
Page 1

This presentation is an introduction to software pipelining in the IA-64
architecture.

It is recommended that the reader have some exposure to the IA-64
architecture prior to viewing this presentation.

®® IA-64 Software Programs

Introduction to SoftwareIntroduction to Software
Pipelining in the IA-64Pipelining in the IA-64
ArchitectureArchitecture

Page 2

®® IA-64 Software Programs

AgendaAgenda

��ObjectivesObjectives

��What is software pipelining?What is software pipelining?

�� IA-64 architectural supportIA-64 architectural support

��Assembly code exampleAssembly code example

��Compiler supportCompiler support

��SummarySummary

Page 3

®® IA-64 Software Programs

ObjectivesObjectives

�� Introduce the concept of softwareIntroduce the concept of software
pipelining (SWP)pipelining (SWP)

��Understand the IA-64 architecturalUnderstand the IA-64 architectural
features that support SWPfeatures that support SWP

��See an assembly code exampleSee an assembly code example

��Know how to enable SWP in compilerKnow how to enable SWP in compiler

Page 4

®® IA-64 Software Programs

What is SoftwareWhat is Software
Pipelining?Pipelining?

Page 5

®® IA-64 Software Programs

Software PipeliningSoftware Pipelining

��Software performance technique thatSoftware performance technique that
overlaps the execution of consecutiveoverlaps the execution of consecutive
loop iterationsloop iterations

��Exploits instruction level parallelismExploits instruction level parallelism
across iterationsacross iterations

Software Pipelining (SWP) is the term for overlapping the execution of
consecutive loop iterations. SWP is a performance technique that can
be done in just about every computer architecture.

SWP is closely related to loop unrolling.

Page 6

®® IA-64 Software Programs

Software PipeliningSoftware Pipelining

TimeTime

i = 1i = 1

i = 1i = 1 i = 2i = 2

i = 1i = 1 i = 2i = 2 i = 3i = 3

i = 1i = 1 i = 2i = 2 i = 3i = 3 i = 4i = 4

i = 2i = 2 i = 3i = 3 i = 4i = 4 i = 5i = 5

i = 3i = 3 i = 4i = 4 i = 5i = 5 i = 6i = 6

i = 4i = 4 i = 5i = 5 i = 6i = 6

i = 5i = 5 i = 6i = 6

i = 6i = 6

Here is a conceptual block diagram of a software pipeline. The loop
code is separated into four pipeline stages.

Six iterations of the loop are shown (i = 1 to 6).

Notice how the pipeline stages overlap. The second iteration (i=2) can
begin while the first iteration (i=1) begins the second stage. This
overlap of iterations increases the amount of parallel operations that
can be executed in the processor. More parallel operations helps
increase performance.

Many, but not all, loops may be software pipelined.

Page 7

®® IA-64 Software Programs

Software PipeliningSoftware PipeliningSoftware PipeliningSoftware Pipelining
i = 1i = 1

i = 1i = 1 i = 2i = 2

i = 1i = 1 i = 2i = 2 i = 3i = 3

i - 3i - 3 i - 2i - 2 i - 1i - 1 ii

i = n-2i = n-2 i = n-1i = n-1 i = ni = n

i = n-1i = n-1 i = ni = n

i = ni = n

ProloguePrologue

EpilogueEpilogue

KernelKernel

Here is another conceptual block diagram of a software pipeline. This
is the same four stage pipeline.

Here we see the loop prolog (the start of the pipeline), the kernel (all
pipeline stages active), and the epilog (the completion of the pipeline).

Page 8

®® IA-64 Software Programs

Modulo Loop SchedulingModulo Loop Scheduling

��One of many software pipeliningOne of many software pipelining
techniquestechniques

��Direct support in IA-64 architectureDirect support in IA-64 architecture

��High performance code with minimalHigh performance code with minimal
code spacecode space

Modulo Loop Scheduling is just one software pipelining technique.

There is direct support in the IA-64 architecture for modulo loop
scheduling: rotating registers, predicates, special branch instructions,
and loop count registers.

The architectural support makes it easy to create SWP loops. The
resulting code has high performance and is compact.

Page 9

®® IA-64 Software Programs

Modulo Loop SchedulingModulo Loop Scheduling

��Basic techniqueBasic technique
––Create a schedule for one loop iterationCreate a schedule for one loop iteration

that can be repeated at regular intervalsthat can be repeated at regular intervals

�� Initiation interval (ii)Initiation interval (ii)
––Constant interval between iterationsConstant interval between iterations

–– Number of clock cycles between startingNumber of clock cycles between starting
iteration iteration ii and starting iteration and starting iteration i+1i+1

––Goal is to minimize ii to increaseGoal is to minimize ii to increase
throughputthroughput

Modulo Loop Scheduling involves developing a schedule for one loop
iteration such that when the schedule is repeated at regular intervals,
no intra- or inter-iteration dependency is violated, and no resource
usage conflict arises.

The Initiation Interval (ii) is essentially the length of one pipeline stage -
the number of clock cycles it takes to execute one pass through the
loop instructions or the number of clock cycles between starting
iteration i and starting iteration i+1.

When comparing SWP loops, compare the ii and the number of stages.
For high loop counts, ii is more important than the number of stages.
With high loop counts, more time is spent in the loop’s kernel rather
than the prolog and epilog. The kernel time is determined by the
number of iterations and the ii.

Page 10

®® IA-64 Software Programs

IA-64 ArchitecturalIA-64 Architectural
SupportSupport

The IA-64 architecture has special support for software pipelining.

Page 11

®® IA-64 Software Programs

Rotating RegistersRotating Registers

��Registers rotate for each loop iterationRegisters rotate for each loop iteration

��Rotation provides a “new register” forRotation provides a “new register” for
each loop iterationeach loop iteration

��General, predicate, FP registers rotateGeneral, predicate, FP registers rotate

ldld f32f32 = [r1] = [r1]

stst [r2] = [r2] = f33f33
RotationRotation

The General registers, Floating Point (FP) registers, and the Predicate
registers have the ability to rotate. Conceptually, the data rotates or
moves from a register to the adjacent register. For example, if data is
written to F32 on one iteration, the data will be in F33 on the next
iteration. This allows the instruction to reference a new “register” on
each iteration. F32 can be written again, because the value has moved
to F33.

General registers R32 and above can rotate, as can Floating Point
registers F32-F127 and Predicate registers P16-P63. General registers
must be enabled to rotate with the “alloc” instruction (not discussed
here). The rotation for General registers is by blocks of 8 registers.

The register rotation is circular - F127 rotates to F32 and P63 rotates
to P16. For the general registers, R40 rotates to R32 if one block of 8
registers is enabled to rotate.

Page 12

®® IA-64 Software Programs

PredicationPredication

��Predicate registers control the pipelinePredicate registers control the pipeline
stagesstages
––One predicate assigned to each stageOne predicate assigned to each stage

––Allows the instructions to execute at theAllows the instructions to execute at the
correct timecorrect time

��Rotating predicates advance theRotating predicates advance the
pipelinepipeline

(p16)(p16) ld ld f32 = [r1] // f32 = [r1] // Stage 1Stage 1
(p17)(p17) st st [r2] = f33 // [r2] = f33 // Stage 2Stage 2

One predicate register is assigned to each stage in the pipeline. All
instructions for that stage will share the same predicate. This allows
the instructions for the stage to execute at the correct time (i.e. only
when that stage is ready to execute).

The rotating predicate registers act a shift register that starts up the
software pipeline (prolog), keeps it moving (kernel), and then shuts
down the pipeline at the end of the loop (epilog).

P16 is the first rotating predicate register and it is typically used to
control the first stage in the pipeline.

Page 13

®® IA-64 Software Programs

Branch InstructionsBranch Instructions
��Counted loop branchesCounted loop branches

––brbr..ctopctop,, br br..cexitcexit

��While loop branchesWhile loop branches
––brbr..wtopwtop,, br br..wexitwexit

��Controls the rotation and loop countControls the rotation and loop count
p16 =p16 = cmp cmp..eqeq r0, r0 r0, r0

Loop:Loop:
(p16)(p16) ld ld f32 = [r1] f32 = [r1]
(p17)(p17) st st [r2] = f33 [r2] = f33
brbr..ctopctop Loop Loop

“top” branches are used at the bottom of the loop:

 if loop is to continue then branch to the top of the loop,

else, fall through to end the loop.

“exit” branches are used if the loop exit is not at the loop bottom:

if loop is to continue, then fall-through,

else, branch out of the loop to end the loop.

Refer to the IA-64 Application Developer’s Architecture Guide to
understand the difference between the different branch instruction
types.

In the code snippet above, notice that P16 is set before entry into the
software pipelined loop.

Page 14

®® IA-64 Software Programs

Count RegistersCount Registers

��Loop Count (LC) RegisterLoop Count (LC) Register
––Number of loop iterationsNumber of loop iterations

––For counted loops onlyFor counted loops only

��Epilog Count (EC) RegisterEpilog Count (EC) Register
––Contains the number of pipeline stagesContains the number of pipeline stages

––Used to count during the epilogueUsed to count during the epilogue

LC is for Counted loops only, not While loops. It is loaded with the loop
count minus one.

EC is used to count the stages during the loop’s epilog. EC is used for
both Counted loops and While loops.

Page 15

®® IA-64 Software Programs

br.ctop Instructionbr.ctop Instruction

�� If LC > 0If LC > 0
––Decrement LC, Set P63 = 1Decrement LC, Set P63 = 1

––Rotate registersRotate registers

��When LC == 0When LC == 0
––Decrement EC, Set P63 = 0Decrement EC, Set P63 = 0

––Rotate registersRotate registers

��Loop exits when EC Register == 1Loop exits when EC Register == 1

br.ctop is used in counted loops. It is used in the assembly code
example that follows.

Here is how the br.ctop instruction executes:

If LC is greater than 0, decrement LC, set P63 to 1, and rotate the
registers. Setting P63 to 1 will rotate which sets P16, which continues
the pipeline.

If LC equals zero, decrement the EC, set P63 to 0, rotate the registers.
Setting P63 to 0 will rotate which clears P16, which starts to empty the
pipeline.

Exit the loop when EC register equals 1.

Page 16

®® IA-64 Software Programs

Assembly Code ExampleAssembly Code Example

This is an assembly code example to illustrate how software pipelining
works.

Page 17

®® IA-64 Software Programs

DAXPY Example CodeDAXPY Example Code

double x[N], y[N],double x[N], y[N], da da;;

for (i=0; i<N; i++) {for (i=0; i<N; i++) {

y[i] =y[i] = da da*x[i] + y[i];*x[i] + y[i];

}}

DAXPY is the inner loop in many equation solvers. In this example, we
will use a counted loop.

Page 18

®® IA-64 Software Programs

Step 1: Dependency GraphStep 1: Dependency Graph

��Select instructionsSelect instructions
–– ldld,, fma fma,, st st,, br br..ctopctop

��Create dependencyCreate dependency
graphgraph
––No inter-iterationNo inter-iteration

dependencies heredependencies here

ld

fma

st

ld

Dependency GraphDependency Graph

ld = load (actually ldf is used)

fma = floating point multiply-and-add instruction

st = store (actually stf is used)

br.ctop = branch

There are no inter-iteration dependencies here. Each iteration is can
be executed independently. This simplifies the remaining steps. The
intra-iteration dependency graph is shown.

Page 19

®® IA-64 Software Programs

Step 2: Map to ResourcesStep 2: Map to Resources

��Map instructions toMap instructions to
available executionavailable execution
unitsunits
––Disregard instructionDisregard instruction

latencies andlatencies and
dependencies at thisdependencies at this
pointpoint

––Determines theDetermines the
initiation intervalinitiation interval
(ii = 2 cycles)(ii = 2 cycles)

ld ld

fma st

Cycle

2

1

Mapping the instructions to the available processor exeuction units
creates the Modulo Reservation Table (MRT). This table determines
the loop’s ii.

In this case, we assume a hypothetical machine that has two memory
execution units. With two memory units, only two load or store
operations can be issued per clock cycle. Therefore, we need a
minimum of two clock cycles to issue the 3 memory instructions (2
loads and 1 store).

The FMA instruction could be executed in cycle 1, if needed.

The branch instruction can be executed in the second cycle, with the
fma and st instructions. It is not shown in the diagram above.

Page 20

®® IA-64 Software Programs

Why does ii = 2 cycles?Why does ii = 2 cycles?

��Assume the processor has twoAssume the processor has two
memory execution unitsmemory execution units

��Have three memory instructions toHave three memory instructions to
issue: issue: ldld, , ldld, , stst

��Therefore, need two cycles to issueTherefore, need two cycles to issue
the instructionsthe instructions
–– fma fma instruction could be issued in first orinstruction could be issued in first or

second cyclesecond cycle

The branch instruction executes in cycle 2.

Page 21

®® IA-64 Software Programs

Code (so far)Code (so far)

Loop:Loop:

ldld y[i]y[i]

ldld x[i] ;;x[i] ;;

fmafma y[i] y[i] ←←←←←←←← da da * x[i] + y[i] * x[i] + y[i]

stst y[i]y[i]

brbr..ctopctop Loop ;; Loop ;;

Here is pseudo code for the loop so far. It’s not quite a SWP loop yet
and it would not execute correctly! The next steps will take care of that.

Page 22

®® IA-64 Software Programs

Step 3: ScheduleStep 3: Schedule

��Use instructionUse instruction
latencies to schedulelatencies to schedule
the instructionsthe instructions
–– Instruction latencies:Instruction latencies:

ldld = 7, = 7, fma fma = 4 = 4

((For this example only!For this example only!))

�� 12 cycles and ii of 2 =12 cycles and ii of 2 =
6 pipeline stages6 pipeline stages

fma

st

1

2

3

4

5

6

ld ld

Pipeline
StageCycle

2

1

3

4

5

6

7

8

9

10

11

12

With the MRT schedule of two cycles, each pipeline stage is therefore
two cycles. Here we use instruction latencies of 7 cycles for the loads
and 4 cycles for the fma instruction. These latencies are for the
example only!

Using the instruction latencies, an optimal schedule can be developed
and the instructions are assigned to a particular pipeline stage.

With a ld latency of 7, the fma instruction should execute at cycle 8.
With a fma latency of 4 cycles, the st should execute at cycle 12.

The optimal schedule in this case is 12 cycles.

Therefore, we need six pipeline stages to fully hide the latency for the
load and the fma instruction. The pipeline will have six pipeline stages.

Page 23

®® IA-64 Software Programs

Step 4: Assign PredicatesStep 4: Assign Predicates

��Assign predicate register to controlAssign predicate register to control
each pipeline stageeach pipeline stage
p16 p16 →→→→→→→→ Stage 1 (Stage 1 (ldld,, ld ld))

p17 p17 →→→→→→→→ Stage 2 Stage 2

p18 p18 →→→→→→→→ Stage 3 Stage 3

p19 p19 →→→→→→→→ Stage 4 (Stage 4 (fmafma))

p20 p20 →→→→→→→→ Stage 5 Stage 5

p21 p21 →→→→→→→→ Stage 6 (Stage 6 (stst))

Now we can assign a predicate register to each pipeline stage. We
start at P16 because this is where predicate register rotation begins.
The br.ctop instructions sets or clears P63 before the register rotation.
After the rotation, P16 will be set or clear depending on whether or not
the pipeline is continuing or in the epilog.

The assignment of the predicate registers to the pipeline stages
enforces the intra-iteration dependency of ld, ld → fma → st. Note that
these instructions are assigned to different stages, which enforces the
dependency.

Before entry into the loop, the code will need to set register P16 and
clear registers P17-P63. This code is not shown.

Page 24

®® IA-64 Software Programs

Code (so far)Code (so far)

Loop:Loop:

(p16)(p16) ldld y[i]y[i]

(p16)(p16) ldld x[i] ;;x[i] ;;

(p19)(p19) fmafma y[i] y[i] ←←←←←←←← da da * x[i] + y[i] * x[i] + y[i]

(p21)(p21) stst y[i]y[i]

brbr..ctopctop Loop ;; Loop ;;

Here is pseudo code for the loop so far. Register assignment follows
after the animated slide. The code outside the loop is not shown.

Page 25

®® IA-64 Software Programs

Loop AnimationLoop Animation

�� 7 loop iterations are shown7 loop iterations are shown
–– i = 0 i = 0 toto i = 6 i = 6

�� Iterations are color-codedIterations are color-coded

The next slide contains an animation of seven loop iterations. The
br.ctop instruction is not shown in the animation. It executes at the
bottom of each iteration (or every two cycles in this case).

Page 26

®® IA-64 Software Programs

st ma
16 17 18 19 20 21

st ma
16 17 18 19 20 21

st ma
16 17 18 19 20 21

st
16 17 18 19 20 21

st
16 17 18 19 20 21

ld ld Initiation Interval (ii)16 17 18 19 20 21

Predicate Registers i = 0

ld ld
16 17 18 19 20 21

i = 1

ld ld
16 17 19 20 2118

i = 2

ma
ld ld

16 18 20 211917

i = 3

ma
ld ld

16 17 18 19 20 21

i = 4

st ma
ld ld

16 17 18 19 20 21

i = 5

16 17 18 19 20 21 st ma
ld ld

i = 6

ProloguePrologue

EpilogueEpilogue

KernelKernel

This is an animated slide that shows the loop when the loop count is 7.
The iterations are color-coded. Predicate register P16 must be set by
the code before entry into the loop. The br.ctop instruction (not shown
in the diagram) keeps the pipeline going and then shuts it down during
the epilog.

Page 27

®® IA-64 Software Programs

Step 5: Assign RegistersStep 5: Assign Registers

f32

f36

f33

f37

f34

f38

f35

f39

f40

ldld f32 (y) f32 (y)

ldld f36 (x) f36 (x)

fmafma f40 = f39 * f2 + f35 f40 = f39 * f2 + f35
f41

f42stst f42 f42

11
p16p16

22
p17p17

33
p18p18

44
p19p19

55
p20p20

66
p21p21

Next, we need to assign registers.

The y element needs 4 rotating registers and the x element also needs
4 rotating registers. They need 4 registers because the value is needed
for 4 pipeline stages (loaded at stage 1 and used at stage 4). The fma
result (the new y) needs 3 rotating registers (from stage 4 to stage 6).
The st instruction uses F42.

The loop invariant “da” is loaded into a non-rotating FP register, F2, in
this case.

Page 28

®® IA-64 Software Programs

Predicate Registers FP Registers

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
st

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
ld ld

i = 0

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
ld ld

i = 1

16 17 19 20 2118 32 33 34 35 36 37 38 39 40 41 42
ld ld

i = 2

16 18 20 211917 32 33 34 35 36 37 38 39 40 41 42
ma

ld ld
i = 3

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
ma

ld ld
i = 4

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
stma

ld ld
i = 5

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
stma

ld ld
i = 6

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
stma

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 stma

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 stma

16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42
st

This is an animated slide that shows the same loop when the loop
count is 7. The iterations are color-coded. It shows the rotating
predicate registers and the rotating floating point registers.

Page 29

®® IA-64 Software Programs

DAXPY Assembly CodeDAXPY Assembly Code

�� y[i] =y[i] = da da*x[i] + y[i];*x[i] + y[i];

LOOP: // ii=2, stages=6LOOP: // ii=2, stages=6

 (p16) ldfd f32=[r34], 8 // stage 1 (Load y) (p16) ldfd f32=[r34], 8 // stage 1 (Load y)

 (p16) (p16) ldfd ldfd f36=[r41], 8 // stage 1 (Load x) f36=[r41], 8 // stage 1 (Load x)

;;;;

 (p19) (p19) fma fma.d.d f40=f39,f2,f35 // stage 4 (FMA) f40=f39,f2,f35 // stage 4 (FMA)

 (p21) (p21) stfd stfd [r39]=f42 // stage 6 (St y) [r39]=f42 // stage 6 (St y)

 br br..ctopctop LOOP LOOP

;;;;

Here is the assembly code for the inner loop of the DAXPY example.
R34 and R41 contain the addresses of y and x, respectively. The post-
increment capability of the load instruction is used to increment the
addresses to the next element.

Page 30

®® IA-64 Software Programs

LoopLoop
CountCount
��Example withExample with

loop count = 7loop count = 7
––Set LC = 6Set LC = 6

––Set EC = 6Set EC = 6

17 18 19 20 21

18 19 20 21

19 20 21

20 21

21

16

Predicate Registers

16 17

16 17 18

16 18 1917

16 17 18 19 20

16 17 18 19 20 21

16 17 18 19 20 21

LC EC
6

5

4

3

2
1

0

6

6

6

6

6
6

6

0

0

0

0

0

5

4

3

2

1

ProloguePrologue

EpilogueEpilogue

KernelKernel

This slide shows the LC and EC registers, again with a loop count of 7.
Notice that LC is written with the loop count minus one. EC is set with
the number of pipeline stages.

LC counts the prolog and kernel. EC counts the epilog only.

Note that LC could be set to 0, indicating a loop count of one. In this
case, the loop never reaches the kernel.

Page 31

®® IA-64 Software Programs

Compiler SupportCompiler Support
��How to enable SWP in IntelHow to enable SWP in Intel compiler compiler

––Enabled with -O2 switchEnabled with -O2 switch

––Typical SWP Typical SWP DisqualifiersDisqualifiers
–– Function call, complicated If statements,Function call, complicated If statements,

unbalanced If statements, memoryunbalanced If statements, memory
disambiguation problems, short loop countsdisambiguation problems, short loop counts

��Good candidates for SWPGood candidates for SWP
––No first-order recurrencesNo first-order recurrences

–– Example: x[i] = … x[i-1] … ; Example: x[i] = … x[i-1] … ;

––Long loop countsLong loop counts

®

Support for software pipelining is included in the Intel C/C++ compiler.®

Page 32

®® IA-64 Software Programs

SummarySummary

��SWP enables compact codeSWP enables compact code

��Removes the need to unroll loopsRemoves the need to unroll loops

��Optimized for a particular processorOptimized for a particular processor

IA-64 Modulo Scheduling Provides
the Performance of Loop Unrolling

Without Code Expansion

IA-64 Modulo Scheduling ProvidesIA-64 Modulo Scheduling Provides
the Performance of Loop Unrollingthe Performance of Loop Unrolling

Without Code ExpansionWithout Code Expansion

Page 33

®® IA-64 Software Programs

ReferencesReferences

�� “IA-64 Application Developer’s Architecture“IA-64 Application Developer’s Architecture
Guide”, Intel Corp.,Guide”, Intel Corp.,
Doc # 245188Doc # 245188

�� RauRau, B. R. “Iterative Modulo Scheduling:, B. R. “Iterative Modulo Scheduling:
An Algorithm For Software PipeliningAn Algorithm For Software Pipelining
Loops”, MICRO-27Loops”, MICRO-27

�� WolfeWolfe, Michael “High Performance, Michael “High Performance
Compilers for Parallel Computers”,Compilers for Parallel Computers”,
JanJan. 1996, Addison Wesley. 1996, Addison Wesley

