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ABSTRACT
To provide additional vehicles for presilicon validation
and postsilicon debug of the Intel Itanium™  processor,
we ported two operating system kernels to the IA-64
architecture.  The Mach3* microkernel was ported first,
followed by the Linux∗ 2.2.0 kernel, and these have
helped track the overall health of the Itanium™
processor’s RTL model for the last two years.  These
operating system (OS) kernels also helped presilicon
performance analysis and compiler-generated code
analysis.

The Mach3 kernel (the IA-64 port was called Munster
internally) was ported because it contained features
similar to Microsoft Windows NT∗, such as tasks,
threads, interprocess communication (IPC), and
symmetric multiprocessing (SMP).  Mach3 allowed us to
exercise parts of the Itanium processor’s model in a
similar way to Windows NT, but at a reduced scale and
without device support.

Linux (the IA-64 port was called IPD-Linux) was ported
because its source is readily available and 64-bit clean, it
is highly configurable, and it would exercise the model in
a different way than  Mach3.  We started with a released
2.2.0 version of the source and ported the kernel using a
non-GNU C Compiler (GCC).  The difficulty of porting
the Linux kernel without GCC made the task more
challenging.

Besides porting the architecture-specific portions of the
kernels, modifications were necessary to both kernels to
remove certain dependencies on external devices and
                                                       
∗ Other brands and names are the property of their
respective owners.

BIOS initialization.  Also, the OS initialization paths
executed prior to user-level programs had to be shortened
to accommodate the simulation speed of the RTL
environment. The kernels had to be extremely
configurable in order to run in diverse simulation
environments.

Both kernels were tested from processor reset to user-
mode code execution to validate the significant parts of
the RTL that an operating system would exercise during
the boot process.  Kernel initialization, virtual memory
management, context switching, trap handling, system
call interfaces, and user-mode context paths were all
exercised on the actual RTL model.  This effort
uncovered several errata in the RTL model and in the IA-
64 tools (such as the compiler and linker).  It also
provided us a model regression sanity check for each new
RTL release.  We believe this presilicon effort was
instrumental in allowing Windows NT to boot just days
after first silicon.  In this paper, we discuss the porting of
kernels to the IA-64 architecture for presilicon operating
system validation.

INTRODUCTION
One of the major goals for early silicon is to boot a
commercial operating system (OS) shortly after the
arrival of first silicon.  In order to increase the probability
of success we decided to use an operating system kernel
to validate the processor in addition to using
conventional presilicon testing methods.  Traditional
microprocessor validation includes feature validation,
unit testing, and random instruction testing.  The
potential shortfall of these methods is that they often
don’t exercise the processor in the same environment in
which it is later expected to run.  In other words, an
operating system programmer often thinks of a different,
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but legal way, of exercising processor functionality that
might not be covered by conventional methods of
validation.  Therefore, running an operating system
kernel to exercise key OS-related features presilicon
turned out to be a worthwhile effort.  The following
sections detail the issues we had to resolve during this
effort.

RUNNING AN OPERATING SYSTEM IN
THE PRESILICON ENVIRONMENT
The two main constraints the presilicon environment
imposes on an operating system are as follows:

1. The simulation speed of the RTL simulator
effectively restricts test runs to a few million cycles
of the simulated processor clock, and it causes
turnaround times in the order of multiple days.

2. The simulated environment lacks devices.

The constraint in simulation speed had two major
consequences for porting.  First we had to reduce the
number of instructions executed by the kernel during its
initialization sequence.  Second, we had to test the kernel
thoroughly on functional simulators before committing it
to a run on the RTL model.

To cope with the slow simulation speed, we wrote a tool
that allowed us to run our kernel up to an arbitrary point
in the functional simulator and then to continue
simulation on the RTL model from that point on.  To
accomplish this, our tool read the saved architectural
state from the functional simulator and used it to
generate a sequence of IA-64 instructions that restored
the architecture to this state.  Then it read the memory
image saved from the functional simulator and used it to
generate a new binary, with the state restoration sequence
placed at the processor reset vector.  When we ran this
new binary on the RTL model, the processor went
through the state restoration sequence and then continued
at the point where the state was saved on the functional
simulator.  Our two primary uses of this tool were (1) to
skip the kernel initialization sequence and have the RTL
simulation start directly with the execution of user-mode
programs, and (2) to improve the latency for running the
kernel initialization sequence on the RTL model by
subdividing it into multiple parts and running the parts
in parallel.  To minimize the danger of processor errata
being obscured by cold caches, we allowed for heavy
overlap between the parts.

Reducing the Instruction Count
Our initial profiles of the kernel startup sequence for both
Munster and IPD-Linux∗ showed that a large portion of
time was spent in the routines for zeroing and copying
memory, and in the initialization of a few key data
structures, the most prominent being the structures used
for virtual memory management.  Our solution, therefore,
included the following:

• Optimize the routines for zeroing and copying
memory (bzero/memset, bcopy/memcopy).

• Reduce the amount of physical memory presented to
the kernel.  This reduced the time spent initializing
page management information.

• Add delayed initialization for some kernel data
structures.

These changes, however, did not reduce the functionality
of the kernels.

One example of how we modified the Mach kernel to
reduce the instruction count during kernel initialization
was through changes to the zone allocation code.  Most
memory allocation for kernel data structures is done
through zones, which act as buckets for fixed-size blocks
of memory (zone entries) whose typical size ranges from
a few bytes to a few hundred bytes.  When an entry was
allocated from a zone that had no entries in its free list,
the free list was replenished by allocating one page of
memory and splitting it up into zone entries, all linked
together in a free list.  The number of instructions
required for doing this initialization for dozens of zones
was quite high when keeping the speed of RTL
simulation in mind.  Therefore we changed the
mechanism for replenishing a zone.  Instead of
immediately entering a whole page into the free list, a
“free space” pointer was kept.  The pointer was initially
set to the newly allocated page, and it was used to carve
out new zone entries one by one at the time they were
actually needed.

Testing in Different Environments
Figure 1 shows our available simulation environments.
Except for device support, matching environments were
available on the functional and the RTL simulator.  Even
though no device support was available on RTL, we still
needed to test our kernels with devices on the functional
level to prepare for postsilicon.
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Our kernels had to run in several different simulation
environments.  We ported the kernels so they could be
configured with or without devices and run with or
without external interrupts, etc.  Our kernels were
flexible enough to run in simulation environments that
ranged from just one processor with memory to a full
simulation of a multiprocessor platform with devices.
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Figure 1: Available simulation environments

We used two functional simulators, Giza and SoftSDV
[8], to test and debug the presilicon operating system
kernels before running in RTL.  Both simulators were
utilized in our development process in order to debug
code quickly.  Giza was also designed to be used as a
checker against the RTL model, so we always ran our
code through it before running in RTL.  Since the
SoftSDV simulator is already described in “SoftSDV: A
Presilicon Software Development Environment for the
IA-64 Architecture” in this issue of the Intel Technology
Journal, we only describe the Giza simulator.

Giza is built around an instruction accurate software
simulator for Itanium processor’s ISA (Sphinx).  It
supports critical implementation specific registers,
SAPIC, a non-blocking memory hierarchy (TLB+caches)
that handles both synchronous and asynchronous traffic
between the CPU and the external sub-system, and
multiple CPU instances (multiprocessor).
Implementation-specific registers are modeled to support
firmware execution.  SAPIC, non-blocking memory
hierarchy, and multiprocessor (MP) are modeled to
support characteristic subsystem traffic for typical IA-64
platforms.  A functional accurate software model that
mimics the Itanium processor’s front-side-bus (FSB) is
designed to schedule CPU events and dispatch the
resulting transactions to and from memory and I/O
subsystems.  Software models for the Itanium processor’s
chipset and Itanium processor’s standard devices
represent the latter.

By using functional simulators, we avoided wasting
precious RTL cycles that could be used by conventional
tests.  We began with uniprocessor (UP) versions of the
functional simulators and OS kernels.  Once we passed

the UP functional simulator test, the code would run on
the RTL.  These jobs often took over a million cycles to
complete so the ramifications of simple code mistakes
were great and had to be eliminated before being run on
the RTL models.  Once the kernels passed a UP
functional and RTL simulator run, they were moved onto
the multiprocessor path.  Each  symmetric
multiprocessing (SMP) version of the kernel was
debugged via a functional simulator.  The MP RTL
environment, known as COSIM, allowed modeling of
multiple IA-64 RTL processor models, chipset models,
PCI busses, and external interrupt controllers.  This
environment allowed us to exercise SMP kernels on
many of the platform components before silicon was
available, which taught us valuable lessons and
uncovered errata that were not uncovered during
conventional methods of testing.

Since operating system code is not “self checking,” the
Munster and IPD Linux kernels were run in RTL with an
RTL checker running at the same time.  The RTL
checker is a functional simulator that runs in conjunction
with the RTL simulation and compares the architectural
state after the retirement of each bundle.  If a state
mismatch occurs, then an error condition is flagged, and
further analysis can be done to isolate the root of the
problem.

Porting Challenges
There were many challenges in porting the kernels to run
presilicon in RTL.  We encountered a number of tool
problems since we were on the leading edge as far as
running code with the actual RTL model is concerned.
The early tool sets often worked for running code in the
functional simulator, but had problems with generating
correct code for running in the RTL simulator.  We had
to write a utility called the AfterBurner to post-process
compiler-generated assembly code and to fix problems
that were preventing the code from running in RTL.

During the project, the compiler-generated code quality
(correctness and performance) improved, as did the
modeling of the architecture by the functional simulators.
However, for some sequences of legal C code, the
compiler produced semantically incorrect as well as
architecturally incorrect code.  In certain cases, due to the
sequential nature of the functional simulator,
architecturally incorrect code would appear to function
correctly.  In other cases, architecturally incorrect hand-
written code would appear to execute correctly within the
functional simulator (e.g., missing serialization
instructions required by the architecture went
undetected).
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Benefits of Using Two Different Kernels
The benefit of porting multiple kernels to The Itanium
processor was the ability to share some of the low-level
start-up, trap handling (TLB faults, etc.), bcopy, port IO
usage, and other code between the two kernels.  It took us
roughly two weeks to obtain a linkable Linux IA-64
kernel, and much of that time was spent on
accommodating a non-GNU [11] C compiler.  Much of
the low-level code was already done from the Mach* port
and just had to be merged into the Linux source tree.
Another benefit of a second port was that it allowed us to
redesign some of the code to make it cleaner and more
efficient.

Porting two kernels allowed us to test some of the IA-64
Instruction Set Architecture in a slightly different way.
We achieved a broader validation of some features such
as Instruction Level Parallelism (ILP), speculation,
predication, use of the large register files, the Register
Stack Engine (RSE), and advanced branch architecture.
Our “common trap handler,” the common path for saving
and restoring state when entering/exiting the kernel, for
the IPD Linux was very different from the Mach* version
in both the design of the operating system and in the area
of performance.  As a result, the processor was exercised
in an alternate way.

Both kernels supported Seamless mode, which is the
ability to run IA-32 binaries on top of an IA-64 operating
system kernel.  We ran IA-32 user-mode programs on the
kernels in presilicon RTL as another validation test.

ISSUES SPECIFIC TO PORTING
MUNSTER
Mach3 [6] was the first kernel to be ported so the
architecture-dependent code had to be written from
scratch.  We received some example code from other
Intel groups, but some of it didn’t fit very well into the
Mach3 architecture.  One of the biggest issues that we
encountered was Mach3’s ability to come into kernel
mode on one stack and leave on another [15].  This
added complexity to the trap handler due to the fact that
all of the required IA-64 state had to be saved on to the
Process Control Block (PCB) and restored into the new
stack state.  In Mach*, instead of a static assignment
between threads and kernel stacks, the assignment is
dynamic, and a thread that blocks in kernel context while
waiting for some event can hand off its stack to the
thread that is next in line.  This is beneficial in terms of
cache locality, but it complicates handling of the register
stack engine because the kernel backing store is part of
the kernel stack.  As such, it does not persist between the
time a thread enters the kernel and the time it returns.
When entering the kernel from user mode, we first had to

flush the dirty RSE registers into a dedicated area in the
process control block before switching to the kernel
backing store.  Then, when we returned to user mode, we
had to load the flushed RSE registers from the process
control block into the physical register file before
switching to the user backing store.

There were also LP-64 issues in the Mach3 source code
where assumptions were made that ints, longs, and
pointers were all the same size.  This caused pointers to
be truncated in some cases.

The Munster kernel port involved IA-64 start-up code,
fault handling, TLB handling, context switching, system
calls, interrupt handling, interprocess communication,
LP 64-bit clean efforts, and user-mode libraries.  We also
had to port the Mach* build tools to UnixWare∗ before
the Mach3 kernel could be built.

ISSUES SPECIFIC TO PORTING
IPD-LINUX
Linux∗ was ported as another presilicon operating system
validation kernel.  (The source for the Trillian∗ kernel,
which was demonstrated during the 1999 Intel
Developer’s Forum was not available when this port
began.)  The main issue with porting Linux to IA-64
presilicon was the lack of a complete IA-64 GNU C
compiler [13] at the time we began the port.  We used the
Intel Electron C compiler to compile the kernel.  This
required us to conditionally compile around the heavy
usage of GNU C extensions [12] within the Linux kernel.
Extensions such as inline C and inline assembly
functions are not supported by the Electron compiler so
this made the port more difficult than if we had a GNU C
compiler available.   The majority of our work in this
port was in the two architecture-dependent directories
that we added (include/asm-ia64 and arch/ia64).  We also
added an inline directory under arch/ia64 as a substitute
for those routines that are normally inlined by the GNU
C compiler.  Since we didn’t have access to a GNU C
compiler early in our development cycle, a basic user-
mode shell, Josh, was written and used to launch Linux
tests for validation purposes.  Without a full GNU C
compiler it proved very difficult to port the GNU C
Library (GLIB C), which forms the basis for the full set
of user-level shells and commands.  Attempts were made
to port GLIBC without the GNU C compiler, but they
were unsuccessful in presilicon.
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ISSUES SPECIFIC TO SUPPORTING
PRESILICON PERFORMANCE
ANALYSIS
The Linux port was also chosen as a vehicle to facilitate
architectural performance research.  The study of
performance phenomena related to the microarchitecture,
architecture, operating system, software, and tools
required an open source workload.  Besides offering a
complete source, Linux offers SMP support, 64-bit clean
code, runtime C library, and a kernel designed to work
with multiple architectures.  All of these features were
integral to quickly satisfy the group’s goals.

To automate data collection and analysis, the Linux
kernel was augmented with many hooks to communicate
with the simulation infrastructure.  The hooks reported
information about the internal state of the kernel, which
were recorded within an event trace.  The simulator and
post processing tools correlate the information with
architecture events, debug information, and compiler
annotations.  The kernel was also instrumented to
support efficient branch and data trace collection when
run on silicon.

To integrate the Linux kernel with the trace environment,
and to support the silicon trace collection, a common
feature set was added to the kernel.  The kernel additions
collect information about context switches, process
creation and termination, and modifications to the
address space (such as through mmap() or munmap()).
This type of data collection has proven useful for other
domains such as checkpoint/restore (the EPCKPT
project), and kernel profiling (Intel Vtune  performance
analyzer [14]).

PRESILICON RESULTS
By running the operating systems presilicon, we found
several unique RTL errata that would have affected
commercial operating systems postsilicon.  Errata were
found in operating system-specific code, compiler-
generated code sequences, speculative execution,
platform interrupt paths, and tools.  Other testing
methods did not find these errata.  Therefore, since this
was a new architecture, it was worthwhile to incorporate
an operating system kernel test presilicon to rule out
major issues and to provide an indicator of the overall
RTL model health.

Operating System-Specific Errata
The first errata we uncovered was related to the return
from interrupt (rfi) instruction that is used by operating
systems to return from an interruption/fault.  The error
occurred when the operating system start-up code used

this instruction in the process of switching from physical
mode to virtual mode, and the new instruction address
was only valid in the new addressing mode.  In checking
the validity of the target address of the rfi instruction, the
processor was using the previous (physical) addressing
mode instead of the new (virtual) one, generating an
exception.  This prevented our kernels from booting and
could have affected other operating system kernels like
Trillian Linux and Windows NT∗.

Errata Uncovered by Compiler-Generated Code
Sequences
Presilicon OS runs uncovered an error in the Itanium
processor’s RTL where certain combinations of floating-
point instructions produced an incorrect result because
sequences of multiply-accumulate instructions with
register dependencies were not properly stalled.  The
significance of this error is that this exact instruction
sequence is used by the C compiler to implement the
integer modulo operation.  Since C is the primary
language for software development, this error would have
been encountered by most applications running on the
processor.

Code Example:
int i, x, y ;

i=x%y ;

where the generated code would contain a sequence like
the following (note the pseudo registers for the example):

fma fz=fa,fb,fc
;;
fma fw=fz,fk,fj

The result of the first fma is not available for several
cycles, so the second fma instruction should have been
stalled until fz was available.

Speculative Execution Errata
The Itanium processor does extensive branch prediction
and speculatively executes instructions at the predicted
branch target long before it is known if the branch will be
taken.  We found a problem with a conditional call to a
subroutine, where the subroutine was short enough to
execute a return instruction before it was known if the
conditional call should have been executed.  This caused
the processor to permanently commit some of the state
changes caused by the return instruction, even if the
conditional call was incorrectly predicted and was not
supposed to be executed.
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Example:

// where p3 is false

(p3) br.call b0 = foo

foo:

alloc …

mov …  ;;

br.ret b0

In this pseudo code example the predicate p3 was false,
but the code at foo was speculatively executed, and its
results were erroneously committed.

Platform Interrupt Errata
Several interrupt-related errata were uncovered by
writing small tests that exercised the interrupt paths
utilized by an operating system on a typical Itanium
platform.  This testing was accomplished in a simulation
environment (COSIM) that combined multiple Itanium
processor models, the chipset model, and platform
component models such as the external interrupt
controller model.  This allowed exercising the path from
a simulated device to the processor.

Unique errata were uncovered by generating interrupts in
the modeled environment, causing the execution of
specific interrupt flow paths.  One of the interrupt errors
was uncovered by redirecting interrupts to a particular
processor based upon the priority of the processor in a
multiprocessor simulation.

Tools Errata
During the development and testing of Munster and IPD
Linux, many bugs were found in software development
tools such as compilers and linkers, and also in various
simulators used to run the kernels.  Munster and IPD
Linux were run in every simulator that was available to
us and were crucial in detecting multiprocessor
functional simulator errors.

POST-SILICON RESULTS
The great advantage of using a kernel for postsilicon
debug that has been validated in the presilicon
environment is that it removes potential software bugs
from the list of unknowns during initial bring-up.

The extensive presilicon testing allowed the bring-up
team to concentrate on mechanical, electrical, and silicon
issues and provided them with a metric for assessing
bring-up progress.

First Itanium processor’s  silicon was very healthy, so our
kernels were able to run without modification as soon as
initial platform issues were resolved and a stable
operating range for the processor was found.

CONCLUSION
Testing an RTL model using an operating system kernel
consumes many RTL cycles.  The tests typically run for
over one million cycles and take up cycles that could be
used by shorter focus tests.  This is the reason that our
code was debugged on a functional simulator before
launching the tests on the RTL model.  We expected the
kernels to boot if the model was healthy and if there were
no infrastructure problems with the testing environment.
The advantages of using an operating system far
outweigh the disadvantages.  We were able to find errata
presilicon that normally would not have been detected
until hardware was available.  At that point, the problems
can be difficult to isolate and expensive to fix.  The
kernels were also valuable during the first few days of
Itanium processor’s  postsilicon bring-up.  Our kernels
were able to run without modification as soon as the
silicon and platform hardware were stable.  This allowed
us to use our kernels as an indicator of hardware health
during the first few days.
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