RET instructions (see Section 
7.3.16.2, “Far Control Transfer Instructions”) affect the CS register directly. 

7.3.16.2  Far Control Transfer Instructions
The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) 
both accept a far pointer as a source operand to transfer program control to a 
segment other than the segment currently being pointed to by the CS register. When 
a far call is made with the CALL instruction, the current values of the EIP and CS 
registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-22) can be used to 
execute a far return. Here, program control is transferred from a code segment that 
contains a called procedure back to the code segment that contained the calling 
procedure. The RET instruction restores the values of the CS and EIP registers for the 
calling procedure from the stack.

7.3.16.3  Software Interrupt Instructions
The software interrupt instructions INT, INTO, BOUND, and IRET (see Section 
7.3.8.4, “Software Interrupt Instructions”) can also call and return from interrupt 
and exception handler procedures that are located in a code segment other than the 
current code segment. With these instructions, however, the switching of code 
segments is handled transparently from the application program.

7.3.16.4  Load Far Pointer Instructions
The load far pointer instructions LDS (load far pointer using DS), LES (load far 
pointer using ES), LFS (load far pointer using FS), LGS (load far pointer using GS), 
and LSS (load far pointer using SS) load a far pointer from memory into a segment 
register and a general-purpose general register. The segment selector part of the far 
pointer is loaded into the selected segment register and the offset is loaded into the 
selected general-purpose register.

7.3.17 Miscellaneous Instructions
The following instructions perform operations that are of interest to applications 
programmers. For the purpose of this discussion, these instructions are further 
divided into subordinate subgroups of instructions that provide for:

• Address computations

• Table lookup
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• Processor identification

• NOP and undefined instruction entry

7.3.17.1  Address Computation Instruction
The LEA (load effective address) instruction computes the effective address in 
memory (offset within a segment) of a source operand and places it in a general-
purpose register. This instruction can interpret any of the processor’s addressing 
modes and can perform any indexing or scaling that may be needed. It is especially 
useful for initializing the ESI or EDI registers before the execution of string instruc-
tions or for initializing the EBX register before an XLAT instruction. 

7.3.17.2  Table Lookup Instructions
The XLAT and XLATB (table lookup) instructions replace the contents of the AL 
register with a byte read from a translation table in memory. The initial value in the 
AL register is interpreted as an unsigned index into the translation table. This index 
is added to the contents of the EBX register (which contains the base address of the 
table) to calculate the address of the table entry. These instructions are used for 
applications such as converting character codes from one alphabet into another (for 
example, an ASCII code could be used to look up its EBCDIC equivalent in a table).

7.3.17.3  Processor Identification Instruction
The CPUID (processor identification) instruction returns information about the 
processor on which the instruction is executed. 

7.3.17.4  No-Operation and Undefined Instructions
The NOP (no operation) instruction increments the EIP register to point at the next 
instruction, but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel 
reserves the opcode for this instruction for this function. The instruction is provided 
to allow software to test an invalid opcode exception handler.
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CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point 
processing capabilities for use in graphics processing, scientific, engineering, and 
business applications. It supports the floating-point, integer, and packed BCD integer 
data types and the floating-point processing algorithms and exception handling 
architecture defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It 
also provides exception handling information that is specific to the x87 FPU. Refer to 
the following chapters or sections of chapters for additional information about x87 
FPU instructions and floating-point operations:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide detailed descriptions of x87 FPU instructions.

• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” 
and Section 4.7, “BCD and Packed BCD Integers,” describe the floating-point, 
integer, and BCD data types.

• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-
Point Exception Conditions,” and Section 4.9.2, “Floating-Point Exception 
Priority,” give an overview of the floating-point exceptions that the x87 FPU can 
detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT
The x87 FPU represents a separate execution environment within the IA-32 architec-
ture (see Figure 8-1). This execution environment consists of eight data registers 
(called the x87 FPU data registers) and the following special-purpose registers: 

• Status register

• Control register

• Tag word register

• Last instruction pointer register

• Last data (operand) pointer register

• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. 
The state of the x87 FPU is independent from the state of the basic execution envi-
ronment and from the state of SSE/SSE2/SSE3 extensions. 

However, the x87 FPU and Intel MMX technology share state because the MMX regis-
ters are aliased to the x87 FPU data registers. Therefore, when writing code that uses 
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x87 FPU and MMX instructions, the programmer must explicitly manage the x87 FPU 
and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in 
protected mode. Memory operands are specified using the ModR/M, SIB encoding 
that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers
The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. 
Values are stored in these registers in the double extended-precision floating-point 
format shown in Figure 4-3. When floating-point, integer, or packed BCD integer 
values are loaded from memory into any of the x87 FPU data registers, the values are 
automatically converted into double extended-precision floating-point format (if they 
are not already in that format). When computation results are subsequently trans-
ferred back into memory from any of the x87 FPU registers, the results can be left in 
the double extended-precision floating-point format or converted back into a shorter 
floating-point format, an integer format, or the packed BCD integer format. (See 
Section 8.2, “x87 FPU Data Types,” for a description of the data types operated on by 
the x87 FPU.)
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The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see 
Figure 8-2). All addressing of the data registers is relative to the register on the top of 
the stack. The register number of the current top-of-stack register is stored in the 
TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by 
one and load a value into the new top-of-stack register, and store operations store 
the value from the current TOP register in memory and then increment TOP by one. 
(For the x87 FPU, a load operation is equivalent to a push and a store operation is 
equivalent to a pop.) Note that load and store operations are also available that do 
not push and pop the stack.

Figure 8-1.  x87 FPU Execution Environment
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If a load operation is performed when TOP is at 0, register wraparound occurs and 
the new value of TOP is set to 7. The floating-point stack-overflow exception indicates 
when wraparound might cause an unsaved value to be overwritten (see Section 
8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the 
programmer to implicitly operate on the top of the stack, or to explicitly operate on 
specific registers relative to the TOP. Assemblers support these register addressing 
modes, using the expression ST(0), or simply ST, to represent the current stack top 
and ST(i) to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if 
TOP contains 011B (register 3 is the top of the stack), the following instruction would 
add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and 
instructions are typically used to perform a series of computations. Here, a two-
dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) 
and loads the value 5.6 from memory into ST(0). The result of this operation is 
shown in snap-shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from 
memory and stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from 
memory and stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in 
ST(0), shown in snap-shot (d).

Figure 8-2.  x87 FPU Data Register Stack
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The style of programming demonstrated in this example is supported by the floating-
point instruction set. In cases where the stack structure causes computation bottle-
necks, the FXCH (exchange x87 FPU register contents) instruction can be used to 
streamline a computation.

8.1.2.1  Parameter Passing With the x87 FPU Register Stack
Like the general-purpose registers, the contents of the x87 FPU data registers are 
unaffected by procedure calls, or in other words, the values are maintained across 
procedure boundaries. A calling procedure can thus use the x87 FPU data registers 
(as well as the procedure stack) for passing parameter between procedures. The 
called procedure can reference parameters passed through the register stack using 
the current stack register pointer (TOP) and the ST(0) and ST(i) nomenclature. It is 
also common practice for a called procedure to leave a return value or result in 
register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, 
the programmer is responsible for maintaining the integrity of parameters being 
passed in the x87 FPU data registers. If an MMX instruction is executed before the 
parameters in the x87 FPU data registers have been passed to another procedure, 
the parameters may be lost (see Section 9.5, “Compatibility with x87 FPU Architec-
ture”).

Figure 8-3.  Example x87 FPU Dot Product Computation
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Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD  value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1)  ;(d)
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8.1.3 x87 FPU Status Register
The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the 
x87 FPU. The flags in the x87 FPU status register include the FPU busy flag, top-of-
stack (TOP) pointer, condition code flags, error summary status flag, stack fault flag, 
and exception flags. The x87 FPU sets the flags in this register to show the results of 
operations. 

 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) 
can be stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, 
FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX register of 
the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1  Top of Stack (TOP) Pointer
A pointer to the x87 FPU data register that is currently at the top of the x87 FPU 
register stack is contained in bits 11 through 13 of the x87 FPU status word. This 
pointer, which is commonly referred to as TOP (for top-of-stack), is a binary value 
from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information 
about the TOP pointer.

8.1.3.2  Condition Code Flags
The four condition code flags (C0 through C3) indicate the results of floating-point 
comparison and arithmetic operations. Table 8-1 summarizes the manner in which 
the floating-point instructions set the condition code flags. These condition code bits 

Figure 8-4.  x87 FPU Status Word
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are used principally for conditional branching and for storage of information used in 
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condi-
tion Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. 
When both the IE and SF flags in the x87 FPU status word are set, indicating a stack 
overflow or underflow exception (#IS), the C1 flag distinguishes between overflow 
(C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indi-
cating an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the 
instruction was upward. The FXAM instruction sets C1 to the sign of the value being 
examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate 
an incomplete reduction (or partial remainder). When a successful reduction has 
been completed, the C0, C3, and C1 condition code flags are set to the three least-
significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial 
Remainder” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A, for more information 
on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate 
that the source operand is beyond the allowable range of ±263 and clear the C2 flag 
if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do 
not rely on any specific value in these flags.

8.1.3.3  x87 FPU Floating-Point Exception Flags
The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU 
status word indicate that one or more floating-point exceptions have been detected 
since the bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE, 
and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception 
Handling.” Each of the exception flags can be masked by an exception mask bit in the 
x87 FPU control word (see Section 8.1.5, “x87 FPU Control Word”). The exception 
summary status flag (ES, bit 7) is set when any of the unmasked exception flags are 
set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of 
the techniques described in Section 8.7, “Handling x87 FPU Exceptions in Software.” 
(Note that if an exception flag is masked, the x87 FPU will still set the appropriate 
flag if the associated exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits (once set, they remain set until explicitly 
cleared). They can be cleared by executing the FCLEX/FNCLEX (clear exceptions) 
instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE 
instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of 
the ES flag.
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Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, 
FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction 
complete

1 = reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, 
FBSTP, FCMOVcc, FIADD, 
FDIV, FDIVP, FDIVR, FDIVRP, 
FIDIV, FIDIVR, FIMUL, FIST, 
FISTP, FISUB, FISUBR,FMUL, 
FMULP, FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, 
FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, 
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, 
FPTAN

Undefined 0 = source 
operand 
within range
1 = source 
operand out 
of range

Roundup or #IS 
(Undefined if 
C2 = 1)

FABS, FBLD, FCHS, 
FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP 
(ext. prec.), FXCH, FXTRACT 

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, 
FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, 
FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, 
FSAVE/FNSAVE

0 0 0 0
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8.1.3.4  Stack Fault Flag
The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or 
stack underflow has occurred with data in the x87 FPU data register stack. The x87 
FPU explicitly sets the SF flag when it detects a stack overflow or underflow condi-
tion, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition. 

When this flag is set, the condition code flag C1 indicates the nature of the fault: 
overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning 
that after it is set, the processor does not clear it until it is explicitly instructed to do 
so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes
The x87 FPU (beginning with the P6 family processors) supports two mechanisms for 
branching and performing conditional moves according to comparisons of two 
floating-point values. These mechanism are referred to here as the “old mechanism” 
and the “new mechanism.” 

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in 
P6 family processors. This mechanism uses the floating-point compare instructions 
(FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two 
floating-point values and set the condition code flags (C0 through C3) according to 
the results. The contents of the condition code flags are then copied into the status 
flags of the EFLAGS register using a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the 
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional 
jumps or conditional moves can be performed based on the new settings of the 
status flags in the EFLAGS register.
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The new mechanism is available beginning with the P6 family processors. Using this 
mechanism, the new floating-point compare and set EFLAGS instructions (FCOMI, 
FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF, 
PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the 
three instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow 
conditional moves of floating-point values (values in the x87 FPU data registers) 
based on the setting of the status flags (ZF, PF, and CF) in the EFLAGS register. These 
instructions eliminate the need for an IF statement to perform conditional moves of 
floating-point values.

8.1.5 x87 FPU Control Word
The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 
FPU and rounding method used. It also contains the x87 FPU floating-point exception 
mask bits. The control word is cached in the x87 FPU control register. The contents of 
this register can be loaded with the FLDCW instruction and stored in memory with the 
FSTCW/FNSTCW instructions.

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register
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When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE 
instruction, the x87 FPU control word is set to 037FH, which masks all floating-point 
exceptions, sets rounding to nearest, and sets the x87 FPU precision to 64 bits.

8.1.5.1  x87 FPU Floating-Point Exception Mask Bits
The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 
6 floating-point exception flags in the x87 FPU status word. When one of these mask 
bits is set, its corresponding x87 FPU floating-point exception is blocked from being 
generated.

8.1.5.2  Precision Control Field
The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines 
the precision (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU 
(see Table 8-2). The default precision is double extended precision, which uses the 
full 64-bit significand available with the double extended-precision floating-point 
format of the x87 FPU data registers. This setting is best suited for most applications, 
because it allows applications to take full advantage of the maximum precision avail-
able with the x87 FPU data registers.

Figure 8-6.  x87 FPU Control Word
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The double precision and single precision settings reduce the size of the significand to 
53 bits and 24 bits, respectively. These settings are provided to support IEEE Stan-
dard 754 and to provide compatibility with the specifications of certain existing 
programming languages. Using these settings nullifies the advantages of the double 
extended-precision floating-point format's 64-bit significand length. When reduced 
precision is specified, the rounding of the significand value clears the unused bits on 
the right to zeros. 

The precision-control bits only affect the results of the following floating-point 
instructions: FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, 
FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.5.3  Rounding Control Field
The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) 
controls how the results of x87 FPU floating-point instructions are rounded. See 
Section 4.8.4, “Rounding,” for a discussion of rounding of floating-point values; See 
Section 4.8.4.1, “Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag
The infinity control flag (bit 12 of the x87 FPU control word) is provided for compati-
bility with the Intel 287 Math Coprocessor; it is not meaningful for later version x87 
FPU coprocessors or IA-32 processors. See Section 4.8.3.3, “Signed Infinities,” for 
information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word
The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in 
the x87 FPU data-register stack (one 2-bit tag per register). The tag codes indicate 
whether a register contains a valid number, zero, or a special floating-point number 
(NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87 
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 
FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 
FPU tag word is set to FFFFH, which marks all the x87 FPU data registers as empty.

Table 8-2.  Precision Control Field (PC)
Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B
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.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 
through 7). The current top-of-stack (TOP) pointer stored in the x87 FPU status word 
can be used to associate tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions 
(see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check 
the contents of an x87 FPU data register without performing complex decoding of the 
actual data in the register. To read the tag register, it must be stored in memory using 
either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag 
word in memory after being saved with one of these instructions is shown in Figures 
8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and 
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the 
x87 FPU uses those tag values only to determine if the data registers are empty 
(11B) or non-empty (00B, 01B, or 10B). 

If the tag register image indicates that a data register is empty, the tag in the tag 
register for that data register is marked empty (11B); if the tag register image indi-
cates that the data register is non-empty, the x87 FPU reads the actual value in the 
data register and sets the tag for the register accordingly. This action prevents a 
program from setting the values in the tag register to incorrectly represent the actual 
contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-
control instruction executed. These pointers are stored in two 48-bit registers: the 
x87 FPU instruction pointer and x87 FPU operand (data) pointer registers (see 
Figure 8-1). (These pointers are saved to provide state information for exception 
handlers.) 

Figure 8-7.  x87 FPU Tag Word
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Note that the value in the x87 FPU data pointer register is always a pointer to a 
memory operand, If the last non-control instruction that was executed did not have 
a memory operand, the value in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged 
when any of the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, 
FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, 
FRSTOR, and WAIT/FWAIT) are executed.

The pointers stored in the x87 FPU instruction and data pointer registers consist of an 
offset (stored in bits 0 through 31) and a segment selector (stored in bits 32 
through 47). 

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT, 
FSAVE/FNSAVE, FRSTOR, FXSAVE, and FXRSTOR instructions. The FINIT/FNINIT and 
FSAVE/FNSAVE instructions clear these registers.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points 
to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction 
pointer points only to the actual opcode.

8.1.9 Last Instruction Opcode
The x87 FPU stores the opcode of the last non-control instruction executed in an 
11-bit x87 FPU opcode register. (This information provides state information for 
exception handlers.) Only the first and second opcode bytes (after all prefixes) are 
stored in the x87 FPU opcode register. Figure 8-8 shows the encoding of these two 
bytes. Since the upper 5 bits of the first opcode byte are the same for all floating-
point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode 
register.

8.1.9.1  Fopcode Compatibility Sub-mode
Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture 
provides program control over the storing of the last instruction opcode (sometimes 
referred to as the fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set) 
or disables (clear) the fopcode compatibility mode. 

If FOP code compatibility mode is enabled, the FOP is defined as it has always been 
in previous IA32 implementations (always defined as the FOP of the last non-trans-
parent FP instruction executed before a FSAVE/FSTENV/FXSAVE). If FOP code 
compatibility mode is disabled (default), FOP is only valid if the last non-transparent 
FP instruction executed before a FSAVE/FSTENV/FXSAVE had an unmasked exception.
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The fopcode compatibility mode should be enabled only when x87 FPU floating-point 
exception handlers are designed to use the fopcode to analyze program performance 
or restart a program after an exception has been handled.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and 
FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state informa-
tion in memory for use by exception handlers and other system and application soft-
ware. The FSTENV/FNSTENV instruction saves the contents of the status, control, 
tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode registers. The 
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU 
data registers. Note that the FSAVE/FNSAVE instruction also initializes the x87 FPU to 
default values (just as the FINIT/FNINIT instruction does) after it has saved the orig-
inal state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating 
mode of the processor (protected mode or real-address mode) and on the operand-
size attribute in effect (32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-
8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. 
See Chapter 24, “System Management,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, for information on using the x87 FPU while 
in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded 
from memory into the x87 FPU. Here, the FLDENV instruction loads only the status, 
control, tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode regis-
ters, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 
FPU stack registers. 

Figure 8-8.  Contents of x87 FPU Opcode Registers
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Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format
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For instructions that also store x87 FPU data registers, the eight 
80-bit registers (R0-R7) follow the above structure in sequence.
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For instructions that also store x87 FPU data registers, the eight 
80-bit registers (R0-R7) follow the above structure in sequence.
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8.1.11 Saving the x87 FPU’s State with FXSAVE
The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU 
state along with the state of the XMM registers and the MXCSR register. Using the 
FXSAVE instruction to save the x87 FPU state has two benefits: (1) FXSAVE executes 
faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in 
one operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional 
information about these instructions.

8.2 X87 FPU DATA TYPES
The x87 FPU recognizes and operates on the following seven data types (see Figures 
8-13): single-precision floating point, double-precision floating point, double 

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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extended-precision floating point, signed word integer, signed doubleword integer, 
signed quadword integer, and packed BCD decimal integers. 

For detailed information about these data types, see Section 4.2.2, “Floating-Point 
Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and Packed 
BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all 
of these data types exist in memory only. When they are loaded into x87 FPU data 
registers, they are converted into double extended-precision floating-point format 
and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required 
by IEEE Standard 754. When a denormal number in single-precision or double-preci-
sion floating-point format is used as a source operand and the denormal exception is 
masked, the x87 FPU automatically normalizes the number when it is converted to 
double extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is 
stored at the initial address specified for the value. Successive bytes from the value 
are then stored in successively higher addresses in memory. The floating-point 
instructions load and store memory operands using only the initial address of the 
operand. 
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As a general rule, values should be stored in memory in double-precision format. This 
format provides sufficient range and precision to return correct results with a 
minimum of programmer attention. The single-precision format is useful for debug-
ging algorithms, because rounding problems will manifest themselves more quickly 
in this format. The double extended-precision format is normally reserved for holding 
intermediate results in the x87 FPU registers and constants. Its extra length is 
designed to shield final results from the effects of rounding and overflow/underflow 
in intermediate calculations. However, when an application requires the maximum 
range and precision of the x87 FPU (for data storage, computations, and results), 
values can be stored in memory in double extended-precision format.

8.2.1 Indefinites
For each x87 FPU data type, one unique encoding is reserved for representing the 
special value indefinite. The x87 FPU produces indefinite values as responses to 
some masked floating-point invalid-operation exceptions. See Tables 4-1, 4-3, and 

Figure 8-13.  x87 FPU Data Type Formats
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4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and 
packed BCD integer indefinite, respectively. 

The binary integer encoding 100..00B represents either of two things, depending on 
the circumstances of its use:

• The largest negative number supported by the format (–215, –231, or –263)

• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arith-
metic instruction), the x87 FPU interprets it as the largest negative number repre-
sentable in the format being used. If the x87 FPU detects an invalid operation when 
storing an integer value in memory with an FIST/FISTP instruction and the invalid-
operation exception is masked, the x87 FPU stores the integer indefinite encoding in 
the destination operand as a masked response to the exception. In situations where 
the origin of a value with this encoding may be ambiguous, the invalid-operation 
exception flag can be examined to see if the value was produced as a response to an 
exception.

8.2.2 Unsupported Double Extended-Precision 
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do 
not fall into any of the categories shown in Table 4-3. Table 8-3 shows these unsup-
ported encodings. Some of these encodings were supported by the Intel 287 math 
coprocessor; however, most of them are not supported by the Intel 387 math copro-
cessor and later IA-32 processors. These encodings are no longer supported due to 
changes made in the final version of IEEE Standard 754 that eliminated these encod-
ings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-
infinities, and un-normal numbers are not supported and should not be used as 
operand values. The Intel 387 math coprocessor and later IA-32 processors generate 
an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as 
pseudo-denormal numbers are not generated by IA-32 processors. When encoun-
tered as operands, however, they are handled correctly; that is, they are treated as 
denormals and a denormal exception is generated. Pseudo-denormal numbers 
should not be used as operand values. They are supported by current IA-32 proces-
sors (as described here) to support legacy code.
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8.3 X86 FPU INSTRUCTION SET
The floating-point instructions that the x87 FPU supports can be grouped into six 
functional categories:

• Data transfer instructions

• Basic arithmetic instructions

• Comparison instructions

• Transcendental instructions

Table 8-3.  Unsupported Double Extended-Precision Floating-Point Encodings and 
Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating 
Point

Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative 
Floating Point

Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative 
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →
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• Load constant instructions

• x87 FPU control instructions

See Section 5.2, “x87 FPU Instructions,” for a list of the floating-point instructions by 
category.

The following section briefly describes the instructions in each category. Detailed 
descriptions of the floating-point instructions are given in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 3A & 3B. 

8.3.1 Escape (ESC) Instructions
All of the instructions in the x87 FPU instruction set fall into a class of instructions 
known as escape (ESC) instructions. All of these instructions have a common opcode 
format, where the first byte of the opcode is one of the numbers from D8H through 
DFH.

8.3.2 x87 FPU Instruction Operands
Most floating-point instructions require one or two operands, located on the x87 FPU 
data-register stack or in memory. (None of the floating-point instructions accept 
immediate operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) 
register (the register at the top of the register stack), rather than by a physical 
register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods 
described in Section 3.7, “Operand Addressing.”

8.3.3 Data Transfer Instructions
The data transfer instructions (see Table 8-4) perform the following operations:

• Load a floating-point, integer, or packed BCD operand from memory into the 
ST(0) register.

• Store the value in an ST(0) register to memory in floating-point, integer, or 
packed BCD format.

• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from 
memory onto the top of the x87 FPU data-register stack. If the operand is in single-
precision or double-precision floating-point format, it is automatically converted to 
double extended-precision floating-point format. This instruction can also be used to 
push the value in a selected x87 FPU data register onto the top of the register stack.
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The FILD (load integer) instruction converts an integer operand in memory into 
double extended-precision floating-point format and pushes the value onto the top of 
the register stack. The FBLD (load packed decimal) instruction performs the same 
load operation for a packed BCD operand in memory.

The FST (store floating point) and FIST (store integer) instructions store the value in 
register ST(0) in memory in the destination format (floating point or integer, respec-
tively). Again, the format conversion is carried out automatically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP 
(store packed decimal and pop) instructions store the value in the ST(0) registers 
into memory in the destination format (floating point, integer, or packed BCD), then 
performs a pop operation on the register stack. A pop operation causes the ST(0) 
register to be marked empty and the stack pointer (TOP) in the x87 FPU control work 
to be incremented by 1. The FSTP instruction can also be used to copy the value in 
the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected 
register in the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in 
the stack [ST(i)] to register ST(0) if a condition specified with a condition code (cc) is 
satisfied (see Table 8-5). The condition being tested for is represented by the status 
flags in the EFLAGS register. The condition code mnemonics are appended to the 
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Table 8-4.  Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating 
Point

FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating 
Point

FIST Store Integer

FSTP Store Floating 
Point and Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move

Table 8-5.  Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing 
small IF constructions. They also help eliminate branching overhead for IF operations 
and the possibility of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the 
processor’s feature information with the CPUID instruction.

8.3.4 Load Constant Instructions
The following instructions push commonly used constants onto the top [ST(0)] of the 
x87 FPU register stack:

FLDZ Load +0.0

FLD1 Load +1.0

FLDPI Load π
FLDL2T Load log2 10

FLDL2E Load log2e

FLDLG2 Load log102

FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision 
(64 bits) and are accurate to approximately 19 decimal digits. They are stored 
internally in a format more precise than double extended-precision floating point. 
When loading the constant, the x87 FPU rounds the more precise internal constant 
according to the RC (rounding control) field of the x87 FPU control word. The 
inexact-result exception (#P) is not generated as a result of this rounding, nor is 
the C1 flag set in the x87 FPU status word if the value is rounded up. See Section 
8.3.8, “Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions
The following floating-point instructions perform basic arithmetic operations on 
floating-point numbers. Where applicable, these instructions match IEEE Standard 
754:

FADD/FADDP Add floating point

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Table 8-5.  Floating-Point Conditional Move Instructions (Contd.)
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FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of 
operands:

• Two x87 FPU data registers

• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are 
referenced on the data register stack.

Operands in memory can be in single-precision floating-point, double-precision 
floating-point, word-integer, or doubleword-integer format. They are converted to 
double extended-precision floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable effi-
cient coding. For example, the following options are available with the FSUB and 
FSUBR instructions for operating on values in a specified x87 FPU data register ST(i) 
and the ST(0) register:

FSUB:

ST(0) ← ST(0) − ST(i)
ST(i) ← ST(i) − ST(0)

FSUBR:

ST(0) ← ST(i) − ST(0)
ST(i) ← ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register 
and another x87 FPU register to perform a subtraction or division.
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The pop versions of the add, subtract, multiply, and divide instructions offer the 
option of popping the x87 FPU register stack following the arithmetic operation. 
These instructions operate on values in the ST(i) and ST(0) registers, store the result 
in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in 
the manner used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1 
instruction computes the remainder in the manner specified in IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value 
closest to the source value in the direction of the rounding mode specified in the RC 
field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic opera-
tions. The FABS instruction produces the absolute value of the source operand. The 
FCHS instruction changes the sign of the source operand. The FXTRACT instruction 
separates the source operand into its exponent and fraction and stores each value in 
a register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set 
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU 
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS 
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and 
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because 
floating-point values have four (rather than three) mutually exclusive relationships: 
less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being 
compared is a NaN or in an unsupported format. This additional relationship is 
required because, by definition, NaNs are not numbers, so they cannot have less 
than, equal, or greater than relationships with other floating-point values.
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The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with 
a floating-point source operand and set the condition code flags (C0, C2, and C3) in 
the x87 FPU status word according to the results (see Table 8-6). 

If an unordered condition is detected (one or both of the values are NaNs or in an 
undefined format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after 
the comparison operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, 
FCOMP, and FCOMPP instructions. The only difference is that with the FUCOM, 
FUCOMP, and FUCOMPP instructions, if an unordered condition is detected because 
one or both of the operands are QNaNs, the floating-point invalid-operation excep-
tion is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP 
instructions, except that the source operand is an integer value in memory. The 
integer value is automatically converted into an double extended-precision floating-
point value prior to making the comparison. The FICOMP instruction pops the x87 
FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except 
that the value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in 
the P6 family processors. They perform the same comparison as the FCOM and 
FCOMP instructions, except that they set the status flags (ZF, PF, and CF) in the 
EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of 
the x87 FPU condition code flags. The FCOMI and FCOMIP instructions allow condition 
branch instructions (Jcc) to be executed directly from the results of their comparison.

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number 
Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1
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Software can check if the FCOMI and FCOMIP instructions are supported by checking 
the processor’s feature information with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP 
instructions, except that they do not generate a floating-point invalid-operation 
exception if the unordered condition is the result of one or both of the operands being 
a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack 
following the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the 
ST(0) register (that is, whether the value is zero, a denormal number, a normal finite 
number, ∞, a NaN, or an unsupported format) or that the register is empty. It sets the 
x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). It also sets the C1 flag to indicate 
the sign of the value.

8.3.6.1  Branching on the x87 FPU Condition Codes
The processor does not offer any control-flow instructions that branch on the setting 
of the condition code flags (C0, C2, and C3) in the x87 FPU status word. To branch on 
the state of these flags, the x87 FPU status word must first be moved to the AX 
register in the integer unit. The FSTSW AX (store status word) instruction can be 
used for this purpose. When these flags are in the AX register, the TEST instruction 
can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents 
of the AX register with the constant 0400H (see Table 8-8). This operation will 
clear the ZF flag in the EFLAGS register if the condition code flags indicate an 
unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then 
be used to transfer control (if necessary) to a procedure for handling unordered 
operands.

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
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2. Check ordered comparison result. Use the constants given in Table 8-8 in the 
TEST instruction to test for a less than, equal to, or greater than result, then use 
the corresponding conditional branch instruction to transfer program control to 
the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic 
checks for QNaN results, then it is not necessary to check for the unordered result 
every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for 
another technique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the 
x87 FPU status word. To ensure that the status word is not altered inadvertently, 
store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Tangent

FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register 
stack and they return their results to the stack. The source operands for the FSIN, 
FCOS, FSINCOS, and FPTAN instructions must be given in radians; the source 
operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand 
value. It operates faster than executing the FSIN and FCOS instructions in succes-
sion.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), 
returning a result in radians. It is useful for converting rectangular coordinates to 
polar coordinates.

Table 8-8.  TEST Instruction Constants for Conditional Branching
Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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8.3.8 Pi
When the argument (source operand) of a trigonometric function is within the range 
of the function, the argument is automatically reduced by the appropriate multiple of 
2π through the same reduction mechanism used by the FPREM and FPREM1 instruc-
tions. The internal value of π that the x87 FPU uses for argument reduction and other 
computations is as follows:

π = 0.f ∗ 22

where:

f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the 
significand of an double extended-precision floating-point value. (Since 66 bits is not 
an even number of hexadecimal digits, two additional zeros have been added to the 
value so that it can be represented in hexadecimal format. The least-significant 
hexadecimal digit (C) is thus 1100B, where the two least-significant bits represent 
bits 67 and 68 of the mantissa.)

This value of π has been chosen to guarantee no loss of significance in a source 
operand, provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, 
FSINCOS, or FPTAN instructions, the full 66-bit fraction of π should be used. This 
insures that the results are consistent with the argument-reduction algorithms that 
these instructions use. Using a rounded version of π can cause inaccuracies in result 
values, which if propagated through several calculations, might result in meaningless 
results.

A common method of representing the full 66-bit fraction of π is to separate the value 
into two numbers (highπ and lowπ) that when added together give the value for π 
shown earlier in this section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in 
hexadecimal and the exponent in decimal) represent the 33 most-significant and the 
33 least-significant bits of the fraction:

highπ (unnormalized) = 0.C90FDAA20 * 2+2 
lowπ (unnormalized) = 0.42D184698 * 2−31

These values encoded in the IEEE double-precision floating-point format are as 
follows:

highπ = 400921FB  54400000
lowπ = 3DE0B461  1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are 
biased (by 1023) and the fractions are normalized.)

Similar versions of π can also be written in double extended-precision floating-point 
format.
8-30 Vol. 1



PROGRAMMING WITH THE X87 FPU
When using this two-part π value in an algorithm, parallel computations should be 
performed on each part, with the results kept separate. When all the computations 
are complete, the two results can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can 
be avoided, either by applying the trigonometric functions only to arguments within 
the range of the automatic reduction mechanism, or by performing all argument 
reductions (down to a magnitude less than π/4) explicitly in software.

8.3.9 Logarithmic, Exponential, and Scale
The following instructions provide two different logarithmic functions, an exponential 
function and a scale function:

FYL2X Logarithm

FYL2XP1 Logarithm epsilon

F2XM1 Exponential

FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic opera-
tions. The FYL2X instruction computes (y ∗ log2x). This operation permits the calcu-
lation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides 
optimum accuracy for values of x that are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source 
values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architec-
ture beginning with the Pentium processors. These new algorithms (used in tran-
scendental instructions FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and 
FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 proces-
sors and x87 math coprocessors. The accuracy of these instructions is measured in 
terms of units in the last place (ulp). For a given argument x, let f(x) and F(x) be 
the correct and computed (approximate) function values, respectively. The error in 
ulps is defined to be:

error f x( ) F x( )–

2k 63–
---------------------------=
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where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on 
transcendental functions is less than 1 ulp when rounding to the nearest (even) and 
less than 1.5 ulps when rounding in other modes. The functions are guaranteed to be 
monotonic, with respect to the input operands, throughout the domain supported by 
the instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaran-
teed to be within 1 ulp only when y equals 1. When y is not equal to 1, the maximum 
ulp error is always within 1.35 ulps in round to nearest mode. (For the two operand 
functions, monotonicity was proved by holding one of the operands constant.)

8.3.11 x87 FPU Control Instructions
The following instructions control the state and modes of operation of the x87 FPU. 
They also allow the status of the x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU

FLDCW Load x87 FPU control word

FSTCW/FNSTCWStore x87 FPU control word

FSTSW/FNSTSWStore x87 FPU status word

FCLEX/FNCLEXClear x87 FPU exception flags

FLDENV Load x87 FPU environment

FSTENV/FNSTENVStore x87 FPU environment

FRSTOR Restore x87 FPU state

FSAVE/FNSAVESave x87 FPU state

FINCSTP Increment x87 FPU register stack pointer

FDECSTP Decrement x87 FPU register stack pointer

FFREE Free x87 FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked
x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to 
default values.

The FLDCW instructions loads the x87 FPU control word register with a value from 
memory. The FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the x87 FPU 

1 2 k– f x( ) 2.<≤
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control and status words, respectively, in memory (or for an FSTSW/FNSTSW 
instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environ-
ment and state, respectively, in memory. The x87 FPU environment includes all the 
x87 FPU’s control and status registers; the x87 FPU state includes the x87 FPU envi-
ronment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE 
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT 
instruction, after it saves the original state of the x87 FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, 
respectively, from memory into the x87 FPU. These instructions are commonly used 
when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually 
mnemonics for the same opcode.) These instructions check the x87 FPU status word 
for pending unmasked x87 FPU exceptions. If any pending unmasked x87 FPU excep-
tions are found, they are handled before the processor resumes execution of the 
instructions (integer, floating-point, or system instruction) in the instruction stream. 
The WAIT/FWAIT instructions are provided to allow synchronization of instruction 
execution between the x87 FPU and the processor’s integer unit. See Section 8.6, 
“x87 FPU Exception Synchronization,” for more information on the use of the 
WAIT/FWAIT instructions.

8.3.12 Waiting vs. Non-waiting Instructions
All of the x87 FPU instructions except a few special control instructions perform a wait 
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending 
unmasked x87 FPU floating-point exceptions, before they perform their primary 
operation (such as adding two floating-point numbers). These instructions are called 
waiting instructions. Some of the x87 FPU control instructions, such as 
FSTSW/FNSTSW, have both a waiting and a non-waiting version. The waiting version 
(with the “F” prefix) executes a wait operation before it performs its primary opera-
tion; whereas, the non-waiting version (with the “FN” prefix) ignores pending 
unmasked exceptions. 

Non-waiting instructions allow software to save the current x87 FPU state without 
first handling pending exceptions or to reset or reinitialize the x87 FPU without 
regard for pending exceptions.

NOTES
When operating a Pentium or Intel486 processor in MS-DOS compat-
ibility mode, it is possible (under unusual circumstances) for a non-
waiting instruction to be interrupted prior to being executed to 
handle a pending x87 FPU exception. The circumstances where this 
can happen and the resulting action of the processor are described in 
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Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU 
Interrupt in Window.” 

When operating a P6 family, Pentium 4, or Intel Xeon processor in 
MS-DOS compatibility mode, non-waiting instructions can not be 
interrupted in this way (see Section D.2.2, “MS-DOS Compatibility 
Sub-mode in the P6 Family and Pentium 4 Processors”).

8.3.13 Unsupported x87 FPU Instructions
The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor 
instruction FSETPM perform no function in the Intel 387 math coprocessor and later 
IA-32 processors. If these opcodes are detected in the instruction stream, the x87 
FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING
The x87 FPU detects the six classes of exception conditions described in Section 4.9, 
“Overview of Floating-Point Exceptions”:

• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)

• Denormalized operand (#D)

• Divide-by-zero (#Z)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status 
word and a mask bit in the x87 FPU control word (see Section 8.1.3, “x87 FPU Status 
Register,” and Section 8.1.5, “x87 FPU Control Word,” respectively). In addition, the 
exception summary (ES) flag in the status word indicates when one or more 
unmasked exceptions has been detected. The stack fault (SF) flag (also in the status 
word) distinguishes between the two types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with 
either FSTCW/FNSTCW, FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with 
the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instruction.

NOTE
Section 4.9.1, “Floating-Point Exception Conditions,” provides a 
general overview of how the IA-32 processor detects and handles the 
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various classes of floating-point exceptions. This information pertains 
to x87 FPU as well as SSE/SSE2/SSE3 extensions. 

The following sections give specific information about how the x87 FPU handles 
floating-point exceptions that are unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions
When dealing with floating-point exceptions, it is useful to distinguish between 
arithmetic instructions and non-arithmetic instructions. Non-arithmetic 
instructions have no operands or do not make substantial changes to their operands. 
Arithmetic instructions do make significant changes to their operands; in particular, 
they make changes that could result in floating-point exceptions being signaled. 
Table 8-9 lists the non-arithmetic and arithmetic instructions. It should be noted that 
some non-arithmetic instructions can signal a floating-point stack (fault) exception, 
but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN
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8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS
The following sections describe the various conditions that cause a floating-point 
exception to be generated by the x87 FPU and the masked response of the x87 FPU 
when these conditions are detected. Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A & 2B, list the floating-point exceptions that can be 
signaled for each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.

8.5.1 Invalid Operation Exception
The floating-point invalid-operation exception occurs in response to two sub-classes 
of operations:

• Stack overflow or underflow (#IS)

• Invalid arithmetic operand (#IA)

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit 
(IM) is bit 0 of the x87 FPU control word. The stack fault flag (SF) of the x87 FPU 
status word indicates the type of operation that caused the exception. When the SF 
flag is set to 1, a stack operation has resulted in stack overflow or underflow; when 

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTE:
1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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the flag is cleared to 0, an arithmetic instruction has encountered an invalid operand. 
Note that the x87 FPU explicitly sets the SF flag when it detects a stack overflow or 
underflow condition, but it does not explicitly clear the flag when it detects an invalid-
arithmetic-operand condition. As a result, the state of the SF flag can be 1 following 
an invalid-arithmetic-operation exception, if it was not cleared from the last time a 
stack overflow or underflow condition occurred. See Section 8.1.3.4, “Stack Fault 
Flag,” for more information about the SF flag.

8.5.1.1  Stack Overflow or Underflow Exception (#IS)
The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU 
register stack (see Section 8.1.7, “x87 FPU Tag Word”). It then uses this information 
to detect two different types of stack faults:

• Stack overflow — An instruction attempts to load a non-empty x87 FPU register 
from memory. A non-empty register is defined as a register containing a zero 
(tag value of 01), a valid value (tag value of 00), or a special value (tag value of 
10).

• Stack underflow — An instruction references an empty x87 FPU register as a 
source operand, including attempting to write the contents of an empty register 
to memory. An empty register has a tag value of 11.

NOTES
The term stack overflow originates from the situation where the 
program has loaded (pushed) eight values from memory onto the 
x87 FPU register stack and the next value pushed on the stack causes 
a stack wraparound to a register that already contains a value.

The term stack underflow originates from the opposite situation. 
Here, a program has stored (popped) eight values from the x87 FPU 
register stack to memory and the next value popped from the stack 
causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and 
the SF flag (bit 6) in the x87 FPU status word to 1. It then sets condition-code flag C1 
(bit 9) in the x87 FPU status word to 1 if stack overflow occurred or to 0 if stack 
underflow occurred. 

If the invalid-operation exception is masked, the x87 FPU returns the floating point, 
integer, or packed decimal integer indefinite value to the destination operand, 
depending on the instruction being executed. This value overwrites the destination 
register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is 
invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”) and the top-
of-stack pointer (TOP) and source operands remain unchanged.
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8.5.1.2  Invalid Arithmetic Operand Exception (#IA)
The x87 FPU is able to detect a variety of invalid arithmetic operations that can be 
coded in a program. These operations are listed in Table 8-10. (This list includes the 
invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in 
the x87 FPU status word to 1. If the invalid-operation exception is masked, the x87 
FPU then returns an indefinite value or QNaN to the destination operand and/or sets 
the floating-point condition codes as shown in Table 8-10. If the invalid-operation 
exception is not masked, a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and 
source operands remain unchanged.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in 
an unsupported format.

Return the QNaN floating-point indefinite 
value to the destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see 
Table 4-7).

Ordered compare and test operations: one or both 
operands are NaNs.

Set the condition code flags (C0, C2, and C3) in 
the x87 FPU status word or the CF, PF, and ZF 
flags in the EFLAGS register to 111B (not 
comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite 
value to the destination operand.

Multiplication: ∞  by 0; 0 by ∞ . Return the QNaN floating-point indefinite 
value to the destination operand.

Division: ∞  by  ∞ ; 0 by 0. Return the QNaN floating-point indefinite 
value to the destination operand.

Remainder instructions FPREM, FPREM1: modulus 
(divisor) is 0 or dividend is ∞ .

Return the QNaN floating-point indefinite; 
clear condition code flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, 
FSINCOS: source operand is ∞ .

Return the QNaN floating-point indefinite; 
clear condition code flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –
0); FYL2X: negative operand (except FYL2X (–0) = 
–∞); FYL2XP1: operand more negative than –1.

Return the QNaN floating-point indefinite 
value to the destination operand.

FBSTP: Converted value cannot be represented in 
18 decimal digits, or source value is an SNaN, 
QNaN, ± ∞ , or in an unsupported format.

Store packed BCD integer indefinite value in 
the destination operand.
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Normally, when one or both of the source operands is a QNaN (and neither is an 
SNaN or in an unsupported format), an invalid-operand exception is not generated. 
An exception to this rule is most of the compare instructions (such as the FCOM and 
FCOMI instructions) and the floating-point to integer conversion instructions 
(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will 
generate an invalid-operand exception.

8.5.2 Denormal Operand Exception (#D)
The x87 FPU signals the denormal-operand exception under the following conditions:

• If an arithmetic instruction attempts to operate on a denormal operand (see 
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”).

• If an attempt is made to load a denormal single-precision or double-precision 
floating-point value into an x87 FPU register. (If the denormal value being loaded 
is a double extended-precision floating-point value, the denormal-operand 
exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit 
(DM) is bit 1 of the x87 FPU control word.

When a denormal-operand exception occurs and the exception is masked, the x87 
FPU sets the DE flag, then proceeds with the instruction. The denormal operand in 
single- or double-precision floating-point format is automatically normalized when 
converted to the double extended-precision floating-point format. Subsequent oper-
ations will benefit from the additional precision of the internal double extended-preci-
sion floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE 
flag is set and a software exception handler is invoked (see Section 8.7, “Handling 
x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source oper-
ands remain unchanged.

For additional information about the denormal-operation exception, see Section 
4.9.1.2, “Denormal Operand Exception (#D).”

FIST/FISTP: Converted value exceeds 
representable integer range of the destination 
operand, or source value is an SNaN, QNaN, ±∞, or 
in an unsupported format.

Store integer indefinite value in the 
destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-
point indefinite value, then perform the 
exchange.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them (Contd.)
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8.5.3 Divide-By-Zero Exception (#Z)
The x87 FPU reports a floating-point divide-by-zero exception whenever an instruc-
tion attempts to divide a finite non-zero operand by 0. The flag (ZE) for this exception 
is bit 2 of the x87 FPU status word, and the mask bit (ZM) is bit 2 of the x87 FPU 
control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and 
the other instructions that perform division internally (FYL2X and FXTRACT) can 
report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU 
sets the ZE flag and returns the values shown in Table 8-10. If the divide-by-zero 
exception is not masked, the ZE flag is set, a software exception handler is invoked 
(see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack 
pointer (TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)
The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the 
rounded result of an arithmetic instruction exceeds the largest allowable finite value 
that will fit into the floating-point format of the destination operand. (See Section 
4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the 
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where 
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (using the FST and FSTP instructions), where a within-range value 
in a data register is stored in memory in a single-precision or double-precision 
floating-point format. The numeric overflow exception cannot occur when storing 
values in an integer or BCD integer format. Instead, the invalid-arithmetic-operand 
exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, 
and the mask bit (OM) is bit 3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 
FPU sets the OE flag and returns one of the values shown in Table 4-10. The value 
returned depends on the current rounding mode of the x87 FPU (see Section 8.1.5.3, 
“Rounding Control Field”).

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation 
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the 
two operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero 
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the 
source operand.
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The action that the x87 FPU takes when numeric overflow occurs and the numeric-
overflow exception is not masked, depends on whether the instruction is supposed to 
store the result in memory or on the register stack.

• Destination is a memory location — The OE flag is set and a software 
exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in 
Software”). The top-of-stack pointer (TOP) and source and destination operands 
remain unchanged. Because the data in the stack is in double extended-precision 
format, the exception handler has the option either of re-executing the store 
instruction after proper adjustment of the operand or of rounding the significand 
on the stack to the destination's precision as the standard requires. The 
exception handler should ultimately store a value into the destination location in 
memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded 
according to current settings of the precision and rounding control bits in the x87 
FPU control word and the exponent of the result is adjusted by dividing it by 
224576. (For instructions not affected by the precision field, the significand is 
rounded to double-extended precision.) The resulting value is stored in the 
destination operand. Condition code bit C1 in the x87 FPU status word (called in 
this situation the “round-up bit”) is set if the significand was rounded upward and 
cleared if the result was rounded toward 0. After the result is stored, the OE flag 
is set and a software exception handler is invoked. The scaling bias value 24,576 
is equal to 3 ∗ 213. Biasing the exponent by 24,576 normally translates the 
number as nearly as possible to the middle of the double extended-precision 
floating-point exponent range so that, if desired, it can be used in subsequent 
scaled operations with less risk of causing further exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result 
is too large to be represented, even with a bias-adjusted exponent. Here, if 
overflow occurs again, after the result has been biased, a properly signed ∞ is 
stored in the destination operand.

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a floating-point numeric underflow condition whenever the 
rounded result of an arithmetic instruction is tiny; that is, less than the smallest 
possible normalized, finite value that will fit into the floating-point format of the 
destination operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for 
additional information about the numeric underflow exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where 
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (with the FST and FSTP instructions), where a within-range value in 
a data register is stored in memory in the smaller single-precision or double-preci-
sion floating-point formats. A numeric underflow exception cannot occur when 
storing values in an integer or BCD integer format, because a tiny value is always 
rounded to an integral value of 0 or 1, depending on the rounding mode in effect.
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The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status 
word, and the mask bit (UM) is bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 
FPU performs the operation described in Section 4.9.1.5, “Numeric Underflow Excep-
tion (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the 
instruction is supposed to store the result in a memory location or on the x87 FPU 
resister stack.

• Destination is a memory location — (Can occur only with a store instruction.) 
The UE flag is set and a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and 
source and destination operands remain unchanged, and no result is stored in 
memory. 
Because the data in the stack is in double extended-precision format, the 
exception handler has the option either of re-exchanges the store instruction 
after proper adjustment of the operand or of rounding the significand on the 
stack to the destination's precision as the standard requires. The exception 
handler should ultimately store a value into the destination location in memory if 
the program is to continue.

• Destination is the register stack — The significand of the result is rounded 
according to current settings of the precision and rounding control bits in the x87 
FPU control word and the exponent of the result is adjusted by multiplying it by 
224576. (For instructions not affected by the precision field, the significand is 
rounded to double extended precision.) The resulting value is stored in the 
destination operand. Condition code bit C1 in the x87 FPU status register (acting 
here as a “round-up bit”) is set if the significand was rounded upward and cleared 
if the result was rounded toward 0. After the result is stored, the UE flag is set 
and a software exception handler is invoked. The scaling bias value 24,576 is the 
same as is used for the overflow exception and has the same effect, which is to 
translate the result as nearly as possible to the middle of the double extended-
precision floating-point exponent range.

When using the FSCALE instruction, massive underflow can occur, where the 
result is too tiny to be represented, even with a bias-adjusted exponent. Here, if 
underflow occurs again after the result has been biased, a properly signed 0 is 
stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. (See Section 
4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for additional information about 
the numeric overflow exception.) Note that the transcendental instructions (FSIN, 
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce 
inexact results.
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The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the 
mask bit (PM) is bit 5 of the x87 FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and 
a numeric overflow or underflow condition has not occurred, the x87 FPU handles the 
exception as describe in Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” 
with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to 
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up” 
(C1 is cleared). In the “not rounded up” case, the least-significant bits of the inexact 
result are truncated so that the result fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and 
numeric overflow or underflow has not occurred, the x87 FPU handles the exception 
as described in the previous paragraph and, in addition, invokes a software exception 
handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 
FPU carries out one of the following operations:

• If an inexact result occurs in conjunction with masked overflow or underflow, the 
OE or UE flag and the PE flag are set and the result is stored as described for the 
overflow or underflow exceptions (see Section 8.5.4, “Numeric Overflow 
Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the 
inexact result exception is unmasked, the x87 FPU also invokes a software 
exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow 
and the destination operand is a register, the OE or UE flag and the PE flag are 
set, the result is stored as described for the overflow or underflow exceptions 
(see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5, 
“Numeric Underflow Exception (#U)”) and a software exception handler is 
invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination 
operand is a memory location (which can happen only for a floating-point store), the 
inexact-result condition is not reported and the C1 flag is cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION
Because the integer unit and x87 FPU are separate execution units, it is possible for 
the processor to execute floating-point, integer, and system instructions concur-
rently. No special programming techniques are required to gain the advantages of 
concurrent execution. (Floating-point instructions are placed in the instruction 
stream along with the integer and system instructions.) However, concurrent execu-
tion can cause problems for floating-point exception handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked 
floating-point exceptions. (Special exception synchronization is not required for 
masked floating-point exceptions, because the x87 FPU always returns a masked 
result to the destination operand.) 
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When a floating-point exception is unmasked and the exception condition occurs, the 
x87 FPU stops further execution of the floating-point instruction and signals the 
exception event. On the next occurrence of a floating-point instruction or a 
WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in 
the x87 FPU status word for pending floating-point exceptions. If floating-point 
exceptions are pending, the x87 FPU makes an implicit call (traps) to the floating-
point software exception handler. The exception handler can then execute recovery 
procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the excep-
tion is signaled and when it is actually handled. Because of concurrent execution, 
integer or system instructions can be executed during this time. It is thus possible for 
the source or destination operands for a floating-point instruction that faulted to be 
overwritten in memory, making it impossible for the exception handler to analyze or 
recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point 
instruction or a WAIT/FWAIT instruction) can be placed immediately after any 
floating-point instruction that might present a situation where state information 
pertaining to a floating-point exception might be lost or corrupted. Floating-point 
instructions that store data in memory are prime candidates for synchronization. For 
example, the following three lines of code have the potential for exception synchro-
nization problems:

FILD COUNT ;Floating-point instruction
INC COUNT ;Integer instruction
FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point 
instruction, FILD. If an exception is signaled during the execution of the FILD instruc-
tion, the INC instruction would be allowed to overwrite the value stored in the COUNT 
memory location before the floating-point exception handler is called. With the 
COUNT variable modified, the floating-point exception handler would not be able to 
recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the 
FILD instruction, synchronizes floating-point exception handling and eliminates the 
possibility of the COUNT variable being overwritten before the floating-point excep-
tion handler is invoked.

FILD COUNT ;Floating-point instruction
FSQRT      ;Subsequent floating-point instruction synchronizes

           ;any exceptions generated by the FILD instruction.
INC COUNT  ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of 
this instruction are stored in the x87 FPU data registers and will remain there, undis-
turbed, until the next floating-point or WAIT/FWAIT instruction is executed. To abso-
lutely insure that any exceptions emanating from the FSQRT instruction are handled 
(for example, prior to a procedure call), a WAIT instruction can be placed directly 
after the FSQRT instruction.
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Note that some floating-point instructions (non-waiting instructions) do not check for 
pending unmasked exceptions (see Section 8.3.11, “x87 FPU Control Instructions”). 
They include the FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instruc-
tions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all 
pending exceptions are essentially lost (either the x87 FPU status register is cleared 
or all exceptions are masked). The FNSTSW and FNSTCW instructions do not check 
for pending interrupts, but they do not modify the x87 FPU status and control regis-
ters. A subsequent “waiting” floating-point instruction can then handle any pending 
exceptions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE
The x87 FPU in Pentium and later IA-32 processors provides two different modes of 
operation for invoking a software exception handler for floating-point exceptions: 
native mode and MS-DOS compatibility mode. The mode of operation is selected by 
CR0.NE[bit 5]. (See Chapter 2, “System Architecture Overview,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information 
about the NE flag.)

8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting 
CR0.NE[bit 5] to 1. In this mode, if the x87 FPU detects an exception condition while 
executing a floating-point instruction and the exception is unmasked (the mask bit 
for the exception is cleared), the x87 FPU sets the flag for the exception and the ES 
flag in the x87 FPU status word. It then invokes the software exception handler 
through the floating-point-error exception (#MF, vector 16), immediately before 
execution of any of the following instructions in the processor’s instruction stream:

• The next floating-point instruction, unless it is one of the non-waiting instructions 
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 

• The next WAIT/FWAIT instruction.

• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting 
instruction, the x87 FPU executes the instruction without invoking the software 
exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode
If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point 
exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and 
IGNNE# pins. This method of reporting floating-point errors and invoking an excep-
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tion handler is provided to support the floating-point exception handling mechanism 
used in PC systems that are running the MS-DOS or Windows* 95 operating system.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-
point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for 
the exception and the ES flag in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either 
immediately, or else delayed (deferred) until just before the execution of the next 
waiting floating-point instruction or MMX instruction. Whether the FERR# pin is 
asserted immediately or delayed depends on the type of processor, the 
instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an 
unmasked x87 FPU exception, the processor freezes just before executing the 
next WAIT instruction, waiting floating-point instruction, or MMX instruction. 
Whether the FERR# pin was asserted at the preceding floating-point instruction 
or is just now being asserted, the freezing of the processor assures that the x87 
FPU exception handler will be invoked before the new floating-point (or MMX) 
instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, 
programmable interrupt controller (PIC). When the FERR# pin is asserted, the 
PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the 
interrupt 02H (NMI) interrupt handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI 
interrupt or a floating-point exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to 
the floating-point exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. 
This pin is provided to inhibit floating-point exceptions from being generated while 
the floating-point exception handler is servicing a previously signaled floating-point 
exception.

Appendix D, “Guidelines for Writing x87 FPU Exception Handlers,” describes the 
MS-DOS compatibility mode in much greater detail. This mode is somewhat more 
complicated in the Intel486 and Pentium processor implementations, as described in 
Appendix D.

8.7.3 Handling x87 FPU Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions 
that may be carried out by a floating-point exception handler. The state of the x87 
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FPU can be saved with the FSTENV/FNSTENV or FSAVE/FNSAVE instructions (see 
Section 8.1.10, “Saving the x87 FPU’s State with FSTENV/FNSTENV and 
FSAVE/FNSAVE”). 

If the faulting floating-point instruction is followed by one or more non-floating-point 
instructions, it may not be useful to re-execute the faulting instruction. See Section 
8.6, “x87 FPU Exception Synchronization,” for more information on synchronizing 
floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting 
instruction, the IRET instruction cannot be used directly. The reason for this is that 
because the exception is not generated until the next floating-point or WAIT/FWAIT 
instruction following the faulting floating-point instruction, the return instruction 
pointer on the stack may not point to the faulting instruction. To restart program 
execution at the faulting instruction, the exception handler must obtain a pointer to 
the instruction from the saved x87 FPU state information, load it into the return 
instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4, “x87 FPU Exception Handling Examples,” for general examples of 
floating-point exception handlers and for specific examples of how to write a floating-
point exception handler when using the MS-DOS compatibility mode.
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CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the 
Pentium II processor family and Pentium processor with MMX technology. The exten-
sions introduced in MMX technology support a single-instruction, multiple-data 
(SIMD) execution model that is designed to accelerate the performance of advanced 
media and communications applications.

This chapter describes MMX technology.

9.1 OVERVIEW OF MMX TECHNOLOGY
MMX technology defines a simple and flexible SIMD execution model to handle 64-bit 
packed integer data. This model adds the following features to the IA-32 architec-
ture, while maintaining backwards compatibility with all IA-32 applications and 
operating-system code:

• Eight new 64-bit data registers, called MMX registers

• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned)

— 64-bit packed word integers (signed and unsigned)

— 64-bit packed doubleword integers (signed and unsigned)

• Instructions that support the new data types and to handle MMX state 
management

• Extensions to the CPUID instruction

MMX technology is accessible from all the IA32-architecture execution modes 
(protected mode, real address mode, and virtual 8086 mode). It does not add any 
new modes to the architecture.

The following sections of this chapter describe MMX technology’s programming envi-
ronment, including MMX register set, data types, and instruction set. Additional 
instructions that operate on MMX registers have been added to the IA-32 architec-
ture by the SSE/SSE2 extensions.

For more information, see:

• Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” describes MMX instruc-
tions added to the IA-32 architecture with the SSE extensions.

• Section 11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” describes 
MMX instructions added to the IA-32 architecture with SSE2 extensions.

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, give detailed descriptions of MMX instructions.
Vol. 1 9-1



PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• Chapter 11, “Intel® MMX™ Technology System Programming,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B, describes the 
manner in which MMX technology is integrated into the IA-32 system 
programming model.

9.2 THE MMX TECHNOLOGY PROGRAMMING 
ENVIRONMENT 

Figure 9-1 shows the execution environment for MMX technology. All MMX instruc-
tions operate on MMX registers, the general-purpose registers, and/or memory as 
follows: 

• MMX registers — These eight registers (see Figure 9-1) are used to perform 
operations on 64-bit packed integer data. They are named MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used with existing IA-32 addressing modes to address operands 
in memory. (MMX registers cannot be used to address memory). General-
purpose registers are also used to hold operands for some MMX technology 
operations. They are EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, MMX instructions function like they do in 
protected mode. Memory operands are specified using the ModR/M, SIB encoding 
described in Section 3.7.5.

Figure 9-1.  MMX Technology Execution Environment
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9.2.2 MMX Registers
The MMX register set consists of eight 64-bit registers (see Figure 9-2), that are used 
to perform calculations on the MMX packed integer data types. Values in MMX regis-
ters have the same format as a 64-bit quantity in memory. 

The MMX registers have two data access modes: 64-bit access mode and 32-bit 
access mode. The 64-bit access mode is used for:

• 64-bit memory accesses

• 64-bit transfers between MMX registers

• All pack, logical, and arithmetic instructions

• Some unpack instructions

The 32-bit access mode is used for:

• 32-bit memory accesses

• 32-bit transfer between general-purpose registers and MMX registers

• Some unpack instructions

Although MMX registers are defined in the IA-32 architecture as separate registers, 
they are aliased to the registers in the FPU data register stack (R0 through R7). 

See also Section 9.5, “Compatibility with x87 FPU Architecture.”

9.2.3 MMX Data Types
MMX technology introduced the following 64-bit data types to the IA-32 architecture 
(see Figure 9-3):

• 64-bit packed byte integers — eight packed bytes

Figure 9-2.  MMX Register Set
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• 64-bit packed word integers — four packed words

• 64-bit packed doubleword integers — two packed doublewords

MMX instructions move 64-bit packed data types (packed bytes, packed words, or 
packed doublewords) and the quadword data type between MMX registers and 
memory or between MMX registers in 64-bit blocks. However, when performing arith-
metic or logical operations on the packed data types, MMX instructions operate in 
parallel on the individual bytes, words, or doublewords contained in MMX registers 
(see Section 9.2.5, “Single Instruction, Multiple Data (SIMD) Execution Model”).

9.2.4 Memory Data Formats
When stored in memory: bytes, words and doublewords in the packed data types are 
stored in consecutive addresses. The least significant byte, word, or doubleword is 
stored at the lowest address and the most significant byte, word, or doubleword is 
stored at the high address. The ordering of bytes, words, or doublewords in memory 
is always little endian. That is, the bytes with the low addresses are less significant 
than the bytes with high addresses.

9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model
MMX technology uses the single instruction, multiple data (SIMD) technique for 
performing arithmetic and logical operations on bytes, words, or doublewords packed 
into MMX registers (see Figure 9-4). For example, the PADDSW instruction adds 4 
signed word integers from one source operand to 4 signed word integers in a second 
source operand and stores 4 word integer results in a destination operand. This SIMD 
technique speeds up software performance by allowing the same operation to be 
carried out on multiple data elements in parallel. MMX technology supports parallel 
operations on byte, word, and doubleword data elements when contained in MMX 
registers.

Figure 9-3.  Data Types Introduced with the MMX Technology
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The SIMD execution model supported in the MMX technology directly addresses the 
needs of modern media, communications, and graphics applications, which often use 
sophisticated algorithms that perform the same operations on a large number of 
small data types (bytes, words, and doublewords). For example, most audio data is 
represented in 16-bit (word) quantities. The MMX instructions can operate on 4 
words simultaneously with one instruction. Video and graphics information is 
commonly represented as palletized 8-bit (byte) quantities. In Figure 9-4, one MMX 
instruction operates on 8 bytes simultaneously.

9.3 SATURATION AND WRAPAROUND MODES
When performing integer arithmetic, an operation may result in an out-of-range 
condition, where the true result cannot be represented in the destination format. For 
example, when performing arithmetic on signed word integers, positive overflow can 
occur when the true signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:

• Wraparound arithmetic — With wraparound arithmetic, a true out-of-range 
result is truncated (that is, the carry or overflow bit is ignored and only the least 
significant bits of the result are returned to the destination). Wraparound 
arithmetic is suitable for applications that control the range of operands to 
prevent out-of-range results. If the range of operands is not controlled, however, 
wraparound arithmetic can lead to large errors. For example, adding two large 
signed numbers can cause positive overflow and produce a negative result.

• Signed saturation arithmetic — With signed saturation arithmetic, out-of-
range results are limited to the representable range of signed integers for the 
integer size being operated on (see Table 9-1). For example, if positive overflow 
occurs when operating on signed word integers, the result is “saturated” to 
7FFFH, which is the largest positive integer that can be represented in 16 bits; if 
negative overflow occurs, the result is saturated to 8000H.

Figure 9-4.  SIMD Execution Model
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• Unsigned saturation arithmetic — With unsigned saturation arithmetic, out-
of-range results are limited to the representable range of unsigned integers for 
the integer size. So, positive overflow when operating on unsigned byte integers 
results in FFH being returned and negative overflow results in 00H being 
returned.

.

Saturation arithmetic provides an answer for many overflow situations. For example, 
in color calculations, saturation causes a color to remain pure black or pure white 
without allowing inversion. It also prevents wraparound artifacts from entering into 
computations when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating 
exceptions or setting flags in the EFLAGS register.

9.4 MMX INSTRUCTIONS
The MMX instruction set consists of 47 instructions, grouped into the following cate-
gories:

• Data transfer

• Arithmetic

• Comparison

• Conversion

• Unpacking

• Logical

• Shift

• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The 
following sections give a brief overview of the instructions within each group.

Table 9-1.  Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte     80H     -128     7FH      127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte     00H           0     FFH      255

Unsigned Word 0000H           0 FFFFH 65,535
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NOTES
The MMX instructions described in this chapter are those instructions 
that are available in an IA-32 processor when 
CPUID.01H:EDX.MMX[bit 23] = 0. 

Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” and Section 
11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” list 
additional instructions included with SSE/SSE2 extensions that 
operate on the MMX registers but are not considered part of the MMX 
instruction set.

Table 9-2.  MMX Instruction Set Summary

Category Wraparound Signed 
Saturation

Unsigned Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW, 
PADDD

PSUBB, PSUBW, 
PSUBD

PMULL, PMULH

PMADD

PADDSB, PADDSW

PSUBSB, PSUBSW

PADDUSB, PADDUSW

PSUBUSB, PSUBUSW

Comparison Compare for Equal

Compare for 
Greater Than

PCMPEQB, 
PCMPEQW, 
PCMPEQD

PCMPGTPB, 
PCMPGTPW, 
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW, 
PUNPCKHWD, 
PUNPCKHDQ

PUNPCKLBW, 
PUNPCKLWD, 
PUNPCKLDQ

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR
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9.4.1 Data Transfer Instructions
The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory 
to an MMX register and vice versa; or from a general-purpose register to an MMX 
register and vice versa.

The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory 
to an MMX register and vice versa; or transfers data between MMX registers.

9.4.2 Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiplication, and 
multiply/add operations on packed data types.

The PADDB/PADDW/PADDD (add packed integers) instructions and the 
PSUBB/PSUBW/ PSUBD (subtract packed integers) instructions add or subtract the 
corresponding signed or unsigned data elements of the source and destination oper-
ands in wraparound mode. These instructions operate on packed byte, word, and 
doubleword data types.

The PADDSB/PADDSW (add packed signed integers with signed saturation) instruc-
tions and the PSUBSB/PSUBSW (subtract packed signed integers with signed satura-
tion) instructions add or subtract the corresponding signed data elements of the 
source and destination operands and saturate the result to the limits of the signed 
data-type range. These instructions operate on packed byte and word data types.

The PADDUSB/PADDUSW (add packed unsigned integers with unsigned saturation) 
instructions and the PSUBUSB/PSUBUSW (subtract packed unsigned integers with 

Shift Shift Left Logical

Shift Right Logical

Shift Right 
Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data 
Transfer

Register to 
Register

Load from 
Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty MMX 
State

EMMS

Table 9-2.  MMX Instruction Set Summary (Contd.)

Category Wraparound Signed 
Saturation

Unsigned Saturation
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unsigned saturation) instructions add or subtract the corresponding unsigned data 
elements of the source and destination operands and saturate the result to the limits 
of the unsigned data-type range. These instructions operate on packed byte and 
word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW 
(multiply packed signed integers and store low result) instructions perform a signed 
multiply of the corresponding words of the source and destination operands and write 
the high-order or low-order 16 bits of each of the results, respectively, to the desti-
nation operand.

The PMADDWD (multiply and add packed integers) instruction computes the prod-
ucts of the corresponding signed words of the source and destination operands. The 
four intermediate 32-bit doubleword products are summed in pairs (high-order pair 
and low-order pair) to produce two 32-bit doubleword results. 

9.4.3 Comparison Instructions
The PCMPEQB/PCMPEQW/PCMPEQD (compare packed data for equal) instructions 
and the PCMPGTB/PCMPGTW/PCMPGTD (compare packed signed integers for greater 
than) instructions compare the corresponding signed data elements (bytes, words, 
or doublewords) in the source and destination operands for equal to or greater than, 
respectively. 

These instructions generate a mask of ones or zeros which are written to the destina-
tion operand. Logical operations can use the mask to select packed elements. This 
can be used to implement a packed conditional move operation without a branch or a 
set of branch instructions. No flags in the EFLAGS register are affected. 

9.4.4 Conversion Instructions
The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack 
doublewords into words with signed saturation) instructions convert signed words 
into signed bytes and signed doublewords into signed words, respectively, using 
signed saturation.

PACKUSWB (pack words into bytes with unsigned saturation) converts signed words 
into unsigned bytes, using unsigned saturation.

9.4.5 Unpack Instructions
The PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ (unpack high-order data elements) 
instructions and the PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ (unpack low-order data 
elements) instructions unpack bytes, words, or doublewords from the high- or low-
order data elements of the source and destination operands and interleave them in 
the destination operand. By placing all 0s in the source operand, these instructions 
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can be used to convert byte integers to word integers, word integers to doubleword 
integers, or doubleword integers to quadword integers. 

9.4.6 Logical Instructions
PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical 
OR), and PXOR (bitwise logical exclusive OR) perform bitwise logical operations on 
the quadword source and destination operands.

9.4.7 Shift Instructions
The logical shift left, logical shift right and arithmetic shift right instructions shift each 
element by a specified number of bit positions.

The PSLLW/PSLLD/PSLLQ (shift packed data left logical) instructions and the 
PSRLW/PSRLD/PSRLQ (shift packed data right logical) instructions perform a logical 
left or right shift of the data elements and fill the empty high or low order bit posi-
tions with zeros. These instructions operate on packed words, doublewords, and 
quadwords.

The PSRAW/PSRAD (shift packed data right arithmetic) instructions perform an arith-
metic right shift, copying the sign bit for each data element into empty bit positions 
on the upper end of each data element. This instruction operates on packed words 
and doublewords. 

9.4.8 EMMS Instruction
The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word 
to 11B, indicating empty registers. This instruction must be executed at the end of an 
MMX routine before calling other routines that can execute floating-point instruc-
tions. See Section 9.6.3, “Using the EMMS Instruction,” for more information on the 
use of this instruction.

9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE
The MMX state is aliased to the x87 FPU state. No new states or modes have been 
added to IA-32 architecture to support the MMX technology. The same floating-point 
instructions that save and restore the x87 FPU state also handle the MMX state (for 
example, during context switching).

MMX technology uses the same interface techniques between the x87 FPU and the 
operating system (primarily for task switching purposes). For more details, see 
Chapter 11, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.
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9.5.1 MMX Instructions and the x87 FPU Tag Word
After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The 
EMMS instruction (empty MMX state) sets the entire x87 FPU tag word to empty 
(11B). 

Chapter 11, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, provides additional 
information about the effects of x87 FPU and MMX instructions on the x87 FPU tag 
word. For a description of the tag word, see Section 8.1.7, “x87 FPU Tag Word.”

9.6 WRITING APPLICATIONS WITH MMX CODE
The following sections give guidelines for writing application code that uses MMX 
technology.

9.6.1 Checking for MMX Technology Support
Before an application attempts to use the MMX technology, it should check that it is 
present on the processor. Check by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to 
execute the CPUID instruction. If the processor does not support the CPUID 
instruction, this will generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology 
(if CPUID.01H:EDX.MMX[bit 23] = 1).

3. Check that emulation of the x87 FPU is disabled (if CR0.EM[bit 2] = 0).

If the processor attempts to execute an unsupported MMX instruction or attempts to 
execute an MMX instruction with CR0.EM[bit 2] set, this generates an invalid-opcode 
exception (#UD).

Example 9-1 illustrates how to use the CPUID instruction to detect the MMX tech-
nology. This example does not represent the entire CPUID sequence, but shows the 
portion used for detection of MMX technology.

Example 9-1.  Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

... ; identify Intel processor
mov EAX, 1 ; request for feature flags
CPUID ; 0FH, 0A2H CPUID instruction
test EDX, 00800000H ; Is IA MMX technology bit (Bit 23 of EDX) set?
jnz ; MMX_Technology_Found
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9.6.2 Transitions Between x87 FPU and MMX Code
Applications can contain both x87 FPU floating-point and MMX instructions. However, 
because the MMX registers are aliased to the x87 FPU register stack, care must be 
taken when making transitions between x87 FPU instructions and MMX instructions 
to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the 
processor changes the x87 FPU state as follows:

• The TOS (top of stack) value of the x87 FPU status word is set to 0.

• The entire x87 FPU tag word is set to the valid state (00B in all tag fields). 

• When an MMX instruction writes to an MMX register, it writes ones (11B) to the 
exponent part of the corresponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the 
MMX instruction is essentially lost.

When an x87 FPU instruction is executed, the processor assumes that the current 
state of the x87 FPU register stack and control registers is valid and executes the 
instruction without any preparatory modifications to the x87 FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the 
following guidelines are recommended:

• When transitioning between x87 FPU and MMX code, save the state of any x87 
FPU data or control registers that need to be preserved for future use. The FSAVE 
and FXSAVE instructions save the entire x87 FPU state.

• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use. 
FSAVE and FXSAVE also save the state of MMX registers.

— Execute the EMMS instruction to clear the MMX state from the x87 data and 
control registers.

The following sections describe the use of the EMMS instruction and give additional 
guidelines for mixing x87 FPU and MMX code.

9.6.3 Using the EMMS Instruction
As described in Section 9.6.2, “Transitions Between x87 FPU and MMX Code,” when 
an MMX instruction executes, the x87 FPU tag word is marked valid (00B). In this 
state, the execution of subsequent x87 FPU instructions may produce unexpected 
x87 FPU floating-point exceptions and/or incorrect results because the x87 FPU 
register stack appears to contain valid data. The EMMS instruction is provided to 
prevent this problem by marking the x87 FPU tag word as empty.

The EMMS instruction should be used in each of the following cases: 

• When an application using the x87 FPU instructions calls an MMX technology 
library/DLL (use the EMMS instruction at the end of the MMX code).
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• When an application using MMX instructions calls a x87 FPU floating-point 
library/DLL (use the EMMS instruction before calling the x87 FPU code).

• When a switch is made between MMX code in a task or thread and other tasks or 
threads in cooperative operating systems, unless it is certain that more MMX 
instructions will be executed before any x87 FPU code.

EMMS is not required when mixing MMX technology instructions with 
SSE/SSE2/SSE3 instructions (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

9.6.4 Mixing MMX and x87 FPU Instructions
An application can contain both x87 FPU floating-point and MMX instructions. 
However, frequent transitions between MMX and x87 FPU instructions are not recom-
mended, because they can degrade performance in some processor implementa-
tions. When mixing MMX code with x87 FPU code, follow these guidelines:

• Keep the code in separate modules, procedures, or routines.

• Do not rely on register contents across transitions between x87 FPU and MMX 
code modules.

• When transitioning between MMX code and x87 FPU code, save the MMX register 
state (if it will be needed in the future) and execute an EMMS instruction to empty 
the MMX state.

• When transitioning between x87 FPU code and MMX code, save the x87 FPU state 
if it will be needed in the future.

9.6.5 Interfacing with MMX Code
MMX technology enables direct access to all the MMX registers. This means that all 
existing interface conventions that apply to the use of the processor’s general-
purpose registers (EAX, EBX, etc.) also apply to the use of MMX registers.

An efficient interface to MMX routines might pass parameters and return values 
through the MMX registers or through a combination of memory locations (via the 
stack) and MMX registers. Do not use the EMMS instruction or mix MMX and x87 FPU 
code when using to the MMX registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used, 
the MMX data types can be defined as a 64-bit structure containing packed data 
types.

When implementing MMX instructions in high-level languages, other approaches can 
be taken, such as: 

• Passing parameters to an MMX routine by passing a pointer to a structure via the 
stack.

• Returning a value from a function by returning a pointer to a structure.
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9.6.6 Using MMX Code in a Multitasking Operating System 
Environment

An application needs to identify the nature of the multitasking operating system on 
which it runs. Each task retains its own state which must be saved when a task switch 
occurs. The processor state (context) consists of the general-purpose registers and 
the floating-point and MMX registers.

Operating systems can be classified into two types:

• Cooperative multitasking operating system

• Preemptive multitasking operating system

Cooperative multitasking operating systems do not save the FPU or MMX state when 
performing a context switch. Therefore, the application needs to save the relevant 
state before relinquishing direct or indirect control to the operating system.

Preemptive multitasking operating systems are responsible for saving and restoring 
the FPU and MMX state when performing a context switch. Therefore, the application 
does not have to save or restore the FPU and MMX state.

9.6.7 Exception Handling in MMX Code
MMX instructions generate the same type of memory-access exceptions as other 
IA-32 instructions (page fault, segment not present, and limit violations). Existing 
exception handlers do not have to be modified to handle these types of exceptions for 
MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate 
numeric exceptions. Therefore, there is no need to modify existing exception 
handlers or add new ones to handle numeric exceptions. 

If a floating-point exception is pending, the subsequent MMX instruction generates a 
numeric error exception (interrupt 16 and/or assertion of the FERR# pin). The MMX 
instruction resumes execution upon return from the exception handler.

9.6.8 Register Mapping
MMX registers and their tags are mapped to physical locations of the floating-point 
registers and their tags. Register aliasing and mapping is described in more detail in 
Chapter 11, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.6.9 Effect of Instruction Prefixes on MMX Instructions
Table 9-3 describes the effect of instruction prefixes on MMX instructions. Unpredict-
able behavior can range from being treated as a reserved operation on one genera-
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tion of IA-32 processors to generating an invalid opcode exception on another 
generation of processors.

See “Instruction Prefixes” in Chapter 2, “Instruction Format,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a description of the 
instruction prefixes.

Table 9-3.  Effect of Prefixes on MMX Instructions 

Prefix Type Effect on MMX Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H, 
3EH, 26H, 64H, 65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes (2EH and 
3EH)

Reserved and may result in unpredictable behavior.
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CHAPTER 10
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS (SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in 
the Pentium III processor family. These extensions enhance the performance of IA-32 
processors for advanced 2-D and 3-D graphics, motion video, image processing, 
speech recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes SSE. Chapter 11, “Programming with Streaming SIMD Exten-
sions 2 (SSE2),” provides information to assist in writing application programs that 
use SSE2 extensions. Chapter 12, “Programming with SSE3 and Supplemental 
SSE3,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability 
into the IA-32 architecture, with the 64-bit MMX registers, 64-bit packed integer data 
types, and instructions that allowed SIMD operations to be performed on packed 
integers. SSE extensions expand the SIMD execution model by adding facilities for 
handling packed and scalar single-precision floating-point values contained in 
128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and 
operating systems.

• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen 
XMM registers are available in 64-bit mode.

• The 32-bit MXCSR register, which provides control and status bits for operations 
performed on XMM registers.

• The 128-bit packed single-precision floating-point data type (four IEEE single-
precision floating-point values packed into a double quadword).

• Instructions that perform SIMD operations on single-precision floating-point 
values and that extend SIMD operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that 
operate on data located in MMX registers

— 64-bit SIMD integer instructions that support additional operations on packed 
integer operands located in MMX registers

• Instructions that save and restore the state of the MXCSR register.
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• Instructions that support explicit prefetching of data, control of the cacheability 
of data, and control the ordering of store operations.

• Extensions to the CPUID instruction. 

These features extend the IA-32 architecture’s SIMD programming model in four 
important ways: 

• The ability to perform SIMD operations on four packed single-precision floating-
point values enhances the performance of IA-32 processors for advanced media 
and communications applications that use computation-intensive algorithms to 
perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single-precision floating-point operations in XMM 
registers and SIMD integer operations in MMX registers provides greater 
flexibility and throughput for executing applications that operate on large arrays 
of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM 
registers without polluting the caches and the ability to prefetch data to selected 
cache levels before it is actually used. Applications that require regular access to 
large amounts of data benefit from these prefetching and streaming store 
capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering 
of store operations when using weakly-ordered memory types.

SSE extensions are fully compatible with all software written for IA-32 processors. All 
existing software continues to run correctly, without modification, on processors that 
incorporate SSE extensions. Enhancements to CPUID permit detection of SSE exten-
sions. SSE extensions are accessible from all IA-32 execution modes: protected 
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE 
extensions, including: XMM registers, the packed single-precision floating-point data 
type, and SSE instructions. For additional information, see:

• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.

• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that 
can be generated with SSE/SSE2/SSE3 instructions.

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide a detailed description of these instructions.

• Chapter 12, “System Programming for Streaming SIMD Instruction Sets,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
gives guidelines for integrating these extensions into an operating-system 
environment.
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10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE 
instructions operate on the XMM registers, MMX registers, and/or memory as 
follows: 

• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, 
“XMM Registers”) are used to operate on packed or scalar single-precision 
floating-point data. Scalar operations are operations performed on individual 
(unpacked) single-precision floating-point values stored in the low doubleword of 
an XMM register. XMM registers are referenced by the names XMM0 through 
XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, 
“MXCSR Control and Status Register”) provides status and control bits used in 
SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform 
operations on 64-bit packed integer data. They are also used to hold operands for 
some operations performed between the MMX and XMM registers. MMX registers 
are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used along with the existing IA-32 addressing modes to address 
operands in memory. (MMX and XMM registers cannot be used to address 
memory). The general-purpose registers are also used to hold operands for some 

Figure 10-1.  SSE Execution Environment
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SSE instructions and are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and 
ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result 
of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In 
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15 
are accessed by using REX prefixes. Memory operands are specified using the 
ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the 
REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix is 
used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with 
SSE extensions (see Figure 10-2). These registers can be accessed directly using the 
names XMM0 to XMM7; and they can be accessed independently from the x87 FPU 
and MMX registers and the general-purpose registers (that is, they are not aliased to 
any other of the processor’s registers). 

SSE instructions use the XMM registers only to operate on packed single-precision 
floating-point operands. SSE2 extensions expand the functions of the XMM registers 
to operand on packed or scalar double-precision floating-point operands and packed 

Figure 10-2.  XMM Registers

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

127 0
10-4 Vol. 1



PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section 
12.1, “SSE3/SSSE3 Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used 
to address memory. Addressing memory is accomplished by using the general-
purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 
32-bit, 64-bit, and 128-bit increments. When storing the entire contents of an XMM 
register in memory (128-bit store), the data is stored in 16 consecutive bytes, with 
the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information 
for SSE, SSE2, and SSE3 SIMD floating-point operations. This register contains: 

• flag and mask bits for SIMD floating-point exceptions

• rounding control field for SIMD floating-point operations

• flush-to-zero flag that provides a means of controlling underflow conditions on 
SIMD floating-point operations

• denormals-are-zeros flag that controls how SIMD floating-point instructions 
handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and 
FXRSTOR instructions and stored in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-
up or reset of the processor; attempting to write a non-zero value to these bits, using 
either the FXRSTOR or LDMXCSR instructions, will result in a general-protection 
exception (#GP) being generated.
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10.2.3.1  SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point excep-
tion has been detected. They are “sticky” flags. That is, after a flag is set, it remains 
set until explicitly cleared. To clear these flags, use the LDMXCSR or the FXRSTOR 
instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. 
An exception type is masked if the corresponding mask bit is set, and it is unmasked 
if the bit is clear. These mask bits are set upon a power-up or reset. This causes all 
SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag 
bit, a SIMD floating-point exception will not be generated as a result of this change. 
The unmasked exception will be generated only upon the execution of the next 
SSE/SSE2/SSE3 instruction that detects the unmasked exception condition. 

For more information about the use of the SIMD floating-point exception mask and 
flag bits, see Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, 
“SSE3/SSSE3 Exceptions.”

Figure 10-3.  MXCSR Control/Status Register 
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* The denormals-are-zeros flag was introduced in the Pentium 4 and Intel Xeon processor.
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10.2.3.2  SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the 
results of SIMD floating-point instructions are rounded. See Section 4.8.4, 
“Rounding,” for a description of the function and encoding of the rounding control bits.

10.2.3.3  Flush-To-Zero
Bit 15 (FZ) of the MXCSR register enables the flush-to-zero mode, which controls the 
masked response to a SIMD floating-point underflow condition. When the underflow 
exception is masked and the flush-to-zero mode is enabled, the processor performs 
the following operations when it detects a floating-point underflow condition:

• Returns a zero result with the sign of the true result

• Sets the precision and underflow exception flags

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-
mandated masked response to underflow is to deliver the denormalized result (see 
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The flush-to-zero 
mode is provided primarily for performance reasons. At the cost of a slight precision 
loss, faster execution can be achieved for applications where underflows are common 
and rounding the underflow result to zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling 
the flush-to-zero mode.

10.2.3.4  Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which 
controls the processor’s response to a SIMD floating-point denormal operand condi-
tion. When the denormals-are-zeros flag is set, the processor converts all denormal 
source operands to a zero with the sign of the original operand before performing any 
computations on them. The processor does not set the denormal-operand exception 
flag (DE), regardless of the setting of the denormal-operand exception mask bit 
(DM); and it does not generate a denormal-operand exception if the exception is 
unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see 
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The denormals-
are-zeros mode is provided to improve processor performance for applications such 
as streaming media processing, where rounding a denormal operand to zero does 
not appreciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, 
disabling the denormals-are-zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon 
processor with the SSE2 extensions; however, it is fully compatible with the SSE 
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SIMD floating-point instructions (that is, the denormals-are-zeros flag affects the 
operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors 
and in some models of the Pentium 4 processor, this flag (bit 6) is reserved. See 
Section 11.6.3, “Checking for the DAZ Flag in the MXCSR Register,” for instructions 
for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the 
DAZ flag will cause a general-protection exception (#GP). See Section 11.6.6, 
“Guidelines for Writing to the MXCSR Register,” for instructions for preventing such 
general-protection exceptions by using the MXCSR_MASK value returned by the 
FXSAVE instruction.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and 
the x87 FPU

The state (XMM registers and MXCSR register) introduced into the IA-32 execution 
environment with the SSE extensions is shared with SSE2 and SSE3 extensions. 
SSE/SSE2/SSE3 instructions are fully compatible; they can be executed together in 
the same instruction stream with no need to save state when switching between 
instruction sets.

XMM registers are independent of the x87 FPU and MMX registers, so 
SSE/SSE2/SSE3 operations performed on the XMM registers can be performed in 
parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7, 
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states 
along with the x87 FPU and MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision 
floating-point data type, to the IA-32 architecture (see Figure 10-4). This data type 
consists of four IEEE 32-bit single-precision floating-point values packed into a 
double quadword. (See Figure 4-3 for the layout of a single-precision floating-point 
value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed description of 
the single-precision floating-point format.)

Figure 10-4.  128-Bit Packed Single-Precision Floating-Point Data Type
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This 128-bit packed single-precision floating-point data type is operated on in the 
XMM registers or in memory. Conversion instructions are provided to convert two 
packed single-precision floating-point values into two packed doubleword integers or 
a scalar single-precision floating-point value into a doubleword integer (see 
Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX 
registers, and between XMM registers and general-purpose bit registers. See 
Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte 
boundary, except in the following cases: 

• The MOVUPS instruction supports unaligned accesses.

• Scalar instructions that use a 4-byte memory operand that is not subject to 
alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups

• Packed and scalar single-precision floating-point instructions

• 64-bit SIMD integer instructions

• State management instructions

• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the 
following subgroups:

• Data movement instructions

• Arithmetic instructions

• Logical instructions

• Comparison instructions

• Shuffle instructions

• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on 
packed single-precision floating-point operands (see Figure 10-5). Each source 
operand contains four single-precision floating-point values, and the destination 
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operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

The scalar single-precision floating-point instructions operate on the low (least 
significant) doublewords of the two source operands (X0 and Y0); see Figure 10-6. 
The three most significant doublewords (X1, X2, and X3) of the first source operand 
are passed through to the destination. The scalar operations are similar to the 
floating-point operations performed in the x87 FPU data registers with the precision 
control field in the x87 FPU control word set for single precision (24-bit significand), 
except that x87 stack operations use a 15-bit exponent range for the result, while 
SSE operations use an 8-bit exponent range.

Figure 10-5.  Packed Single-Precision Floating-Point Operation

Figure 10-6.  Scalar Single-Precision Floating-Point Operation
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10.4.1.1  SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between 
XMM registers and between an XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction 
transfers a double quadword operand containing four packed single-precision 
floating-point values from memory to an XMM register and vice versa, or between 
XMM registers. The memory address must be aligned to a 16-byte boundary; other-
wise, a general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction 
performs the same operations as the MOVAPS instruction, except that 16-byte align-
ment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-
bit single-precision floating-point operand from memory to the low doubleword of an 
XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves 
two packed single-precision floating-point values from memory to the low quadword 
of an XMM register and vice versa. The high quadword of the register is left 
unchanged.

The MOVHPS (move high packed single-precision floating-point) instruction moves 
two packed single-precision floating-point values from memory to the high quadword 
of an XMM register and vice versa. The low quadword of the register is left 
unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction 
moves two packed single-precision floating-point values from the low quadword of 
the source XMM register into the high quadword of the destination XMM register. The 
low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction 
moves two packed single-precision floating-point values from the high quadword of 
the source XMM register into the low quadword of the destination XMM register. The 
high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction 
transfers the most significant bit of each of the four packed single-precision floating-
point numbers in an XMM register to a general-purpose register. This 4-bit value can 
then be used as a condition to perform branching.

10.4.1.2  SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, recip-
rocal, square root, reciprocal of square root, and maximum/minimum operations on 
packed and scalar single-precision floating-point values.
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The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract 
packed single-precision floating-point values) instructions add and subtract, respec-
tively, two packed single-precision floating-point operands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract 
scalar single-precision floating-point values) instructions add and subtract, respec-
tively, the low single-precision floating-point values of two operands and store the 
result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multi-
plies two packed single-precision floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multi-
plies the low single-precision floating-point values of two operands and stores the 
result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides 
two packed single-precision floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides 
the low single-precision floating-point values of two operands and stores the result in 
the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) 
instruction computes the approximate reciprocals of values in a packed single-preci-
sion floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) 
instruction computes the approximate reciprocal of the low single-precision floating-
point value in the source operand and stores the result in the low doubleword of the 
destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) 
instruction computes the square roots of the values in a packed single-precision 
floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) 
instruction computes the square root of the low single-precision floating-point value 
in the source operand and stores the result in the low doubleword of the destination 
operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision 
floating-point values) instruction computes the approximate reciprocals of the 
square roots of the values in a packed single-precision floating-point operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point 
value) instruction computes the approximate reciprocal of the square root of the low 
single-precision floating-point value in the source operand and stores the result in 
the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) 
instruction compares the corresponding values from two packed single-precision 
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.
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The MAXSS (return maximum of scalar single-precision floating-point values) 
instruction compares the low values from two packed single-precision floating-point 
operands and returns the numerically greater value from the comparison to the low 
doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) 
instruction compares the corresponding values from two packed single-precision 
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruc-
tion compares the low values from two packed single-precision floating-point oper-
ands and returns the numerically lesser value from the comparison to the low 
doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed 
single-precision floating-point values. 

The ANDPS (bitwise logical AND of packed single-precision floating-point values) 
instruction returns the logical AND of two packed single-precision floating-point 
operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point 
values) instruction returns the logical AND NOT of two packed single-precision 
floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) 
instruction returns the logical OR of two packed single-precision floating-point oper-
ands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) 
instruction returns the logical XOR of two packed single-precision floating-point oper-
ands.

10.4.2.1  SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point 
values and return the results of the comparison either to the destination operand or 
to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction 
compares the corresponding values from two packed single-precision floating-point 
operands, using an immediate operand as a predicate, and returns a 32-bit mask 
result of all 1s or all 0s for each comparison to the destination operand. The value of 
the immediate operand allows the selection of any of 8 compare conditions: equal, 
less than, less than equal, unordered, not equal, not less than, not less than or equal, 
or ordered.
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The CMPSS (compare scalar single-precision, floating-point values) instruction 
compares the low values from two packed single-precision floating-point operands, 
using an immediate operand as a predicate, and returns a 32-bit mask result of all 1s 
or all 0s for the comparison to the low doubleword of the destination operand. The 
immediate operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) 
and UCOMISS (unordered compare scalar single-precision floating-point values and 
set EFLAGS) instructions compare the low values of two packed single-precision 
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to 
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISS instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the 
UCOMISS instruction only signals an invalid-operation exception when a source 
operand is an SNaN.

10.4.2.2  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed 
single-precision floating-point values and store the results in the destination 
operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places 
any two of the four packed single-precision floating-point values from the destination 
operand into the two low-order doublewords of the destination operand, and places 
any two of the four packed single-precision floating-point values from the source 
operand in the two high-order doublewords of the destination operand (see 
Figure 10-7). By using the same register for the source and destination operands, 
the SHUFPS instruction can shuffle four single-precision floating-point values into 
any order. 

Figure 10-7.  SHUFPS Instruction, Packed Shuffle Operation
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The UNPCKHPS (unpack and interleave high packed single-precision floating-point 
values) instruction performs an interleaved unpack of the high-order single-precision 
floating-point values from the source and destination operands and stores the result 
in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point 
values) instruction performs an interleaved unpack of the low-order single-precision 
floating-point values from the source and destination operands and stores the result 
in the destination operand (see Figure 10-9).

10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions 
between single-precision floating-point and doubleword integer formats.

Figure 10-8.  UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction, Low Unpack and Interleave Operation
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The CVTPI2PS (convert packed doubleword integers to packed single-precision 
floating-point values) instruction converts two packed signed doubleword integers 
into two packed single-precision floating-point values. When the conversion is 
inexact, the result is rounded according to the rounding mode selected in the MXCSR 
register. 

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point 
value) instruction converts a signed doubleword integer into a single-precision 
floating-point value. When the conversion is inexact, the result is rounded according 
to the rounding mode selected in the MXCSR register. 

The CVTPS2PI (convert packed single-precision floating-point values to packed 
doubleword integers) instruction converts two packed single-precision floating-point 
values into two packed signed doubleword integers. When the conversion is inexact, 
the result is rounded according to the rounding mode selected in the MXCSR register. 
The CVTTPS2PI (convert with truncation packed single-precision floating-point 
values to packed doubleword integers) instruction is similar to the CVTPS2PI instruc-
tion, except that truncation is used to round a source value to an integer value (see 
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword 
integer) instruction converts a single-precision floating-point value into a signed 
doubleword integer. When the conversion is inexact, the result is rounded according 
to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with 
truncation scalar single-precision floating-point value to doubleword integer) instruc-
tion is similar to the CVTSS2SI instruction, except that truncation is used to round 
the source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and 
SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32 
architecture. These instructions operate on data in MMX registers and 64-bit memory 
locations. 

NOTE
When SSE2 extensions are present in an IA-32 processor, these 
instructions are extended to operate on 128-bit operands in XMM 
registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW 
(compute average of packed unsigned word integers) instructions compute a SIMD 
average of two packed unsigned byte or word integer operands, respectively. For 
each corresponding pair of data elements in the packed source operands, the 
elements are added together, a 1 is added to the temporary sum, and that result is 
shifted right one bit position.
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The PEXTRW (extract word) instruction copies a selected word from an MMX register 
into a general-purpose register.

The PINSRW (insert word) instruction copies a word from a general-purpose register 
or from memory into a selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the 
corresponding unsigned byte integers in two packed operands and returns the 
greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the 
corresponding unsigned byte integers in two packed operands and returns the lesser 
of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the 
corresponding signed word integers in two packed operands and returns the greater 
of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the 
corresponding signed word integers in two packed operands and returns the lesser of 
each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed 
byte integers in an MMX register and stores the result in the low byte of a general-
purpose register. The mask contains the most significant bit of each byte in the MMX 
register. (When operating on 128-bit operands, a 16-bit mask is created.)

The PMULHUW (multiply packed unsigned word integers and store high result) 
instruction performs a SIMD unsigned multiply of the words in the two source oper-
ands and returns the high word of each result to an MMX register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD 
absolute differences of the corresponding unsigned byte integers in two source oper-
ands, sums the differences, and stores the sum in the low word of the destination 
operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the 
source operand according to the order specified by an 8-bit immediate operand and 
returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save 
the state of the MXCSR register, respectively. The LDMXCSR instruction loads the 
MXCSR register from memory, while the STMXCSR instruction stores the contents of 
the register to memory.
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10.4.6 Cacheability Control, Prefetch, and Memory Ordering 
Instructions

SSE extensions introduce several new instructions to give programs more control 
over the caching of data. They also introduces the PREFETCHh instructions, which 
provide the ability to prefetch data to a specified cache level, and the SFENCE 
instruction, which enforces program ordering on stores. These instructions are 
described in the following sections.

10.4.6.1  Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be 
stored to memory using a non-temporal hint. The non-temporal hint directs the 
processor to when possible store the data to memory without writing the data into 
the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal 
Data,” for information about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed 
integer data from an MMX register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-
temporal hint) instruction stores packed floating-point data from an XMM register to 
memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte 
integers from an MMX register to memory, using a byte mask to selectively write the 
individual bytes. This instruction also uses a non-temporal hint.

10.4.6.2  Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-
temporal (data will be referenced once and not reused in the immediate future). For 
example, program code is generally temporal, whereas, multimedia data, such as the 
display list in a 3-D graphics application, is often non-temporal. To make efficient use 
of the processor’s caches, it is generally desirable to cache temporal data and not 
cache non-temporal data. Overloading the processor’s caches with non-temporal 
data is sometimes referred to as “polluting the caches.” The SSE and SSE2 cache-
ability control instructions enable a program to write non-temporal data to memory 
in a manner that minimizes pollution of caches. 

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by 
treating the memory being accessed as the write combining (WC) type. If a program 
specifies a non-temporal store with one of these instructions and the destination 
region is mapped as cacheable memory (write back [WB], write through [WT] or WC 
memory type), the processor will do the following:

• If the memory location being written to is present in the cache hierarchy, the data 
in the caches is evicted.

• The non-temporal data is written to memory with WC semantics.
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See also: Chapter 10, “Memory Cache Control,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that 
the data may not be written to memory in program order, and the store will not write 
allocate (that is, the processor will not fetch the corresponding cache line into the 
cache hierarchy, prior to performing the store). Also, different processor implemen-
tations may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, 
if the memory address specified for the non-temporal store is in uncacheable 
memory. Uncacheable as referred to here means that the region being written to has 
been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to 
other processors and other system agents (such as graphics cards). Appropriate use 
of synchronization and fencing must be performed for producer-consumer usage 
models. Fencing ensures that all system agents have global visibility of the stored 
data; for instance, failure to fence may result in a written cache line staying within a 
processor and not being visible to other agents. 

For processors that implement non-temporal stores by updating data in-place that 
already resides in the cache hierarchy, the destination region should also be mapped 
as WC. If mapped as WB or WT, there is the potential for speculative processor reads 
to bring the data into the caches; in this case, non-temporal stores would then 
update in place, and data would not be flushed from the processor by a subsequent 
fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is imple-
mentation specific. As one possible example, the memory type written to the bus 
may reflect the memory type for the first store to this line, as seen in program order; 
other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompat-
ibility.

10.4.6.3  PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a 
suggested cache level, so that the data is closer to the processor’s load and store unit 
when it is needed. These instructions fetch 32 aligned bytes (or more, depending on 
the implementation) containing the addressed byte to a location in the cache hier-
archy specified by the temporal locality hint (see Table 10-1). In this table, the first-
level cache is closest to the processor and second-level cache is farther away from 
the processor than the first-level cache. The hints specify a prefetch of either 
temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data”). Subsequent accesses to temporal data are treated like normal 
accesses, while those to non-temporal data will continue to minimize cache pollution. 
If the data is already present at a level of the cache hierarchy that is closer to the 
processor, the PREFETCHh instruction will not result in any data movement. The 
PREFETCHh instructions do not affect functional behavior of the program.
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See Section 11.6.13, “Cacheability Hint Instructions,” for additional information 
about the PREFETCHh instructions.

10.4.6.4  SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for 
memory store operations. This instruction guarantees that the result of every store 
instruction that precedes the store fence in program order is globally visible before 
any store instruction that follows the fence. The SFENCE instruction provides an effi-
cient way of ensuring ordering between procedures that produce weakly-ordered 
data and procedures that consume that data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in 
the Pentium II processor family (prior to the introduction of the SSE extensions). The 
original versions of these instructions performed a fast save and restore, respec-
tively, of the x87 FPU register state. (By saving the state of the x87 FPU data regis-
ters, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of 
the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the 
states of the XMM registers and the MXCSR register, along with the x87 FPU and MMX 
state. 

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh 
Instruction Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, 
minimizing cache pollution 

• Pentium III processor—1st-level cache 

• Pentium 4 and Intel Xeon processor—2nd-level cache
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The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE 
and FRSTOR instructions; however, the operation of the FXSAVE and FXRSTOR 
instructions are not identical to the operation of FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part 
of the SSE instruction group. They have a separate CPUID 
feature bit to indicate whether they are present (if 
CPUID.01H:EDX.FXSR[bit 24] = 1). 

The CPUID feature bit for SSE extensions does not indicate the 
presence of FXSAVE and FXRSTOR.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the 
general and SIMD floating-point exceptions that can be generated with the SSE 
instructions and for guidelines for handling these exceptions when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional 
information about writing applications and operating-system code using the SSE 
extensions.
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CHAPTER 11
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS 2 (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture 
in the Pentium 4 and Intel Xeon processors. These extensions enhance the perfor-
mance of IA-32 processors for advanced 3-D graphics, video decoding/encoding, 
speech recognition, E-commerce, Internet, scientific, and engineering applications. 

This chapter describes the SSE2 extensions and provides information to assist in 
writing application programs that use these and the SSE extensions. 

11.1 OVERVIEW OF SSE2 EXTENSIONS
SSE2 extensions use the single instruction multiple data (SIMD) execution model 
that is used with MMX technology and SSE extensions. They extend this model with 
support for packed double-precision floating-point values and for 128-bit packed 
integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and 
operating systems.

• Six data types: 

— 128-bit packed double-precision floating-point (two IEEE Standard 754 
double-precision floating-point values packed into a double quadword)

— 128-bit packed byte integers

— 128-bit packed word integers

— 128-bit packed doubleword integers

— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD 
integer operations:

— Packed and scalar double-precision floating-point instructions

— Additional 64-bit and 128-bit SIMD integer instructions

— 128-bit versions of SIMD integer instructions introduced with the MMX 
technology and the SSE extensions

— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:

— Extensions and modifications to the CPUID instruction

— Modifications to the RDPMC instruction
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These new features extend the IA-32 architecture’s SIMD programming model in 
three important ways:

• They provide the ability to perform SIMD operations on pairs of packed double-
precision floating-point values. This permits higher precision computations to be 
carried out in XMM registers, which enhances processor performance in scientific 
and engineering applications and in applications that use advanced 3-D geometry 
techniques (such as ray tracing). Additional flexibility is provided with instruc-
tions that operate on single (scalar) double-precision floating-point values 
located in the low quadword of an XMM register. 

• They provide the ability to operate on 128-bit packed integers (bytes, words, 
doublewords, and quadwords) in XMM registers. This provides greater flexibility 
and greater throughput when performing SIMD operations on packed integers. 
The capability is particularly useful for applications such as RSA authentication 
and RC5 encryption. Using the full set of SIMD registers, data types, and instruc-
tions provided with the MMX technology and SSE/SSE2 extensions, programmers 
can develop algorithms that finely mix packed single- and double-precision 
floating-point data and 64- and 128-bit packed integer data. 

• SSE2 extensions enhance the support introduced with SSE extensions for 
controlling the cacheability of SIMD data. SSE2 cache control instructions provide 
the ability to stream data in and out of the XMM registers without polluting the 
caches and the ability to prefetch data before it is actually used.

SSE2 extensions are fully compatible with all software written for IA-32 processors. 
All existing software continues to run correctly, without modification, on processors 
that incorporate SSE2 extensions, as well as in the presence of applications that 
incorporate these extensions. Enhancements to the CPUID instruction permit detec-
tion of the SSE2 extensions. Also, because the SSE2 extensions use the same regis-
ters as the SSE extensions, no new operating-system support is required for saving 
and restoring program state during a context switch beyond that provided for the 
SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode, 
real address mode, virtual 8086 mode.

The following sections in this chapter describe the programming environment for 
SSE2 extensions including: the 128-bit XMM floating-point register set, data types, 
and SSE2 instructions. It also describes exceptions that can be generated with the 
SSE and SSE2 instructions and gives guidelines for writing applications with SSE and 
SSE2 extensions.

For additional information about SSE2 extensions, see:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide a detailed description of individual SSE3 instructions.

• Chapter 12, “System Programming for Streaming SIMD Instruction Sets,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
gives guidelines for integrating the SSE and SSE2 extensions into an operating-
system environment.
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11.2 SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for SSE2 extensions. No new 
registers or other instruction execution state are defined with SSE2 extensions. SSE2 
instructions use the XMM registers, the MMX registers, and/or IA-32 general-purpose 
registers, as follows: 

• XMM registers — These eight registers (see Figure 10-2) are used to operate on 
packed or scalar double-precision floating-point data. Scalar operations are 
operations performed on individual (unpacked) double-precision floating-point 
values stored in the low quadword of an XMM register. XMM registers are also 
used to perform operations on 128-bit packed integer data. They are referenced 
by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and 
control bits used in floating-point operations. The denormals-are-zeros and 
flush-to-zero flags in this register provide a higher performance alternative for 
the handling of denormal source operands and denormal (underflow) results. For 
more information on the functions of these flags see Section 10.2.3.4, 
“Denormals-Are-Zeros,” and Section 10.2.3.3, “Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform 
operations on 64-bit packed integer data. They are also used to hold operands for 
some operations performed between MMX and XMM registers. MMX registers are 
referenced by the names MM0 through MM7.

Figure 11-1.  Steaming SIMD Extensions 2 Execution Environment
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• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used along with the existing IA-32 addressing modes to address 
operands in memory. MMX and XMM registers cannot be used to address 
memory. The general-purpose registers are also used to hold operands for some 
SSE2 instructions. These registers are referenced by the names EAX, EBX, ECX, 
EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the 
results of some compare operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE2 extensions function like they do in protected mode. In 
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15 
are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 
3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use 
the REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix 
is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment 
beyond that of SSE. SSE2 extensions represent an enhancement of SSE extensions; 
they are fully compatible and share the same state information. SSE and SSE2 
instructions can be executed together in the same instruction stream without the 
need to save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2 
operations performed on XMM registers can be performed in parallel with x87 FPU or 
MMX technology operations (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states 
along with the x87 FPU and MMX states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the 
IA-32 architecture with the SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-
Zeros,” for a description of this flag.
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11.3 SSE2 DATA TYPES
SSE2 extensions introduced one 128-bit packed floating-point data type and four 
128-bit SIMD integer data types to the IA-32 architecture (see Figure 11-2). 

• Packed double-precision floating-point — This 128-bit data type consists of 
two IEEE 64-bit double-precision floating-point values packed into a double 
quadword. (See Figure 4-3 for the layout of a 64-bit double-precision floating-
point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed 
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can 
contain 16 byte integers, 8 word integers, 4 doubleword integers, or 2 quadword 
integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data Types,” for a 
detailed description of the 128-bit packed integers.)

All of these data types are operated on in XMM registers or memory. Instructions are 
provided to convert between these 128-bit data types and the 64-bit and 32-bit data 
types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte 
boundary, except in the following cases: 

• a MOVUPD instruction which supports unaligned accesses

• scalar instructions that use an 8-byte memory operand that is not subject to 
alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quad-
word) data types in memory.

Figure 11-2.  Data Types Introduced with the SSE2 Extensions
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11.4 SSE2 INSTRUCTIONS
The SSE2 instructions are divided into four functional groups:

• Packed and scalar double-precision floating-point instructions

• 64-bit and 128-bit SIMD integer instructions

• 128-bit extensions of SIMD integer instructions introduced with the MMX 
technology and the SSE extensions

• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point 
Instructions

The packed and scalar double-precision floating-point instructions are divided into 
the following sub-groups:

• Data movement instructions

• Arithmetic instructions

• Comparison instructions

• Conversion instructions

• Logical instructions

• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations 
similarly to the packed single-precision floating-point instructions (see Figure 11-3). 
Each source operand contains two double-precision floating-point values, and the 
destination operand contains the results of the operation (OP) performed in parallel 
on the corresponding values (X0 and Y0, and X1 and Y1) in each operand.

Figure 11-3.  Packed Double-Precision Floating-Point Operations
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The scalar double-precision floating-point instructions operate on the low (least 
significant) quadwords of two source operands (X0 and Y0), as shown in Figure 11-4. 
The high quadword (X1) of the first source operand is passed through to the destina-
tion. The scalar operations are similar to the floating-point operations performed in 
x87 FPU data registers with the precision control field in the x87 FPU control word set 
for double precision (53-bit significand), except that x87 stack operations use a 
15-bit exponent range for the result while SSE2 operations use an 11-bit exponent 
range. 

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” 
for more information about obtaining compatible results when performing both 
scalar double-precision floating-point operations in XMM registers and in x87 FPU 
data registers.

11.4.1.1  Data Movement Instructions
Data movement instructions move double-precision floating-point data between 
XMM registers and between XMM registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction 
transfers a 128-bit packed double-precision floating-point operand from memory to 
an XMM register or vice versa, or between XMM registers. The memory address must 
be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is 
generated.

The MOVUPD (move unaligned packed double-precision floating-point) instruction 
transfers a 128-bit packed double-precision floating-point operand from memory to 
an XMM register or vice versa, or between XMM registers. Alignment of the memory 
address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 
64-bit double-precision floating-point operand from memory to the low quadword of 

Figure 11-4.  Scalar Double-Precision Floating-Point Operations
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an XMM register or vice versa, or between XMM registers. Alignment of the memory 
address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction trans-
fers a 64-bit double-precision floating-point operand from memory to the high quad-
word of an XMM register or vice versa. The low quadword of the register is left 
unchanged. Alignment of the memory address is not required, unless alignment 
checking is enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers 
a 64-bit double-precision floating-point operand from memory to the low quadword 
of an XMM register or vice versa. The high quadword of the register is left unchanged. 
Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction 
extracts the sign bit of each of the two packed double-precision floating-point 
numbers in an XMM register and saves them in a general-purpose register. This 2-bit 
value can then be used as a condition to perform branching.

11.4.1.2  SSE2 Arithmetic Instructions
SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square 
root, and maximum/minimum operations on packed and scalar double-precision 
floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD 
(subtract packed double-precision floating-point values) instructions add and 
subtract, respectively, two packed double-precision floating-point operands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract 
scalar double-precision floating-point values) instructions add and subtract, respec-
tively, the low double-precision floating-point values of two operands and stores the 
result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction 
multiplies two packed double-precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multi-
plies the low double-precision floating-point values of two operands and stores the 
result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides 
two packed double-precision floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides 
the low double-precision floating-point values of two operands and stores the result 
in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point 
values) instruction computes the square roots of the values in a packed double-preci-
sion floating-point operand.
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The SQRTSD (compute square root of scalar double-precision floating-point values) 
instruction computes the square root of the low double-precision floating-point value 
in the source operand and stores the result in the low quadword of the destination 
operand.

The MAXPD (return maximum of packed double-precision floating-point values) 
instruction compares the corresponding values in two packed double-precision 
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) 
instruction compares the low double-precision floating-point values from two packed 
double-precision floating-point operands and returns the numerically higher value 
from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) 
instruction compares the corresponding values from two packed double-precision 
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSD (return minimum of scalar double-precision floating-point values) 
instruction compares the low values from two packed double-precision floating-point 
operands and returns the numerically lesser value from the comparison to the low 
quadword of the destination operand.

11.4.1.3  SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed 
double-precision floating-point values. 

The ANDPD (bitwise logical AND of packed double-precision floating-point values) 
instruction returns the logical AND of two packed double-precision floating-point 
operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point 
values) instruction returns the logical AND NOT of two packed double-precision 
floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) 
instruction returns the logical OR of two packed double-precision floating-point oper-
ands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) 
instruction returns the logical XOR of two packed double-precision floating-point 
operands.

11.4.1.4  SSE2 Comparison Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination 
operand or to the EFLAGS register.
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The CMPPD (compare packed double-precision floating-point values) instruction 
compares the corresponding values from two packed double-precision floating-point 
operands, using an immediate operand as a predicate, and returns a 64-bit mask 
result of all 1s or all 0s for each comparison to the destination operand. The value of 
the immediate operand allows the selection of any of eight compare conditions: 
equal, less than, less than equal, unordered, not equal, not less than, not less than 
or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction 
compares the low values from two packed double-precision floating-point operands, 
using an immediate operand as a predicate, and returns a 64-bit mask result of all 1s 
or all 0s for the comparison to the low quadword of the destination operand. The 
immediate operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) 
and UCOMISD (unordered compare scalar double-precision floating-point values and 
set EFLAGS) instructions compare the low values of two packed double-precision 
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to 
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISD instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the 
UCOMISD instruction only signals an invalid-operation exception when a source 
operand is an SNaN.

11.4.1.5  SSE2 Shuffle and Unpack Instructions
SSE2 shuffle instructions shuffle the contents of two packed double-precision 
floating-point values and store the results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction 
places either of the two packed double-precision floating-point values from the desti-
nation operand in the low quadword of the destination operand, and places either of 
the two packed double-precision floating-point values from source operand in the 
high quadword of the destination operand (see Figure 11-5). By using the same 
register for the source and destination operands, the SHUFPD instruction can swap 
two packed double-precision floating-point values. 
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The UNPCKHPD (unpack and interleave high packed double-precision floating-point 
values) instruction performs an interleaved unpack of the high values from the 
source and destination operands and stores the result in the destination operand 
(see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point 
values) instruction performs an interleaved unpack of the low values from the source 
and destination operands and stores the result in the destination operand (see 
Figure 11-7).

Figure 11-5.  SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6.  UNPCKHPD Instruction, High Unpack and Interleave Operation
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11.4.1.6  SSE2 Conversion Instructions
SSE2 conversion instructions (see Figure 11-8) support packed and scalar conver-
sions between:

• Double-precision and single-precision floating-point formats

• Double-precision floating-point and doubleword integer formats

• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points 
values — The following instructions convert operands between double-precision and 
single-precision floating-point formats. The operands being operated on are 
contained in XMM registers or memory (at most, one operand can reside in memory; 
the destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed 
double-precision floating-point values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed 
single-precision floating-point values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a 
conversion is inexact, the result is rounded according to the rounding mode selected 
in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-
precision floating-point value) instruction converts a single-precision floating-point 
value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-
precision floating-point value) instruction converts a double-precision floating-point 
value to a single-precision floating-point value. When the conversion is inexact, the 
result is rounded according to the rounding mode selected in the MXCSR register.

Figure 11-7.  UNPCKLPD Instruction, Low Unpack and Interleave Operation
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Conversion between double-precision floating-point values and doubleword 
integers — The following instructions convert operands between double-precision 
floating-point and doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers or memory (at most one operand can reside in 
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed 
doubleword integers) instruction converts two packed double-precision floating-point 
numbers to two packed signed doubleword integers, with the result stored in an MMX 
register. When rounding to an integer value, the source value is rounded according to 
the rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation 
packed double-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPD2PI instruction except that truncation is used to 
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE 
and SSE2 Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision 
floating-point values) instruction converts two packed signed doubleword integers to 
two double-precision floating-point values. 

Figure 11-8.  SSE and SSE2 Conversion Instructions
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The CVTPD2DQ (convert packed double-precision floating-point values to packed 
doubleword integers) instruction converts two packed double-precision floating-point 
numbers to two packed signed doubleword integers, with the result stored in the low 
quadword of an XMM register. When rounding an integer value, the source value is 
rounded according to the rounding mode selected in the MXCSR register. The 
CVTTPD2DQ (convert with truncation packed double-precision floating-point values 
to packed doubleword integers) instruction is similar to the CVTPD2DQ instruction 
except that truncation is used to round a source value to an integer value (see 
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision 
floating-point values) instruction converts two packed signed doubleword integers 
located in the low-order doublewords of an XMM register to two double-precision 
floating-point values. 

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword 
integer) instruction converts a double-precision floating-point value to a doubleword 
integer, and stores the result in a general-purpose register. When rounding an 
integer value, the source value is rounded according to the rounding mode selected 
in the MXCSR register. The CVTTSD2SI (convert with truncation scalar double-preci-
sion floating-point value to doubleword integer) instruction is similar to the 
CVTSD2SI instruction except that truncation is used to round the source value to an 
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion 
Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point 
value) instruction converts a signed doubleword integer in a general-purpose register 
to a double-precision floating-point number, and stores the result in an XMM register. 

Conversion between single-precision floating-point and doubleword integer 
formats — These instructions convert between packed single-precision floating-
point and packed doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers, or memory (the latter for at most one source 
operand). The destination is always an XMM, MMX, or general register. These SSE2 
instructions supplement conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, 
CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed 
doubleword integers) instruction converts four packed single-precision floating-point 
values to four packed signed doubleword integers, with the source and destination 
operands in XMM registers or memory (the latter for at most one source operand). 
When the conversion is inexact, the rounded value according to the rounding mode 
selected in the MXCSR register is returned. The CVTTPS2DQ (convert with truncation 
packed single-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPS2DQ instruction except that truncation is used to 
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE 
and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision 
floating-point values) instruction converts four packed signed doubleword integers to 
four packed single-precision floating-point numbers, with the source and destination 
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operands in XMM registers or memory (the latter for at most one source operand). 
When the conversion is inexact, the rounded value according to the rounding mode 
selected in the MXCSR register is returned. 

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
SSE2 extensions add several 128-bit packed integer instructions to the IA-32 archi-
tecture. Where appropriate, a 64-bit version of each of these instructions is also 
provided. The 128-bit versions of instructions operate on data in XMM registers; 
64-bit versions operate on data in MMX registers. The instructions follow.

The MOVDQA (move aligned double quadword) instruction transfers a double quad-
word operand from memory to an XMM register or vice versa; or between XMM regis-
ters. The memory address must be aligned to a 16-byte boundary; otherwise, a 
general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same 
operations as the MOVDQA instruction, except that 16-byte alignment of a memory 
address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer 
operands or two single quadword integer operands, and stores the results in an XMM 
or MMX register, respectively. This instruction can operate on either unsigned or 
signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword 
integer operands or two single quadword integer operands, and stores the results in 
an XMM or MMX register, respectively. Like the PADDQ instruction, PSUBQ can 
operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs 
an unsigned multiply of unsigned doubleword integers and returns a quadword 
result. Both 64-bit and 128-bit versions of this instruction are available. The 64-bit 
version operates on two doubleword integers stored in the low doubleword of each 
source operand, and the quadword result is returned to an MMX register. The 128-bit 
version performs a packed multiply of two pairs of doubleword integers. Here, the 
doublewords are packed in the first and third doublewords of the source operands, 
and the quadword results are stored in the low and high quadwords of an XMM 
register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers 
packed into the low quadword of the source operand and stores the shuffled result in 
the low quadword of the destination operand. An 8-bit immediate operand specifies 
the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers 
packed into the high quadword of the source operand and stores the shuffled result 
in the high quadword of the destination operand. An 8-bit immediate operand speci-
fies the shuffle order.
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The PSHUFD (shuffle packed doubleword integers) instruction shuffles the double-
word integers packed into the source operand and stores the shuffled result in the 
destination operand. An 8-bit immediate operand specifies the shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the 
source operand to the left by the amount of bytes specified by an immediate 
operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of 
the source operand to the right by the amount of bytes specified by an immediate 
operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quad-
word of the source operand and the high quadword of the destination operand and 
writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quad-
words of the source operand and the low quadwords of the destination operand and 
writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the 
XMM registers. 

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction 
moves the quadword integer from an MMX source register to an XMM destination 
register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction 
moves the low quadword integer from an XMM source register to an MMX destination 
register. 

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and SSE 
extensions (with the exception of the PSHUFW instruction) have been extended by 
SSE2 extensions to operate on 128-bit packed integer operands located in XMM 
registers. The 128-bit versions of these instructions follow the same SIMD conven-
tions regarding packed operands as the 64-bit versions. For example, where the 
64-bit version of the PADDB instruction operates on 8 packed bytes, the 128-bit 
version operates on 16 packed bytes. 

11.4.4 Cacheability Control and Memory Ordering Instructions
SSE2 extensions that give programs more control over the caching, loading, and 
storing of data. are described below.
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11.4.4.1  FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line asso-
ciated with a specified linear address. The invalidation is for all levels of the 
processor’s cache hierarchy, and it is broadcast throughout the cache coherency 
domain.

NOTE
CLFLUSH was introduced with the SSE2 extensions. However, the 
instruction can be implemented in IA-32 processors that do not 
implement the SSE2 extensions. Detect CLFLUSH using the feature 
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2  Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers 
to be stored to memory using a non-temporal hint. The non-temporal hint directs the 
processor to store data to memory without writing the data into the cache hierarchy 
whenever this is possible. See Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” for more information about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores 
packed integer data from an XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-
temporal hint) instruction stores packed double-precision floating-point data from an 
XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer 
data from a general-purpose register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores 
selected byte integers from an XMM register to memory, using a byte mask to selec-
tively write the individual bytes. The memory location does not need to be aligned on 
a natural boundary. This instruction also uses a non-temporal hint. 

11.4.4.3  Memory Ordering Instructions
SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as 
companions to the SFENCE instruction introduced with SSE extensions. 

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering 
between two loads and prevents speculative loads from passing the load fence (that 
is, no speculative loads are allowed until all loads specified before the load fence have 
been carried out).

The MFENCE instruction combines the functions of LFENCE and SFENCE by estab-
lishing a memory fence for both loads and stores. It guarantees that all loads and 
stores specified before the fence are globally observable prior to any loads or stores 
being carried out after the fence.
Vol. 1 11-17



PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.4.4.4  Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops” 
executed on a Pentium 4 or Intel Xeon processor. On a Pentium 4 processor, it also 
provides the added benefit of reducing processor power consumption while executing 
a spin-wait loop. It is recommended that a PAUSE instruction always be included in 
the code sequence for a spin-wait loop.

11.4.5 Branch Hints
SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch 
hints to the processor (see “Instruction Prefixes” in Chapter 2 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). These prefixes can 
only be used with the Jcc instruction and only at the machine code level (that is, 
there are no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS
SSE/SSE2/SSE3 extensions generate two general types of exceptions:

• Non-numeric exceptions

• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and 
non-numeric exceptions as other IA-32 architecture instructions. Existing exception 
handlers can generally handle these exceptions without any code modification. See 
“Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE, 
SSE2 and SSE3 Instructions” in Chapter 12 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for a list of the non-numeric exceptions 
that can be generated by SSE/SSE2/SSE3 instructions and for guidelines for handling 
these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer 
operations; however, they can generate numeric (SIMD floating-point) exceptions on 
packed single-precision and double-precision floating-point operations. These SIMD 
floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-
Point Arithmetic and are the same exceptions that are generated for x87 FPU instruc-
tions. See Section 11.5.1, “SIMD Floating-Point Exceptions,” for a description of 
these exceptions.

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can gen-
erate x87 FPU floating-point exceptions.
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11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by 
SSE/SSE2/SSE3 instructions that operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormal operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE 
Standard 754, and they are the same exceptions that are generated with the x87 
floating-point instructions. Section 4.9, “Overview of Floating-Point Exceptions,” 
gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in 
SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction 
completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, 
and PE) and mask bit (IM, DM, ZM, OM, UM, and PM) in the MXCSR register (see 
Figure 10-3). The mask bits can be set with the LDMXCSR or FXRSTOR instruction; 
the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control 
over generation of SIMD floating-point exceptions by allowing the operating system 
to indicate whether or not it supports software exception handlers for SIMD floating-
point exceptions. If an unmasked SIMD floating-point exception is generated and the 
OSXMMEXCEPT flag is set, the processor invokes a software exception handler by 
generating a SIMD floating-point exception (#XM). If the OSXMMEXCEPT bit is clear, 
the processor generates an invalid-opcode exception (#UD) on the first SSE or SSE2 
instruction that detects a SIMD floating-point exception condition. See Section 
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point 
exception to be generated and the masked response of the processor when these 
conditions are detected. 

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.
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11.5.2.1  Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid 
arithmetic operand. The flag (IE) and mask (IM) bits for the invalid operation excep-
tion are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN 
floating-point indefinite, integer indefinite, one of the source operands to the destina-
tion operand, or it sets the EFLAGS, depending on the operation being performed. 
When a value is returned to the destination operand, it overwrites the destination 
register specified by the instruction. Table 11-1 lists the invalid-arithmetic operations 
that the processor detects for instructions and the masked responses to these opera-
tions.

Table 11-1.  Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic 
Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, 
SUBPD, SUBSD, MULPS, MULSS, MULPD, 
MULSD, DIVPS, DIVSS, DIVPD, DIVSD, 
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, 
HSUBPD or HSUBPS instruction with an SNaN 
operand

Return the SNaN converted to a QNaN; Refer to 
Table 4-7 for more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
SNaN operands

Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
negative operands (except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, 
MINSS, MINPD, or MINSD instruction with QNaN 
or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction 
with QNaN or SNaN operands

Return a mask of all 0s (except for the 
predicates “not-equal,” “unordered,” “not-less-
than,” or “not-less-than-or-equal,” which returns 
a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD 
with SNaN operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN 
operand(s)

Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or 
subtraction of like-signed infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or ( ∞/ ∞ ) Return the QNaN floating-point Indefinite
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If the invalid operation exception is not masked, a software exception handler is 
invoked and the operands remain unchanged. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software.”

Normally, when one or more of the source operands are QNaNs (and neither is an 
SNaN or in an unsupported format), an invalid-operation exception is not generated. 
The following instructions are exceptions to this rule: the COMISS and COMISD 
instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the 
predicate is less than, less-than or equal, not less-than, or not less-than or equal). 
With these instructions, a QNaN source operand will generate an invalid-operation 
exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.2  Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction 
attempts to operate on a denormal operand. The flag (DE) and mask (DM) bits for 
the denormal-operand exception are bits 1 and 8, respectively, in the MXCSR 
register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, 
CVTSI2SD, CVTSD2SI, CVTTSD2SI, CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, 
CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ conversion instruc-
tions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and 
RSQRTPS instructions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional 
option for handling denormal-operand exceptions. When this flag is set, denormal 
source operands are automatically converted to zeros with the sign of the source 
operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand 
exception is not affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information 
about the denormal exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

Conversion to integer when the value in the 
source register is a NaN, ∞, or exceeds the 
representable range for CVTPS2PI, CVTTPS2PI, 
CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, 
CVTTPD2DQ, CVTPS2DQ, or CVTTPS2DQ

Return the integer Indefinite

Table 11-1.  Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic 
Operations (Contd.)

Condition Masked Response
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11.5.2.3  Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or 
DIVSD instruction attempts to divide a finite non-zero operand by 0. The flag (ZE) 
and mask (ZM) bits for the divide-by-zero exception are bits 2 and 9, respectively, in 
the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about 
the divide-by-zero exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.4  Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of 
an arithmetic instruction exceeds the largest allowable finite value that fits in the 
destination operand. This exception can be generated with the ADDPS, ADDSS, 
ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, 
DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, 
HADDPD, HADDPS, HSUBPD and HSUBPS instructions. The flag (OE) and mask (OM) 
bits for the numeric overflow exception are bits 3 and 10, respectively, in the MXCSR 
register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about 
the numeric-overflow exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.5  Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the rounded result of 
an arithmetic instruction is less than the smallest possible normalized, finite value 
that will fit in the destination operand and the numeric-underflow exception is not 
masked. If the numeric underflow exception is masked, both underflow and the 
inexact-result condition must be detected before numeric underflow is reported. This 
exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, 
SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, 
DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, 
HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric 
underflow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for 
handling numeric underflow exceptions. When this flag is set and the numeric under-
flow exception is masked, tiny results (results that trigger the underflow exception) 
are returned as a zero with the sign of the true result (see Section 10.2.3.3, “Flush-
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To-Zero”). The numeric underflow exception is not affected by the denormals-are-
zero mode.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information 
about the numeric underflow exception. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

11.5.2.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. For example, 
the fraction 1/3 cannot be precisely represented in binary form. This exception 
occurs frequently and indicates that some (normally acceptable) accuracy has been 
lost. The exception is supported for applications that need to perform exact arith-
metic only. Because the rounded result is generally satisfactory for most applica-
tions, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, 
respectively, in the MXCSR register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more informa-
tion about the inexact-result exception. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software,” for information on handling unmasked excep-
tions.

In flush-to-zero mode, the inexact result exception is reported. The inexact result 
exception is not affected by the denormals-are-zero mode.

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for 
and reports on SIMD floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-
operand, divide-by-zero, and denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions 
(numeric overflow, numeric underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the 
processor to generate a SIMD floating-point exception (#XM) twice during the execu-
tion of an SSE, SSE2 or SSE3 instruction: once when it detects and handles a pre-
computational exception and when it detects a post-computational exception.

11.5.3.1  Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by 
placing the masked result (or results for packed operands) in a destination operand 
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and continuing program execution. The masked result may be a rounded normalized 
value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefi-
nite, or a QNaN depending on the exception condition detected. In most cases, the 
corresponding exception flag bit in MXCSR is also set. The one situation where an 
exception flag is not set is when an underflow condition is detected and it is not 
accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked 
result for each of the sub-operand computations and sets a separate set of internal 
exception flags for each computation. It then performs a logical-OR on the internal 
exception flag settings and sets the exception flags in the MXCSR register according 
to the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, 
all SIMD floating-point exceptions are masked. Assume that a denormal exception 
condition is detected prior to the multiplication of sub-operands X0 and Y0, no excep-
tion condition is detected for the multiplication of X1 and Y1, a numeric overflow 
exception condition is detected for the multiplication of X2 and Y2, and another 
denormal exception is detected prior to the multiplication of sub-operands X3 and 
Y3. Because denormal exceptions are masked, the processor uses the denormal 
source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the 
results of the multiplications through to the destination operand. With the denormal 
operand, the result of the X0 and Y0 computation is a normalized finite value, with no 
exceptions detected. However, the X3 and Y3 computation produces a tiny and 
inexact result. This causes the corresponding internal numeric underflow and 
inexact-result exception flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the 
destination operand, and sets the corresponding internal sub-operand numeric over-
flow flag. The result of the X1 and Y1 multiplication is passed through to the destina-
tion operand, with no internal sub-operand exception flags being set. Following the 

Figure 11-9.  Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0 

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
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computations, the individual sub-operand exceptions flags for denormal operand, 
numeric underflow, inexact result, and numeric overflow are OR’d and the corre-
sponding flags are set in the MXCSR register.

The net result of this computation is that:

• Multiplication of X0 and Y0 produces a normalized finite result

• Multiplication of X1 and Y1 produces a normalized finite result

• Multiplication of X2 and Y2 produces a floating-point ∞ result

• Multiplication of X3 and Y3 produces a tiny, inexact, finite result

• Denormal operand, numeric underflow, numeric underflow, and inexact result 
flags are set in the MXCSR register

11.5.3.2  Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the 
appropriate exception flags, leaves the source and destination operands 
unaltered, and goes to step 2. If it does not detect any pre-computation 
exceptions, it goes to step 5.

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 
3; if the flag is clear, it generates an invalid-opcode exception (#UD) and makes 
an implicit call to the invalid-opcode exception handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to 
the SIMD floating-point exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-
computation exceptions or mask the condition in such a way as to allow the 
processor to continue executing the instruction, the processor resumes 
instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions 
were detected), the processor checks for post-computation exceptions. If the 
processor detects any post-computation exceptions: it ORs those exceptions, 
sets the appropriate exception flags, leaves the source and destination operands 
unaltered, and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation 
exceptions were detected), the processor completes the execution of the 
instruction.

The implication of this procedure is that for unmasked exceptions, the processor can 
generate a SIMD floating-point exception (#XM) twice: once if it detects pre-compu-
tation exception conditions and a second time if it detects post-computation excep-
tion conditions. For example, if SIMD floating-point exceptions are unmasked for the 
computation shown in Figure 11-9, the processor would generate one SIMD floating-
point exception for denormal operand conditions and a second SIMD floating-point 
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exception for overflow and underflow (no inexact result exception would be gener-
ated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3  Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the 
processor will set exception flags for the masked and the unmasked exceptions. 
However, it will not return masked results until after the processor has detected and 
handled unmasked post-computation exceptions and returned from the exception 
handler (as in step 6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions 
that may be carried out by a SIMD floating-point exception handler. The 
SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section 11.6.5, 
“Saving and Restoring the SSE/SSE2 State”). 

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-
point exceptions. SIMD floating-point exceptions do not cause assertion of the 
FERR# pin (independent of the value of CR0.NE[bit 5]). They ignore the assertion 
and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in 
the same task or program), consider the following:

• SIMD floating-point exceptions are reported independently from the x87 FPU 
floating-point exceptions. SIMD and x87 FPU floating-point exceptions can be 
unmasked independently. Separate x87 FPU and SIMD floating-point exception 
handlers must be provided if the same exception is unmasked for x87 FPU and for 
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU 
instructions. Likewise, the rounding mode specified in the x87 FPU control word 
does not affect the SSE/SSE2/SSE3 instructions. To use the same rounding 
mode, the rounding control bits in the MXCSR register and in the x87 FPU control 
word must be set explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instruc-
tions has no counterpart in the x87 FPU. For compatibility with the x87 FPU, set 
the flush-to-zero bit to 0.

• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3 
instructions has no counterpart in the x87 FPU. For compatibility with the x87 
FPU, set the denormals-are-zeros bit to 0.
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• An application that expects to detect x87 FPU exceptions that occur during the 
execution of x87 FPU instructions will not be notified if exceptions occurs during 
the execution of corresponding SSE/SSE2/SSE31 instructions, unless the 
exception masks that are enabled in the x87 FPU control word have also been 
enabled in the MXCSR register and the application is capable of handling SIMD 
floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot 
be detected by unmasking the exceptions after the call (in an attempt to 
generate the fault based on the fact that an exception flag is set). A SIMD 
floating-point exception flag that is set when the corresponding exception is 
unmasked will not generate a fault; only the next occurrence of that 
unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any 
masked exception flags were set during an x87 FPU library call will also need 
to check the MXCSR register to detect a similar occurrence of a masked 
exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2 
EXTENSIONS

The following sections give some guidelines for writing application programs and 
operating-system code that uses the SSE and SSE2 extensions. Because SSE and 
SSE2 extensions share the same state and perform companion operations, these 
guidelines apply to both sets of extensions.

Chapter 12 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, discusses the interface to the processor for context switching as well as 
other operating system considerations when writing code that uses SSE/SSE2/SSE3 
extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions
The following guidelines describe how to take full advantage of the performance 
gains available with the SSE and SSE2 extensions:

• Ensure that the processor supports the SSE and SSE2 extensions.

• Ensure that your operating system supports the SSE and SSE2 extensions. 
(Operating system support for the SSE extensions implies support for SSE2 
extension and vice versa.)

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other 
SSE3 instruction that can raise floating-point exceptions is FISTTP: it can generate x87 FPU 
invalid operation and inexact result exceptions.
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• Use stack and data alignment techniques to keep data properly aligned for 
efficient memory use.

• Use the non-temporal store instructions offered with the SSE and SSE2 
extensions.

• Employ the optimization and scheduling techniques described in the Intel 
Pentium 4 Optimization Reference Manual (see Section 1.4, “Related Literature,” 
for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support
Before an application attempts to use the SSE and/or SSE2 extensions, it should 
check that they are present on the processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS 
register can be used to check processor’s support the CPUID instruction. 

2. Check that the processor supports the SSE and/or SSE2 extensions (true if 
CPUID.01H:EDX.SSE[bit 25] = 1 and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, excep-
tions before an application can use the SSE and/or SSE2 extensions (see Chapter 12 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A,).

If the processor attempts to execute an unsupported SSE or SSE2 instruction, the 
processor will generate an invalid-opcode exception (#UD). If an operating system 
did not provide adequate system level support for SSE, executing an SSE or SSE2 
instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the 
Pentium 4 processors and in the Intel Xeon processor, with the exception of some 
early steppings. To check for the presence of the DAZ flag in the MXCSR register, do 
the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared 
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and 
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and 
the layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 
through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and 
denormals-are-zero mode are not supported.
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— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ 
flag and denormals-are-zero mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 
to it will cause a general-protection exception (#GP). See Section 11.6.6, “Guidelines 
for Writing to the MXCSR Register,” for general guidelines for preventing general-
protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hard-
ware reset of the processor, this state is initialized as follows (see Table 11-2):

• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR 
register is set to 1).

• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR 
register is set to 0).

• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR 
register are set to 00B).

• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).

• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 
0). If the denormals-are-zeros mode is not supported, this bit is reserved and will 
be set to 0 on initialization.

• Each of the XMM registers is cleared (set to all zeros).
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If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not 
changed.

11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which 
includes the contents of eight XMM registers and the MXCSR registers) in a 512-byte 
block of memory. The FXRSTOR instruction restores the saved SSE and SSE2 state 
from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for the layout of the 
512-byte state block.

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR 
also save and restore the x87 FPU state (because MMX registers are aliased to the 
x87 FPU data registers this includes saving and restoring the MMX state). For greater 
code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the 
FSAVE, FNSAVE and FRSTOR instructions in the following situations:

• When a context switch is being made in a multitasking environment

• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology 
computations (without a context switch or a call to an interrupt or exception), the 
FSAVE/FNSAVE and FRSTOR instructions are more efficient than the FXSAVE and 
FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits 
will cause a general-protection exception (#GP) to be generated. To allow software to 
identify these reserved bits, the MXCSR_MASK value is provided. Software can deter-
mine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared 
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and 
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 

Table 11-2.  SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or 
Reset

INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
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Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the 
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 
through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK 
value is the default value of 0000FFBFH. Note that this value indicates that bit 
6 of the MXCSR register is reserved; this setting indicates that the 
denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value 
should be used as the MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR 
register. Thus, if the MXCSR_MASK value is AND’d with a value to be written into the 
MXCSR register, the resulting value will be assured of having all its reserved bits set 
to 0, preventing the possibility of a general-protection exception being generated 
when the value is written to the MXCSR register. 

For example, the default MXCSR_MASK value when 00000000H is returned in the 
FXSAVE image is 0000FFBFH. If software AND’s a value to be written to MXCSR 
register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be ensured of being 
set to 0, which is the required setting to prevent general-protection exceptions on 
processors that do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d 
with the value to be written into the MXCSR register in the following situations:

• Operating system routines that receive a parameter from an application program 
and then write that value to the MXCSR register (either with an FXRSTOR or 
LDMXCSR instruction)

• Any application program that writes to the MXCSR register and that needs to run 
robustly on several different IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that 
are supported by the MXCSR register; they can be treated as feature flags for identi-
fying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX 
Instructions

The XMM registers and the x87 FPU and MMX registers represent separate execution 
environments, which has certain ramifications when executing SSE, SSE2, MMX, and 
x87 FPU instructions in the same code module or when mixing code modules that 
contain these instructions:

• Those SSE and SSE2 instructions that operate only on XMM registers (such as the 
packed and scalar floating-point instructions and the 128-bit SIMD integer 
instructions) in the same instruction stream with 64-bit SIMD integer or x87 FPU 
instructions without any restrictions. For example, an application can perform the 
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majority of its floating-point computations in the XMM registers, using the packed 
and scalar floating-point instructions, and at the same time use the x87 FPU to 
perform trigonometric and other transcendental computations. Likewise, an 
application can perform packed 64-bit and 128-bit SIMD integer operations 
together without restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the 
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, 
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in 
the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, 
however, here they are subject to the restrictions on the simultaneous use of 
MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 
instructions that operate on MMX registers should be preceded by saving the 
state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instruc-
tions that operate on MMX registers to x87 FPU instructions should be 
preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data 
Types

SSE and SSE2 extensions operate on the same single-precision and double-precision 
floating-point data types that the x87 FPU operates on. However, when operating on 
these data types, the SSE and SSE2 extensions operate on them in their native 
format (single-precision or double-precision), in contrast to the x87 FPU which 
extends them to double extended-precision floating-point format to perform compu-
tations and then rounds the result back to a single-precision or double-precision 
format before writing results to memory. Because the x87 FPU operates on a higher 
precision format and then rounds the result to a lower precision format, it may return 
a slightly different result when performing the same operation on the same single-
precision or double-precision floating-point values than is returned by the SSE and 
SSE2 extensions. The difference occurs only in the least-significant bits of the signif-
icand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD 
Integer Instructions and Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-
point data types and on 128-bit SIMD integer data types, but IA-32 processors do not 
enforce this typing at the architectural level. They only enforce it at the microarchi-
tectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or 
scalar floating-point operand or a 128-bit packed integer operand from memory into 
an XMM register, it does not check that the actual data being loaded matches the 
data type specified in the instruction. Likewise, when the processor performs an 
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arithmetic operation on the data in an XMM register, it does not check that the data 
being operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types 
is not enforced at the architectural level, it is the responsibility of the programmer, 
assembler, or compiler to insure that code enforces data typing. Failure to enforce 
correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point 
operands are moved from memory into XMM registers (using MOVAPS instructions); 
then a double-precision packed add operation (using the ADDPD instruction) is 
performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed 

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating 
an invalid-operand exception (#UD) and will produce the expected results in register 
XMM0 (that is, the high and low 64-bits of each register will be treated as a double-
precision floating-point value and the processor will operate on them accordingly). 
Because the data types operated on and the data type expected by the ADDPD 
instruction were inconsistent, the instruction may result in a SIMD floating-point 
exception (such as numeric overflow [#O] or invalid operation [#I]) being gener-
ated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent 
with the typing of the instruction being executed, permits some valid operations to be 
performed. For example, the following instructions load a packed double-precision 
floating-point operand from memory to register XMM0, and a mask to register 
XMM1; then they use XORPD to toggle the sign bits of the two packed values in 
register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed 

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using 

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same 
correct result. However, because of the type mismatch between the operand data 
type and the instruction data type, a latency penalty will be incurred due to imple-
mentations of the instructions at the microarchitecture level. 

Latency penalties can also be incurred by using move instructions of the wrong type. 
For example, MOVAPS and MOVAPD can both be used to move a packed single-preci-
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sion operand from memory to an XMM register. However, if MOVAPD is used, a 
latency penalty will be incurred when a correctly typed instruction attempts to use 
the data in the register.

Note that these latency penalties are not incurred when moving data from XMM 
registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
SSE and SSE2 extensions allow direct access to XMM registers. This means that all 
existing interface conventions between procedures and functions that apply to the 
use of the general-purpose registers (EAX, EBX, etc.) also apply to XMM register 
usage.

11.6.10.1  Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries. 
Parameters can be passed from one procedure to another using XMM registers.

11.6.10.2  Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or 
a move instruction. FXSAVE saves the state of all XMM registers (along with the state 
of MXCSR and the x87 FPU registers). This instruction is typically used for major 
changes in the context of the execution environment, such as a task switch. 
FXRSTOR restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers 
need to be saved, move instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, 
MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. These instructions can also 
be used to restore the contents of XMM registers. To avoid performance degradation 
when saving XMM registers to memory or when loading XMM registers from memory, 
be sure to use the appropriately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the 
stack. Here, the stack pointer (in the ESP register) can be used as the memory 
address to the next available byte in the stack. Note that the stack pointer is not 
automatically incremented when using a move instruction (as it is with PUSH). 

A move-instruction procedure that saves the contents of an XMM register to the stack 
is responsible for decrementing the value in the ESP register by 16. Likewise, a 
move-instruction procedure that loads an XMM register from the stack needs also to 
increment the ESP register by 16. To avoid performance degradation when moving 
the contents of XMM registers, use the appropriately typed move instructions.

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the 
contents of the MXCSR register on a procedure call and return.
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11.6.10.3  Caller-Save Requirement for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save 
convention is recommended for saving the state of the calling procedure. Using this 
convention, any register whose content must survive intact across a procedure call 
must be stored in memory by the calling procedure prior to executing the call. 

The primary reason for using the caller-save convention is to prevent performance 
degradation. XMM registers can contain packed or scalar double-precision floating-
point, packed single-precision floating-point, and 128-bit packed integer data types. 
The called procedure has no way of knowing the data types in XMM registers 
following a call; so it is unlikely to use the correctly typed move instruction to store 
the contents of XMM registers in memory or to restore the contents of XMM registers 
from memory. 

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit 
SIMD Integer Instructions and Data,” executing a move instruction that does not 
match the type for the data being moved to/from XMM registers will be carried out 
correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines
Using 128-Bit SIMD Integer Instructions

SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-
bit SIMD integers using XMM registers. The extended 128-bit SIMD integer instruc-
tions operate like the 64-bit SIMD integer instructions; this simplifies the porting of 
MMX technology applications. However, there are considerations:

• To take advantage of wider 128-bit SIMD integer instructions, MMX technology 
code must be recompiled to reference the XMM registers instead of MMX 
registers.

• Computation instructions that reference memory operands that are not aligned 
on 16-byte boundaries should be replaced with an unaligned 128-bit load 
(MOVUDQ instruction) followed by a version of the same computation operation 
that uses register instead of memory operands. Use of 128-bit packed integer 
computation instructions with memory operands that are not 16-byte aligned 
results in a general protection exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer 
operand) across a full 128-bit operand is emulated by a combination of the 
following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 
bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations. 

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double 
quadword operand by bytes)
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• Loop counters need to be updated, since each 128-bit SIMD integer instruction 
operates on twice the amount of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison 
instruction generates a mask which can then be transferred to an integer register. 
The following code sequence provides an example of how to perform a conditional 
branch, based on the result of an SSE2 arithmetic operation. 

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0,2 ; compare with desired result
jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar 
comparison. A conditional branch can then be scheduled immediately following 
COMISD/UCOMISD.

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control 
prefetching, caching, loading and storing of data. When correctly used, these instruc-
tions improve application performance. 

To make efficient use of the processor’s super-scalar microarchitecture, a program 
needs to provide a steady stream of data to the executing program to avoid stalling 
the processor. PREFETCHh instructions minimize the latency of data accesses in 
performance-critical sections of application code by allowing data to be fetched into 
the processor cache hierarchy in advance of actual usage. 

PREFETCHh instructions do not change the user-visible semantics of a program, 
although they may affect performance. The operation of these instructions is imple-
mentation-dependent. Programmers may need to tune code for each IA-32 
processor implementation. Excessive usage of PREFETCHh instructions may waste 
memory bandwidth and reduce performance. For more detailed information on the 
use of prefetch hints, refer to Chapter 6, “Optimizing Cache Usage”, in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, 
MOVNTQ, MASKMOVQ, and MASKMOVDQU) minimize cache pollution when writing 
non-temporal data to memory (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” and Section 10.4.6.1, “Cacheability Control Instructions”). They 
prevent non-temporal data from being written into processor caches on a store oper-
ation. These instructions are implementation specific. Programmers may have to 
tune their applications for each IA-32 processor implementation to take advantage of 
these instructions.
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Besides reducing cache pollution, the use of weakly-ordered memory types can be 
important under certain data sharing relationships, such as a producer-consumer 
relationship. The use of weakly ordered memory can make the assembling of data 
more efficient; but care must be taken to ensure that the consumer obtains the data 
that the producer intended. Some common usage models that may be affected in this 
way by weakly-ordered stores are: 

• Library functions that use weakly ordered memory to write results

• Compiler-generated code that writes weakly-ordered results

• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can 
vary for these cases. As a result, the SFENCE or MFENCE instruction should be used 
to ensure ordering between routines that produce weakly-ordered data and routines 
that consume the data. SFENCE and MFENCE provide a performance-efficient way to 
ensure ordering by guaranteeing that every store instruction that precedes 
SFENCE/MFENCE in program order is globally visible before a store instruction that 
follows the fence. 

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions. 
(Table 11-3 also applies to SIMD integer and SIMD floating-point instructions in 
SSE3.) Unpredictable behavior can range from prefixes being treated as a reserved 
operation on one generation of IA-32 processors to generating an invalid opcode 
exception on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for complete description of instruction 
prefixes.

NOTE
Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are 
either 2 bytes or 3 bytes in length. Two-byte opcodes that are 3 bytes 
in length consist of: a mandatory prefix (F2H, F3H, or 66H), 0FH, and 
an opcode byte. See Table 11-3.

Table 11-3.  Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.
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Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and 
E3H)

Reserved and may result in unpredictable behavior.

Table 11-3.  Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions 
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CHAPTER 12
PROGRAMMING WITH

SSE3 AND SUPPLEMENTAL SSE3

The Pentium 4 processor supporting Hyper-Threading Technology introduces 
Streaming SIMD Extensions 3 (SSE3). The Intel Xeon processor 5100 series, Intel 
Core 2 processor families introduced Supplemental Streaming SIMD Extensions 3 
(SSSE3). This chapter describes SSE3/SSSE3 and provides information to assist in 
writing application programs that use these extensions. 

12.1 SSE3/SSSE3 PROGRAMMING ENVIRONMENT AND 
DATA TYPES

The programming environment for using SSE3/SSSE3 is unchanged from that shown 
in Figure 3-1 and Figure 11-1. SSE3/SSSE3 do not introduce new data types. XMM 
registers are used to operate on packed integer data, single-precision floating-point 
data, or double-precision floating-point data. 

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two 
SSE3 instructions that use the general registers for thread synchronization. The 
MXCSR register governs SIMD floating-point operations. Note, however, that the 
x87FPU control word does not affect the SSE3 instruction that is executed by the x87 
FPU (FISTTP), other than by unmasking an invalid operand or inexact result excep-
tion.

12.1.1 SSE3/SSSE3 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE3/SSSE3 function like they do in protected mode. In 
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15 
are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 
3.7.5.

Some SSE3 instructions may be used to operate on general-purpose registers. Use 
the REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix 
is used when it has no meaning, the prefix is ignored.
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12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 
FPU Environment, and SSE/SSE2 Extensions

SSE3/SSSE3 do not introduce any new state to the Intel 64 and IA-32 execution 
environments. 

For SIMD and x87 programming, the FXSAVE and FXRSTOR instructions save and 
restore the architectural states of XMM, MXCSR, x87 FPU, and MMX registers. The 
MONITOR and MWAIT instructions use general purpose registers on input, they do 
not modify the content of those registers.

12.1.3 Horizontal and Asymmetric Processing
Many SSE/SSE2/SSE3/SSSE3 instructions accelerate SIMD data processing using a 
model referred to as vertical computation. Using this model, data flow is vertical 
between the data elements of the inputs and the output. 

Figure 12-1 illustrates the asymmetric processing of the SSE3 instruction 
ADDSUBPD. Figure 12-2 illustrates the horizontal data movement of the SSE3 
instruction HADDPD. 

Figure 12-1.  Asymmetric Processing in ADDSUBPD 
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12.2 OVERVIEW OF SSE3 INSTRUCTIONS
SSE3 extensions include 13 instructions. See:

• Section 12.3, “SSE3 Instructions,” provides an introduction to individual SSE3 
instructions. 

• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide detailed information on individual instructions.

• Chapter 12, “System Programming for Streaming SIMD Instruction Sets,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
gives guidelines for integrating SSE/SSE2/SSE3 extensions into an operating-
system environment.

12.3 SSE3 INSTRUCTIONS
SSE3 instructions are grouped as follows:

• x87 FPU instruction

— One instruction that improves x87 FPU floating-point to integer conversion

• SIMD integer instruction

— One instruction that provides a specialized 128-bit unaligned data load

• SIMD floating-point instructions

— Three instructions that enhance LOAD/MOVE/DUPLICATE performance

— Two instructions that provide packed addition/subtraction

— Four instructions that provide horizontal addition/subtraction

Figure 12-2.  Horizontal Data Movement in HADDPD
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• Thread synchronization instructions

— Two instructions that improve synchronization between multi-threaded 
agents

The instructions are discussed in more detail in the following paragraphs.

12.3.1 x87 FPU Instruction for Integer Conversion
The FISTTP instruction (x87 FPU Store Integer and Pop with Truncation) behaves like 
FISTP, but uses truncation regardless of what rounding mode is specified in the x87 
FPU control word. The instruction converts the top of stack (ST0) to integer with 
rounding to and pops the stack. 

The FISTTP instruction is available in three precisions: short integer (word or 16-bit), 
integer (double word or 32-bit), and long integer (64-bit). With FISTTP, applications 
no longer need to change the FCW when truncation is required.

12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned 
Data Load

The LDDQU instruction is a special 128-bit unaligned load designed to avoid cache 
line splits. If the address of a 16-byte load is on a 16-byte boundary, LDQQU loads 
the bytes requested. If the address of the load is not aligned on a 16-byte boundary, 
LDDQU loads a 32-byte block starting at the 16-byte aligned address immediately 
below the load request. It then extracts the requested 16 bytes.

The instruction provides significant performance improvement on 128-bit unaligned 
memory accesses at the cost of some usage model restrictions.

12.3.3 SIMD Floating-Point Instructions That Enhance 
LOAD/MOVE/DUPLICATE Performance

The MOVSHDUP instruction loads/moves 128-bits, duplicating the second and fourth 
32-bit data elements.

• MOVSHDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3b, 3b, 1b, 1b

The MOVSLDUP instruction loads/moves 128-bits, duplicating the first and third 
32-bit data elements.

• MOVSLDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a
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— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 2b, 2b, 0b, 0b

The MOVDDUP instruction loads/moves 64-bits; duplicating the 64 bits from the 
source.

• MOVDDUP OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (64 bits, one data element): 0b

— Result (stored in OperandA): 0b, 0b

12.3.4 SIMD Floating-Point Instructions Provide Packed 
Addition/Subtraction

The ADDSUBPS instruction has two 128-bit operands. The instruction performs 
single-precision addition on the second and fourth pairs of 32-bit data elements 
within the operands; and single-precision subtraction on the first and third pairs.

• ADDSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

The ADDSUBPD instruction has two 128-bit operands. The instruction performs 
double-precision addition on the second pair of quadwords, and double-precision 
subtraction on the first pair.

• ADDSUBPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (stored in OperandA): 1a+1b, 0a-0b

12.3.5 SIMD Floating-Point Instructions Provide Horizontal 
Addition/Subtraction

Most SIMD instructions operate vertically. This means that the result in position i is a 
function of the elements in position i of both operands. Horizontal addition/subtrac-
tion operates horizontally. This means that contiguous data elements in the same 
source operand are used to produce a result.

The HADDPS instruction performs a single-precision addition on contiguous data 
elements. The first data element of the result is obtained by adding the first and 
second elements of the first operand; the second element by adding the third and 
fourth elements of the first operand; the third by adding the first and second 
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elements of the second operand; and the fourth by adding the third and fourth 
elements of the second operand.

• HADDPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

The HSUBPS instruction performs a single-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by subtracting the second 
element of the first operand from the first element of the first operand; the second 
element by subtracting the fourth element of the first operand from the third element 
of the first operand; the third by subtracting the second element of the second 
operand from the first element of the second operand; and the fourth by subtracting 
the fourth element of the second operand from the third element of the second 
operand.

• HSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

The HADDPD instruction performs a double-precision addition on contiguous data 
elements. The first data element of the result is obtained by adding the first and 
second elements of the first operand; the second element by adding the first and 
second elements of the second operand.

• HADDPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 1b+0b, 1a+0a

The HSUBPD instruction performs a double-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by subtracting the second 
element of the first operand from the first element of the first operand; the second 
element by subtracting the second element of the second operand from the first 
element of the second operand.

• HSUBPD OperandA OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 0b-1b, 0a-1a
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12.3.6 Two Thread Synchronization Instructions
The MONITOR instruction sets up an address range that is used to monitor write-
back-stores. 

MWAIT enables a logical processor to enter into an optimized state while waiting for 
a write-back-store to the address range set up by MONITOR. MONITOR and MWAIT 
require the use of general purpose registers for its input. The registers used by 
MONITOR and MWAIT must be initialized properly; register content is not modified by 
these instructions.

12.4 WRITING APPLICATIONS WITH SSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSE3 instructions. 

12.4.1 Guidelines for Using SSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSE3 exten-
sions:

• Check that the processor supports SSE3 extensions.

— Application may need to ensure that the target operating system supports 
SSE3. (Operating system support for the SSE extensions implies sufficient 
support for SSE2 extensions and SSE3 extensions.) 

• Ensure your operating system supports MONITOR and MWAIT.

• Employ the optimization and scheduling techniques described in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual (see Section 1.4, 
“Related Literature”).

12.4.2 Checking for SSE3 Support
Before an application attempts to use the SIMD subset of SSE3 extensions, the appli-
cation should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 
Support.” Next, use the additional step provided below:

• Check that the processor supports the SIMD and x87 SSE3 extensions (if 
CPUID.01H:ECX.SSE3[bit 0] = 1). 

An operating systems that provides application support for SSE, SSE2 also provides 
sufficient application support for SSE3. To use FISTTP, software only needs to check 
support for SSE3.

In the initial implementation of MONITOR and MWAIT, these two instructions are 
available to ring 0 and conditionally available at ring level greater than 0. Before an 
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application attempts to use the MONITOR and MWAIT instructions, the application 
should use the following steps:

1. Check that the processor supports MONITOR and MWAIT. If 
CPUID.01H:ECX.MONITOR[bit 3] = 1, MONITOR and MWAIT are available at 
ring 0. 

2. Query the smallest and largest line size that MONITOR uses. Use 
CPUID.05H:EAX.smallest[bits 15:0];EBX.largest[bits15:0]. Values are returned 
in bytes in EAX and EBX.

3. Ensure the memory address range(s) that will be supplied to MONITOR meets 
memory type requirements.

MONITOR and MWAIT are targeted for system software that supports efficient thread 
synchronization, See Chapter 12 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A for details.

12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation
Enabling the FTZ and DAZ flags in the MXCSR register is likely to accelerate SIMD 
floating-point computation where strict compliance to the IEEE standard 754-1985 is 
not required. The FTZ flag is available to Intel 64 and IA-32 processors that support 
the SSE; DAZ is available to Intel 64 processors and to most IA-32 processors that 
support SSE/SSE2/SSE3. 

Software can detect the presence of DAZ, modify the MXCSR register, and save and 
restore state information by following the techniques discussed in Section 11.6.3 
through Section 11.6.6.

12.4.4 Programming SSE3 with SSE/SSE2 Extensions
SIMD instructions in SSE3 extensions are intended to complement the use of 
SSE/SSE2 in programming SIMD applications. Application software that intends to 
use SSE3 instructions should also check for the availability of SSE/SSE2 instructions.

The FISTTP instruction in SSE3 is intended to accelerate x87 style programming 
where performance is limited by frequent floating-point conversion to integers; this 
happens when the x87 FPU control word is modified frequently. Use of FISTTP can 
eliminate the need to access the x87 FPU control word.

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS
SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal 
processing applications employing SIMD integer data. See:

• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSE3 
instructions. 
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide detailed information on individual instructions.

• Chapter 12, “System Programming for Streaming SIMD Instruction Sets,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
gives guidelines for integrating SSE/SSE2/SSE3/SSSE3 extensions into an 
operating-system environment.

12.6 SSSE3 INSTRUCTIONS
SSSE3 instructions include:

• Twelve instructions that perform horizontal addition or subtraction operations.

• Six instructions that evaluate the absolute values.

• Two instructions that perform multiply and add operations and speed up the 
evaluation of dot products.

• Two instructions that accelerate packed-integer multiply operations and produce 
integer values with scaling.

• Two instructions that perform a byte-wise, in-place shuffle according to the 
second shuffle control operand.

• Six instructions that negate packed integers in the destination operand if the 
signs of the corresponding element in the source operand is less than zero.

• Two instructions that align data from the composite of two operands.

The operands of these instructions are packed integers of byte, word, or double word 
sizes. The operands are stored as 64 or 128 bit data in MMX registers, XMM registers, 
or memory.

The instructions are discussed in more detail in the following paragraphs.

12.6.1 Horizontal Addition/Subtraction
In analogy to the packed, floating-point horizontal add and subtract instructions in 
SSE3, SSSE3 offers similar capabilities on packed integer data. Data elements of 
signed words, doublewords are supported. Saturated version for horizontal add and 
subtract on signed words are also supported. The horizontal data movement of 
PHADD is shown in Figure 12-3. 
Vol. 1 12-9



PROGRAMMING WITH SSE3 AND SUPPLEMENTAL SSE3
There are six horizontal add instructions (represented by three mnemonics); three 
operate on 128-bit operands and three operate on 64-bit operands. The width of 
each data element is either 16 bits or 32 bits. The mnemonics are listed below.

• PHADDW adds two adjacent, signed 16-bit integers horizontally from the source 
and destination operands and packs the signed 16-bit results to the destination 
operand.

• PHADDSW adds two adjacent, signed 16-bit integers horizontally from the source 
and destination operands and packs the signed, saturated 16-bit results to the 
destination operand.

• PHADDD adds two adjacent, signed 32-bit integers horizontally from the source 
and destination operands and packs the signed 32-bit results to the destination 
operand.

There are six horizontal subtract instructions (represented by three mnemonics); 
three operate on 128-bit operands and three operate on 64-bit operands. The width 
of each data element is either 16 bits or 32 bits. These are listed below.

• PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed 
integers by subtracting the most significant word from the least significant word 
of each pair in the source and destination operands. The signed 16-bit results are 
packed and written to the destination operand.

• PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed 
integers by subtracting the most significant word from the least significant word 
of each pair in the source and destination operands. The signed, saturated 16-bit 
results are packed and written to the destination operand.

• PHSUBD performs horizontal subtraction on each adjacent pair of 32-bit signed 
integers by subtracting the most significant doubleword from the least significant 

Figure 12-3.  Horizontal Data Movement in PHADDD
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double word of each pair in the source and destination operands. The signed 
32-bit results are packed and written to the destination operand.

12.6.2 Packed Absolute Values
There are six packed-absolute-value instructions (represented by three mnemonics). 
Three operate on 128-bit operands and three operate on 64-bit operands. The widths 
of data elements are 8 bits, 16 bits or 32 bits. The absolute value of each data 
element of the source operand is stored as an UNSIGNED result in the destination 
operand.

• PABSB computes the absolute value of each signed byte data element.

• PABSW computes the absolute value of each signed 16-bit data element.

• PABSD computes the absolute value of each signed 32-bit data element. 

12.6.3 Multiply and Add Packed Signed and Unsigned Bytes
There are two multiply-and-add-packed-signed-unsigned-byte instructions (repre-
sented by one mnemonic). One operates on 128-bit operands and the other operates 
on 64-bit operands. Multiplications are performed on each vertical pair of data 
elements. The data elements in the source operand are signed byte values, the input 
data elements of the destination operand are unsigned byte values.

• PMADDUBSW multiplies each unsigned byte value with the corresponding signed 
byte value to produce an intermediate, 16-bit signed integer. Each adjacent pair 
of 16-bit signed values are added horizontally. The signed, saturated 16-bit 
results are packed to the destination operand.

12.6.4 Packed Multiply High with Round and Scale
There are two packed-multiply-high-with-round-and-scale instructions (represented 
by one mnemonic). One operates on 128-bit operands and the other operates on 
64-bit operands.

• PMULHRSW multiplies vertically each signed 16-bit integer from the destination 
operand with the corresponding signed 16-bit integer of the source operand, 
producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer 
is truncated to the 18 most significant bits. Rounding is always performed by 
adding 1 to the least significant bit of the 18-bit intermediate result. The final 
result is obtained by selecting the 16 bits immediately to the right of the most 
significant bit of each 18-bit intermediate result and packed to the destination 
operand.
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12.6.5 Packed Shuffle Bytes
There are two packed-shuffle-bytes instructions (represented by one mnemonic). 
One operates on 128-bit operands and the other operates on 64-bit operands. The 
shuffle operations are performed bytewise on the destination operand using the 
source operand as a control mask.

• PSHUFB permutes each byte in place, according to a shuffle control mask. The 
least significant three or four bits of each shuffle control byte of the control mask 
form the shuffle index. The shuffle mask is unaffected. If the most significant bit 
(bit 7) of a shuffle control byte is set, the constant zero is written in the result 
byte.

12.6.6 Packed Sign
There are six packed-sign instructions (represented by three mnemonics). Three 
operate on 128-bit operands and three operate on 64-bit operands. The widths of 
each data element for these instructions are 8 bit, 16 bit or 32 bit signed integers.

• PSIGNB/W/D negates each signed integer element of the destination operand if 
the sign of the corresponding data element in the source operand is less than 
zero.

12.6.7 Packed Align Right
There are two packed-align-right instructions (represented by one mnemonic). One 
operates on 128-bit operands and the other operates on 64-bit operands. These 
instructions concatenate the destination and source operand into a composite, and 
extract the result from the composite according to an immediate constant.

• PALIGNR’s source operand is appended after the destination operand forming an 
intermediate value of twice the width of an operand. The result is extracted from 
the intermediate value into the destination operand by selecting the 128-bit or 
64-bit value that are right-aligned to the byte offset specified by the immediate 
value. 

12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSSE3 instructions. 

12.7.1 Guidelines for Using SSSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSSE3 
extensions:
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• Check that the processor supports SSSE3 extensions.

• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions. 
(Operating system support for the SSE extensions implies sufficient support for 
SSE2, SSE3, and SSSE3.) 

• Employ the optimization and scheduling techniques described in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual (see Section 1.4, 
“Related Literature”).

12.7.2 Checking for SSSE3 Support
Before an application attempts to use the SIMD subset of SSSE3 extensions, the 
application should follow the steps illustrated in Section 11.6.2, “Checking for 
SSE/SSE2 Support.” Next, use the additional step provided below:

• Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.8 SSE3/SSSE3 EXCEPTIONS
SSE3/SSSE3 instructions can generate the same type of memory-access and non-
numeric exceptions as other Intel 64 or IA-32 instructions. Existing exception 
handlers generally handle these exceptions without code modification. 

FISTTP can generate floating-point exceptions. Some SSE3 instructions can also 
generate SIMD floating-point exceptions. 

SSE3 additions and changes are noted in the following sections. See also: Section 
11.5, “SSE, SSE2, and SSE3 Exceptions”.

12.8.1 Device Not Available (DNA) Exceptions
SSE3/SSSE3 will cause a DNA Exception (#NM) if the processor attempts to execute 
an SSE3 instruction while CR0.TS[bit 3] = 1. If CPUID.01H:ECX.SSE3[bit 0] = 0, 
execution of an SSE3 extension will cause an invalid opcode fault regardless of the 
state of CR0.TS[bit 3].

12.8.2 Numeric Error flag and IGNNE#
Most SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and 
the IGNNE# pin. With one exception, all use the vector 19 software exception for 
error reporting. The exception is FISTTP; it behaves like other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the 
IGNNE# pin. SSSE3 instructions do not cause floating-point errors.
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12.8.3 Emulation
Used to emulate x87 floating-point instructions, CR0.EM[bit 2] cannot be used for 
emulation of SSE3/SSSE3. If an SSE3/SSSE3 instruction executes with CR0.EM[bit 2] 
set, an invalid opcode exception (INT 6) is generated instead of a device not available 
exception (INT 7).
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CHAPTER 13
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can 
also transfer data to and from input/output ports (I/O ports). I/O ports are created in 
system hardware by circuity that decodes the control, data, and address pins on the 
processor. These I/O ports are then configured to communicate with peripheral 
devices. An I/O port can be an input port, an output port, or a bidirectional port. 
Some I/O ports are used for transmitting data, such as to and from the transmit and 
receive registers, respectively, of a serial interface device. Other I/O ports are used 
to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:

• I/O port addressing

• I/O instructions

• I/O protection mechanism

13.1 I/O PORT ADDRESSING
The processor permits applications to access I/O ports in either of two ways:

• Through a separate I/O address space

• Through memory-mapped I/O

Accessing I/O ports through the I/O address space is handled through a set of I/O 
instructions and a special I/O protection mechanism. Accessing I/O ports through 
memory-mapped I/O is handled with the processors general-purpose move and 
string instructions, with protection provided through segmentation or paging. I/O 
ports can be mapped so that they appear in the I/O address space or the physical-
memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed 
to be completed before the next instruction in the instruction stream is executed. 
Thus, I/O writes to control system hardware cause the hardware to be set to its new 
state before any other instructions are executed. See Section 13.6, “Ordering I/O,” 
for more information on serializing of I/O operations.

13.2 I/O PORT HARDWARE
From a hardware point of view, I/O addressing is handled through the processor’s 
address lines. For the P6 family, Pentium 4, and Intel Xeon processors, the request 
command lines signal whether the address lines are being driven with a memory 
address or an I/O address; for Pentium processors and earlier IA-32 processors, the 
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M/IO# pin indicates a memory address (1) or an I/O address (0). When the separate 
I/O address space is selected, it is the responsibility of the hardware to decode the 
memory-I/O bus transaction to select I/O ports rather than memory. Data is trans-
mitted between the processor and an I/O device through the data lines.

13.3 I/O ADDRESS SPACE
The processor’s I/O address space is separate and distinct from the physical-memory 
address space. The I/O address space consists of 216 (64K) individually addressable 
8-bit I/O ports, numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH 
are reserved. Do not assign I/O ports to these addresses. The result of an attempt to 
address beyond the I/O address space limit of FFFFH is implementation-specific; see 
the Developer’s Manuals for specific processors for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consec-
utive ports can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 
32 bits to or from a device in the I/O address space. Like words in memory, 16-bit 
ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be 
transferred in a single bus cycle. Likewise, 32-bit ports should be aligned to 
addresses that are multiples of four (0, 4, 8, ...). The processor supports data trans-
fers to unaligned ports, but there is a performance penalty because one or more 
extra bus cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not 
guaranteed to remain the same in future IA-32 processors. If hardware or software 
requires that I/O ports be written to in a particular order, that order must be specified 
explicitly. For example, to load a word-length I/O port at address 2H and then 
another word port at 4H, two word-length writes must be used, rather than a single 
doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address 
space. Accessing I/O ports through the I/O address space is thus a possible source of 
parity errors.

13.3.1 Memory-Mapped I/O
I/O devices that respond like memory components can be accessed through the 
processor’s physical-memory address space (see Figure 13-1). When using memory-
mapped I/O, any of the processor’s instructions that reference memory can be used 
to access an I/O port located at a physical-memory address. For example, the MOV 
instruction can transfer data between any register and a memory-mapped I/O port. 
The AND, OR, and TEST instructions may be used to manipulate bits in the control 
and status registers of a memory-mapped peripheral devices.

When using memory-mapped I/O, caching of the address space mapped for I/O 
operations must be prevented. With the Pentium 4, Intel Xeon, and P6 family proces-
sors, caching of I/O accesses can be prevented by using memory type range regis-
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ters (MTRRs) to map the address space used for the memory-mapped I/O as 
uncacheable (UC). See Chapter 10, “Memory Cache Control,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a complete discus-
sion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide 
the KEN# pin, which when held inactive (high) prevents caching of all addresses sent 
out on the system bus. To use this pin, external address decoding logic is required to 
block caching in specific address spaces.

All the IA-32 processors that have on-chip caches also provide the PCD (page-level 
cache disable) flag in page table and page directory entries. This flag allows caching 
to be disabled on a page-by-page basis. See “Page-Directory and Page-Table Entries” 
in Chapter 3 of in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

13.4 I/O INSTRUCTIONS
The processor’s I/O instructions provide access to I/O ports through the I/O address 
space. (These instructions cannot be used to access memory-mapped I/O ports.) 
There are two groups of I/O instructions:

• Those that transfer a single item (byte, word, or doubleword) between an I/O 
port and a general-purpose register

Figure 13-1.  Memory-Mapped I/O
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• Those that transfer strings of items (strings of bytes, words, or doublewords) 
between an I/O port and memory

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) 
move data between I/O ports and the EAX register (32-bit I/O), the AX register 
(16-bit I/O), or the AL (8-bit I/O) register. The address of the I/O port can be given 
with an immediate value or a value in the DX register. 

The string I/O instructions INS (input string from I/O port) and OUTS (output string 
to I/O port) move data between an I/O port and a memory location. The address of 
the I/O port being accessed is given in the DX register; the source or destination 
memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instruc-
tions perform string (or block) input or output operations. The repeat prefix REP 
modifies the INS and OUTS instructions to transfer blocks of data between an I/O 
port and memory. Here, the ESI or EDI register is incremented or decremented 
(according to the setting of the DF flag in the EFLAGS register) after each byte, word, 
or doubleword is transferred between the selected I/O port and memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B, 
for more information on these instructions.

13.5 PROTECTED-MODE I/O
When the processor is running in protected mode, the following protection mecha-
nisms regulate access to I/O ports:

• When accessing I/O ports through the I/O address space, two protection devices 
control access:

— The I/O privilege level (IOPL) field in the EFLAGS register

— The I/O permission bit map of a task state segment (TSS)

• When accessing memory-mapped I/O ports, the normal segmentation and 
paging protection and the MTRRs (in processors that support them) also affect 
access to I/O ports. See Chapter 4, “Protection,” and Chapter 10, “Memory Cache 
Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing 
I/O ports in the I/O address space with the I/O instructions.

13.5.1 I/O Privilege Level
In systems where I/O protection is used, the IOPL field in the EFLAGS register 
controls access to the I/O address space by restricting use of selected instructions. 
This protection mechanism permits the operating system or executive to set the priv-
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ilege level needed to perform I/O. In a typical protection ring model, access to the 
I/O address space is restricted to privilege levels 0 and 1. Here, kernel and the device 
drivers are allowed to perform I/O, while less privileged device drivers and applica-
tion programs are denied access to the I/O address space. Application programs 
must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of 
the program or task currently executing is less than or equal to the IOPL: IN, INS, 
OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set interrupt-enable flag). 
These instructions are called I/O sensitive instructions, because they are sensitive 
to the IOPL field. Any attempt by a less privileged program or task to use an I/O 
sensitive instruction results in a general-protection exception (#GP) being signaled. 
Because each task has its own copy of the EFLAGS register, each task can have a 
different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL 
on I/O sensitive instructions, allowing access to some I/O ports by less privileged 
programs or tasks (see Section 13.5.2, “I/O Permission Bit Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; 
however, such changes are privileged. No procedure may change the current IOPL 
unless it is running at privilege level 0. An attempt by a less privileged procedure to 
change the IOPL does not result in an exception; the IOPL simply remains 
unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the 
CLI and STI instructions); however, the POPF instruction in this case is also I/O sensi-
tive. A procedure may use the POPF instruction to change the setting of the IF flag 
only if the CPL is less than or equal to the current IOPL. An attempt by a less privi-
leged procedure to change the IF flag does not result in an exception; the IF flag 
simply remains unchanged.

13.5.2 I/O Permission Bit Map
The I/O permission bit map is a device for permitting limited access to I/O ports by 
less privileged programs or tasks and for tasks operating in virtual-8086 mode. The 
I/O permission bit map is located in the TSS (see Figure 13-2) for the currently 
running task or program. The address of the first byte of the I/O permission bit map 
is given in the I/O map base address field of the TSS. The size of the I/O permission 
bit map and its location in the TSS are variable. 
Vol. 1 13-5



INPUT/OUTPUT
Because each task has its own TSS, each task has its own I/O permission bit map. 
Access to individual I/O ports can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the 
processor allows all I/O operations to proceed. If the CPL is greater than the IOPL or 
if the processor is operating in virtual-8086 mode, the processor checks the I/O 
permission bit map to determine if access to a particular I/O port is allowed. Each bit 
in the map corresponds to an I/O port byte address. For example, the control bit for 
I/O port address 29H in the I/O address space is found at bit position 1 of the sixth 
byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the I/O port being addressed. For a doubleword access, for example, the 
processors tests the four bits corresponding to the four adjacent 8-bit port 
addresses. If any tested bit is set, a general-protection exception (#GP) is signaled. 
If all tested bits are clear, the I/O operation is allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword 
boundaries, the processor reads two bytes from the I/O permission bit map for every 
access to an I/O port. To prevent exceptions from being generated when the ports 
with the highest addresses are accessed, an extra byte needs to included in the TSS 
immediately after the table. This byte must have all of its bits set, and it must be 
within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. 
I/O addresses not spanned by the map are treated as if they had set bits in the map. 
For example, if the TSS segment limit is 10 bytes past the bit-map base address, the 
map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O 
address space generate exceptions.

Figure 13-2.  I/O Permission Bit Map
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If the I/O bit map base address is greater than or equal to the TSS segment limit, 
there is no I/O permission map, and all I/O instructions generate exceptions when 
the CPL is greater than the current IOPL.

13.6 ORDERING I/O
When controlling I/O devices it is often important that memory and I/O operations be 
carried out in precisely the order programmed. For example, a program may write a 
command to an I/O port, then read the status of the I/O device from another I/O 
port. It is important that the status returned be the status of the device after it 
receives the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in 
which the programmed order is not preserved by the processor. To optimize perfor-
mance, the processor allows cacheable memory reads to be reordered ahead of buff-
ered writes in most situations. Internally, processor reads (cache hits) can be 
reordered around buffered writes. When using memory-mapped I/O, therefore, is 
possible that an I/O read might be performed before the memory write of a previous 
instruction. The recommended method of enforcing program ordering of memory-
mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to 
use the MTRRs to make the memory mapped I/O address space uncacheable; for the 
Pentium and Intel486 processors, either the #KEN pin or the PCD flags can be used 
for this purpose (see Section 13.3.1, “Memory-Mapped I/O”). 

When the target of a read or write is in an uncacheable region of memory, memory 
reordering does not occur externally at the processor’s pins (that is, reads and writes 
appear in-order). Designating a memory mapped I/O region of the address space as 
uncacheable insures that reads and writes of I/O devices are carried out in program 
order. See Chapter 10, “Memory Cache Control,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, for more information on using 
MTRRs.

Another method of enforcing program order is to insert one of the serializing instruc-
tions, such as the CPUID instruction, between operations. See Chapter 7, “Multiple-
Processor Management,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus 
controller, memory controller, and/or I/O controller) may post writes to uncacheable 
memory which can lead to out-of-order execution of memory accesses. In situations 
where out-of-order processing of memory accesses by the chip set can potentially 
cause faulty memory-mapped I/O processing, code must be written to force synchro-
nization and ordering of I/O operations. Serializing instructions can often be used for 
this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is 
different in two respects:
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• The processor never buffers I/O writes. Therefore, strict ordering of I/O 
operations is enforced by the processor. (As with memory-mapped I/O, it is 
possible for a chip set to post writes in certain I/O ranges.)

• The processor synchronizes I/O instruction execution with external bus activity 
(see Table 13-1). 

Table 13-1.  I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current 
Instruction?

Next 
Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
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CHAPTER 14
PROCESSOR IDENTIFICATION AND

FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify 
the type of processor present in a system and the processor features that are avail-
able to an application.

14.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor 
family, Pentium 4 processor family, Intel Xeon processor family, P6 family, Pentium 
processor, and later Intel486 processors. This instruction returns the family, model 
and (for some processors) a brand string for the processor that executes the instruc-
tion. It also indicates the features that are present in the processor and give informa-
tion about the processors caches and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the 
procedure supports the CPUID instruction. The CPUID instruction will cause the 
invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the 
EAX register to select the type of information to be returned. When the CPUID 
instruction is executed, selected information is returned in the EAX, EBX, ECX, and 
EDX registers. For a complete description of the CPUID instruction, tables indicating 
values returned, and example code, see “CPUID—CPUID Identification” in Chapter 3 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.1.1 Notes on Where to Start
For detailed application notes on the instruction, see AP-485, Intel Processor Identi-
fication and the CPUID Instruction (Order Number 241618). This publication provides 
additional information and example source code for use in identifying IA-32 proces-
sors. It also contains guidelines for using the CPUID instruction to help maintain the 
widest range of software compatibility. The following guidelines are among the most 
important, and should always be followed when using the CPUID instruction to deter-
mine available features:

• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and 
ECX registers when the CPUID instruction is executed with EAX equal to 0. If the 
processor is not genuine Intel, the feature identification flags may have different 
meanings than are described in Intel documentation.
Vol. 1 14-1



PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
• Test feature identification flags individually and do not make assumptions about 
undefined bits.

14.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the 
earlier Intel486 processors. For these processors, several other architectural 
features can be exploited to identify the processor.

The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS 
register are different for Intel’s 32-bit processors than for the Intel 8086 and Intel 
286 processors. By examining the settings of these bits (with the PUSHF/PUSHFD 
and POP/POPFD instructions), an application program can determine whether the 
processor is an 8086, Intel 286, or one of the Intel 32-bit processors:

• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.

• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.

• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 
through 14 have the last value loaded into them. In protected mode, bit 15 is 
always clear, bit 14 has the last value loaded into it, and the IOPL bits depends on 
the current privilege level (CPL). The IOPL field can be changed only if the CPL 
is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit 
processors:

• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors. The inability to set or clear this bit distin-
guishes an Intel386 processor from the later IA-32 processors.

• Bit 21 (ID) — Determines if the processor is able to execute the CPUID 
instruction. The ability to set and clear this bit indicates that it is a Pentium 4, 
Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.

To determine whether an x87 FPU or NPX is present in a system, applications can 
write to the x87 FPU status and control registers using the FNINIT instruction and 
then verify that the correct values are read back using the FNSTENV instruction. 

After determining that an x87 FPU or NPX is present, its type can then be deter-
mined. In most cases, the processor type will determine the type of FPU or NPX; 
however, an Intel386 processor is compatible with either an Intel 287 or Intel 387 
math coprocessor. 

The method the coprocessor uses to represent ∞ (after the execution of the FINIT, 
FNINIT, or RESET instruction) indicates which coprocessor is present. The Intel 287 
math coprocessor uses the same bit representation for +∞ and −∞; whereas, the Intel 
387 math coprocessor uses different representations for +∞ and −∞.
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APPENDIX A
EFLAGS CROSS-REFERENCE

A.1 EFLAGS AND INSTRUCTIONS
Table A-2 summarizes how the instructions affect the flags in the EFLAGS register. 
The following codes describe how the flags are affected.

Table A-1.  Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — — M

CALL
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EFLAGS CROSS-REFERENCE
CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMSID 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

M M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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EFLAGS CROSS-REFERENCE
INTO T 0 0

INVD

INVLPG

UCOMSID 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR 
count

— M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT 

XOR 0 M M — M 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
Vol. 1 A-5



EFLAGS CROSS-REFERENCE
A-6 Vol. 1



APPENDIX B
EFLAGS CONDITION CODES

B.1 CONDITION CODES
Table B-1 lists condition codes that can be queried using CMOVcc, FCMOVcc, Jcc, and 
SETcc. Condition codes refer to the setting of one or more status flags (CF, OF, SF, ZF, 
and PF) in the EFLAGS register. In the table below:

• The “Mnemonic” column provides the suffix (cc) added to the instruction to 
specify a test condition. 

• “Condition Tested For” describes the targeted condition. 

• “Instruction Subcode” provides the opcode suffix added to the main opcode to 
specify the test condition. 

• “Status Flags Setting” describes the flag setting. 

Table B-1.  EFLAGS Condition Codes 

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1
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EFLAGS CONDITION CODES
Many of the test conditions are described in two different ways. For example, LE (less 
or equal) and NG (not greater) describe the same test condition. Alternate 
mnemonics are provided to make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tion between two unsigned integer values. The terms “greater” and “less” are asso-
ciated with the SF and OF flags and refer to the relation between two signed integer 
values.

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF xOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF xOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0

Table B-1.  EFLAGS Condition Codes  (Contd.)

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting
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APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

C.1 OVERVIEW
This appendix shows which of the floating-point exceptions can be generated for: 

• x87 FPU instructions  —  see Table C-2

• SSE instructions  —  see Table C-3

• SSE2 instructions  —  see Table C-4

• SSE3 instructions  —  see Table C-5

Table C-1 lists types of floating-point exceptions that potentially can be generated by 
the x87 FPU and by SSE/SSE2/SSE3 instructions.

The floating point exceptions shown in Table C-1 (except for #D and #IS) are defined 
in IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. See Section 4.9.1, 
“Floating-Point Exception Conditions,” for a detailed discussion of floating-point 
exceptions.

Table C-1.  x87 FPU and SIMD Floating-Point Exceptions

Floating-
point 
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow (can only be 
generated for x87 FPU instructions)*

#IA or #I Invalid-operation exception for invalid arithmetic operands and unsupported 
formats*

#D Denormal-operand exception

#Z Divide-by-zero exception

#O Numeric-overflow exception

#U Numeric-underflow exception

#P Inexact-result (precision) exception

NOTE:
* The x87 FPU instruction set generates two types of invalid-operation exceptions: #IS (stack

underflow or stack overflow) and #IA (invalid arithmetic operation due to invalid arithmetic
operands or unsupported formats). SSE/SSE2/SSE3 instructions potentially generate #I (invalid
operation exceptions due to invalid arithmetic operands or unsupported formats).
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C.2 X87 FPU INSTRUCTIONS
Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it 
summarizes the floating-point exceptions that the instruction can generate.

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional 
move

Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Compare floating-point and 
set EFLAGS

Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISTTP Truncate to integer 
(SSE3 instruction)

Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y
C-2 Vol. 1



FLOATING-POINT EXCEPTIONS SUMMARY
FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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C.3 SSE INSTRUCTIONS
Table C-3 lists SSE instructions with at least one of the following characteristics:

• have floating-point operands

• generate floating-point results

• read or write floating-point status and control information

The table also summarizes the floating-point exceptions that each instruction can 
generate.

FUCOM(P)(P) Unordered compare floating-
point

Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3.  Exceptions Generated with SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add. Y Y Y Y Y

ADDSS Scalar add. Y Y Y Y Y

ANDNPS Packed logical INVERT and 
AND.

ANDPS Packed logical AND.

CMPPS Packed compare. Y Y

CMPSS Scalar compare. Y Y

COMISS Scalar ordered compare lower 
SP FP numbers and set the 
status flags.

Y Y

CVTPI2PS Convert two 32-bit signed 
integers from MM2/Mem to 
two SP FP.

Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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CVTPS2PI Convert lower two SP FP from 
XMM/Mem to two 32-bit 
signed integers in MM using 
rounding specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed 
integer from Integer Reg/Mem 
to one SP FP.

Y

CVTSS2SI Convert one SP FP from 
XMM/Mem to one 32-bit 
signed integer using rounding 
mode specified by MXCSR, and 
move the result to an integer 
register. 

Y Y

CVTTPS2PI Convert two SP FP from 
XMM2/Mem to two 32-bit 
signed integers in MM1 using 
truncate.

Y Y

CVTTSS2SI Convert lowest SP FP from 
XMM/Mem to one 32-bit 
signed integer using truncate, 
and move the result to an 
integer register. 

Y Y

DIVPS Packed divide. Y Y Y Y Y Y

DIVSS Scalar divide. Y Y Y Y Y Y

LDMXCSR Load control/status word.

MAXPS Packed maximum. Y Y

MAXSS Scalar maximum. Y Y

MINPS Packed minimum. Y Y

MINSS Scalar minimum. Y Y

MOVAPS Move four packed SP values.

MOVHLPS Move packed SP high to low.

MOVHPS Move two packed SP values 
between memory and the high 
half of an XMM register.

MOVLHPS Move packed SP low to high.

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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MOVLPS Move two packed SP values 
between memory and the low 
half of an XMM register.

MOVMSKPS Move sign mask to r32.

MOVSS Move scalar SP number 
between an XMM register and 
memory or a second XMM 
register.

MOVUPS Move unaligned packed data.

MULPS Packed multiply. Y Y Y Y Y

MULSS Scalar multiply. Y Y Y Y Y

ORPS Packed OR.

RCPPS Packed reciprocal.

RCPSS Scalar reciprocal.

RSQRTPS Packed reciprocal square root.

RSQRTSS Scalar reciprocal square root.

SHUFPS Shuffle.

SQRTPS Square Root of the packed SP 
FP numbers.

Y Y Y

SQRTSS Scalar square roo. Y Y Y

STMXCSR Store control/status word.

SUBPS Packed subtract. Y Y Y Y Y

SUBSS Scalar subtract. Y Y Y Y Y

UCOMISS Unordered compare lower SP 
FP numbers and set the status 
flags.

Y Y

UNPCKHPS Interleave SP FP numbers.

UNPCKLPS Interleave SP FP numbers.

XORPS Packed XOR.

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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C.4 SSE2 INSTRUCTIONS
Table C-4 lists SSE2 instructions with at least one of the following characteristics:

• floating-point operands

• floating point results

For each instruction, the table summarizes the floating-point exceptions that the 
instruction can generate.

Table C-4.  Exceptions Generated with SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add two packed DP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

ADDSD Add the lower DP FP number 
from XMM2/Mem to XMM1.

Y Y Y Y Y

ANDNPD Invert the 128 bits in 
XMM1and then AND the result 
with 128 bits from 
XMM2/Mem.

ANDPD Logical And of 128 bits from 
XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP 
numbers from XMM2/Mem to 
packed DP FP numbers in 
XMM1 register using imm8 as 
predicate.

Y Y

CMPSD Compare lowest DP FP number 
from XMM2/Mem to lowest DP 
FP number in XMM1 register 
using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number 
in XMM1 register with lower 
DP FP number in XMM2/Mem 
and set the status flags 
accordingly

Y Y

CVTDQ2PS Convert four 32-bit signed 
integers from XMM/Mem to 
four SP FP.

Y

CVTPS2DQ Convert four SP FP from 
XMM/Mem to four 32-bit 
signed integers in XMM using 
rounding specified by MXCSR.

Y Y
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CVTTPS2DQ Convert four SP FP from 
XMM/Mem to four 32-bit 
signed integers in XMM using 
truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed 
integers in XMM2/Mem to 2 
DP FP in xmm1 using rounding 
specified by MXCSR.

CVTPD2DQ Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in xmm1 using 
rounding specified by MXCSR.

Y Y

CVTPD2PI Convert lower two DP FP from 
XMM/Mem to two 32-bit 
signed integers in MM using 
rounding specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP 
FP.

Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed 
integers from MM2/Mem to 
two DP FP.

 

CVTPS2PD Convert two SP FP to two DP 
FP.

Y Y

CVTSD2SI Convert one DP FP from 
XMM/Mem to one 32 bit 
signed integer using rounding 
mode specified by MXCSR, and 
move the result to an integer 
register. 

Y Y

CVTSD2SS Convert scalar DP FP to scalar 
SP FP.

Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed 
integer from Integer Reg/Mem 
to one DP FP.

 

CVTSS2SD Convert scalar SP FP to scalar 
DP FP.

Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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CVTTPD2DQ Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in XMM1 using 
truncate.

Y Y

CVTTPD2PI Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in MM1 using 
truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from 
XMM/Mem to one 32 bit 
signed integer using truncate, 
and move the result to an 
integer register. 

Y Y

DIVPD Divide packed DP FP numbers 
in XMM1 by XMM2/Mem

Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in 
XMM1 by XMM2/Mem

Y Y Y Y Y Y

MAXPD Return the maximum DP FP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MAXSD Return the maximum DP FP 
number between the lower DP 
FP numbers from XMM2/Mem 
and XMM1.

Y Y

MINPD Return the minimum DP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MINSD Return the minimum DP FP 
number between the lowest 
DP FP numbers from 
XMM2/Mem and XMM1.

Y Y

MOVAPD Move 128 bits representing 2 
packed DP data from 
XMM2/Mem to XMM1 register.

Or Move 128 bits representing 
2 packed DP from XMM1 
register to XMM2/Mem.

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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MOVHPD Move 64 bits representing one 
DP operand from Mem to 
upper field of XMM register.

Or move 64 bits representing 
one DP operand from upper 
field of XMM register to Mem.

MOVLPD Move 64 bits representing one 
DP operand from Mem to 
lower field of XMM register.

Or move 64 bits representing 
one DP operand from lower 
field of XMM register to Mem.

MOVMSKPD Move the sign mask to r32. 

MOVSD Move 64 bits representing one 
scalar DP operand from 
XMM2/Mem to XMM1 register.

Or move 64 bits representing 
one scalar DP operand from 
XMM1 register to XMM2/Mem.

MOVUPD Move 128 bits representing 2 
DP data from XMM2/Mem to 
XMM1 register.

Or move 128 bits representing 
2 DP data from XMM1 register 
to XMM2/Mem.

MULPD  Multiply packed DP FP 
numbers in XMM2/Mem to 
XMM1.

Y Y Y Y Y

MULSD Multiply the lowest DP FP 
number in XMM2/Mem to 
XMM1.

Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem 
to XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double-
Precision 

Y Y Y

SQRTSD Square Root Scaler Double-
Precision

Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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C.5 SSE3 INSTRUCTIONS 
Table C-5 lists the SSE3 instructions that have at least one of the following 
characteristics:

• have floating-point operands

• generate floating-point results

For each instruction, the table summarizes the floating-point exceptions that the 
instruction can generate.

SUBPD Subtract Packed Double-
Precision.

Y Y Y Y Y

SUBSD Subtract Scaler Double-
Precision.

Y Y Y Y Y

UCOMISD Compare lower DP FP number 
in XMM1 register with lower 
DP FP number in XMM2/Mem 
and set the status flags 
accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers 
from the high halves of XMM1 
and XMM2/Mem into XMM1 
register.

UNPCKLPD Interleaves DP FP numbers 
from the low halves of XMM1 
and XMM2/Mem into XMM1 
register.

XORPD XOR 128 bits from 
XMM2/Mem to XMM1 register.

Table C-5.  Exceptions Generated with SSE3 Instructions 

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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C.6 SSSE3 INSTRUCTIONS 
SSSE3 instructions operate on integer data elements. They do not generate floating-
point exceptions.

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP 
FP numbers XMM2/Mem to 
XMM1.

Y Y Y Y Y

HADDPS Add horizontally packed SP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

HSUBPD Sub horizontally packed DP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

HSUBPS Sub horizontally packed SP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

LDDQU Load unaligned integer 128-
bit.

MOVDDUP Move 64 bits representing 
one DP data from 
XMM2/Mem to XMM1 and 
duplicate.

MOVSHDUP Move 128 bits representing 4 
SP data from XMM2/Mem to 
XMM1 and duplicate high.

MOVSLDUP Move 128 bits representing 4 
SP data from XMM2/Mem to 
XMM1 and duplicate low.

Table C-5.  Exceptions Generated with SSE3 Instructions  (Contd.)

Instruction Description #I #D #Z #O #U #P
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APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, “Programming with the x87 FPU,” the IA-32 Architecture 
supports two mechanisms for accessing exception handlers to handle unmasked x87 
FPU exceptions: native mode and MS-DOS compatibility mode. The primary purpose 
of this appendix is to provide detailed information to help software engineers design 
and write x87 FPU exception-handling facilities to run on PC systems that use the 
MS-DOS compatibility mode1 for handling x87 FPU exceptions. Some of the informa-
tion in this appendix will also be of interest to engineers who are writing native-mode 
x87 FPU exception handlers. The information provided is as follows:

• Discussion of the origin of the MS-DOS x87 FPU exception handling mechanism 
and its relationship to the x87 FPU’s native exception handling mechanism.

• Description of the IA-32 flags and processor pins that control the MS-DOS x87 
FPU exception handling mechanism.

• Description of the external hardware typically required to support MS-DOS 
exception handling mechanism.

• Description of the x87 FPU’s exception handling mechanism and the typical 
protocol for x87 FPU exception handlers.

• Code examples that demonstrate various levels of x87 FPU exception handlers.

• Discussion of x87 FPU considerations in multitasking environments.

• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32 
processors, starting with the Intel486. It is intended to augment the reference infor-
mation given in Chapter 8, “Programming with the x87 FPU.”

A more extensive version of this appendix is available in the application note AP-578, 
Software and Hardware Considerations for x87 FPU Exception Handlers for Intel 
Architecture Processors (Order Number 243291), which is available from Intel.

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING 
X87 FPU EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088 
processors and going through the Intel 286 and Intel386 processors) did not have an 

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost 
the same x87 FPU exception handling interface as MS-DOS. The recommendations in this appen-
dix for a MS-DOS compatible exception handler thus apply to all three operating systems.
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on-chip floating-point unit. Instead, floating-point capability was provided on a sepa-
rate numeric coprocessor chip. The first of these numeric coprocessors was the Intel 
8087, which was followed by the Intel 287 and Intel 387 numeric coprocessors. 

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, 
the 8087 has an output pin, INT, which it asserts when an unmasked floating-point 
exception occurs. The designers of the 8087 recommended that the output from this 
pin be routed through a programmable interrupt controller (PIC) such as the Intel 
8259A to the INTR pin of the 8086 or 8088. The accompanying interrupt vector 
number could then be used to access the floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different 
mechanism for handling the INT output from the 8087. It connected the INT pin 
directly to the NMI input pin of the 8086 or 8088. The NMI interrupt handler then had 
to determine if the interrupt was caused by a floating-point exception or another NMI 
event. This mechanism is the origin of what is now called the “MS-DOS compatibility 
mode.” The decision to use this latter floating-point exception handling mechanism 
came about because when the IBM PC was first designed, the 8087 was not available. 
When the 8087 did become available, other functions had already been assigned to 
the eight inputs to the PIC. One of these functions was a BIOS video interrupt, which 
was assigned to interrupt number 16 for the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point excep-
tions by providing a dedicated input pin (ERROR#) for receiving floating-point excep-
tion signals and a dedicated interrupt number, 16. Interrupt 16 was used to signal 
floating-point errors (also called math faults). It was intended that the ERROR# pin 
on the Intel 286 be connected to a corresponding ERROR# pin on the Intel 287 
numeric coprocessor. When the Intel 287 signals a floating-point exception using this 
mechanism, the Intel 286 generates an interrupt 16, to invoke the floating-point 
exception handler. 

To maintain compatibility with existing PC software, the native floating-point excep-
tion handling mode of the Intel 286 and 287 was not used in the IBM PC AT system 
design. Instead, the ERROR# pin on the Intel 286 was tied permanently high, and 
the ERROR# pin from the Intel 287 was routed to a second (cascaded) PIC. The 
resulting output of this PIC was routed through an exception handler and eventually 
caused an interrupt 2 (NMI interrupt). Here the NMI interrupt was shared with IBM 
PC AT’s new parity checking feature. Interrupt 16 remained assigned to the BIOS 
video interrupt handler. The external hardware for the MS-DOS compatibility mode 
must prevent the Intel 286 processor from executing past the next x87 FPU instruc-
tion when an unmasked exception has been generated. To do this, it asserts the 
BUSY# signal into the Intel 286 when the ERROR# signal is asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided 
the same hardware mechanism for signaling and handling floating-point exceptions 
as the Intel 286 and 287 processors. And again, to maintain compatibility with 
existing MS-DOS software, basically the same MS-DOS compatibility floating-point 
exception handling mechanism that was used in the IBM PC AT was used in PCs based 
on the Intel386 processor.
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D.2 IMPLEMENTATION OF THE MS-DOS COMPATIBILITY 
SUB-MODE IN THE INTEL486, PENTIUM, AND P6 
PROCESSOR FAMILY, AND PENTIUM 4 PROCESSORS

Beginning with the Intel486 processor, the IA-32 architecture provided a dedicated 
mechanism for enabling the MS-DOS compatibility mode for x87 FPU exceptions and 
for generating external x87 FPU-exception signals while operating in this mode. The 
following sections describe the implementation of the MS-DOS compatibility mode in 
the Intel486 and Pentium processors and in the P6 family and Pentium 4 processors. 
Also described is the recommended external hardware to support this mode of oper-
ation. 

D.2.1  MS-DOS Compatibility Sub-mode in the Intel486 and 
Pentium Processors

In the Intel486 processor, several things were done to enhance and speed up the 
numeric coprocessor, now called the floating-point unit (x87 FPU). The most impor-
tant enhancement was that the x87 FPU was included in the same chip as the 
processor, for increased speed in x87 FPU computations and reduced latency for x87 
FPU exception handling. Also, for the first time, the MS-DOS compatibility mode was 
built into the chip design, with the addition of the NE bit in control register CR0 and 
the addition of the FERR# (Floating-point ERRor) and IGNNE# (IGNore Numeric 
Error) pins. 

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the 
MS-DOS compatibility mode (NE = 0). When native mode is selected, all signaling of 
floating-point exceptions is handled internally in the Intel486 chip, resulting in the 
generation of an interrupt 16.

When MS-DOS compatibility mode is selected, the FERRR# and IGNNE# pins are 
used to signal floating-point exceptions. The FERR# output pin, which replaces the 
ERROR# pin from the previous generations of IA-32 numeric coprocessors, is 
connected to a PIC. A new input signal, IGNNE#, is provided to allow the x87 FPU 
exception handler to execute x87 FPU instructions, if desired, without first clearing 
the error condition and without triggering the interrupt a second time. This IGNNE# 
feature is needed to replicate the capability that was provided on MS-DOS compat-
ible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the 
BUSY# signal, when inside the x87 FPU exception handler, before clearing the error 
condition.

Note that Intel, in order to provide Intel486 processors for market segments that had 
no need for an x87 FPU, created the “SX” versions. These Intel486 SX processors did 
not contain the floating-point unit. Intel also produced Intel 487 SX processors for 
end users who later decided to upgrade to a system with an x87 FPU. These Intel 487 
SX processors are similar to standard Intel486 processors with a working x87 FPU on 
board. 
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Thus, the external circuitry necessary to support the MS-DOS compatibility mode for 
Intel 487 SX processors is the same as for standard Intel486 DX processors.

The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE 
bit and the FERR# and IGNNE# pins) as the Intel486 processors for generating x87 
FPU exceptions in MS-DOS compatibility mode. The actions of these mechanisms are 
slightly different and more straightforward for the P6 family and Pentium 4 proces-
sors, as described in Section D.2.2, “MS-DOS Compatibility Sub-mode in the P6 
Family and Pentium 4 Processors.”

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the 
special DP (Dual Processing) mode for Pentium processors and also the more general 
Intel MultiProcessor Specification for systems with multiple Pentium, P6 family, or 
Pentium 4 processors support x87 FPU exception handling only in the native mode. 
Intel does not recommend using the MS-DOS compatibility x87 FPU mode for 
systems using more than one processor.

D.2.1.1  Basic Rules: When FERR# Is Generated
When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors 
(NE bit is set to 0) and the IGNNE# input pin is de-asserted, the FERR# signal is 
generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the 
processor (in most cases) uses a “deferred” method of reporting the error. This 
means that the processor does not respond immediately, but rather freezes just 
before executing the next WAIT or x87 FPU instruction (except for “no-wait” 
instructions, which the x87 FPU executes regardless of an error condition). 

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by 
external hardware in response to the FERR# assertion. 

4. In MS-DOS compatibility systems, FERR# is fed to the IRQ13 input in the 
cascaded PIC. The PIC generates interrupt 75H, which then branches to interrupt 
2, as described earlier in this appendix for systems using the Intel 286 and Intel 
287 or Intel386 and Intel 387 processors. 

The deferred method of error reporting is used for all exceptions caused by the basic 
arithmetic instructions (including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and 
FUCOM), for precision exceptions caused by all types of x87 FPU instructions, and for 
numeric underflow and overflow exceptions caused by all types of x87 FPU instruc-
tions except stores to memory. 

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate” 
method of reporting errors. Here, the FERR# is asserted immediately, at the time 
that the exception occurs. The immediate method of error reporting is used for x87 
FPU stack fault, invalid operation and denormal exceptions caused by all transcen-
dental instructions, FSCALE, FXTRACT, FPREM and others, and all exceptions (except 
precision) when caused by x87 FPU store instructions. Like deferred error reporting, 
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immediate error reporting will cause the processor to freeze just before executing 
the next WAIT or x87 FPU instruction if the error condition has not been cleared by 
that time.

Note that in general, whether deferred or immediate error reporting is used for an 
x87 FPU exception depends both on which exception occurred and which instruction 
caused that exception. A complete specification of these cases, which applies to both 
the Pentium and the Intel486 processors, is given in Section 5.1.21 in the Pentium 
Processor Family Developer’s Manual: Volume 1. 

If NE = 0 but the IGNNE# input is active while an unmasked x87 FPU exception is in 
effect, the processor disregards the exception, does not assert FERR#, and 
continues. If IGNNE# is then de-asserted and the x87 FPU exception has not been 
cleared, the processor will respond as described above. (That is, an immediate 
exception case will assert FERR# immediately. A deferred exception case will assert 
FERR# and freeze just before the next x87 FPU or WAIT instruction.) The assertion of 
IGNNE# is intended for use only inside the x87 FPU exception handler, where it is 
needed if one wants to execute non-control x87 FPU instructions for diagnosis, 
before clearing the exception condition. When IGNNE# is asserted inside the excep-
tion handler, a preceding x87 FPU exception has already caused FERR# to be 
asserted, and the external interrupt hardware has responded, but IGNNE# assertion 
still prevents the freeze at x87 FPU instructions. Note that if IGNNE# is left active 
outside of the x87 FPU exception handler, additional x87 FPU instructions may be 
executed after a given instruction has caused an x87 FPU exception. In this case, if 
the x87 FPU exception handler ever did get invoked, it could not determine which 
instruction caused the exception. 

To properly manage the interface between the processor’s FERR# output, its IGNNE# 
input, and the IRQ13 input of the PIC, additional external hardware is needed. A 
recommended configuration is described in the following section.

D.2.1.2  Recommended External Hardware to Support the MS-DOS 
Compatibility Sub-mode

Figure D-1 provides an external circuit that will assure proper handling of FERR# and 
IGNNE# when an x87 FPU exception occurs. In particular, it assures that IGNNE# will 
be active only inside the x87 FPU exception handler without depending on the order 
of actions by the exception handler. Some hardware implementations have been less 
robust because they have depended on the exception handler to clear the x87 FPU 
exception interrupt request to the PIC (FP_IRQ signal) before the handler causes 
FERR# to be de-asserted by clearing the exception from the x87 FPU itself. 
Figure D-2 shows the details of how IGNNE# will behave when the circuit in 
Figure D-1 is implemented. The temporal regions within the x87 FPU exception 
handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt 
request through the PIC to the processor’s INTR pin.
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2. During the x87 FPU interrupt service routine (exception handler) the processor 
will need to clear the interrupt request latch (Flip Flop #1). It may also want to 
execute non-control x87 FPU instructions before the exception is cleared from the 
x87 FPU. For this purpose the IGNNE# must be driven low. Typically in the PC 
environment an I/O access to Port 0F0H clears the external x87 FPU exception 
interrupt request (FP_IRQ). In the recommended circuit, this access also is used 
to activate IGNNE#. With IGNNE# active, the x87 FPU exception handler may 
execute any x87 FPU instruction without being blocked by an active x87 FPU 
exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be 
deactivated and then there is no further need for IGNNE# to be active. In the 
recommended circuit, the deactivation of FERR# is used to deactivate IGNNE#. If 
another circuit is used, the software and circuit together must assure that 
IGNNE# is deactivated no later than the exit from the x87 FPU exception handler.
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In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port 
0F0H it clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks 
out the IGNNE# signal (active) from Flip Flop #2. So the handler can activate 
IGNNE#, if needed, by doing this 0F0H access before clearing the x87 FPU exception 
condition (which de-asserts FERR#). 

However, the circuit does not depend on the order of actions by the x87 FPU excep-
tion handler to guarantee the correct hardware state upon exit from the handler. Flip 
Flop #2, which drives IGNNE# to the processor, has its CLEAR input attached to the 
inverted FERR#. This ensures that IGNNE# can never be active when FERR# is inac-

Figure D-1.  Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handling
Vol. 1 D-7



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
tive. So if the handler clears the x87 FPU exception condition before the 0F0H 
access, IGNNE# does not get activated and left on after exit from the handler.

D.2.1.3  No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in 
Window

The Pentium and Intel486 processors implement the “no-wait” floating-point instruc-
tions (FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or 
FNSETPM) in the MS-DOS compatibility mode in the following manner. (See Section 
8.3.11, “x87 FPU Control Instructions,” and Section 8.3.12, “Waiting vs. Non-waiting 
Instructions,” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction, 
a member of the no-wait class of instructions will, at the beginning of its execution, 
assert the FERR# pin in response to that exception just like other x87 FPU instruc-
tions, but then, unlike the other x87 FPU instructions, FERR# will be de-asserted. 
This de-assertion was implemented to allow the no-wait class of instructions to 
proceed without an interrupt due to any pending numeric exception. However, the 
brief assertion of FERR# is sufficient to latch the x87 FPU exception request into most 
hardware interface implementations (including Intel’s recommended circuit). 

All the x87 FPU instructions are implemented such that during their execution, there 
is a window in which the processor will sample and accept external interrupts. If 
there is a pending interrupt, the processor services the interrupt first before 
resuming the execution of the instruction. Consequently, it is possible that the no-
wait floating-point instruction may accept the external interrupt caused by it’s own 
assertion of the FERR# pin in the event of a pending unmasked numeric exception, 

Figure D-2.  Behavior of Signals During x87 FPU Exception Handling

0F0H Address
   Decode
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which is not an explicitly documented behavior of a no-wait instruction. This process 
is illustrated in Figure D-3.

Figure D-3 assumes that a floating-point instruction that generates a “deferred” 
error (as defined in the Section D.2.1.1, “Basic Rules: When FERR# Is Generated”), 
which asserts the FERR# pin only on encountering the next floating-point instruction, 
causes an unmasked numeric exception. Assume that the next floating-point instruc-
tion following this instruction is one of the no-wait floating-point instructions. The 
FERR# pin is asserted by the processor to indicate the pending exception on encoun-
tering the no-wait floating-point instruction. After the assertion of the FERR# pin the 
no-wait floating-point instruction opens a window where the pending external inter-
rupts are sampled.

Then there are two cases possible depending on the timing of the receipt of the inter-
rupt via the INTR pin (asserted by the system in response to the FERR# pin) by the 
processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait 
floating-point instruction via the INTR pin during this window then 
the interrupt is serviced first, before resuming the execution of the 
no-wait floating-point instruction. 

Case 2 If the system responds via the INTR pin after the window has closed 
then the interrupt is recognized only at the next instruction boundary.

Figure D-3.  Timing of Receipt of External Interrupt
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There are two other ways, in addition to Case 1 above, in which a no-wait floating-
point instruction can service a numeric exception inside its interrupt window. First, 
the first floating-point error condition could be of the “immediate” category (as 
defined in Section D.2.1.1, “Basic Rules: When FERR# Is Generated”) that asserts 
FERR# immediately. If the system delay before asserting INTR is long enough, rela-
tive to the time elapsed before the no-wait floating-point instruction, INTR can be 
asserted inside the interrupt window for the latter. Second, consider two no-wait x87 
FPU instructions in close sequence, and assume that a previous x87 FPU instruction 
has caused an unmasked numeric exception. Then if the INTR timing is too long for 
an FERR# signal triggered by the first no-wait instruction to hit the first instruction’s 
interrupt window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot 
happen if the instruction is being used in the manner for which Intel originally 
designed it. The no-wait instructions were intended to be used inside the x87 FPU 
exception handler, to allow manipulation of the x87 FPU before the error condition is 
cleared, without hanging the processor because of the x87 FPU error condition, and 
without the need to assert IGNNE#. They will perform this function correctly, since 
before the error condition is cleared, the assertion of FERR# that caused the x87 FPU 
error handler to be invoked is still active. Thus the logic that would assert FERR# 
briefly at a no-wait instruction causes no change since FERR# is already asserted. 
The no-wait instructions may also be used without problem in the handler after the 
error condition is cleared, since now they will not cause FERR# to be asserted at all.

If a no-wait instruction is used outside of the x87 FPU exception handler, it may 
malfunction as explained above, depending on the details of the hardware interface 
implementation and which particular processor is involved. The actual interrupt 
inside the window in the no-wait instruction may be blocked by surrounding it with 
the instructions: PUSHFD, CLI, no-wait, then POPFD. (CLI blocks interrupts, and the 
push and pop of flags preserves and restores the original value of the interrupt flag.) 
However, if FERR# was triggered by the no-wait, its latched value and the PIC 
response will still be in effect. Further code can be used to check for and correct such 
a condition, if needed. Section D.3.6, “Considerations When x87 FPU Shared 
Between Tasks,” discusses an important example of this type of problem and gives a 
solution.

D.2.2  MS-DOS Compatibility Sub-mode in the P6 Family 
and Pentium 4 Processors

When bit NE = 0 in CR0, the MS-DOS compatibility mode of the P6 family and 
Pentium 4 processors provides FERR# and IGNNE# functionality that is almost iden-
tical to the Intel486 and Pentium processors. The same external hardware described 
in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS 
Compatibility Sub-mode,” is recommended for the P6 family and Pentium 4 proces-
sors as well as the two previous generations. The only change to MS-DOS compati-
bility x87 FPU exception handling with the P6 family and Pentium 4 processors is that 
all exceptions for all x87 FPU instructions cause immediate error reporting. That is, 
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FERR# is asserted as soon as the x87 FPU detects an unmasked exception; there are 
no cases in which error reporting is deferred to the next x87 FPU or WAIT instruction. 

(As is discussed in Section D.2.1.1, “Basic Rules: When FERR# Is Generated,” most 
exception cases in the Intel486 and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU 
error, this certainly does not mean that the requested interrupt will always be 
serviced before the next instruction in the code sequence is executed. To begin with, 
the P6 family and Pentium 4 processors execute several instructions simultaneously. 
There also will be a delay, which depends on the external hardware implementation, 
between the FERR# assertion from the processor and the responding INTR assertion 
to the processor. Further, the interrupt request to the PICs (IRQ13) may be tempo-
rarily blocked by the operating system, or delayed by higher priority interrupts, and 
processor response to INTR itself is blocked if the operating system has cleared the 
IF bit in EFLAGS. Note that Streaming SIMD Extensions numeric exceptions will not 
cause assertion of FERR# (independent of the value of CR0.NE). In addition, they 
ignore the assertion/deassertion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is 
inactive, a floating-point exception which occurred in the previous x87 FPU instruc-
tion and is unmasked causes the processor to freeze immediately when encountering 
the next WAIT or x87 FPU instruction (except for no-wait instructions). This means 
that if the x87 FPU exception handler has not already been invoked due to the earlier 
exception (and therefore, the handler not has cleared that exception state from the 
x87 FPU), the processor is forced to wait for the handler to be invoked and handle the 
exception, before the processor can execute another WAIT or x87 FPU instruction. 

As explained in Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU 
Interrupt in Window,” if a no-wait instruction is used outside of the x87 FPU exception 
handler, in the Intel486 and Pentium processors, it may accept an unmasked excep-
tion from a previous x87 FPU instruction which happens to fall within the external 
interrupt sampling window that is opened near the beginning of execution of all x87 
FPU instructions. This will not happen in the P6 family and Pentium 4 processors, 
because this sampling window has been removed from the no-wait group of x87 FPU 
instructions.

D.3 RECOMMENDED PROTOCOL FOR MS-DOS* 
COMPATIBILITY HANDLERS

The activities of numeric programs can be split into two major areas: program control 
and arithmetic. The program control part performs activities such as deciding what 
functions to perform, calculating addresses of numeric operands, and loop control. 
The arithmetic part simply adds, subtracts, multiplies, and performs other operations 
on the numeric operands. The processor is designed to handle these two parts sepa-
rately and efficiently. An x87 FPU exception handler, if a system chooses to imple-
ment one, is often one of the most complicated parts of the program control code.
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D.3.1  Floating-Point Exceptions and Their Defaults
The x87 FPU can recognize six classes of floating-point exception conditions while 
executing floating-point instructions:

1. #I — Invalid operation
    #IS — Stack fault
    #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4, “x87 
FPU Floating-Point Exception Handling,” and Section 8.5, “x87 FPU Floating-Point 
Exception Conditions.”

D.3.2  Two Options for Handling Numeric Exceptions
Depending on options determined by the software system designer, the processor 
takes one of two possible courses of action when a numeric exception occurs:

1. The x87 FPU can handle selected exceptions itself, producing a default fix-up that 
is reasonable in most situations. This allows the numeric program execution to 
continue undisturbed. Programs can mask individual exception types to indicate 
that the x87 FPU should generate this safe, reasonable result whenever the 
exception occurs. The default exception fix-up activity is treated by the x87 FPU 
as part of the instruction causing the exception; no external indication of the 
exception is given (except that the instruction takes longer to execute when it 
handles a masked exception.) When masked exceptions are detected, a flag is 
set in the numeric status register, but no information is preserved regarding 
where or when it was set.

2. A software exception handler can be invoked to handle the exception. When a 
numeric exception is unmasked and the exception occurs, the x87 FPU stops 
further execution of the numeric instruction and causes a branch to a software 
exception handler. The exception handler can then implement any sort of 
recovery procedures desired for any numeric exception detectable by the x87 
FPU.

D.3.2.1  Automatic Exception Handling: Using Masked Exceptions
Each of the six exception conditions described above has a corresponding flag bit in 
the x87 FPU status word and a mask bit in the x87 FPU control word. If an exception 
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is masked (the corresponding mask bit in the control word = 1), the processor takes 
an appropriate default action and continues with the computation. 

The processor has a default fix-up activity for every possible exception condition it 
may encounter. These masked-exception responses are designed to be safe and are 
generally acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can 
specify whether the x87 FPU should handle a result that cannot be represented 
exactly by one of four modes of rounding: rounding it normally, chopping it toward 
zero, always rounding it up, or always down. If the Underflow exception is masked, 
the x87 FPU will store a number that is too small to be represented in normalized 
form as a denormal (or zero if it’s smaller than the smallest denormal). Note that 
when exceptions are masked, the x87 FPU may detect multiple exceptions in a single 
instruction, because it continues executing the instruction after performing its 
masked response. For example, the x87 FPU could detect a denormalized operand, 
perform its masked response to this exception, and then detect an underflow.

As an example of how even severe exceptions can be handled safely and automati-
cally using the default exception responses, consider a calculation of the parallel 
resistance of several values using only the standard formula (see Figure D-4). If R1 
becomes zero, the circuit resistance becomes zero. With the divide-by-zero and 
precision exceptions masked, the processor will produce the correct result. FDIV of 
R1 into 1 gives infinity, and then FDIV of (infinity +R2 +R3) into 1 gives zero.

By masking or unmasking specific numeric exceptions in the x87 FPU control word, 
programmers can delegate responsibility for most exceptions to the processor, 
reserving the most severe exceptions for programmed exception handlers. Excep-
tion-handling software is often difficult to write, and the masked responses have 
been tailored to deliver the most reasonable result for each condition. For the 
majority of applications, masking all exceptions yields satisfactory results with the 

Figure D-4.  Arithmetic Example Using Infinity
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least programming effort. Certain exceptions can usefully be left unmasked during 
the debugging phase of software development, and then masked when the clean 
software is actually run. An invalid-operation exception for example, typically indi-
cates a program error that must be corrected.

The exception flags in the x87 FPU status word provide a cumulative record of excep-
tions that have occurred since these flags were last cleared. Once set, these flags can 
be cleared only by executing the FCLEX/FNCLEX (clear exceptions) instruction, by 
reinitializing the x87 FPU with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the 
flags with an FRSTOR or FLDENV instruction. This allows a programmer to mask all 
exceptions, run a calculation, and then inspect the status word to see if any excep-
tions were detected at any point in the calculation.

D.3.2.2  Software Exception Handling
If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an 
unmasked exception condition, with the system operated in the MS-DOS compati-
bility mode and with IGNNE# not asserted, a software exception handler is invoked 
through a PIC and the processor’s INTR pin. The FERR# (or ERROR#) output from 
the x87 FPU that begins the process of invoking the exception handler may occur 
when the error condition is first detected, or when the processor encounters the next 
WAIT or x87 FPU instruction. Which of these two cases occurs depends on the 
processor generation and also on which exception and which x87 FPU instruction trig-
gered it, as discussed earlier in Section D.1, “MS-DOS Compatibility Sub-mode for 
Handling x87 FPU Exceptions,” and Section D.2, “Implementation of the MS-DOS 
Compatibility Sub-mode in the Intel486, Pentium, and P6 Processor Family, and 
Pentium 4 Processors.” The elapsed time between the initial error signal and the invo-
cation of the x87 FPU exception handler depends of course on the external hardware 
interface, and also on whether the external interrupt for x87 FPU errors is enabled. 
But the architecture ensures that the handler will be invoked before execution of the 
next WAIT or floating-point instruction since an unmasked floating-point exception 
causes the processor to freeze just before executing such an instruction (unless the 
IGNNE# input is active, or it is a no-wait x87 FPU instruction). 

The frozen processor waits for an external interrupt, which must be supplied by 
external hardware in response to the FERR# (or ERROR#) output of the processor 
(or coprocessor), usually through IRQ13 on the “slave” PIC, and then through INTR. 
Then the external interrupt invokes the exception handling routine. Note that if the 
external interrupt for x87 FPU errors is disabled when the processor executes an x87 
FPU instruction, the processor will freeze until some other (enabled) interrupt occurs 
if an unmasked x87 FPU exception condition is in effect. If NE = 0 but the IGNNE# 
input is active, the processor disregards the exception and continues. Error reporting 
via an external interrupt is supported for MS-DOS compatibility. Chapter 17, “IA-32 
Architecture Compatibility,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, contains further discussion of compatibility issues.

The references above to the ERROR# output from the x87 FPU apply to the Intel 387 
and Intel 287 math coprocessors (NPX chips). If one of these coprocessors encoun-
ters an unmasked exception condition, it signals the exception to the Intel 286 or 
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Intel386 processor using the ERROR# status line between the processor and the 
coprocessor. See Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 
FPU Exceptions,” in this appendix, and Chapter 17, “IA-32 Architecture Compati-
bility,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for differences in x87 FPU exception handling.

The exception-handling routine is normally a part of the systems software. The 
routine must clear (or disable) the active exception flags in the x87 FPU status word 
before executing any floating-point instructions that cannot complete execution 
when there is a pending floating-point exception. Otherwise, the floating-point 
instruction will trigger the x87 FPU interrupt again, and the system will be caught in 
an endless loop of nested floating-point exceptions, and hang. In any event, the 
routine must clear (or disable) the active exception flags in the x87 FPU status word 
after handling them, and before IRET(D). Typical exception responses may include:

• Incrementing an exception counter for later display or printing.

• Printing or displaying diagnostic information (e.g., the x87 FPU environment and 
registers).

• Aborting further execution, or using the exception pointers to build an instruction 
that will run without exception and executing it.

Applications programmers should consult their operating system's reference 
manuals for the appropriate system response to numerical exceptions. For systems 
programmers, some details on writing software exception handlers are provided in 
Chapter 5, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, as well as in Section D.3.4, “x87 FPU 
Exception Handling Examples,” in this appendix.

As discussed in Section D.2.1.2, “Recommended External Hardware to Support the 
MS-DOS Compatibility Sub-mode,” some early FERR# to INTR hardware interface 
implementations are less robust than the recommended circuit. This is because they 
depended on the exception handler to clear the x87 FPU exception interrupt request 
to the PIC (by accessing port 0F0H) before the handler causes FERR# to be de-
asserted by clearing the exception from the x87 FPU itself. To eliminate the chance of 
a problem with this early hardware, Intel recommends that x87 FPU exception 
handlers always access port 0F0H before clearing the error condition from the x87 
FPU.

D.3.3  Synchronization Required for Use of x87 FPU Exception 
Handlers

Concurrency or synchronization management requires a check for exceptions before 
letting the processor change a value just used by the x87 FPU. It is important to 
remember that almost any numeric instruction can, under the wrong circumstances, 
produce a numeric exception. 
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D.3.3.1  Exception Synchronization: What, Why and When
Exception synchronization means that the exception handler inspects and deals with 
the exception in the context in which it occurred. If concurrent execution is allowed, 
the state of the processor when it recognizes the exception is often not in the context 
in which it occurred. The processor may have changed many of its internal registers 
and be executing a totally different program by the time the exception occurs. If the 
exception handler cannot recapture the original context, it cannot reliably determine 
the cause of the exception or recover successfully from the exception. To handle this 
situation, the x87 FPU has special registers updated at the start of each numeric 
instruction to describe the state of the numeric program when the failed instruction 
was attempted. 

This provides tools to help the exception handler recapture the original context, but 
the application code must also be written with synchronization in mind. Overall, 
exception synchronization must ensure that the x87 FPU and other relevant parts of 
the context are in a well defined state when the handler is invoked after an unmasked 
numeric exception occurs. 

When the x87 FPU signals an unmasked exception condition, it is requesting help. 
The fact that the exception was unmasked indicates that further numeric program 
execution under the arithmetic and programming rules of the x87 FPU will probably 
yield invalid results. Thus the exception must be handled, and with proper synchro-
nization, or the program will not operate reliably.

For programmers using higher-level languages, all required synchronization is auto-
matically provided by the appropriate compiler. However, for assembly language 
programmers exception synchronization remains the responsibility of the 
programmer. It is not uncommon for a programmer to expect that their numeric 
program will not cause numeric exceptions after it has been tested and debugged, 
but in a different system or numeric environment, exceptions may occur regularly 
nonetheless. An obvious example would be use of the program with some numbers 
beyond the range for which it was designed and tested. Example D-1 and Example 
D-2 in Section D.3.3.2, “Exception Synchronization Examples,” show a subtle way in 
which unexpected exceptions can occur.

As described in Section D.3.1, “Floating-Point Exceptions and Their Defaults,” 
depending on options determined by the software system designer, the processor 
can perform one of two possible courses of action when a numeric exception occurs.

• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the 
x87 FPU performs its default action for all exceptions, then the need for exception 
synchronization is not manifest. However, code is often ported to contexts and 
operating systems for which it was not originally designed. Example D-1 and 
Example D-2, below, illustrate that it is safest to always consider exception 
synchronization when designing code that uses the x87 FPU.
D-16 Vol. 1



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
• Alternatively, a software exception handler can be invoked to handle the 
exception. When a numeric exception is unmasked and the exception occurs, the 
x87 FPU stops further execution of the numeric instruction and causes a branch 
to a software exception handler. When an x87 FPU exception handler will be 
invoked, synchronization must always be considered to assure reliable perfor-
mance.

Example D-1 and Example D-2, below, illustrate the need to always consider excep-
tion synchronization when writing numeric code, even when the code is initially 
intended for execution with exceptions masked.

D.3.3.2  Exception Synchronization Examples
In the following examples, three instructions are shown to load an integer, calculate 
its square root, then increment the integer. The synchronous execution of the x87 
FPU will allow both of these programs to execute correctly, with INC COUNT being 
executed in parallel in the processor, as long as no exceptions occur on the FILD 
instruction. However, if the code is later moved to an environment where exceptions 
are unmasked, the code in Example D-1 will not work correctly:

Example D-1.  Incorrect Error Synchronization

FILD COUNT ;x87 FPU instruction
INC COUNT ;integer instruction alters operand
FSQRT ;subsequent x87 FPU instruction -- error 

;from previous x87 FPU instruction detected here

Example D-2.  Proper Error Synchronization

FILD COUNT ;x87 FPU instruction
FSQRT ;subsequent x87 FPU instruction -- error from 

;previous x87 FPU instruction detected here
INC  COUNT ;integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is 
extended to memory. To extend the x87 FPU stack to memory, the invalid exception 
is unmasked. A push to a full register or pop from an empty register sets SF (Stack 
Fault flag) and causes an invalid operation exception. The recovery routine for the 
exception must recognize this situation, fix up the stack, then perform the original 
operation. The recovery routine will not work correctly in Example D-1. The problem 
is that the value of COUNT increments before the exception handler is invoked, so 
that the recovery routine will load an incorrect value of COUNT, causing the program 
to fail or behave unreliably.
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D.3.3.3  Proper Exception Synchronization
As explained in Section D.2.1.2, “Recommended External Hardware to Support the 
MS-DOS Compatibility Sub-mode,” if the x87 FPU encounters an unmasked exception 
condition a software exception handler is invoked before execution of the next WAIT 
or floating-point instruction. This is because an unmasked floating-point exception 
causes the processor to freeze immediately before executing such an instruction 
(unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction). Exactly 
when the exception handler will be invoked (in the interval between when the excep-
tion is detected and the next WAIT or x87 FPU instruction) is dependent on the 
processor generation, the system, and which x87 FPU instruction and exception is 
involved. 

To be safe in exception synchronization, one should assume the handler will be 
invoked at the end of the interval. Thus the program should not change any value 
that might be needed by the handler (such as COUNT in Example D-1 and Example 
D-2) until after the next x87 FPU instruction following an x87 FPU instruction that 
could cause an error. If the program needs to modify such a value before the next 
x87 FPU instruction (or if the next x87 FPU instruction could also cause an error), 
then a WAIT instruction should be inserted before the value is modified. This will 
force the handling of any exception before the value is modified. A WAIT instruction 
should also be placed after the last floating-point instruction in an application so that 
any unmasked exceptions will be serviced before the task completes.

D.3.4  x87 FPU Exception Handling Examples
There are many approaches to writing exception handlers. One useful technique is to 
consider the exception handler procedure as consisting of “prologue,” “body,” and 
“epilogue” sections of code. 

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, 
external interrupts have been disabled by hardware. The prologue performs all func-
tions that must be protected from possible interruption by higher-priority sources. 
Typically, this involves saving registers and transferring diagnostic information from 
the x87 FPU to memory. When the critical processing has been completed, the 
prologue may re-enable interrupts to allow higher-priority interrupt handlers to 
preempt the exception handler. The standard “prologue” not only saves the registers 
and transfers diagnostic information from the x87 FPU to memory but also clears the 
floating-point exception flags in the status word. Alternatively, when it is not neces-
sary for the handler to be re-entrant, another technique may also be used. In this 
technique, the exception flags are not cleared in the “prologue” and the body of the 
handler must not contain any floating-point instructions that cannot complete execu-
tion when there is a pending floating-point exception. (The no-wait instructions are 
discussed in Section 8.3.12, “Waiting vs. Non-waiting Instructions.”) Note that the 
handler must still clear the exception flag(s) before executing the IRET. If the excep-
tion handler uses neither of these techniques, the system will be caught in an endless 
loop of nested floating-point exceptions, and hang.
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The body of the exception handler examines the diagnostic information and makes a 
response that is necessarily application-dependent. This response may range from 
halting execution, to displaying a message, to attempting to repair the problem and 
proceed with normal execution. The epilogue essentially reverses the actions of the 
prologue, restoring the processor so that normal execution can be resumed. The 
epilogue must not load an unmasked exception flag into the x87 FPU or another 
exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton excep-
tion handlers, with the save spaces given as correct for 32-bit protected mode. They 
show how prologues and epilogues can be written for various situations, but the 
application-dependent exception handling body is just indicated by comments 
showing where it should be placed.

The first two are very similar; their only substantial difference is their choice of 
instructions to save and restore the x87 FPU. The trade-off here is between the 
increased diagnostic information provided by FNSAVE and the faster execution of 
FNSTENV. (Also, after saving the original contents, FNSAVE re-initializes the x87 FPU, 
while FNSTENV only masks all x87 FPU exceptions.) For applications that are sensi-
tive to interrupt latency or that do not need to examine register contents, FNSTENV 
reduces the duration of the “critical region,” during which the processor does not 
recognize another interrupt request. (See the Section 8.1.10, “Saving the x87 FPU’s 
State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the 
x87 FPU save image.) If the processor supports Streaming SIMD Extensions and the 
operating system supports it, the FXSAVE instruction should be used instead of 
FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512 
bytes and aligned to 16 bytes to save the entire state. These steps will ensure that 
the complete context is saved.

After the exception handler body, the epilogues prepare the processor to resume 
execution from the point of interruption (for example, the instruction following the 
one that generated the unmasked exception). Notice that the exception flags in the 
memory image that is loaded into the x87 FPU are cleared to zero prior to reloading 
(in fact, in these examples, the entire status word image is cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not 
cause an unmasked exception. Where this is a possibility, the general approach 
shown in Example D-5 can be employed. The basic technique is to save the full x87 
FPU state and then to load a new control word in the prologue. Note that considerable 
care should be taken when designing an exception handler of this type to prevent the 
handler from being reentered endlessly.

Example D-3.  Full-State Exception Handler

SAVE_ALL PROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
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.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example D-4.  Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT 

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 28  ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EDP - 28]
PUSH [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED ENVIRONMENT IMAGE
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MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example D-5.  Reentrant Exception Handler

.

.
LOCAL_CONTROL DW ?; ASSUME INITIALIZED

.

.
REENTRANTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108  ;ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS]  ;COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.
;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE  
;GOES HERE - AN UNMASKED EXCEPTION
;GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED
;IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK

.
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE
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MOV  BYTE PTR [EBP-104], 0H
FRSTOR  [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP

D.3.5  Need for Storing State of IGNNE# Circuit If Using x87 FPU 
and SMM

The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU excep-
tion handling for Intel486 processors and beyond contains two flip flops. When the 
x87 FPU exception handler accesses I/O port 0F0H it clears the IRQ13 interrupt 
request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from 
Flip Flop #2. 

The assertion of IGNNE# may be used by the handler if needed to execute any x87 
FPU instruction while ignoring the pending x87 FPU errors. The problem here is that 
the state of Flip Flop #2 is effectively an additional (but hidden) status bit that can 
affect processor behavior, and so ideally should be saved upon entering SMM, and 
restored before resuming to normal operation. If this is not done, and also the SMM 
code saves the x87 FPU state, AND an x87 FPU error handler is being used which 
relies on IGNNE# assertion, then (very rarely) the x87 FPU handler will nest inside 
itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the x87 FPU status word 
; using a no-wait x87 FPU instruction

OUT0F0H, AL ; clears IRQ13 & activates IGNNE#
 . . . .
FLDCW new_cw ; loads new CW ignoring x87 FPU errors, 

 ; since IGNNE# is assumed active; or any 
; other x87 FPU instruction that is not a no-wait 
; type will cause the same problem

 . . . .
FCLEX ; clear the x87 FPU error conditions & thus 

; turn off FERR# & reset the IGNNE# FF
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The problem will only occur if the processor enters SMM between the OUT and the 
FLDCW instructions. But if that happens, AND the SMM code saves the x87 FPU state 
using FNSAVE, then the IGNNE# Flip Flop will be cleared (because FNSAVE clears the 
x87 FPU errors and thus de-asserts FERR#). When the processor returns from SMM it 
will restore the x87 FPU state with FRSTOR, which will re-assert FERR#, but the 
IGNNE# Flip Flop will not get set. Then when the x87 FPU error handler executes the 
FLDCW instruction, the active error condition will cause the processor to re-enter the 
x87 FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power 
management, and sometimes security, functions provided by SMM have no need 
for x87 FPU calculations; if they are needed for some special case, use scaling or 
emulation instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM 
code, except when going into a 0 V suspend state (in which, in order to save 
power, the CPU is turned off completely, requiring its complete state to be saved).

2. The system should not call upon SMM code to put the processor into 0 V suspend 
while the processor is running x87 FPU calculations, or just after an interrupt has 
occurred. Normal power management protocol avoids this by going into power 
down states only after timed intervals in which no system activity occurs.

D.3.6  Considerations When x87 FPU Shared Between Tasks
The IA-32 architecture allows speculative deferral of floating-point state swaps on 
task switches. This feature allows postponing an x87 FPU state swap until an x87 FPU 
instruction is actually encountered in another task. Since kernel tasks rarely use 
floating-point, and some applications do not use floating-point or use it infrequently, 
the amount of time saved by avoiding unnecessary stores of the floating-point state 
is significant. Speculative deferral of x87 FPU saves does, however, place an extra 
burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be 
different from the currently executing thread.

2. The kernel must associate any floating-point exceptions with the generating task. 
This requires special handling since floating-point exceptions are delivered 
asynchronous with other system activity.

3. There are conditions under which spurious floating-point exception interrupts are 
generated, which the kernel must recognize and discard.

D.3.6.1  Speculatively Deferring x87 FPU Saves, General Overview
In order to support multitasking, each thread in the system needs a save area for the 
general-purpose registers, and each task that is allowed to use floating-point needs 
an x87 FPU save area large enough to hold the entire x87 FPU stack and associated 
x87 FPU state such as the control word and status word. (See Section 8.1.10, 
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“Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a 
complete description of the x87 FPU save image.) If the processor and the operating 
system support Streaming SIMD Extensions, the save area should be large enough 
and aligned correctly to hold x87 FPU and Streaming SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area 
for the suspending thread, and the registers of the resuming thread are loaded. The 
x87 FPU state does not need to be saved at this point. If the resuming thread does 
not use the x87 FPU before it is itself suspended, then both a save and a load of the 
x87 FPU state has been avoided. It is often the case that several threads may be 
executed without any usage of the x87 FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device 
Not Available” (DNA), used in conjunction with CR0 bit 3, the “Task Switched” bit 
(TS). (See “Control Registers” in Chapter 2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.) Every task switch via the hardware 
supported task switching mechanism (see “Task Switching” in Chapter 6 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A) sets TS. Multi-
threaded kernels that use software task switching1 can set the TS bit by reading CR0, 
ORing a “1” into2 bit 3, and writing back CR0. Any subsequent floating-point instruc-
tions (now being executed in a new thread context) will fault via interrupt 7 before 
execution. 

This allows a DNA handler to save the old floating-point context and reload the x87 
FPU state for the current thread. The handler should clear the TS bit before exit using 
the CLTS instruction. On return from the handler the faulting thread will proceed with 
its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically 
because they also change the linear address space between tasks. The problem and 
solution discussed in the following sections apply to these operating systems also.

D.3.6.2  Tracking x87 FPU Ownership
Since the contents of the x87 FPU may not belong to the currently executing thread, 
the thread identifier for the last x87 FPU user needs to be tracked separately. This is 
not complicated; the kernel should simply provide a variable to store the thread iden-
tifier of the x87 FPU owner, separate from the variable that stores the identifier for 
the currently executing thread. This variable is updated in the DNA exception 

1 In a software task switch, the operating system uses a sequence of instructions to save the sus-
pending thread’s state and restore the resuming thread’s state, instead of the single long non-
interruptible task switch operation provided by the IA-32 architecture.

2 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit as
a surrogate for TS. EM means that no x87 FPU is available and that floating-point instructions
must be emulated. Using EM to trap on task switches is not compatible with the MMX technology.
If the EM flag is set, MMX instructions raise the invalid opcode exception.
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handler, and is used by the DNA exception handler to find the x87 FPU save areas of 
the old and new threads. A simplified flow for a DNA exception handler is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread 
to use the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an 
FNSAVE or FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an 
FRSTOR or FXSTOR instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred x87 FPU 
state swaps, there are some additional subtleties that need to be handled in a robust 
implementation.

D.3.6.3  Interaction of x87 FPU State Saves and Floating-Point Exception 
Association

Recall these key points from earlier in this document: When considering floating-
point exceptions across all implementations of the IA-32 architecture, and across all 
floating-point instructions, a floating-point exception can be initiated from any time 
during the excepting floating-point instruction, up to just before the next floating-
point instruction. The “next” floating-point instruction may be the FNSAVE used to 
save the x87 FPU state for a task switch. In the case of “no-wait:” instructions such 
as FNSAVE, the interrupt from a previously excepting instruction (NE = 0 case) may 
arrive just before the no-wait instruction, during, or shortly thereafter with a system 
dependent delay. 

Note that this implies that an floating-point exception might be registered during the 
state swap process itself, and the kernel and floating-point exception interrupt 
handler must be prepared for this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is 
to allow the kernel to be one of the x87 FPU owning threads. A reserved thread iden-
tifier is used to indicate kernel ownership of the x87 FPU. During an floating-point 
state swap, the “x87 FPU owner” variable should be set to indicate the kernel as the 
current owner. At the completion of the state swap, the variable should be set to indi-
cate the new owning thread. The numeric exception handler needs to check the x87 
FPU owner and discard any numeric exceptions that occur while the kernel is the x87 
FPU owner. A more general flow for a DNA exception handler that handles this case is 
shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap 
must be discarded in the kernel without being dispatched to a handler. A flow for a 
numeric exception dispatch routine is shown in Figure D-6.
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It may at first glance seem that there is a possibility of floating-point exceptions 
being lost because of exceptions that are discarded during state swaps. This is not 
the case, as the exception will be re-issued when the floating-point state is reloaded. 
Walking through state swaps both with and without pending numeric exceptions will 
clarify the operation of these two handlers.

Figure D-5.  General Program Flow for DNA Exception Handler

DNA Handler Entry
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FPU Owner := Kernel
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Case #1: x87 FPU State Swap Without Numeric Exception
Assume two threads A and B, both using the floating-point unit. Let A be the thread 
to have most recently executed a floating-point instruction, with no pending numeric 
exceptions. Let B be the currently executing thread. CR0.TS was set when thread A 
was suspended. 

When B starts to execute a floating-point instruction the instruction will fault with the 
DNA exception because TS is set.

At this point the handler is entered, and eventually it finds that the current x87 FPU 
Owner is not the currently executing thread. To guard the x87 FPU state swap from 
extraneous numeric exceptions, the x87 FPU Owner is set to be the kernel. The old 
owner’s x87 FPU state is saved with FNSAVE, and the current thread’s x87 FPU state 
is restored with FRSTOR. Before exiting, the x87 FPU owner is set to thread B, and 
the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and 
continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception
Again, assume two threads A and B, both using the floating-point unit. Let A be the 
thread to have most recently executed a floating-point instruction, but this time let 
there be a pending numeric exception. Let B be the currently executing thread. When 
B starts to execute a floating-point instruction the instruction will fault with the DNA 
exception and enter the DNA handler. (If both numeric and DNA exceptions are 
pending, the DNA exception takes precedence, in order to support handling the 
numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the 
pending numeric exception. After some system dependent delay, the numeric excep-
tion handler is entered. It may be entered before the FNSAVE starts to execute, or it 
may be entered shortly after execution of the FNSAVE. Since the x87 FPU Owner is 
the kernel, the numeric exception handler simply exits, discarding the exception. The 

Figure D-6.  Program Flow for a Numeric Exception Dispatch Routine
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DNA handler resumes execution, completing the FNSAVE of the old floating-point 
context of thread A and the FRSTOR of the floating-point context for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded 
during the task switch. After some time, thread B is suspended, and thread A 
resumes execution. When thread A starts to execute an floating-point instruction, 
once again the DNA exception handler is entered. B’s x87 FPU state is Finessed, and 
A’s x87 FPU state is Frustrate. Note that in restoring the x87 FPU state from A’s save 
area, the pending numeric exception flags are reloaded into the floating-point status 
word. Now when the DNA exception handler returns, thread A resumes execution of 
the faulting floating-point instruction just long enough to immediately generate a 
numeric exception, which now gets handled in the normal way. The net result is that 
the task switch and resulting x87 FPU state swap via the DNA exception handler 
causes an extra numeric exception which can be safely discarded.

D.3.6.4  Interrupt Routing From the Kernel
In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 
16 by placing its handler address in the interrupt vector table, and exiting via a jump 
to the previous interrupt 16 handler. Protected mode systems that run MS-DOS 
programs under a subsystem can emulate this exception delivery mechanism. For 
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that 
runs MS-DOS programs in a virtual machine subsystem. The MS-DOS program is 
set up in a virtual machine that provides a virtualized interrupt table. The MS-DOS 
application hooks interrupt 16 in the virtual machine in the normal way. A numeric 
exception will trap to the kernel via the real INT 16 residing in the kernel at ring 0. 

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, 
and reflects the interrupt to the virtual machine monitor. The virtual machine monitor 
then emulates an interrupt by jumping through the address in the virtualized inter-
rupt table, eventually reaching the application’s numeric exception handler.

D.3.6.5  Special Considerations for Operating Systems that Support 
Streaming SIMD Extensions

Operating systems that support Streaming SIMD Extensions instructions introduced 
with the Pentium III processor should use the FXSAVE and FXRSTOR instructions to 
save and restore the new SIMD floating-point instruction register state as well as the 
floating-point state. Such operating systems must consider the following issues:

1. Enlarged state save area — FNSAVE/FRSTOR instructions operate on a 
94-byte or 108-byte memory region, depending on whether they are executed in 
16-bit or 32-bit mode. The FXSAVE/FXRSTOR instructions operate on a 512-byte 
memory region.

2. Alignment requirements — FXSAVE/FXRSTOR instructions require the 
memory region on which they operate to be 16-byte aligned (refer to the 
individual instruction instructions descriptions in Chapter 3 of the Intel® 64 and 
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IA-32 Architectures Software Developer’s Manual, Volume 2A, for information 
about exceptions generated if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries — The 
operating system changes to support Streaming SIMD Extensions must be 
invisible to legacy applications or libraries that deal only with floating-point 
instructions. The layout of the memory region operated on by the 
FXSAVE/FXRSTOR instructions is different from the layout for the 
FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag word 
and the length of the various fields in the memory region is different. Care must 
be taken to return the x87 FPU state to a legacy application (e.g., when reporting 
FP exceptions) in the format it expects.

4. Instruction semantic differences — There are some semantic differences 
between the way the FXSAVE and FSAVE/FNSAVE instructions operate. The 
FSAVE/FNSAVE instructions clear the x87 FPU after they save the state while the 
FXSAVE instruction saves the x87 FPU/Streaming SIMD Extensions state but 
does not clear it. Operating systems that use FXSAVE to save the x87 FPU state 
before making it available for another thread (e.g., during thread switch time) 
should take precautions not to pass a “dirty” x87 FPU to another application.

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE
The 8087 has an INT pin which it asserts when an unmasked exception occurs. But 
there is no interrupt input pin in the 8086 or 8088 dedicated to its attachment, nor an 
interrupt vector number in the 8086 or 8088 specific for an x87 FPU error assertion. 
Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to 
support the x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1  Origin with the Intel 286 and Intel 287, and Intel386 
and Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs 
are each provided with ERROR# pins that are recommended to be connected 
between the processor and x87 FPU. If this is done, when an unmasked x87 FPU 
exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin. 
The processor recognizes this active condition of the ERROR# status line immediately 
before execution of the next WAIT or x87 FPU instruction (except for the no-wait 
type) in its instruction stream, and branches to the routine at interrupt vector 16. 
Thus an x87 FPU exception will be handled before any other x87 FPU instruction 
(after the one causing the error) is executed (except for no-wait instructions, which 
will be executed without triggering the x87 FPU exception interrupt, but it will remain 
pending).
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Using the dedicated INT 16 for x87 FPU exception handling is referred to as the 
native mode. It is the simplest approach, and the one recommended most highly by 
Intel.

D.4.2  Changes with Intel486, Pentium and Pentium Pro 
Processors with CR0.NE[bit 5] = 1

With these latest three generations of the IA-32 architecture, more enhancements 
and speedup features have been added to the corresponding x87 FPUs. Also, the x87 
FPU is now built into the same chip as the processor, which allows further increases 
in the speed at which the x87 FPU can operate as part of the integrated system. This 
also means that the native mode of x87 FPU exception handling, selected by setting 
bit NE of register CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records 
the exception internally, and triggers the exception handler through interrupt 16 
immediately before execution of the next WAIT or x87 FPU instruction (except for 
no-wait instructions, which will be executed as described in Section D.4.1, “Origin 
with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even 
with NE = 1, and at exactly the same point in the program flow as it would have been 
asserted if NE were zero. However, the system would not connect FERR# to a PIC to 
generate INTR when operating in the native, internal mode. (If the hardware of a 
system has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an 
operating system using the native mode is actually running the system, it is the oper-
ating system’s responsibility to make sure that IRQ13 is not enabled in the slave 
PIC.) With this configuration a system is immune to the problem discussed in Section 
D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” where 
for Intel486 and Pentium processors a no-wait x87 FPU instruction can get an x87 
FPU exception.

D.4.3  Considerations When x87 FPU Shared Between Tasks Using 
Native Mode

The protocols recommended in Section D.3.6, “Considerations When x87 FPU Shared 
Between Tasks,” for MS-DOS compatibility x87 FPU exception handlers that are 
shared between tasks may be used without change with the native mode. However, 
the protocols for a handler written specifically for native mode can be simplified, 
because the problem of a spurious floating-point exception interrupt occurring while 
the kernel is executing cannot happen in native mode. 

The problem as actually found in practical code in a MS-DOS compatibility system 
happens when the DNA handler uses FNSAVE to switch x87 FPU contexts. If an x87 
FPU exception is active, then FNSAVE triggers FERR# briefly, which usually will cause 
the x87 FPU exception handler to be invoked inside the DNA handler. In native mode, 
neither FNSAVE nor any other no-wait instructions can trigger interrupt 16. (As 
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discussed above, FERR# gets asserted independent of the value of the NE bit, but 
when NE = 1, the operating system should not enable its path through the PIC.) 
Another possible (very rare) way a floating-point exception interrupt could occur 
while the kernel is executing is by an x87 FPU immediate exception case having its 
interrupt delayed by the external hardware until execution has switched to the 
kernel. This also cannot happen in native mode because there is no delay through 
external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel 
is the x87 FPU owner, and the DNA handler for a native mode system can omit the 
step of setting the kernel as the x87 FPU owner at the handler’s beginning. Since 
however these simplifications are minor and save little code, it would be a reasonable 
and conservative habit (as long as the MS-DOS compatibility mode is widely used) to 
include these steps in all systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also 
the more general Intel MultiProcessor Specification for systems with multiple 
Pentium, P6 family, or Pentium 4 processors, support x87 FPU exception handling 
only in the native mode. Intel does not recommend using the MS-DOS compatibility 
mode for systems using more than one processor.
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APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT

EXCEPTION HANDLERS

See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of 
SIMD floating-point exceptions.

This appendix considers only SSE/SSE2/SSE3 instructions that can generate numeric 
(SIMD floating-point) exceptions, and gives an overview of the necessary support for 
handling such exceptions. This appendix does not address instructions that do not 
generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, or RCPPS), 
any x87 instructions, or any unlisted instruction. 

For detailed information on which instructions generate numeric exceptions, and a 
listing of those exceptions, refer to Appendix C, “Floating-Point Exceptions 
Summary.” Non-numeric exceptions are handled in a way similar to that for the stan-
dard IA-32 instructions.

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT 
EXCEPTIONS

Just as for x87 FPU floating-point exceptions, the processor takes one of two possible 
courses of action when an SSE/SSE2/SSE3 instruction raises a floating-point excep-
tion: 

• If the exception being raised is masked (by setting the corresponding mask bit in 
the MXCSR to 1), then a default result is produced which is acceptable in most 
situations. No external indication of the exception is given, but the corresponding 
exception flags in the MXCSR are set and may be examined later. Note though 
that for packed operations, an exception flag that is set in the MXCSR will not tell 
which of the sub-operands caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask 
bit in the MXCSR to 0), a software exception handler previously registered by the 
user with operating system support will be invoked through the SIMD floating-
point exception (#XM, vector 19). This case is discussed below in Section E.2, 
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING
The exception handling routine reached via interrupt vector 19 is usually part of the 
system software (the operating system kernel). Note that an interrupt descriptor 
table (IDT) entry must have been previously set up for this vector (refer to Chapter 
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5, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A). Some compilers use specific run-time 
libraries to assist in floating-point exception handling. If any x87 FPU floating-point 
operations are going to be performed that might raise floating-point exceptions, then 
the exception handling routine must either disable all floating-point exceptions (for 
example, loading a local control word with FLDCW), or it must be implemented as re-
entrant (for the case of x87 FPU exceptions, refer to Example D-1 in Appendix D, 
“Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the 
routine has to clear the status flags for x87 FPU exceptions or to mask all x87 FPU 
floating-point exceptions. For SIMD floating-point exceptions though, the exception 
flags in MXCSR do not have to be cleared, even if they remain unmasked (but they 
may still be cleared). Exceptions are in this case precise and occur immediately, and 
a SIMD floating-point exception status flag that is set when the corresponding excep-
tion is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:

• Incrementing an exception counter for later display or printing

• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)

• Aborting further execution, or using the exception pointers to build an instruction 
that will run without exception and executing it

• Storing information about the exception in a data structure that will be passed to 
a higher level user exception handler

In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be 
three main components of a low-level floating-point exception handler: a prologue, a 
body, and an epilogue.

The prologue performs functions that must be protected from possible interruption 
by higher-priority sources - typically saving registers and transferring diagnostic 
information from the processor to memory. When the critical processing has been 
completed, the prologue may re-enable interrupts to allow higher-priority interrupt 
handlers to preempt the exception handler (assuming that the interrupt handler was 
called through an interrupt gate, meaning that the processor cleared the interrupt 
enable (IF) flag in the EFLAGS register - refer to Section 6.4.1, “Call and Return 
Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a 
response that is application-dependent. It may range from halting execution, to 
displaying a message, to attempting to fix the problem and then proceeding with 
normal execution, to setting up a data structure, calling a higher-level user exception 
handler and continuing execution upon return from it. This latter case will be 
assumed in Section E.4, “SIMD Floating-Point Exceptions and the IEEE Standard 
754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the 
processor state so that normal execution can be resumed.

The following example represents a typical exception handler. To link it with Example 
E-2 that will follow in Section E.4.3, “Example SIMD Floating-Point Emulation Imple-
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mentation,” assume that the body of the handler (not shown here in detail) passes 
the saved state to a routine that will examine in turn all the sub-operands of the 
excepting instruction, invoking a user floating-point exception handler if a particular 
set of sub-operands raises an unmasked (enabled) exception, or emulating the 
instruction otherwise.

Example E-1.  SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE
;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER
    PUSH EBP ;SAVE EBP
    PUSH EAX ;SAVE EAX
    ...
    MOV EBP, ESP ;SAVE ESP in EBP
    SUB ESP, 512 ;ALLOCATE 512 BYTES
    AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED
    FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE
    PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP
    POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
    LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED
    ...
    ...
;EPILOGUE
    FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE
    MOV ESP, EBP ;DE-ALLOCATE STACK SPACE
    ...
    POP EAX ;RESTORE EAX
    POP EBP ;RESTORE EBP
    IRET ;RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP

E.3 EXCEPTION SYNCHRONIZATION
An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions, 
with integer instructions, and with floating-point or MMX instructions. Unlike for x87 
instructions, special precaution for exception synchronization is not necessary in 
this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions 
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occur immediately and are not delayed until a subsequent floating-point instruction 
is executed. However, floating-point emulation may be necessary when unmasked 
floating-point exceptions are generated.

E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE 
STANDARD 754

SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for 
Binary Floating-Point Arithmetic, satisfying all of its mandatory requirements (when 
the flush-to-zero or denormals-are-zeros modes are not enabled). But a program-
ming environment that includes SSE/SSE2/SSE3 instructions will comply with both 
the obligatory and the strongly recommended requirements of the IEEE Standard 
754 regarding floating-point exception handling, only as a combination of hardware 
and software (which is acceptable). The standard states that a user should be able to 
request a trap on any of the five floating-point exceptions (note that the denormal 
exception is an IA-32 addition), and it also specifies the values (operands or result) 
to be delivered to the exception handler. 

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation 
exceptions (traps: overflow, underflow, or inexact), unlike for x87 FPU instructions, 
the processor does not provide the result recommended by IEEE Standard 754 to the 
user handler. If a user program needs the result of an instruction that generated a 
post-computation exception, it is the responsibility of the software to produce this 
result by emulating the faulting SSE/SSE2/SSE3 instruction. Another issue is that the 
standard does not specify explicitly how to handle multiple floating-point exceptions 
that occur simultaneously. For packed operations, a logical OR of the flags that would 
be set by each sub-operation is used to set the exception flags in the MXCSR. The 
following subsections present one possible way to solve these problems.

E.4.1  Floating-Point Emulation
Every operating system must provide a kernel level floating-point exception handler 
(a template was presented in Section E.2, “Software Exception Handling” above). In 
the following discussion, assume that a user mode floating-point exception filter is 
supplied for SIMD floating-point exceptions (for example as part of a library of C 
functions), that a user program can invoke in order to handle unmasked exceptions. 
The user mode floating-point exception filter (not shown here) has to be able to 
emulate the subset of SSE/SSE2/SSE3 instructions that can generate numeric 
exceptions, and has to be able to invoke a user provided floating-point exception 
handler for floating-point exceptions. When a floating-point exception that is not 
masked is raised by an SSE/SSE2/SSE3 instruction, the low-level floating-point 
exception handler will be called. This low-level handler may in turn call the user mode 
floating-point exception filter. The filter function receives the original operands of the 
excepting instruction as no results are provided by the hardware, whether a pre-
computation or a post-computation exception has occurred. The filter will unpack the 
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operands into up to four sets of sub-operands, and will submit them one set at a time 
to an emulation function (See Example E-2 in Section E.4.3, “Example SIMD 
Floating-Point Emulation Implementation”). The emulation function will examine the 
sub-operands, and will possibly redo the necessary calculation. 

Two cases are possible:

• If an unmasked (enabled) exception would occur in this process, the emulation 
function will return to its caller (the filter function) with the appropriate infor-
mation. The filter will invoke a (previously registered) user floating-point 
exception handler for this set of sub-operands, and will record the result upon 
return from the user handler (provided the user handler allows continuation of 
the execution). 

• If no unmasked (enabled) exception would occur, the emulation function will 
determine and will return to its caller the result of the operation for the current 
set of sub-operands (it has to be IEEE Standard 754 compliant). The filter 
function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of 
sub-operands (if any). When done with all the operand sets, the partial results will be 
packed (if the excepting instruction has a packed floating-point result, which is true 
for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-
level exception handler, which in turn will return from the interruption, allowing 
execution to continue. Note that the instruction pointer (EIP) has to be altered to 
point to the instruction following the excepting instruction, in order to continue 
execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for 
decoding the excepting instruction, reading its operands, emulating the instruction 
for the components of the result that do not correspond to unmasked floating-point 
exceptions, and providing the compounded result will have to be performed by the 
user-provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for 
scalar operations, and for all sub-operands or pairs of sub-operands for packed oper-
ations. The steps to perform are the following:

• The excepting instruction has to be decoded and the operands have to be read 
from the saved context.

• The instruction has to be emulated for each (pair of) sub-operand(s); if no 
floating-point exception occurs, the partial result has to be saved; if a masked 
floating-point exception occurs, the masked result has to be produced through 
emulation and saved, and the appropriate status flags have to be set; if an 
unmasked floating-point exception occurs, the result has to be generated by the 
user provided floating-point exception handler, and the appropriate status flags 
have to be set.

• The partial results have to be combined and written to the context that will be 
restored upon application program resumption.
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A diagram of the control flow in handling an unmasked floating-point exception is 
presented below.

From the user-level floating-point filter, Example E-2 in Section E.4.3, “Example 
SIMD Floating-Point Emulation Implementation,” will present only the floating-point 
emulation part. In order to understand the actions involved, the expected response 
to exceptions has to be known for all SSE/SSE2/SSE3 numeric instructions in two 
situations: with exceptions enabled (unmasked result), and with exceptions disabled 
(masked result). The latter can be found in Section 6.4, “Interrupts and Exceptions.” 
The response to NaN operands that do not raise an exception is specified in Section 
4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response 
is also discussed in more detail in the next subsection, along with the unmasked and 
masked responses to floating-point exceptions.

E.4.2  SSE/SSE2/SSE3 Response To Floating-Point Exceptions
This subsection specifies the unmasked response expected from the SSE/SSE2/SSE3 
instructions that raise floating-point exceptions. The masked response is given in 
parallel, as it is necessary in the emulation process of the instructions that raise 
unmasked floating-point exceptions. The response to NaN operands is also included 
in more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority, 
refer to “Priority Among Simultaneous Exceptions and Interrupts” in Chapter 5, 

Figure E-1.  Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter 

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
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“Interrupt and Exception Handling,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

E.4.2.1  Numeric Exceptions
There are six classes of numeric (floating-point) exception conditions that can occur: 
Invalid operation (#I), Divide-by-Zero (#Z), Denormal Operand (#D), Numeric 
Overflow (#O), Numeric Underflow (#U), and Inexact Result (precision) (#P). #I, 
#Z, #D are pre-computation exceptions (floating-point faults), detected before the 
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point 
traps). 

Users can control how the SSE/SSE2/SSE3 floating-point exceptions are handled by 
setting the mask/unmask bits in MXCSR. Masked exceptions are handled by the 
processor, or by software if they are combined with unmasked exceptions occurring 
in the same instruction. Unmasked exceptions are usually handled by the low-level 
exception handler, in conjunction with user-level software.

E.4.2.2  Results of Operations with NaN Operands or a NaN Result for 
SSE/SSE2/SSE3 Numeric Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3 
instructions to NaN inputs, or to other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations 
do not raise an invalid exception for quiet NaN operands, but even so, they will have 
higher precedence over raising floating-point exceptions other than invalid opera-
tion. 

Note that the single precision QNaN Indefinite value is 0xffc00000, the double preci-
sion QNaN Indefinite value is 0xfff8000000000000, and the Integer Indefinite value 
is 0x80000000 (not a floating-point number, but it can be the result of a conversion 
instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user 
handler. If a user registered floating-point exception handler is invoked, it may 
provide a result for the excepting instruction, that will be used if execution of the 
application code is continued after returning from the interruption.

In Tables E-1 through Table E-12, the specified operands cause an invalid exception, 
unless the unmasked result is marked with “not an exception”. In this latter case, the 
unmasked and masked results are the same. 
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Table E-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, 
ADDSD, SUBPD, SUBSD, MULPD, MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, 

HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or 
SNaN1 | 
0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 
0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 
0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 
0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

Neither source operand is 
SNaN,
but #I is signaled (e.g. for Inf - 
Inf, 
Inf ∗ 0, Inf /  Inf, 0/0) 

Single precision or double 
precision QNaN Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 0x00400000 is a quiet NaN in single precision format (if SNaN is in single precision) and

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double
precision), obtained from the signaling NaN given as input.

3. Operations involving only quiet NaNs do not raise floating-point exceptions.
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Table E-2.  CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, 
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 
0000000000000000H1

00000000H or 
0000000000000000H1 (not 
an exception)

Opd1 op NaN (any Opd1) 00000000H or 
0000000000000000H1

00000000H or 
0000000000000000H1 (not 
an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-3.  CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, 
CMPSD.NEQ, CMPPD.UNORD, CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1 (not an 
exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1 (not an 
exception)

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-4.  CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, 
CMPPD.LE, CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 
0000000000000000H1 

None

Opd1 op NaN (any Opd1) 00000000H or 
0000000000000000H1 

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.
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Table E-5.  CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, 
CMPPD.NLE, CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

None

Opd1 op NaN (any Opd1) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-6.  COMISS, COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Table E-7.  UCOMISS, UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 
(any Opd2 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an 
exception)

Opd1 op QNaN 
(any Opd1 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an 
exception)
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Table E-8.  CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTTPD2PI, CVTTSD2SI, CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or 
80000000000000001 
(Integer Indefinite)

None

QNaN 80000000H or 
80000000000000001 
(Integer Indefinite)

None

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-9.  MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:
1. SNaN and QNaN operands raise an Invalid Operation fault.

Table E-10.  SQRTPS, SQRTSS, SQRTPD, SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN | 
0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g. for 
sqrt (-1.0))

Single precision or 
double precision QNaN 
Indefinite

None

NOTE:
1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and 

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double 
precision), obtained from the signaling NaN given as input.
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E.4.2.3  Condition Codes, Exception Flags, and Response for Masked and 
Unmasked Numeric Exceptions

In the following, the masked response is what the processor provides when a masked 
exception is raised by an SSE/SSE2/SSE3 numeric instruction. The same response is 
provided by the floating-point emulator for SSE/SSE2/SSE3 numeric instructions, 
when certain components of the quadruple input operands generate exceptions that 
are masked (the emulator also generates the correct answer, as specified by IEEE 
Standard 754 wherever applicable, in the case when no floating-point exception 
occurs). The unmasked response is what the emulator provides to the user handler 
for those components of the packed operands of SSE/SSE2/SSE3 instructions that 
raise unmasked exceptions. Note that for pre-computation exceptions (floating-point 

Table E-11.  CVTPS2PD, CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The double precision output QNaN1 is created from the single precision input QNaN as follows: 

the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and 
the 24-bit significand is extended to a 53-bit significand by appending 29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows:
the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and
the 24-bit significand is extended to a 53-bit significand by pending 29 bits equal to 0. The sec-
ond most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN
into a quiet NaN.

Table E-12.  CVTPD2PS, CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The single precision output QNaN1 is created from the double precision input QNaN as follows: 

the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and 
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant 
bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows:
the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant
bits. The second most significant bit of the significand is changed from 0 to 1 to convert the sig-
naling NaN into a quiet NaN.
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faults), no result is provided to the user handler. For post-computation exceptions 
(floating-point traps), a result is provided to the user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for 
the actual instruction, the destination coincides with the first source operand (except 
for COMISS, UCOMISS, COMISD, and UCOMISD, whose destination is the EFLAGS 
register).

Table E-13.  #I - Invalid Operations 

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code

ADDPS
ADDPD
ADDSS 
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; #IA = 
1

ADDSUBPS (the 
addition 
component)
ADDSUBPD (the 
addition 
component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS 
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA = 1

src1, src2 
unchanged; #IA = 
1

ADDSUBPS (the 
subtraction 
component)
ADDSUBPD (the 
subtraction 
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite, 
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; 
#IA = 1MULSS 

MULSD
src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; 
#IA = 1DIVSS 

DIVSD
src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite, 
#IA = 1
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SQRTPS
SQRTPD
SQRTSS 
SQRTSD

src = SNaN Refer to Table E-10 for 
NaN operands, #IA = 1

src unchanged, 
#IA = 1

src < 0 
(note that -0 < 0 is false)

res = QNaN Indefinite, 
#IA = 1

MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 
unchanged; #IA = 
1

MINPS
MINSS 
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 
unchanged; #IA = 
1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and 
Table E-5 for NaN 
operands; #IA = 1

src1, src2 
unchanged; #IA = 
1

COMISS     
COMISD

src1 = NaN or src2 = NaN Refer to Table E-6 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 
1

UCOMISS   
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 
1

CVTPS2PI
CVTSS2SI 
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and 
(src)rnd ≠ 80000000H

See Note2 for information 
on rnd.

res = Integer Indefinite, 
#IA = 1

src unchanged, 
#IA = 1

CVTTPS2PI
CVTTSS2SI 
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and 
(src)rz ≠ 80000000H

See Note2 for information
on rz.

res = Integer Indefinite, 
#IA = 1

src unchanged,
#IA = 1

CVTPS2PD
CVTSS2SD

src = NAN Refer to Table E-11 for 
NaN operands

src unchanged, 
#IA = 1

CVTPD2PS
CVTSD2SS

src = NAN Refer to Table E-12 for 
NaN operands

src unchanged, 
#IA = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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NOTES:
1. For Tables E-13 to E-18:

- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward
zero. (truncate), when rounding a floating-point value to an integer. For more information, refer
to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table E-14.  #Z - Divide-by-Zero

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal, 
or denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2 
unchanged; 
#ZE = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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Table E-15.  #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
CMPPS
CMPPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CMPSS
CMPSD
COMISS
COMISD
UCOMISS
UCOMISD
CVTPS2PD

src1 = denormal1 or 
src2 = denormal (and 
the DAZ bit in MXCSR 
is 0)

res = Result rounded to 
the destination precision 
and using the bounded 
exponent, but only if no 
unmasked post-
computation exception 
occurs.

src1, src2 unchanged; 
#DE = 1

Note that SQRT, 
CVTPS2PD, CVTSS2SD, 
CVTPD2PS, CVTSD2SS 
have only 1 src.
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CVTSS2SD
CVTPD2PS
CVTSD2SS

NOTE: 
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”

Table E-16.  #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result 
> largest single 
precision finite 
normal value 

Roundi
ng 

Sign Result & Status 
Flags

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
/ 2192

#OE = 1
#PE = 1 if the result is 
inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 2127

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

Table E-15.  #D - Denormal Operand (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

∞+
∞–

∞–
∞–

∞+ ∞+
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ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result 
> largest double 
precision finite 
normal value 

Roundi
ng 

Sign Result & Status 
Flags

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
/ 21536

• #OE = 1
• #PE = 1 if the result is 

inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 
21023

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 
21023

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 
21023

res = -1.11…1 * 
21023

Table E-16.  #O - Numeric Overflow (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

∞+
∞–

∞–

∞–

∞+ ∞+
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Table E-17.  #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with 
unbounded exponent and 
rounded to the 
destination precision < 
smallest single precision 
finite normal value.

res = ±0, denormal, or 
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
* 2192

• #UE = 1
• #PE = 1 if the result is 

inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with 
unbounded exponent and 
rounded to the 
destination precision < 
smallest double precision 
finite normal value.

res = ±0, denormal or 
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
* 21536

• #UE = 1
• #PE = 1 if the result is 

inexact
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Table E-18.  #P - Inexact Result (Precision)

Instruction Condition Masked Response
Unmasked Response and Exception 
Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not 
exactly 
representable in 
the destination 
format.

res = Result rounded 
to the destination 
precision and using 
the bounded 
exponent, but only if 
no unmasked 
underflow or 
overflow conditions 
occur (this exception 
can occur in the 
presence of a 
masked underflow 
or overflow); #PE = 
1.

Only if no underflow/overflow 
condition occurred, or if the 
corresponding exceptions are masked:
• Set #OE if masked overflow and set 

result as described above for 
masked overflow. 

• Set #UE if masked underflow and 
set result as described above for 
masked underflow.

If neither underflow nor overflow, res 
equals the result rounded to the 
destination precision and using the 
bounded exponent set #PE = 1.
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E.4.3  Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level 
floating-point exception filter for the SSE/SSE2/SSE3 numeric instructions. It is 
assumed that the filter function is invoked by a low-level exception handler (reached 
via interrupt vector 19 when an unmasked floating-point exception occurs), and that 
it operates as explained in Section E.4.1, “Floating-Point Emulation.” The sample 
code does the emulation only for the SSE instructions for addition, subtraction, multi-
plication, and division. For this, it uses C code and x87 FPU operations. Operations 
corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated simi-
larly. The example assumes that the emulation function receives a pointer to a data 
structure specifying a number of input parameters: the operation that caused the 
exception, a set of sub-operands (unpacked, of type float), the rounding mode (the 
precision is always single), exception masks (having the same relative bit positions 
as in the MXCSR but starting from bit 0 in an unsigned integer), and flush-to-zero 
and denormals-are-zeros indicators. 

The output parameters are a floating-point result (of type float), the cause of the 
exception (identified by constants not explicitly defined below), and the exception 
status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

  unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

  float result_fval; // result value (if any)
  unsigned int rounding_mode; //rounding mode
  unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
  unsigned int exception_cause; //exception cause
  unsigned int status_flag_inexact; //inexact status flag
  unsigned int status_flag_underflow; //underflow status flag
  unsigned int status_flag_overflow; //overflow status flag
  unsigned int status_flag_divide_by_zero; 

//divide by zero status flag
  unsigned int status_flag_denormal_operand; 

//denormal operand status flag
  unsigned int status_flag_invalid_operation; 

//invalid operation status flag
  unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:
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1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), 
replace all the denormal inputs with zeroes of the same sign (the denormal flag is 
not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the 
original user rounding mode, and single precision. This reveals invalid, denormal, 
or divide-by-zero exceptions (if there are any) and stores the result in memory as 
a double precision value (whose exponent range is large enough to look like 
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the 
smallest normal number (tiny) that can be represented in single precision 
format, or greater than the largest normal number that can be represented in 
single precision format (huge). If an unmasked overflow or underflow occurs, 
calculate the scaled result that will be handed to the user exception handler, as 
specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the 
result is tiny, it requires denormalization (shifting the significand right while 
incrementing the exponent to bring it into the admissible range of [-126,+127] 
for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double 
rounding error (it was rounded to 24 bits in step 2, and might have to be rounded 
again in the denormalization process). To overcome this is, calculate the result as 
a double precision value, and store it to memory in single precision format. 

Rounding first to 53 bits in the significand, and then to 24 never causes a double 
rounding error (exact properties exist that state when double-rounding error 
occurs, but for the elementary arithmetic operations, the rule of thumb is that if 
an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the 
result is the same as when rounding directly to p bits, which means that no 
double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated 
result will be delivered to the user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an 
exception has to be raised (the exception_cause field indicates the cause). 
Otherwise, the emulation function returns DO_NOT_ RAISE_EXCEPTION. In the 
first case, the result is provided by the user exception handler called by the filter 
function. In the second case, it is provided by the emulation function. The filter 
function has to collect all the partial results, and to assemble the scalar or packed 
result that is used if execution is to continue.
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Example E-2.  SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 0x20
#define UNDERFLOW_MASK 0x10
#define OVERFLOW_MASK 0x08
#define ZERODIVIDE_MASK 0x04
#define DENORMAL_MASK 0x02
#define INVALID_MASK 0x01

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {0x00000000};
#define  ZEROF *(float *) ZEROF_ARRAY
    // +0.0
static unsigned NZEROF_ARRAY[] = {0x80000000};
#define  NZEROF *(float *) NZEROF_ARRAY
    // -0.0
static unsigned POSINFF_ARRAY[] = {0x7f800000};
#define POSINFF *(float *)POSINFF_ARRAY
    // +Inf
static unsigned NEGINFF_ARRAY[] = {0xff800000};
#define NEGINFF *(float *)NEGINFF_ARRAY
    // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {0x00000000, 0x38100000}; 
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
    // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {0x70000000, 0x47efffff}; 
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
    // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {0x00000000, 0x4bf00000};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
    // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {0x00000000, 0x33f00000};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
    // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int ); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int ); // converts a signaling NaN to a quiet 

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int ); // converts denormals 

// to zeros of the same sign; 
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{
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  int uiopd1; // first operand of the add, subtract, multiply, or divide
  int uiopd2; // second operand of the add, subtract, multiply, or divide
  float res; // result of the add, subtract, multiply, or divide
  double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
      // (needed to check tininess, to provide a scaled result to
      // an underflow/overflow trap handler, and in flush-to-zero mode)
  double dbl_res;  // result in double precision format (needed to avoid a
     // double rounding error when denormalizing)
  unsigned int result_tiny;
  unsigned int result_huge;
  unsigned short int sw; // 16 bits
  unsigned short int cw; // 16 bits

  // have to check first for faults (V, D, Z), and then for traps (O, U, I)

  // initialize x87 FPU (floating-point exceptions are masked)
  _asm {
    fninit;
  }

  result_tiny = 0;
  result_huge = 0;

  switch (exc_env->operation) {

    case ADDPS:
    case ADDSS:
    case SUBPS:
    case SUBSS:
    case MULPS:
    case MULSS:
    case DIVPS:
    case DIVSS:

      uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion 
// of SNaN to QNaN by compiled code

      uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN 
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is 
// denormal and DAZ=1

      uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is 
// denormal and DAZ=1

      // execute the operation and check whether the invalid, denormal, or 
      // divide by zero flags are set and the respective exceptions enabled

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // single precision, and all exceptions disabled
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      switch (exc_env->rounding_mode) {
        case ROUND_TO_NEAREST:
          cw = 0x003f; // round to nearest, single precision, exceptions masked
          break;
        case ROUND_DOWN:
          cw = 0x043f; // round down, single precision, exceptions masked
          break;
        case ROUND_UP:
          cw = 0x083f; // round up, single precision, exceptions masked
          break;
        case ROUND_TO_ZERO:
          cw = 0x0c3f; // round to zero, single precision, exceptions masked
          break;
        default:
          ; 
      }
      __asm {
        fldcw WORD PTR cw;
      }

      // compute result and round to the destination precision, with
      // "unbounded" exponent (first IEEE rounding)
      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            faddp st(1), st(0); // may set inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fsubp st(1), st(0); // may set the inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;
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        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fmulp st(1), st(0); // may set inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fdivp st(1), st(0); // may set the inexact, divide by zero, or 
                                // invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        default:
          ; // will never occur

      }

      // read status word
      __asm {
        fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

      // if invalid flag is set, and invalid exceptions are enabled, take trap
      if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
        exc_env->status_flag_invalid_operation = 1;
        exc_env->exception_cause = INVALID_OPERATION;
        return (RAISE_EXCEPTION);
      }

// checking for NaN operands has priority over denormal exceptions; 
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// also fix for the SSE and SSE2 
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

        if (isnanf (uiopd1) && isnanf (uiopd2))
            exc_env->result_fval = quietf (uiopd1);
        else
            exc_env->result_fval = (float)dbl_res24; // exact
 
        if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // if denormal flag set, and denormal exceptions are enabled, take trap
      if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
        exc_env->status_flag_denormal_operand = 1;
        exc_env->exception_cause = DENORMAL_OPERAND;
        return (RAISE_EXCEPTION);
      }

      // if divide by zero flag set, and divide by zero exceptions are 
      // enabled, take trap (for divide only)
      if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
        exc_env->status_flag_divide_by_zero = 1;
        exc_env->exception_cause = DIVIDE_BY_ZERO;
        return (RAISE_EXCEPTION);
      }

      // done if the result is a NaN (QNaN Indefinite)
      res = (float)dbl_res24;
      if (isnanf (*(unsigned int *)&res)) {
        exc_env->result_fval = res; // exact
        exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // dbl_res24 is not a NaN at this point

      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

      // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
      if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
            0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
        result_tiny = 1;
      }

      // check if the result is huge
      if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL || 
          MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) { 
        result_huge = 1;
      }
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      // at this point, there are no enabled I,D, or Z exceptions 
 // to take; the instr.

      // might lead to an enabled underflow, enabled underflow and inexact, 
      // enabled overflow, enabled overflow and inexact, enabled inexact, or
      // none of these; if there are no U or O enabled exceptions, re-execute
      // the instruction using IA-32 double precision format, and the 
      // user's rounding mode; exceptions must have 

// been disabled before calling
      // this function; an inexact exception may be reported on the 53-bit
      // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an 
      // overflow or underflow (with traps disabled) may be reported on the 
      // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is 
// tiny, take underflow trap

      if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
        dbl_res24 = TWO_TO_192 * dbl_res24; // exact
        exc_env->status_flag_underflow = 1;
        exc_env->exception_cause = UNDERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // if overflow traps are enabled and the result is huge, take
      // overflow trap
      if (!(exc_env->exc_masks & OVERFLOW_MASK) &&  result_huge) {
        dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
        exc_env->status_flag_overflow = 1;
        exc_env->exception_cause = OVERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact 
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // double precision, and all exceptions disabled
      cw = cw | 0x0200; // set precision to double
      __asm {
        fldcw WORD PTR cw;
      }

      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
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            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            faddp st(1), st(0); // rounded to 53 bits, may set the inexact 
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        default:
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          ; // will never occur

      }

      // calculate result for the case an inexact trap has to be taken, or
      // when no trap occurs (second IEEE rounding)
      res = (float)dbl_res; 
          // may set P, U or O; may also involve denormalizing the result

      // read status word
      __asm {
        fstsw WORD PTR sw;
      }

      // if inexact traps are enabled and result is inexact, take inexact trap
      if (!(exc_env->exc_masks & PRECISION_MASK) && 
          ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
        exc_env->status_flag_inexact = 1;
        exc_env->exception_cause = INEXACT;
        if (result_tiny) {
          exc_env->status_flag_underflow = 1;

          // if ftz = 1 and result is tiny, result = 0.0
          // (no need to check for underflow traps disabled: result tiny and
          // underflow traps enabled would have caused taking an underflow
          // trap above)
          if (exc_env->ftz) {
            if (res > 0.0)
              res = ZEROF;
            else if (res < 0.0)
              res = NZEROF;
            // else leave res unchanged
          }
        }
        if (result_huge) exc_env->status_flag_overflow = 1;
        exc_env->result_fval = res; 
        return (RAISE_EXCEPTION);
      } 

      // if it got here, then there is no trap to be taken; the following must
      // hold: ((the MXCSR U exceptions are disabled  or
      //
      // the MXCSR underflow exceptions are enabled and the underflow flag is
      // clear and (the inexact flag is set or the inexact flag is clear and
      // the 24-bit result with unbounded exponent is not tiny)))
      // and (the MXCSR overflow traps are disabled or the overflow flag is
      // clear) and (the MXCSR inexact traps are disabled or the inexact flag
      // is clear)
      //
      // in this case, the result has to be delivered (the status flags are 
      // sticky, so they are all set correctly already)
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      // read status word to see if result is inexact
      __asm {
        fstsw WORD PTR sw;
      }
 
      if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
      if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
      if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

      // if ftz = 1, and result is tiny (underflow traps must be disabled),
      // result = 0.0
      if (exc_env->ftz && result_tiny) {
        if (res > 0.0)
          res = ZEROF;
        else if (res < 0.0)
          res = NZEROF;
        // else leave res unchanged

        exc_env->status_flag_inexact = 1;
        exc_env->status_flag_underflow = 1;
      }

      exc_env->result_fval = res; 
      if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
      if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
      return (DO_NOT_RAISE_EXCEPTION);

      break;

    case CMPPS:
    case CMPSS:

      ...

      break;

    case COMISS:
    case UCOMISS:

      ...

      break;

    case CVTPI2PS:
    case CVTSI2SS:

      ...

      break;

    case CVTPS2PI:
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    case CVTSS2SI:
    case CVTTPS2PI:
    case CVTTSS2SI:

      ...

      break;

    case MAXPS:
    case MAXSS:
    case MINPS:
    case MINSS:

      ...

      break;

    case SQRTPS:
    case SQRTSS:

      ...

      break;

...

case UNSPEC:

      ...

      break;

    default:
      ...

  }

}
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64-bit mode
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memory operands, 3-28
MMX technology, 9-2
MOVS instruction, 7-28
MOVSXD instruction, 7-11
near pointer, 4-8
operand addressing, 3-32
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operands, 3-28
POPF instruction, 7-31
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SAHF instruction, 7-31
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SSE2 extensions, 11-4
SSE3 extensions, 12-1
SSSE3 extensions, 12-1
stack behavior, 6-5
STOS instruction, 7-28
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AAS instruction, 7-14
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Access rights, segment descriptor, 6-9, 6-14
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physical, 3-8
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assembler, 3-32
base, 3-30, 3-31, 3-32
base plus displacement, 3-31
base plus index plus displacement, 3-32
base plus index time scale plus displacement, 3-32
canonical address, 3-13
displacement, 3-30, 3-31, 3-32
effective address, 3-30
immediate operands, 3-26
index, 3-30, 3-32
index times scale plus displacement, 3-32
memory operands, 3-28
register operands, 3-27, 3-28
RIP-relative addressing, 3-24, 3-32
scale factor, 3-30, 3-32
specifying a segment selector, 3-29
specifying an offset, 3-30
specifying offsets in 64-bit mode, 3-32

ADDSD instruction, 11-8
ADDSS instruction, 10-12
ADDSUBPD instruction, 5-26, 12-5
ADDSUBPS instruction, 5-26, 12-5
Advanced media boost, 2-13
advanced smart cache, 2-13
AF (adjust) flag, EFLAGS register, 3-21, A-1
AH register, 3-16
AL register, 3-16
Alignment

words, doublewords, quadwords, 4-2
AND instruction, 7-15
ANDNPD instruction, 11-9
ANDNPS instruction, 10-13
ANDPD instruction, 11-9
ANDPS instruction, 10-13
Arctangent, x87 FPU operation, 8-29
Arithmetic instructions, x87 FPU, 8-35
Assembler, addressing modes, 3-32
Asymmetric processing model, 12-2
AX register, 3-16

B
B (default size) flag, segment descriptor, 3-24
Base (operand addressing), 3-30, 3-31, 3-32
Basic execution environment, 3-2

Basic programming environment, 7-1, 7-2
B-bit, x87 FPU status word, 8-7
BCD integers

packed, 4-12
relationship to status flags, 3-22
unpacked, 4-12, 7-14
x87 FPU encoding, 4-12, 4-13

BH register, 3-16
Bias value

numeric overflow, 8-41
numeric underflow, 8-42

Biased exponent, 4-16
Biasing constant, for floating-point numbers, 4-7
Binary numbers, 1-6
Binary-coded decimal (see BCD)
Bit field, 4-9
Bit order, 1-4
BL register, 3-16
BOUND instruction, 6-18, 7-26, 7-32
BOUND range exceeded exception (#BR), 6-18
BP register, 3-16
Branch

control transfer instructions, 7-21
hints, 11-18
on EFLAGS register status flags, 7-23, 8-9
on x87 FPU condition codes, 8-9, 8-28
prediction, 2-8

BSF instruction, 7-20
BSR instruction, 7-20
BSWAP instruction, 7-5
BT instruction, 3-20, 3-22, 7-20
BTC instruction, 3-20, 3-22, 7-20
BTR instruction, 3-20, 3-22, 7-20
BTS instruction, 3-20, 3-22, 7-20
BX register, 3-16
Byte, 4-1
Byte order, 1-4

C
C1 flag, x87 FPU status word, 8-7, 8-37, 8-41, 8-43
C2 flag, x87 FPU status word, 8-7
cache, smart, 2-6
Call gate, 6-9
CALL instruction, 3-24, 6-4, 6-5, 6-9, 7-22, 7-32
Calls (see Procedure calls)
Canonical address, 3-13
CBW instruction, 7-11
CDQ instruction, 7-11
Celeron processor

description of, 2-3
CF (carry) flag, EFLAGS register, 3-21, A-1
CH register, 3-16
CL register, 3-16
CLC instruction, 3-22, 7-29
CLD instruction, 3-22, 7-30
CLFLUSH instruction, 11-17
CLI instruction, 13-5
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CMC instruction, 3-22, 7-29
CMOVcc instructions, 7-4, 7-6
CMP instruction, 7-12
CMPPD instruction, 11-10
CMPPS instruction, 10-13
CMPS instruction, 3-22, 7-27
CMPSD instruction, 11-10
CMPSS instruction, 10-14
CMPXCHG instruction, 7-6
CMPXCHG16B instruction, 7-7
CMPXCHG8B instruction, 7-6
Code segment, 3-19
COMISD instruction, 11-10
COMISS instruction, 10-14
Compare

compare and exchange, 7-6
integers, 7-12
real numbers, x87 FPU, 8-27
strings, 7-27

Compatibility mode
address space, 3-2
branch functions, 6-12
call gate descriptors, 6-12
introduction, 2-21, 3-2
memory models, 3-11
MMX technology, 9-2
segmentation, 3-30
SSE extensions, 10-4
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SSE3 extensions, 12-1
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x87 FPU, 8-2
See also: IA-32e mode, 64-bit mode

Compatibility, software, 1-5
compilers

documentation, 1-9
Condition code flags, x87 FPU status word

branching on, 8-9
conditional moves on, 8-9
description of, 8-6
interpretation of, 8-8
use of, 8-27

Conditional moves, x87 FPU condition codes, 8-9
Constants (floating point), 8-24
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64-bit mode, 3-6
overview of, 3-5

Core microarchitecture, 2-12
core microarchitecture, 2-12
Core Solo and Core Duo, 2-5
Cosine, x87 FPU operation, 8-29
CPUID instruction

AP-485, 1-9
CLFLUSH flag, 11-17
CMOVcc feature flag, 7-5
determine support for, 3-23
earlier processors, 14-2
FXSAVE-FXRSTOR flag, 10-21

MMX feature flag, 9-11
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serializing use, 13-7
SSE feature flag, 10-1, 10-9
SSE2 feature flag, 11-1, 12-7, 12-8
SSE3 feature flag, 12-8
SSSE2 feature flag, 12-13
summary of, 7-33

CS register, 3-17, 3-19
CTI instruction, 7-31
Current privilege level (see CPL)
Current stack, 6-2, 6-4
CVTDQ2PD instruction, 11-14
CVTDQ2PS instruction, 11-14
CVTPD2DQ instruction, 11-14
CVTPD2PI instruction, 11-13
CVTPD2PS instruction, 11-12
CVTPI2PD instruction, 11-13
CVTPI2PS instruction, 10-16
CVTPS2DQ instruction, 11-14
CVTPS2PD instruction, 11-12
CVTPS2PI instruction, 10-16
CVTSD2SI instruction, 11-14
CVTSD2SS instruction, 11-12
CVTSI2SD instruction, 11-14
CVTSI2SS instruction, 10-16
CVTSS2SD instruction, 11-12
CVTSS2SI instruction, 10-16
CVTTPD2DQ instruction, 11-14
CVTTPD2PI instruction, 11-13
CVTTPS2DQ instruction, 11-14
CVTTPS2PI instruction, 10-16
CVTTSD2SI instruction, 11-14
CVTTSS2SI instruction, 10-16
CWD instruction, 7-11
CWDE instruction, 7-11
CX register, 3-16

D
D (default size) flag, segment descriptor, 6-3
DAA instruction, 7-14
DAS instruction, 7-14
Data movement instructions, 7-3
Data pointer, x87 FPU, 8-13
Data registers, x87 FPU, 8-2
Data segment, 3-19
Data types

128-bit packed SIMD, 4-10
64-bit mode, 7-2
64-bit packed SIMD, 4-10
alignment, 4-2
BCD integers, 4-12, 7-14
bit field, 4-9
byte, 4-1
doubleword, 4-1
floating-point, 4-5
fundamental, 4-1
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integers, 4-4
numeric, 4-3
operated on by GP instructions, 7-1, 7-2
operated on by MMX technology, 9-3
operated on by SSE extensions, 10-8
operated on by SSE2 extensions, 11-5
operated on by x87 FPU, 8-17
operated on in 64-bit mode, 4-8
packed bytes, 9-3
packed doublewords, 9-3
packed SIMD, 4-9
packed words, 9-3
pointers, 4-8
quadword, 4-1, 9-3
signed integers, 4-4
strings, 4-9
unsigned integers, 4-4
word, 4-1

DAZ (denormals-are-zeros) flag
MXCSR register, 10-7

DE (denormal operand exception) flag
MXCSR register, 11-21
x87 FPU status word, 8-7, 8-39

Debug registers
64-bit mode, 3-6
legacy modes, 3-5

DEC instruction, 7-12
Decimal integers, x87 FPU, 4-13
Deeper sleep, 2-6
Denormal number (see Denormalized finite number)
Denormal operand exception (#D)

overview of, 4-26
SSE and SSE2 extensions, 11-21
x87 FPU, 8-38

Denormalization process, 4-19
Denormalized finite number, 4-6, 4-18
Denormals-are-zero

DAZ flag, MXCSR register, 10-7, 11-3, 11-4, 
11-28

mode, 10-7, 11-28
DF (direction) flag, EFLAGS register, 3-22, A-1
DH register, 3-16
DI register, 3-16
Digital media boost, 2-6
Displacement (operand addressing), 3-30, 3-31, 3-32
DIV instruction, 7-13
Divide, 4-27
Divide by zero exception (#Z)

SSE and SSE2 extensions, 11-22
x87 FPU, 8-40

DIVPD instruction, 11-8
DIVPS instruction, 10-12
DIVSD instruction, 11-8
DIVSS instruction, 10-12
DL register, 3-16
DM (denormal operand exception) mask bit

MXCSR register, 11-21
x87 FPU, 8-39

x87 FPU control word, 8-11
Double-extended-precision FP format, 4-5
Double-precision floating-point format, 4-5
Doubleword, 4-1
DS register, 3-17, 3-19
Dual-core technology

introduction, 2-19
DX register, 3-16
Dynamic data flow analysis, 2-8
Dynamic execution, 2-8, 2-13

E
EAX register, 3-14, 3-16
EBP register, 3-14, 3-16, 6-4, 6-8
EBX register, 3-14, 3-16
ECX register, 3-14, 3-16
EDI register, 3-14, 3-16
EDX register, 3-14, 3-16
Effective address, 3-30
EFLAGS register

64-bit mode, 7-2
condition codes, B-1
cross-reference with instructions, A-1
description of, 3-20
instructions that operate on, 7-29
overview, 3-14
part of basic programming environment, 7-1
restoring from stack, 6-8
saving on a procedure call, 6-8
status flags, 8-9, 8-10, 8-28
use with CMOVcc instructions, 7-4

EIP register
description of, 3-24
overview, 3-14
part of basic programming environment, 7-1
relationship to CS register, 3-19

EMMS instruction, 9-10, 9-12
Enhanced Intel Deeper Sleep, 2-6
ENTER instruction, 6-19, 6-20, 7-29
ES register, 3-17, 3-19
ES (exception summary) flag

x87 FPU status word, 8-44
ESC instructions, x87 FPU, 8-22
ESI register, 3-14, 3-16
ESP register, 3-16
ESP register (stack pointer), 3-14, 6-3, 6-4
Exception flags, x87 FPU status word, 8-7
Exception handlers

overview of, 6-13
SIMD floating-point exceptions, E-1
SSE and SSE2 extensions, 11-25, 11-26
typical actions of a FP exception handler, 4-31
x87 FPU, 8-45

Exception priority, floating-point exceptions, 4-30
Exception-flag masks, x87 FPU control word, 8-11
Exceptions

64-bit mode, 6-19
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description of, 6-13
handler, 6-13
implicit call to handler, 6-1
in real-address mode, 6-17
notation, 1-8
vector, 6-13

Exponent, floating-point number, 4-14

F
F2XM1 instruction, 8-31
FABS instruction, 8-25
FADD instruction, 8-24
FADDP instruction, 8-24
Far call

description of, 6-5
operation, 6-6

Far pointer
16-bit addressing, 3-11
32-bit addressing, 3-11
64-bit mode, 4-8
description of, 3-8, 4-8
legacy modes, 4-8

Far return operation, 6-6
FBLD instruction, 8-23
FBSTP instruction, 8-23
FCHS instruction, 8-25
FCLEX/FNCLEX instructions, 8-7
FCMOVcc instructions, 8-10, 8-23
FCOM instruction, 8-9, 8-26
FCOMI instruction, 8-10, 8-26
FCOMIP instruction, 8-10, 8-26
FCOMP instruction, 8-9, 8-26
FCOMPP instruction, 8-9, 8-26
FCOS instruction, 8-7, 8-29
FDIV instruction, 8-25
FDIVP instruction, 8-25
FDIVR instruction, 8-25
FDIVRP instruction, 8-25
Feature determination, of processor, 14-1
FIADD instruction, 8-25
FICOM instruction, 8-9, 8-26
FICOMP instruction, 8-9, 8-26
FIDIV instruction, 8-25
FIDIVR instruction, 8-25
FILD instruction, 8-23
FIMUL instruction, 8-25
FINIT/FNINIT instructions, 8-7, 8-11, 8-12, 8-32
FIST instruction, 8-23
FISTP instruction, 8-23
FISTTP instruction, 5-25, 12-4
FISUB instruction, 8-25
FISUBR instruction, 8-25
Flags

cross-reference with instructions, A-1
Flat memory model, 3-8, 3-18
FLD instruction, 8-22
FLD1 instruction, 8-24

FLDCW instruction, 8-10, 8-32
FLDENV instruction, 8-7, 8-13, 8-15, 8-33
FLDL2E instruction, 8-24
FLDL2T instruction, 8-24
FLDLG2 instruction, 8-24
FLDLN2 instruction, 8-24
FLDPI instruction, 8-24
FLDSW instruction, 8-32
FLDZ instruction, 8-24
Floating-point data types

biasing constant, 4-7
denormalized finite number, 4-6
description of, 4-5
double extended precision format, 4-5, 4-6
double precision format, 4-5, 4-6
infinites, 4-6
normalized finite number, 4-6
single precision format, 4-5, 4-6
SSE extensions, 10-8
SSE2 extensions, 11-5
storing in memory, 4-7
x87 FPU, 8-17
zeros, 4-6

Floating-point exception handlers
SSE and SSE2 extensions, 11-25, 11-26
typical actions, 4-31
x87 FPU, 8-45

Floating-point exceptions
denormal operand exception (#D), 4-26, 8-39, 

11-21, C-1
divide by zero exception (#Z), 4-27, 8-40, 11-22, 

C-1
exception conditions, 4-26
exception priority, 4-30
inexact result (precision) exception (#P), 4-29, 

8-42, 11-22, C-1
invalid operation exception (#I), 4-26, 8-36, 11-20
invalid-operation exception (#IA), C-1
invalid-operation exception (#IS), C-1
invalid-operation exception (#I), C-1
numeric overflow exception (#O), 4-27, 8-40, 

11-22, C-1
numeric underflow exception (#U), 4-28, 8-41, 

11-22, C-1
summary of, 4-24, C-1
typical handler actions, 4-31

Floating-point format
biased exponent, 4-16
description of, 8-17
exponent, 4-14
fraction, 4-14
indefinite, 4-6
QNaN floating-point indefinite, 4-22
real number system, 4-13
sign, 4-14
significand, 4-14

Floating-point numbers
defined, 4-14
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encoding, 4-6
Flush-to-zero

FZ flag, MXCSR register, 10-7, 11-3
mode, 10-7

FMUL instruction, 8-25
FMULP instruction, 8-25
FNOP instruction, 8-32
Fopcode compatibility mode, 8-14
FPATAN instruction, 8-29
FPREM instruction, 8-7, 8-25, 8-30
FPREM1 instruction, 8-7, 8-25, 8-30
FPTAN instruction, 8-7
Fraction, floating-point number, 4-14
FRNDINT instruction, 8-25
FRSTOR instruction, 8-7, 8-13, 8-15, 8-33
FS register, 3-17, 3-19
FSAVE/FNSAVE instructions, 8-6, 8-7, 8-13, 8-15, 

8-33
FSCALE instruction, 8-31
FSIN instruction, 8-7, 8-29
FSINCOS instruction, 8-7, 8-29
FSQRT instruction, 8-25
FST instruction, 8-23
FSTCW/FNSTCW instructions, 8-10, 8-32
FSTENV/FNSTENV instructions, 8-6, 8-13, 8-15, 8-33
FSTP instruction, 8-23
FSTSW/FNSTSW instructions, 8-6, 8-32
FSUB instruction, 8-25
FSUBP instruction, 8-25
FSUBR instruction, 8-25
FSUBRP instruction, 8-25
FTST instruction, 8-9, 8-26
FUCOM instruction, 8-26
FUCOMI instruction, 8-10, 8-26
FUCOMIP instruction, 8-10, 8-26
FUCOMP instruction, 8-26
FUCOMPP instruction, 8-9, 8-26
FXAM instruction, 8-7, 8-26
FXCH instruction, 8-23
FXRSTOR instruction, 5-13, 8-17, 10-20, 11-34
FXSAVE instruction, 5-13, 8-17, 10-20, 11-34
FXTRACT instruction, 8-25
FYL2X instruction, 8-31
FYL2XP1 instruction, 8-31

G
GDTR register, 3-5, 3-6
General purpose registers

64-bit mode, 3-6, 3-17
description of, 3-13, 3-14
overview of, 3-3, 3-6
parameter passing, 6-7
part of basic programming environment, 7-1, 7-2
using REX prefix, 3-17

General-purpose instructions
64-bit mode, 7-2
basic programming environment, 7-1

data types operated on, 7-1, 7-2
description of, 7-1
origin of, 7-1
programming with, 7-1
summary of, 5-2, 7-3

GS register, 3-17, 3-19

H
HADDPD instruction, 5-26, 12-6
HADDPS instruction, 5-26, 12-5
Hexadecimal numbers, 1-6
Horizontal processing model, 12-2
HSUBPD instruction, 5-26, 12-6
HSUBPS instruction, 5-26, 12-6
HT Technology

first processor, 2-4
implementing, 2-19
introduction, 2-18

I
IA-32 architecture

history of, 2-1
introduction to, 2-1

IA-32e mode
introduction, 2-21
segmentation, 3-30
See also: 64-bit mode, compatibility mode

IA32_MISC_ENABLE MSR, 8-14
ID (identification) flag, EFLAGS register, 3-23
IDIV instruction, 7-13
IDTR register, 3-5, 3-6
IE (invalid operation exception) flag

MXCSR register, 11-20
x87 FPU status word, 8-7, 8-37, 8-38

IEEE Standard 754, 4-5, 4-13, 8-1
IF (interrupt enable) flag

EFLAGS register, 3-23, 6-14, 13-5, A-1
IM (invalid operation exception) mask bit

MXCSR register, 11-20
x87 FPU control word, 8-11

Immediate operands, 3-26
IMUL instruction, 7-13
IN instruction, 5-8, 7-28, 13-4
INC instruction, 7-12
Indefinite

description of, 4-22
floating-point format, 4-6, 4-17
integer, 4-5, 8-20
packed BCD integer, 4-13
QNaN floating-point, 4-20, 4-22

Index (operand addressing), 3-30, 3-32
Inexact result (precision)

exception (#P), overview, 4-29
exception (#P), SSE-SSE2 extensions, 11-23
exception (#P), x87 FPU, 8-42
on floating-point operations, 4-23
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Infinity control flag, x87 FPU control word, 8-12
Infinity, floating-point format, 4-6, 4-19
INIT pin, 3-20
Input/output (see I/O)
INS instruction, 5-8, 7-28, 13-4
Instruction operands, 1-6
Instruction pointer

64-bit mode, 7-2
EIP register, 3-14, 3-24
RIP register, 3-24
RIP, EIP, IP compared, 3-12
x87 FPU, 8-13

Instruction prefixes
effect on SSE and SSE2 instructions, 11-37
REX prefix, 3-2, 3-16

Instruction set
binary arithmetic instructions, 7-12
bit scan instructions, 7-20
bit test and modify instructions, 7-20
byte-set-on-condition instructions, 7-20
cacheability control instructions, 5-20, 5-24
comparison and sign change instruction, 7-12
control transfer instructions, 7-21
data movement instructions, 7-3
decimal arithmetic instructions, 7-13
EFLAGS cross-reference, A-1
EFLAGS instructions, 7-29
exchange instructions, 7-5
FXSAVE and FXRSTOR instructions, 5-13
general-purpose instructions, 5-2
grouped by processor, 5-1
increment and decrement instructions, 7-12
instruction ordering instructions, 5-20, 5-24
I/O instructions, 5-8, 7-28
logical instructions, 7-15
MMX instructions, 5-14, 9-6
multiply and divide instructions, 7-13
processor identification instruction, 7-33
repeating string operations, 7-27
rotate instructions, 7-18
segment register instructions, 7-31
shift instructions, 7-15
SIMD instructions, introduction to, 2-15
software interrupt instructions, 7-25
SSE instructions, 5-16
SSE2 instructions, 5-20
stack manipulation instructions, 7-7
string operation instructions, 7-26
summary, 5-1
system instructions, 5-29
test instruction, 7-21
type conversion instructions, 7-10
x87 FPU and SIMD state management instructions

, 5-13
x87 FPU instructions, 5-10

INT instruction, 6-18, 7-32
Integers

description of, 4-4

indefinite, 4-5, 8-20
signed integer encodings, 4-5
signed, description of, 4-4
unsigned integer encodings, 4-4
unsigned, description of, 4-4

Intel 64 architecture
64-bit mode, 3-2
64-bit mode instructions, 5-30
address space, 3-8
compatibility mode, 3-2
data types, 4-1
definition of, 1-2
executing calls, 6-1
general purpose instructions, 7-1
generations, 2-22
history of, 2-1
IA32e mode, 3-2
introduction, 2-21
memory organization, 3-8, 3-10
relation to IA-32, 1-2
See also: IA-32e mode

Intel Advanced Digital Media Boost, 2-6, 2-13
Intel Advanced Smart Cache, 2-13
Intel Advanced Thermal Manager, 2-6
Intel Core 2 Extreme processor family, 2-6, 2-21
Intel Core Duo processor, 2-5, 2-20
Intel Core microarchitecture, 2-6, 2-12, 2-21
Intel Core Solo processor, 2-5
Intel developer link, 1-10
Intel Dynamic Power Coordination, 2-6
Intel NetBurst microarchitecture, 1-2

description of, 2-9
introduction, 2-9

Intel Pentium D processor, 2-20
Intel Pentium processor Extreme Edition, 2-19
Intel Smart Cache, 2-6
Intel Smart Memory Access, 2-6, 2-13
Intel software network link, 1-10
Intel VTune Performance Analyzer

related information, 1-9
Intel Wide Dynamic Execution, 2-6, 2-13
Intel Xeon processor, 1-1

description of, 2-4
Intel Xeon processor 5100 series, 2-6, 2-21
Intel386 processor, 2-2
Intel486 processor

history of, 2-2
Inter-privilege level call

description of, 6-8
operation, 6-10

Inter-privilege level return
description of, 6-8
operation, 6-10

Interrupt gate, 6-14
Interrupt handler, 6-13
Interrupt vector, 6-13
Interrupts

64-bit mode, 6-19
Vol. 1 INDEX-7



INDEX
description of, 6-13
handler, 6-13
implicit call to an interrupt handler

procedure, 6-14
implicit call to an interrupt handler task, 6-17
implicit call to interrupt handler procedure, 6-14
implicit call to interrupt handler task, 6-17
in real-address mode, 6-17
maskable, 6-13
user-defined, 6-13
vector, 6-13

INTn instruction, 7-26
INTO instruction, 6-18, 7-26, 7-32
Invalid arithmetic operand exception (#IA)

description of, 8-38
masked response to, 8-38

Invalid operation exception (#I)
overview, 4-26
SSE and SSE2 extensions, 11-20
x87 FPU, 8-36

IOPL (I/O privilege level) field
EFLAGS register, 3-23, 13-4

IRET instruction, 3-24, 6-17, 6-18, 7-22, 7-32, 13-5
I/O

address space, 13-2
instruction serialization, 13-7
instructions, 5-8, 7-28, 13-3
I/O privilege level (see IOPL)
map base, 13-5
permission bit map, 13-5
ports, 3-5, 13-1, 13-2, 13-4, 13-7
sensitive instructions, 13-4

J
J-bit, 4-14
Jcc instructions, 3-22, 3-24, 7-23
JMP instruction, 3-24, 7-21, 7-32

L
L1 (level 1) cache, 2-7, 2-10
L2 (level 2) cache, 2-7, 2-10
LAHF instruction, 3-20, 7-30
Last instruction opcode, x87 FPU, 8-14
LDDQU instruction, 5-25, 12-4
LDMXCSR instruction, 10-17, 11-34
LDS instruction, 7-32
LDTR register, 3-5, 3-6
LEA instruction, 7-33
LEAVE instruction, 6-19, 6-25, 7-29
LES instruction, 7-32
LFENCE instruction, 11-17
LGS instruction, 7-32
Linear address, 3-8
Linear address space

defined, 3-8
maximum size, 3-8

LOCK signal, 7-5
LODS instruction, 3-22, 7-27
Log epsilon, x87 FPU operation, 8-31
Logical address, 3-8
LOOP instructions, 7-24
LOOPcc instructions, 3-22, 7-24
LSS instruction, 7-32

M
Machine check registers, 3-5
Machine specific registers (see MSRs)
Maskable interrupts, 6-13
Masked responses

denormal operand exception (#D), 4-26, 8-39
divide by zero exception (#Z), 4-27, 8-40
inexact result (precision) exception (#P), 4-30, 

8-43
invalid arithmetic operation (#IA), 8-38
invalid operation exception (#I), 4-26
numeric overflow exception (#O), 4-28, 8-40
numeric underflow exception (#U), 4-29, 8-42
stack overflow or underflow

exception (#IS), 8-37
MASKMOVDQU instruction, 11-17, 11-36
MASKMOVQ instruction, 10-18, 11-36
Masks, exception-flags

MXCSR register, 10-6
x87 FPU control word, 8-11

MAXPD instruction, 11-9
MAXPS instruction, 10-12
MAXSD instruction, 11-9
MAXSS instruction, 10-13
Memory

flat memory model, 3-8
management registers, 3-5
memory type range registers (MTRRs), 3-5
modes of operation, 3-10
organization, 3-8
physical, 3-8
real address mode memory model, 3-9, 3-10
segmented memory model, 3-8
virtual-8086 mode memory model, 3-9, 3-10

Memory operands
64-bit mode, 3-28
legacy modes, 3-28

Memory-mapped I/O, 13-2
MFENCE instruction, 11-17, 11-37
Microarchitecture

(see Intel NetBurst microarchitecture)
(see P6 family microarchitecture)

MINPD instruction, 11-9
MINPS instruction, 10-13
MINSD instruction, 11-9
MINSS instruction, 10-13
MMX instruction set

arithmetic instructions, 9-8
comparison instructions, 9-9
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conversion instructions, 9-9
data transfer instructions, 9-8
EMMS instruction, 9-10
logical instructions, 9-10
overview, 9-6
shift instructions, 9-10

MMX registers
description of, 9-3
overview of, 3-3

MMX technology
64-bit mode, 9-2
64-bit packed SIMD data types, 4-10
compatibility mode, 9-2
compatibility with FPU architecture, 9-10
data types, 9-3
detecting MMX technology with CPUID instruction

, 9-11
effect of instruction prefixes on MMX instructions

, 9-14
exception handling in MMX code, 9-14
IA-32e mode, 9-2
instruction set, 5-14, 9-6
interfacing with MMX code, 9-13
introduction to, 9-1
memory data formats, 9-4
mixing MMX and floating-point instructions, 9-13
MMX registers, 9-3
programming environment (overview), 9-2
register mapping, 9-14
saturation arithmetic, 9-5
SIMD execution environment, 9-4
transitions between x87 FPU - MMX code, 9-12
updating MMX technology routines using 128-bit 

SIMD integer instructions, 11-35
using MMX code in a multitasking operating 

system environment, 9-14
using the EMMS instruction, 9-12
wraparound mode, 9-5

Modes of operation
64-bit mode, 3-2
compatibility mode, 3-2
memory models used with, 3-10
overview, 3-1, 3-6
protected mode, 3-1
real address mode, 3-1
system management mode (SMM), 3-1

MONITOR instruction, 5-27, 12-7
Moore’s law, 2-22
MOV instruction, 7-4, 7-31
MOVAPD instruction, 11-7, 11-34
MOVAPS instruction, 10-11, 11-34
MOVD instruction, 9-8
MOVDDUP instruction, 5-27, 12-5
MOVDQ2Q instruction, 11-16
MOVDQA instruction, 11-15, 11-34
MOVDQU instruction, 11-15, 11-34
MOVHLPS instruction, 10-11
MOVHPD instruction, 11-8

MOVHPS instruction, 10-11
MOVLHPS instruction, 10-11
MOVLPD instruction, 11-8
MOVLPS instruction, 10-11
MOVMSKPD instruction, 11-8
MOVMSKPS instruction, 10-11
MOVNTDQ instruction, 11-17, 11-36
MOVNTI instruction, 11-17, 11-36
MOVNTPD instruction, 11-17, 11-36
MOVNTPS instruction, 10-18, 11-36
MOVNTQ instruction, 10-18, 11-36
MOVQ instruction, 9-8
MOVQ2DQ instruction, 11-16
MOVS instruction, 3-22, 7-27
MOVSD instruction, 11-7, 11-34
MOVSHDUP instruction, 5-26, 12-4
MOVSLDUP instruction, 5-27, 12-4
MOVSS instruction, 10-11, 11-34
MOVSX instruction, 7-11
MOVSXD instruction, 7-11
MOVUPD instruction, 11-7, 11-34
MOVUPS instruction, 10-9, 10-11, 11-34
MOVZX instruction, 7-11
MS-DOS compatibility mode, 8-45, D-1
MSRs, 3-5
MTRRs, 3-5
MUL instruction, 7-13
MULPD instruction, 11-8
MULPS instruction, 10-12
MULSD instruction, 11-8
MULSS instruction, 10-12
Multi-core technology, 2-19
Multi-threading capability, 2-19
MWAIT instruction, 5-27, 12-7
MXCSR register, 11-23

denormals-are-zero (DAZ) flag, 10-7, 11-3, 11-4
description, 10-5
flush-to-zero flag (FZ), 10-7
FXSAVE and FXRSTOR instructions, 11-34
LDMXCSR instruction, 11-34
load and store instructions, 10-17
RC field, 4-23
saving on a procedure or function call, 11-34
SIMD floating-point mask and flag bits, 10-6
SIMD floating-point rounding control field, 10-7
state management instructions, 5-19, 10-17
STMXCSR instruction, 11-34
writing to while preventing general-protection 

exceptions (#GP), 11-30

N
NaNs

description of, 4-17, 4-19
encoding of, 4-6, 4-17
SNaNs vs. QNaNs, 4-19

Near call
description of, 6-5
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operation, 6-5
Near pointer

64-bit mode, 4-8
legacy modes, 4-8

Near return operation, 6-5
NEG instruction, 7-12
NetBurst microarchitecture (see Intel NetBurst 

microarchitecture)
Non-arithmetic instructions, x87 FPU, 8-35
Non-number encodings, floating-point format, 4-16
Non-temporal data

caching of, 10-18
description, 10-18
temporal vs. non-temporal data, 10-18

Non-waiting instructions, x87 FPU, 8-33, 8-45
NOP instruction, 7-33
Normalized finite number, 4-6, 4-16, 4-18
NOT instruction, 7-15
Notation

bit and byte order, 1-4
exceptions, 1-8
hexadecimal and binary numbers, 1-6
instruction operands, 1-6
notational conventions, 1-4
reserved bits, 1-5
segmented addressing, 1-6

NT (nested task) flag, EFLAGS register, 3-23, A-1
Numeric overflow exception (#O)

overview, 4-27
SSE and SSE2 extensions, 11-22
x87 FPU, 8-7, 8-40

Numeric underflow exception (#U)
overview, 4-28
SSE and SSE2 extensions, 11-22
x87 FPU, 8-7, 8-41

O
OE (numeric overflow exception) flag

MXCSR register, 11-22
x87 FPU status word, 8-7, 8-40

OF (overflow) flag
EFLAGS register, 3-21, 6-18

OF (overflow) flag, EFLAGS register, A-1
Offset (operand addressing), 3-30
Offset (operand addressing, 64-bit mode), 3-32
OM (numeric overflow exception) mask bit

MXCSR register, 11-22
x87 FPU control word, 8-11, 8-40

Operand
addressing, modes, 3-26
instruction, 1-6
size attribute, 3-24
sizes, 3-11, 3-25
x87 FPU instructions, 8-22

OR instruction, 7-15
Ordering I/O, 13-7
ORPD instruction, 11-9

ORPS instruction, 10-13
OSXMMEXCPT flag

control register CR4, 11-25
OUT instruction, 5-8, 7-28, 13-4
OUTS instruction, 5-8, 7-28, 13-4
Overflow exception (#OF), 6-18
Overflow, x87 FPU stack, 8-36, 8-37

P
P6 family microarchitecture

description of, 2-7
history of, 2-3

P6 family processors
description of, 1-1
history of, 2-3
P6 family microarchitecture, 2-7

PABSB instruction, 5-28, 12-11
PABSD instruction, 12-11
PABSW instruction, 5-28, 12-11
Packed

BCD integer indefinite, 4-13
BCD integers, 4-12
bytes, 9-3
doublewords, 9-3
SIMD data types, 4-9
SIMD floating-point values, 4-10
SIMD integers, 4-10
words, 9-3

PACKSSWB instruction, 9-9
PACKUSWB instruction, 9-9
PADDB instruction, 9-8
PADDD instruction, 9-8
PADDQ instruction, 11-15
PADDSB instruction, 9-8
PADDSW instruction, 9-8
PADDUSB instruction, 9-8
PADDUSW instruction, 9-8
PADDW instruction, 9-8
PALIGNR instruction, 5-29, 12-12
PAND instruction, 9-10
PANDN instruction, 9-10
Parameter passing

argument list, 6-8
on stack, 6-7
on the stack, 6-7
through general-purpose registers, 6-7
x87 FPU register stack, 8-5
XMM registers, 11-34

PAUSE instruction, 11-18
PAVGB instruction, 10-16
PC (precision) field, x87 FPU control word, 8-11
PCMPEQB instruction, 9-9
PCMPEQD instruction, 9-9
PCMPEQW instruction, 9-9
PCMPGTB instruction, 9-9
PCMPGTD instruction, 9-9
PCMPGTW instruction, 9-9
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PE (inexact result exception) flag, 11-23
MXCSR register, 4-23
x87 FPU status word, 4-23, 8-7, 8-43

Pentium 4 processor, 1-1
description of, 2-4, 2-5

Pentium 4 processor supporting Hyper-Threading 
Technology

description of, 2-4, 2-5
Pentium II processor, 1-2

description of, 2-3
P6 family microarchitecture, 2-7

Pentium II Xeon processor
description of, 2-3

Pentium III processor, 1-2
description of, 2-4
P6 family microarchitecture, 2-7

Pentium III Xeon processor
description of, 2-4

Pentium M processor
description of, 2-5
instructions supported, 2-5

Pentium Pro processor, 1-2
description of, 2-3
P6 family microarchitecture, 2-7

Pentium processor, 1-1
history of, 2-2

Pentium processor Extreme Edition
introduction, 2-5

Pentium processor with MMX technology, 2-3
Performance monitoring counters, 3-5
PEXTRW instruction, 10-17
PF (parity) flag, EFLAGS register, 3-21, A-1
PHADDD instruction, 5-28, 12-10
PHADDSW instruction, 5-28, 12-10
PHADDW instruction, 5-28, 12-10
PHSUBD instruction, 5-28, 12-10
PHSUBSW instruction, 5-28, 12-10
PHSUBW instruction, 5-28, 12-10
Physical

address space, 3-8
memory, 3-8

PINSRW instruction, 10-17
Pi, x87 FPU constant, 8-30
PM (inexact result exception) mask bit

MXCSR register, 11-23
x87 FPU control word, 8-11, 8-43

PMADDUBSW instruction, 5-28, 12-11
PMADDWD instruction, 9-9
PMAXSW instruction, 10-17
PMAXUB instruction, 10-17
PMINSW instruction, 10-17
PMINUB instruction, 10-17
PMOVMSKB instruction, 10-17
PMULHRSW instruction, 5-29, 12-11
PMULHUW instruction, 10-17
PMULUDQ instruction, 11-15
Pointer data types, 4-8
Pointers

64-bit mode, 4-8
far pointer, 4-8
near pointer, 4-8

POP instruction, 6-1, 6-3, 7-8, 7-31
POPA instruction, 6-8, 7-9
POPF instruction, 3-20, 6-8, 7-30, 13-5
POPFD instruction, 3-20, 6-8, 7-30
POR instruction, 9-10
Power coordination, 2-6
PREFETCHh instructions, 10-19, 11-36
Privilege levels

description of, 6-9
inter-privilege level calls, 6-8
protection rings, 6-9
stack switching, 6-15

Procedure calls
description of, 6-5
far call, 6-5
for block-structured languages, 6-19
inter-privilege level call, 6-10
linking, 6-4
near call, 6-5
overview, 6-1
return instruction pointer (EIP register), 6-4
saving procedure state information, 6-8
stack, 6-1
stack switching, 6-10
to exception handler procedure, 6-14
to exception task, 6-17
to interrupt handler procedure, 6-14
to interrupt task, 6-17
to other privilege levels, 6-8
types of, 6-1

Processor identification
earlier Intel architecture processors, 14-2
early processors, 14-2
notes on where to start, 14-1
using CPUID, 14-1
using CPUID instruction, 14-1

Processor state information, saving, 6-8
Protected mode

I/O, 13-4
memory models used, 3-10
overview, 3-1

Protection rings, 6-9
PSADBW instruction, 10-17
PSHUFB instruction, 5-29, 12-12
PSHUFD instruction, 11-16
PSHUFHW instruction, 11-15
PSHUFLW instruction, 11-15
PSHUFW instruction, 10-17, 11-16
PSIGNB/W/D instruction, 5-29, 12-12
PSLLD instruction, 9-10
PSLLDQ instruction, 11-16
PSLLQ instruction, 9-10
PSLLW instruction, 9-10
PSRLDQ instruction, 11-16
PSUBB instruction, 9-8
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PSUBD instruction, 9-8
PSUBQ instruction, 11-15
PSUBSB instruction, 9-8
PSUBSW instruction, 9-8
PSUBUSB instruction, 9-8
PSUBUSW instruction, 9-8
PSUBW instruction, 9-8
PUNPCKHBW instruction, 9-9
PUNPCKHDQ instruction, 9-9
PUNPCKHQDQ instruction, 11-16
PUNPCKHWD instruction, 9-9
PUNPCKLBW instruction, 9-9
PUNPCKLDQ instruction, 9-9
PUNPCKLQDQ instruction, 11-16
PUNPCKLWD instruction, 9-9
PUSH instruction, 6-1, 6-3, 7-7, 7-31
PUSHA instruction, 6-8, 7-8
PUSHF instruction, 3-20, 6-8, 7-30
PUSHFD instruction, 3-20, 6-8, 7-30
PXOR instruction, 9-10

Q
QNaN floating-point indefinite, 4-6, 4-20, 4-22, 8-20
QNaNs

description of, 4-20
effect on COMISD and UCOMISD, 11-10
encodings, 4-6
operating on, 4-20
rules for generating, 4-21
using in applications, 4-21

Quadword, 4-1, 9-3
Quiet NaN (see QNaN)

R
R8D-R15D registers, 3-16
R8-R15 registers, 3-16
RAX register, 3-16
RBP register, 3-16, 6-5
RBX register, 3-16
RC (rounding control) field

MXCSR register, 4-23, 10-7
x87 FPU control word, 4-23, 8-12

RCL instruction, 7-19
RCPPS instruction, 10-12
RCPSS instruction, 10-12
RCR instruction, 7-19
RCX register, 3-16
RDI register, 3-16
RDX register, 3-16
Real address mode

handling exceptions in, 6-17
handling interrupts in, 6-17
memory model, 3-9, 3-10
memory model used, 3-11
not in 64-bit mode, 3-11
overview, 3-1

Real numbers
continuum, 4-14
encoding, 4-16, 4-17
notation, 4-15
system, 4-13

Register operands
64-bit mode, 3-28
legacy modes, 3-27

Register stack, x87 FPU, 8-2
Registers

64-bit mode, 3-16, 3-20
control registers, 3-5
CR in 64-bit mode, 3-6
debug registers, 3-5
EFLAGS register, 3-14, 3-20
EIP register, 3-14, 3-24
general purpose registers, 3-13, 3-14
instruction pointer, 3-14
machine check registers, 3-5
memory management registers, 3-5
MMX registers, 3-3, 9-3
MSRs, 3-5
MTRRs, 3-5
MXCSR register, 10-6
performance monitoring counters, 3-5
REX prefix, 3-16
segment registers, 3-13, 3-17
x87 FPU registers, 8-1
XMM registers, 3-3, 10-4

Related literature, 1-9
REP/REPE/REPZ/REPNE/REPNZ

prefixes, 7-27, 13-4
Reserved bits, 1-5
RESET pin, 3-20
RET instruction, 3-24, 6-4, 6-5, 7-22, 7-32
Return instruction pointer, 6-4
Returns, from procedure calls

exception handler, return from, 6-14
far return, 6-6
inter-privilege level return, 6-10
interrupt handler, return from, 6-14
near return, 6-5

REX prefixes, 3-2, 3-16, 3-25
RF (resume) flag, EFLAGS register, 3-23, A-1
RFLAGS, 3-24
RFLAGS register, 7-31

See EFLAGS register
RIP register, 6-5

64-bit mode, 7-2
description of, 3-24
relation to EIP, 7-2

ROL instruction, 7-19
ROR instruction, 7-19
Rounding

modes, floating-point operations, 4-23
modes, x87 FPU, 8-12
toward zero (truncation), 4-24

Rounding control (RC) field
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MXCSR register, 4-23, 10-7
x87 FPU control word, 4-23, 8-12

RSI register, 3-16
RSP register, 3-16, 6-5
RSQRTPS instruction, 10-12
RSQRTSS instruction, 10-12

S
SAHF instruction, 3-20, 7-30
SAL instruction, 7-15
SAR instruction, 7-17
Saturation arithmetic (MMX instructions), 9-5
SBB instruction, 7-12
Scalar operations

defined, 10-10, 11-7
scalar double-precision FP operands, 11-7
scalar single-precision FP operands, 10-10

Scale (operand addressing), 3-30, 3-32
Scale, x87 FPU operation, 8-31
Scaling bias value, 8-41, 8-42
SCAS instruction, 3-22, 7-27
Segment

defined, 3-8
maximum number, 3-8

Segment override prefixes, 3-29
Segment registers

64-bit mode, 3-20, 3-30, 7-2
default usage rules, 3-29
description of, 3-13, 3-17
part of basic programming environment, 7-1

Segment selector
description of, 3-8, 3-17
segment override prefixes, 3-29
specifying, 3-29

Segmented memory model, 1-6, 3-8, 3-18
Serialization of I/O instructions, 13-7
Serializing instructions, 13-7
SETcc instructions, 3-22, 7-20
SF (sign) flag, EFLAGS register, 3-21, A-1
SF (stack fault) flag, x87 FPU status word, 8-9, 8-37
SFENCE instruction, 10-20, 11-17, 11-37
SHL instruction, 7-15
SHLD instruction, 7-18
SHR instruction, 7-16
SHRD instruction, 7-18
Shuffle instructions

SSE extensions, 10-14
SSE2 extensions, 11-10

SHUFPD instruction, 11-10
SI register, 3-16
Signaling NaN (see SNaN)
Signed

infinity, 4-19
integers, description of, 4-4
integers, encodings, 4-5
zero, 4-18

Significand, of floating-point number, 4-14

Sign, floating-point number, 4-14
SIMD floating-point exception (#XM), 11-25
SIMD floating-point exceptions

denormal operand exception (#D), 11-21
divide-by-zero (#Z), 11-22
exception conditions, 11-19
exception handlers, E-1
inexact result exception (#P), 11-23
invalid operation exception (#I), 11-20
list of, 11-19
numeric overflow exception (#O), 11-22
numeric underflow exception (#U), 11-22
precision exception (#P), 11-23
software handling, 11-26
summary of, C-1
writing exception handlers for, E-1

SIMD floating-point flag bits, 10-6
SIMD floating-point mask bits, 10-6
SIMD floating-point rounding control field, 10-7
SIMD (single-instruction, multiple-data)

execution model, 2-3, 2-4, 9-4
instructions, 2-15, 5-20, 10-10
MMX instructions, 5-14
operations, on packed double-precision 

floating-point operands, 11-6
operations, on packed single-precision 

floating-point operands, 10-9
packed data types, 4-9
SSE instructions, 5-16
SSE2 instructions, 11-6, 12-3, 12-9

Sine, x87 FPU operation, 8-29
Single-precision floating-point format, 4-5
Sleep, 2-6
Smart cache, 2-6
Smart memory access, 2-13
smart memory access, 2-6
SMM

memory model used, 3-11
overview, 3-1

SNaNs
description of, 4-20
effect on COMISD and UCOMISD, 11-10
encodings, 4-6
operating on, 4-20
typical uses of, 4-20
using in applications, 4-21

Software compatibility, 1-5
SP register, 3-16
Speculative execution, 2-7, 2-10
Spin-wait loops

programming with PAUSE instruction, 11-18
SQRTPD instruction, 11-8
SQRTPS instruction, 10-12
SQRTSD instruction, 11-9
SQRTSS instruction, 10-12
SS register, 3-17, 3-19, 6-1
SSE extensions

128-bit packed single-precision data type, 10-8
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64-bit mode, 10-4
64-bit SIMD integer instructions, 10-16
branching on arithmetic operations, 11-36
cacheability control instructions, 10-18
cacheability hint instructions, 11-36
caller-save requirement for procedure and 

function calls, 11-35
checking for SSE and SSE2 support, 11-28
comparison instructions, 10-13
compatibility mode, 10-4
compatibility of SIMD and x87 FPU floating-point 

data types, 11-32
conversion instructions, 10-15
data movement instructions, 10-11
data types, 10-8, 12-1
denormal operand exception (#D), 11-21
denormals-are-zeros mode, 10-7
divide by zero exception (#Z), 11-22
exceptions, 11-18
floating-point format, 4-13, 4-14
flush-to-zero mode, 10-7
generating SIMD FP exceptions, 11-23
guidelines for using, 11-27
handling combinations of masked and unmasked 

exceptions, 11-26
handling masked exceptions, 11-23
handling SIMD floating-point exceptions in 

software, 11-26
handling unmasked exceptions, 11-25, 11-26
inexact result exception (#P), 11-23
instruction prefixes, effect on SSE and SSE2 

instructions, 11-37
instruction set, 5-16, 10-9
interaction of SIMD and x87 FPU floating-point 

exceptions, 11-26
interaction of SSE and SSE2 instructions with x87 

FPU and MMX instructions, 11-31
interfacing with SSE and SSE2 procedures and 

functions, 11-34
intermixing packed and scalar floating-point

and 128-bit SIMD integer instructions
and data, 11-32

introduction, 2-4
invalid operation exception (#I), 11-20
logical instructions, 10-13
masked responses to invalid arithmetic operations

, 11-20
memory ordering instruction, 10-20
MMX technology compatibility, 10-8
MXCSR register, 10-5
MXCSR state management instructions, 10-17
non-temporal data, operating on, 10-18
numeric overflow exception (#O), 11-22
numeric underflow exception (#U), 11-22
overview, 10-1
packed 128-Bit SIMD data types, 4-10
packed and scalar floating-point instructions, 10-9
programming environment, 10-3

QNaN floating-point indefinite, 4-22
restoring SSE and SSE2 state, 11-30
REX prefixes, 10-4
saving SSE and SSE2 state, 11-30
saving XMM register state on a procedure or 

function call, 11-34
shuffle instructions, 10-14
SIMD floating-point exception conditions, 11-19
SIMD floating-point exception cross reference, 

C-4
SIMD floating-point exception (#XM), 11-25, 

11-26
SIMD floating-point exceptions, 11-19
SIMD floating-point mask and flag bits, 10-6
SIMD floating-point rounding control field, 10-7
SSE and SSE2 conversion instruction chart, 11-13
SSE feature flag, CPUID instruction, 11-28
SSE2 compatibility, 10-8
unpack instructions, 10-14
updating MMX technology routines

using128-bit SIMD integer instructions, 11-35
x87 FPU compatibility, 10-8
XMM registers, 10-4

SSE feature flag, CPUID instruction, 11-28, 12-7
SSE instructions

descriptions of, 10-9
SIMD floating-point exception cross-reference, 

C-4
summary of, 5-16

SSE2 extensions
128-bit packed single-precision

data type, 11-4
128-bit packed single-precision data type, 12-2
128-bit SIMD integer instruction

extensions, 11-16
64-bit and 128-bit SIMD integer instructions, 

11-15
64-bit mode, 11-4
arithmetic instructions, 11-8
branch hints, 11-18
branching on arithmetic operations, 11-36
cacheability control instructions, 11-17
cacheability hint instructions, 11-36
caller-save requirement for procedure and 

function calls, 11-35
checking for SSE and SSE2 support, 11-28
comparison instructions, 11-9
compatibility mode, 11-4
compatibility of SIMD and x87 FPU floating-point 

data types, 11-32
conversion instructions, 11-12
data movement instructions, 11-7
data types, 11-4, 11-5, 12-2
denormal operand exception (#D), 11-21
denormals-are-zero mode, 11-4
divide by zero exception (#Z), 11-22
exceptions, 11-18
floating-point format, 4-13, 4-14
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generating SIMD floating-point exceptions, 11-23
guidelines for using, 11-27
handling combinations of masked and unmasked 

exceptions, 11-26
handling masked exceptions, 11-23
handling SIMD floating-point exceptions in 

software, 11-26
handling unmasked exceptions, 11-25, 11-26
inexact result exception (#P), 11-23
initialization of, 11-29
instruction prefixes, effect on SSE and SSE2 

instructions, 11-37
instruction set, 5-20
instructions, 11-6, 12-3, 12-9
interaction of SIMD and x87 FPU floating-point 

exceptions, 11-26
interaction of SSE and SSE2 instructions with x87 

FPU and MMX instructions, 11-31
interfacing with SSE and SSE2 procedures and 

functions, 11-34
intermixing packed and scalar floating-point and 

128-bit SIMD integer instructions and data, 
11-32

invalid operation exception (#I), 11-20
logical instructions, 11-9
masked responses to invalid arithmetic operations

, 11-20
memory ordering instructions, 11-17
MMX technology compatibility, 11-4
numeric overflow exception (#O), 11-22
numeric underflow exception (#U), 11-22
overview of, 11-1
packed 128-Bit SIMD data types, 4-10
packed and scalar floating-point instructions, 11-6
programming environment, 11-3
QNaN floating-point indefinite, 4-22
restoring SSE and SSE2 state, 11-30
REX prefixes, 11-4
saving SSE and SSE2 state, 11-30
saving XMM register state on a procedure or 

function call, 11-34
shuffle instructions, 11-10
SIMD floating-point exception conditions, 11-19
SIMD floating-point exception cross reference, 

C-7
SIMD floating-point exception (#XM), 11-25, 

11-26
SIMD floating-point exceptions, 11-19
SSE and SSE2 conversion instruction chart, 11-13
SSE compatibility, 11-4
SSE2 feature flag, CPUID instruction, 11-28
unpack instructions, 11-10
updating MMX technology routines using 128-bit 

SIMD integer instructions, 11-35
writing applications with, 11-27
x87 FPU compatibility, 11-4

SSE2 feature flag, CPUID instruction, 11-28, 12-7
SSE2 instructions

descriptions of, 11-6, 12-3, 12-9
SIMD floating-point exception cross-reference, 

C-7
summary of, 5-20

SSE3 extensions
64-bit mode, 12-1
asymmetric processing, 12-2
compatibility mode, 12-1
DNA exceptions, 12-13
emulation, 12-14
enabling support in a system executive, 12-7
exceptions, 12-13
guideline for packed addition/subtraction 

instructions, 12-8
horizontal addition/subtraction instructions, 12-5
horizontal processing, 12-2
instruction that addresses cache line splits, 5-25
instruction that improves X87-FP integer 

conversion, 5-25
instructions for horizontal addition/subtraction, 

5-26
instructions for packed addition/subtraction, 5-26
instructions that enhance 

LOAD/MOVE/DUPLICATE, 5-26
instructions that improve synchronization 

between agents, 5-27
LOAD/MOVE/DUPLICATE enhancement 

instructions, 12-4
MMX technology compatibility, 12-2
numeric error flag and IGNNE#, 12-13
packed addition/subtraction instructions, 12-5
programming environment, 12-1
REX prefixes, 12-1
SIMD floating-point exception cross reference, 

C-11
specialized 120-bit load instruction, 12-4
SSE compatibility, 12-2
SSE2 compatibility, 12-2
x87 FPU compatibility, 12-2

SSE3 instructions
descriptions of, 12-3
SIMD floating-point exception

cross-reference, C-11
summary of, 5-25

SSSE3 extensions
64-bit mode, 12-1
asymmetric processing, 12-2
checking for support, 12-13
compatibility, 12-2
compatibility mode, 12-1
data types, 12-1
DNA exceptions, 12-13
emulation, 12-14
enabling support in a system executive, 12-12
exceptions, 12-13
horizontal add/subtract instructions, 12-9
horizontal processing, 12-2
MMX technology compatibility, 12-2
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multiply and add packed instructions, 12-11
numeric error flag and IGNNE#, 12-13
packed absolute value instructions, 12-11
packed align instruction, 12-12
packed multiply high instructions, 12-11
packed shuffle instruction, 12-12
programming environment, 12-1
SSSE2 compatibility, 12-2
x87 FPU compatibility, 12-2

SSSE3 instructions
descriptions of, 12-8
summary of, 5-27

Stack
64-bit mode, 3-6, 6-5
64-bit mode behavior, 6-19
address-size attribute, 6-3
alignment, 6-3
alignment of stack pointer, 6-3
current stack, 6-2, 6-4
description of, 6-1
EIP register (return instruction pointer), 6-4
maximum size, 6-1
number allowed, 6-1
overview of, 3-5
passing parameters on, 6-7
popping values from, 6-1
procedure linking information, 6-4
pushing values on, 6-1
return instruction pointer, 6-4
SS register, 6-1
stack segment, 3-19, 6-1
stack-frame base pointer, EBP register, 6-4
switching

on calls to interrupt and exception handlers,
6-15

on inter-privilege level calls, 6-11, 6-16
privilege levels, 6-10

width, 6-3
Stack, x87 FPU

stack fault, 8-9
stack overflow and underflow exception (#IS), 

8-7, 8-36, 8-37
Status flags

EFLAGS register, 3-21, 8-9, 8-10, 8-28
STC instruction, 3-22, 7-29
STD instruction, 3-22, 7-30
STI instruction, 7-31, 13-5
Sticky bits, 8-7
STMXCSR instruction, 10-17, 11-34
STOS instruction, 3-22, 7-27
Streaming SIMD extensions 2 (see SSE2 extensions)
Streaming SIMD extensions (see SSE extensions)
String data type, 4-9
ST(0), top-of-stack register, 8-4
SUB instruction, 7-12
Superscalar microarchitecture

P6 family microarchitecture, 2-3
P6 family processors, 2-7

Pentium 4 processor, 2-10
Pentium Pro processor, 2-3
Pentium processor, 2-2

System management mode (see SMM)

T
Tangent, x87 FPU operation, 8-29
Task gate, 6-17
Task register, 3-5
Task state segment (see TSS)
Tasks

exception handler, 6-17
interrupt handler, 6-17

Temporal data, 10-18
TEST instruction, 7-21
TF (trap) flag, EFLAGS register, 3-23, A-1
Thermal Monitor, 2-6
Tiny number, 4-18
TOP (stack TOP) field

x87 FPU status word, 8-3, 9-12
TR register, 3-6
Trace cache, 2-10
Transcendental instruction accuracy, 8-31
Trap gate, 6-14
Truncation

description of, 4-24
with SSE-SSE2 conversion instructions, 4-24

TSS
I/O map base, 13-5
I/O permission bit map, 13-5
saving state of EFLAGS register, 3-20

U
UCOMISD instruction, 11-10
UCOMISS instruction, 10-14
UD2 instruction, 7-33
UE (numeric underflow exception) flag

MXCSR register, 11-22
x87 FPU status word, 8-7, 8-42

UM (numeric underflow exception) mask bit
MXCSR register, 11-22
x87 FPU control word, 8-11, 8-42

Underflow
FPU exception

(see Numeric underflow exception)
numeric, floating-point, 4-18
x87 FPU stack, 8-36, 8-37

Underflow, x87 FPU stack, 8-37
Unpack instructions

SSE extensions, 10-14
SSE2 extensions, 11-10

UNPCKHPD instruction, 11-11
UNPCKHPS instruction, 10-15
UNPCKLPD instruction, 11-11
UNPCKLPS instruction, 10-15
Unsigned integers
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description of, 4-4
range of, 4-4
types, 4-4

Unsupported, 8-20
floating-point formats, x87 FPU, 8-20
x87 FPU instructions, 8-34

V
Vector (see Interrupt vector)
VIF (virtual interrupt) flag, EFLAGS register, 3-23
VIP (virtual interrupt pending) flag

EFLAGS register, 3-23
Virtual 8086 mode

description of, 3-23
memory model, 3-9, 3-10

VM (virtual 8086 mode) flag, EFLAGS register, 3-23
VMCALL instruction, 5-31
VMCLEAR instruction, 5-31
VMLAUNCH instruction, 5-31
VMPTRLD instruction, 5-31
VMPTRST instruction, 5-31
VMREAD instruction, 5-31
VMRESUME instruction, 5-31
VMWRITE instruction, 5-31
VMX

instruction set, 5-31
introduction, 2-22
Virtual machine monitor (VMM), 2-22
virtualization, 2-22

VMXOFF instruction, 5-31
VMXON instruction, 5-31

W
Waiting instructions, x87 FPU, 8-33
WAIT/FWAIT instructions, 8-33, 8-44
WC memory type, 10-18
wide dynamic execution, 2-6
Word, 4-1
Wraparound mode (MMX instructions), 9-5

X
x87 FPU

64-bit mode, 8-2
compatibility mode, 8-2
control word, 8-10
data pointer, 8-13
data registers, 8-2
execution environment, 8-1
floating-point data types, 8-17
floating-point format, 4-13, 4-14
fopcode compatibility mode, 8-14
FXSAVE and FXRSTOR instructions, 11-34
IEEE Standard 754, 8-1
instruction pointer, 8-13
instruction set, 8-21
last instruction opcode, 8-14

overview of registers, 3-3
programming, 8-1
QNaN floating-point indefinite, 4-22
register stack, 8-2
register stack, parameter passing, 8-5
registers, 8-1
save and restore state instructions, 5-13
saving registers, 11-34
state, 8-15
state, image, 8-16, 8-17
state, saving, 8-15, 8-17
status register, 8-6
tag word, 8-12
transcendental instruction accuracy, 8-31

x87 FPU control word
description of, 8-10
exception-flag mask bits, 8-11
infinity control flag, 8-12
precision control (PC) field, 8-11
rounding control (RC) field, 4-23, 8-12

x87 FPU exception handling
description of, 8-45
floating-point exception summary, C-2
MS-DOS compatibility mode, 8-45
native mode, 8-45

x87 FPU floating-point exceptions
denormal operand exception, 8-39
division-by-zero, 8-40
exception conditions, 8-36
exception summary, C-2
guidelines for writing exception handlers, D-1
inexact-result (precision), 8-42
interaction of SIMD and x87 FPU floating-point 

exceptions, 11-26
invalid arithmetic operand, 8-36, 8-38
MS-DOS compatibility mode, D-1
numeric overflow, 8-40
numeric underflow, 8-41
software handling, 8-45
stack overflow, 8-7, 8-37
stack underflow, 8-7, 8-36, 8-37
summary of, 8-34
synchronization, 8-43

x87 FPU instructions
arithmetic vs. non-arithmetic instructions, 8-35
basic arithmetic, 8-24
comparison and classification, 8-26
control, 8-32
data transfer, 8-22
exponential, 8-31
instruction set, 8-21
load constant, 8-24
logarithmic, 8-31
operands, 8-22
overview, 8-21
save and restore state, 8-32
scale, 8-31
transcendental, 8-31
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transitions between x87 FPU and MMX code, 9-12
trigonometric, 8-29
unsupported, 8-34

x87 FPU status word
condition code flags, 8-6
DE flag, 8-39
description of, 8-6
exception flags, 8-7
OE flag, 8-40
PE flag, 8-7
stack fault flag, 8-9
TOP field, 8-3
top of stack (TOP) pointer, 8-6

x87 FPU tag word, 8-12, 9-12
XADD instruction, 7-6
XCHG instruction, 7-5
XLAT/XLATB instruction, 7-33
XMM registers

64-bit mode, 3-6
description, 10-4
FXSAVE and FXRSTOR instructions, 11-34
overview of, 3-3
parameters passing in, 11-34
saving on a procedure or function call, 11-34

XOR instruction, 7-15
XORPD instruction, 11-9
XORPS instruction, 10-13

Z
ZE (divide by zero exception) flag

x87 FPU status word, 8-7, 8-40
ZE (divide by zero exception) flag bit

MXCSR register, 11-22
Zero, floating-point format, 4-6, 4-18
ZF (zero) flag, EFLAGS register, 3-21, A-1
ZM (divide by zero exception) mask bit

MXCSR register, 11-22
x87 FPU control word, 8-11, 8-40
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