
Assembly Language Programming Tools for the IA-64 Architecture 1

Assembly Language Programming
Tools for the IA-64 Architecture

Ady Tal, Microprocessor Products Group, Intel Corporation
Vadim Bassin, Microprocessor Products Group, Intel Corporation
Shay Gal-On, Microprocessor Products Group, Intel Corporation

Elena Demikhovsky, Microprocessor Products Group, Intel Corporation

Abstract
The IA-64 architecture, an implementation of Explicitly
Parallel Instruction Computing (EPIC), enables the
compiler to exercise an unprecedented level of control
over the processor. IA-64 architecture features maximize
code parallelism, enhance control over microarchitecture,
permit large and unique register sets, and more. Explicit
control over parallelism adds a new challenge to assembly
writing, since the rules that determine valid instruction
combinations are far from trivial, introducing new
concepts such as bundling and instruction groups.

This paper describes Intel’s IA-64 Assembler and IA-64
assembly assistant tools, which can simplify IA-64
assembly language programming. The descriptions of the
tools are accompanied by examples that use advanced IA-
64 features.

INTRODUCTION
The IA-64 architecture overcomes the performance
limitations of traditional architectures and provides
maximum headroom for future development. Intel’s
innovative 64-bit architecture allows greater instruction-
level parallelism through speculation, predication, large
register files, a register stack, advanced branch
architecture, and more. 64-bit memory addressability
meets the increasingly large memory footprint
requirements of data warehousing, e-Business, and other
high-performance server and workstation applications.
Significant effort in the architectural definition maximizes
IA-64 scalability, performance, and architectural longevity.

In the 64-bit architecture, the processor relies on the
programmers or the compiler to set parallelism boundaries.
Programmers can decide which instructions are executed
in each cycle, taking data dependencies and availability of
microarchitecture resources into account. Assembly can
be the preferred programming language under the

following situations: when learning new computer
architectures in depth; when programming at a low level,
such as that required for BIOS, operating systems, and
device drivers; and when writing performance-sensitive
critical code sections that power math libraries, multimedia
kernels, and database engines.

Intel developed the Assembler and the Assembly
Assistant in order to aid assembly programmers in rapidly
writing efficient IA-64 assembly code, using the assembly
language syntax jointly defined by Intel and Hewlett-
Packard*.

The Intel® IA-64 Assembler is more than an assembly
source code-to-binary translator. It can take care of many
assembly language details such as templates and
bundling; it can also determine parallelism boundaries or
check for those given by assembly programmers. The
assembler can also allocate virtual registers and so enable
assembly programmers to write code with symbolic names,
which are replaced automatically with physical registers.

The Assembly Assistant is an integrated development
tool. It provides a visual guide to some IA-64 architecture
features permitting assembly programmers to comprehend
the workings of the processor. The Assembly Assistant
has three main goals: to introduce the architecture to new
assembly programmers; to make it easier to write assembly
code and use the Assembler; and to help assembly
programmers get maximum performance from their code.
This last task is achieved through static analysis, a drag-
and-drop interface for manual optimization, and through
automatic optimization of code segments.

IA-64 ARCHITECTURE FEATURES FOR
ASSEMBLY PROGRAMMING
The IA-64 architecture incorporates many features that
enable assembly programmers to optimize their code for
efficient, high-sustained performance. To allow greater
instruction-level parallelism, the architecture is based on

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 2

principles such as explicit parallelism, with many execution
units, and large sets of general and floating-point
registers. Predicate registers control instruction execution,
and enable a reduction in the number of branches. Data
and control speculation can be used to hide memory
latency. Rotating registers allow low-overhead software
pipelining, and branch prediction reduces the cost of
branches.

The compiler takes advantage of these features to gain a
significant performance speedup. Branch hints and cache
hints enable compilers to communicate compile-time
information to the processor. New compiler techniques
are developed to use these features, and IA-64 compilers
will continue gaining speedups utilizing these features in
innovative ways.

This abundance of architecture features and resources
makes assembly writing a challenging task for assembly
programmers.

The IA-64 architecture requires that the instructions are
packed in valid bundles. Bundles are constructs that hold
instructions. Bundles come in several templates,
restricting the valid combinations of instructions and
defining the placement of boundaries (stops) for maximum
parallelism. Each instruction can be placed into a specific
slot in a bundle, according to the template and the
instruction type. For example, the instruction alloc
r34=ar.pfs,2,1,0,0 appearing in the example below, can
only be placed in an M slot of a bundle. The template
defined in the examp le below for the first bundle is .mii
meaning that the first slot can only be taken by an
instruction that is valid for an M slot, and the following
instructions must be valid for I slots. When no useful
instruction can be placed in the bundle due to template
restrictions, a special nop instruction, valid for the slot,
must be used to fill the bundle (as observed in the case of
the second slot in the second bundle; a nop.i was placed
in an I slot).

max:
{ .mii

 alloc r34=ar.pfs,2,1,0,0
 cmp.lt p5,p6=r32,r33 ;;
 (p6) add r8=r32,r0

} { .mib
 (p5) add r8=r33,r0
 nop.i 0
 br.ret.sptk b0 ;;

}

Example 1: Code reflecting language syntax

Assembly programmers are expected to define groups of
instructions that can execute simultaneously by inserting
stops. If a stop is missing, then there is a chance that not

all the instructions were meant to be executed in the same
cycle. Such an instruction group may contain a
dependent pair of instructions. For example, it may
contain two instructions that write to the same register or
a register write followed by a read of the same register.

The result of parallel execution of dependent instructions,
even though not necessarily adjacent, is unpredictable
and may vary in different IA-64 processor models. This
situation is called a dependency violation. To avoid it,
assembly programmers have to place the two instructions
in different groups by inserting a stop.

In Example 1 we can see a stop after the cmp instruction.
This stop will ensure that the cmp will not be executed in
parallel with the following add, and it enables the add to
use the predicate p6 written by the cmp instruction
without producing a dependency violation.

THE IA-64 ASSEMBLER
The IA-64 Assembler enables many capabilities beyond
traditional assemblers. In addition to assembling, it
implements full support of all architecture and assembly
language features: bundles, templates, instruction groups,
directives, symbols’ aliases, and debug and unwind
information.

Writing assembly code with bundles and templates is not
trivial. Assembly programmers must know the type of
execution unit for each instruction, be it memory, integer,
branch, or floating-point. Another important element of
the assembly language is the stop that separates the
instruction stream into groups.

The IA-64 assembly language provides assembly writers
with maximum control through the use of two modes for
writing assembly code: explicit and automatic.

When writing in explicit mode, assembly programmers
define bundle boundaries, specify the template for each
bundle, and insert stops between instructions where
necessary. The Assembler only checks that the assembly
code is valid and has the right parallelism defined. This
mode is recommended for expert assembly programmers or
for writing performance-critical code.

The automatic mode significantly simplifies the task of
assembly writing while placing the responsibility for
bundling the code correctly on the Assembler. The
Assembler analyzes the instruction sequence, builds
bundles, and adds stops.

template

predicate

stop

}
bundle

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 3

ld4 r4 = [r33]
add r8 = 5, r8
mov r2 = r56
add r32 = 5, r4
mov r3 = r33

Example 2: Original user code

{ .mii
ld4 r4 = [r33]
add r8 = 5, r8
mov r2 = r56 ;;

}
{ .mmi

nop.m 0
add r32 = 5, r4
mov r3 = r33 ;;

}

Example 3: Code created after assembly with automatic
mode

In the example above we can see how the user can write
simple code, which the Assembler will then fit into
bundles. The Assembler also adds nop instructions for
valid template combinations and stops as needed to avoid
any possibility of dependency violations. (A stop bit was
added at the end of the first bundle to avoid a dependency
violation between the first instruction and the next to last
instruction on r4.)

Parallelism
One of the tasks of the Assembler is to help assembly
programmers define the right parallelism boundaries. The
Assembler analyzes the instruction stream, taking into
consideration the architectural impact of each instruction
and any implicit or explicit operands involved in the
execution. However, it is hard to do the complete program
analysis needed in order to detect all these conditions,
statically. Consider a common case in IA-64 architecture
where two instructions writing to the same register may be
predicated by mutually exclusive predicates, as shown in
the Example 4.

cmp.ne p2,p3 = r5,r0 ;;
…

(p2) add r6 = 8, r5
(p3) add r6 = 12, r5

Example 4: Predicate relation

The Assembler can identify this case and ignore the
apparent dependency violation between the two add
instructions on R6. In this case, the compare instruction,
which defines the pair of predicates, precedes their usage.
However, more complicated cases may exist. For example,
consider a case in which there is a function call between

predicates set and usage. In this case, assembly
programmers may know that the called function doesn’t
alter the predicates’ values, but there is no way for the
assembler to deduce this information, if the function is in a
different file.

Another type of information known only at run-time is the
program flow at conditional branches. The processor
automatically begins a new instruction group when the
branch is taken, and a dependency violation may occur
only on the fall-through execution path.

When writing in explicit mode, assembly programmers are
responsible for stops. The Assembler simply checks the
code and reports errors, even when it finds only potential
dependency violations. In this mode, to avoid false
messages, assembly programmers can add annotations
describing predicate relations at that point of the
procedure.

.pred.rel “imply“, p1, p2
(p1) mov r5 = r23
(p2) br.cond.dptk Label1
add r5 = 8, r15

Example 5: User annotation

The relation “p1 implies p2”, in Example 5 means that if p1
is true then p2 is also true. Adding such a clue to the
assembly code prevents a false dependency violation
report between the second and fourth lines.

Automatic mode simplifies the programming tasks while
delegating the responsibility for valid instruction grouping
to the Assembler. In automatic mode, the source code
contains no bundle boundaries. The Assembler ignores
stops written by the assembly programmer; it builds
bundles and adds stops according to the results of static
analysis of instructions and program flow. In this mode,
the code is guaranteed not to contain dependency
violations.

The example below contains a dependency violation
which is not immediately apparent. The first instruction
writes to CFM, while the second instruction reads from
CFM, resulting in a dependency violation. Using
automatic mode, the dependency violation is automatically
resolved.

br.ctop.dptk.many l8
fpmin f33=f1,f2

Example 6: Code containing dependency violation

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 4

{ .mib
nop.m 0
nop.i 0
br.ctop.dptk.many l8 ;;

}
{ .mfi

nop.m 0
 fpmin f33=f1,f2

nop.i 0
}

Example 7: Code after automatic mode assembly

In the example above, observe how the Assembler detects
a dependency violation on CFM between the instructions,
and how it inserts a stop between them.

Virtual Register Allocation
Large register sets in the IA-64 architecture complement
the unique parallelism features. Maintaining assembly
code becomes harder when there is a need to track the
assignment of many variables to registers. Modifying a
procedure code might lead to variable reallocation.

The virtual register allocation (VRAL) feature solves these
problems. VRAL allows assembly programmers to use
symbolic names instead of registers, and it performs the
task of register allocation in procedures.

To employ VRAL, assembly programmers must use a set
of VRAL directives in order to communicate some register-
related information to the Assembler. Assembly
programmers assign groups of physical registers for
virtual allocation, and they define the usage policy; i.e.,
whether they should be scratch registers or registers that
are preserved across calls. The Assembler assigns some
default families that many assembly programmers are likely
to use, including integer, floating point, branch, and
predicate. Assembly programmers can also isolate
registers of the same type in subfamilies. For example, a
user-defined family may include all local registers of a
procedure.

Each symbolic name used in a procedure, called a virtual
register, belongs to one of the register families. The
assembly language allows redefinition of virtual registers’
names, which is convenient when used in preprocessor
macros.

VRAL analyzes the control flow graph of the procedure,
and it calculates the registers’ live ranges. An accurate
control flow graph is very significant for this analysis.
The Assembler provides appropriate directives to specify
the targets of indirect branches and additional entry
points. In order to find a replacement for each symbolic
name, VRAL applies standard graph-coloring techniques.

The heuristic function used for allocation priorities
considers both the results of the preceding analysis and
the architecture constraints of registers’ usage. Several
physical registers may replace one symbolic name, and
one physical register may be reallocated and utilized for
several different symbolic names.

.proc foo
foo::
 alloc loc0=ar.pfs,2,8,0,0
.vreg.safe_across_calls r15-r21
.vreg.safe_across_calls loc3-@lastloc
.vreg.allocatable p6-p9
.vreg.family LocalRegs,loc3-@lastloc
.vreg.var LocalRegs,X,Y,Diff

mov loc1=b0
add X=in0,r0
add Y=in1,r0 ;;

.vreg.var @pred,GT,LE
cmp.gt GT,LE=X,Y ;;
(GT) sub Diff=X,Y
(LE) sub Diff=Y,X ;;

.vreg.redef GT,LE
mov r8=Diff
mov ar.pfs=loc0
mov b0=loc1
br.ret.dptk b0

.endp foo

Example 8: Code with virtual register

Consider the code in the Example 8 above. Starting with
.vreg.safe_across_calls and .vreg.allocatable directives,
we define the registers that are available for allocation.
We then use the .vreg.family directive to define a family
of virtual registers that will only be allocated from the local
registers. We then define the virtual registers themselves
and declare them to be part of the local registers’ family
defined earlier using the .vreg.var directive. The code
itself then uses virtual registers X and Y instead of directly
naming physical registers. The example also illustrates
that virtual registers can be defined in the middle of the
code, and then undefined with the .vreg.redef directive to
allow reuse of symbolic names (used most frequently in
macros).

All symbolic names defined with the directive .vreg.var are
replaced with physical registers assigned for allocation by
the directives .vreg.allocatable and
.vreg.safe_across_calls. For this simple example, in the
current version of the Assembler, the registers chosen
were X=R37, Y=R38, GT=P6, and LE=P7.

In order to effectively use VRAL, we plan to emit the
allocation information to allow debugging using symbolic
names. This enables the debugger to show the value of

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 5

the symbolic name, even if the value is represented by
different registers in different parts of the code. Also, by
emitting the allocation information, code optimizations
without the allocation constraints will be enabled.

THE IA-64 ASSEMBLY ASSISTANT
In order to further assist IA-64 assembly developers, we
designed and implemented a unique development
environment to have the following:

1. a tool to reduce the steep learning curve for IA-64
assembly programming and to introduce IA-64
architecture using assembly programming

2. a user friendly environment for IA-64 assembly
development

3. an environment for analyzing and improving the
performance of assembly-code fragments

The Assembly Assistant delivers a comprehensive
solution for assembly code developers, assembly
language-directed editing, tools that aid the creation of
new code, error reporting, static performance analysis, and
manual and automatic optimizations.

Other needs such as debugging or run-time performance
analysis will be addressed when the Assembly Assistant
is integrated with other tools that supply these features.

The next sections describe the Assembly Assistant’s
editing, assembling, and analysis capabilities in detail and
examine the unique features that the Assembly Assistant
provides to IA-64 assembly programmers.

Editing and Assembling
The Assembly Assistant provides syntax-sensitive
coloring that includes all components of assembly code:
directives, instructions, comments, templates, and
bundling. Every valid instruction format (including
completers) is colored to mark it visually as a valid
instruction.

Figure 1: Source code window

The IA-64 instruction set is very rich, and the same
mnemonic may be used in a variety of instructions when

combined with different types of operands. The
Assembly Assistant provides an Instruction Wizard to
help assembly programmers select the appropriate
instruction with the right set of completers and operands.
It allows assembly programmers to choose between
instructions in different variations, and it provides a
template to select the operands and activate on-line help
about the instruction. The example in Figure 2 illustrates
how the instruction wizard allows you to choose a specific
ld4 form (step 1) and then easily apply the correct
completers (step 2). The Help includes some information
from ref [1], ref [5], and the IA-64 Assembly Language
Reference Guide.

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 6

Figure 2: Instruction Wizard

Many assembly programmers need an easy way to
interface assembly with other high-level languages such
as C* and C++*. Procedures written in assembly must
adhere to the IA-64 Software Conventions in order to
execute correctly. The Assembly Assistant will generate
the procedure linkage code given a high-level language-
like function prototype. The Procedure Wizard generates
a procedure template with information that assembly
programmers can use to access input parameters and
results (see Figure 3).

Figure 3: Procedure Wizard

The goal of the Auto Code Wizard is to provide an option
to retain, customize, and reuse favorite code templates.
An example of such a template is the code for integer
multiplication. (It is provided as an example in the tool.)
The IA-64 architecture does not have a multiplication
instruction for general registers so the instruction for
floating-point registers must be used. Assembly
programmers could write an Auto Code template that
moves values from general to floating-point registers,
multiplies them, and moves the result back to a general
register.

In general, using the source code editor together with
wizards and the context-sensitive help provides a rich set
of customizable tools to help both beginners and
experienced IA-64 assembly programmers.

While browsing errors after compilation is a common task
in all development environments, the Assembler identifies
a special set of errors called dependency violations (see
above). These errors can produce treacherous results,

and special care is required while treating them. The
difficulty is that these errors involve two instructions that
may be distant from one another. When the error in the
error view at the bottom of the screen is highlighted, it
displays connected pointers pointing to the offending pair
of instructions in the source code window (see Figure 1).

ANALYSIS WINDOW
The Assembly Assistant provides a static analysis as a
guide to help assembly programmers improve
performance. In this section, we discuss the analysis
window. This window helps assembly programmers
understand, browse, analyze, and optimize their assembly
code.

The Assembly Assistant uses static performance analysis
on a function-by-function basis, without any dynamic
information on the program behavior (such as register
values and memory access addresses). Fast performance
simulation of instruction sequences is used in order to
obtain the performance information.

The main performance information displayed in the
analysis view is cycle count and conflicts. The cycle
count is the estimated relative cycle number in which the
instruction enters the execution pipe in the performance
simulation. This number is relative to the beginning of the
function or selected block. Usually the execution path
doesn’t utilize the full capacity made possible by the IA-64
architecture. Conflict indicators in the stall columns show
the reasons for extra cycles in the execution path and
processor stalls.

Assembly programmers analyze the conflicts and modify
their code accordingly by manually moving an instruction
earlier or later in the code sequence, selecting a different
instruction sequence, etc. Automatic optimization
attempts to find the best instruction scheduling.
Optimizations are discussed in a later section.

As shown in Figure 4, the assembly source is presented
along with line numbers, cycle counts, and conflicts, as
discussed earlier. Conflicts are highlighted with different
colors for each conflict, so assembly programmers can
easily identify which instructions are involved in each
conflict. In Figure 4, the cycle counts are based on a
hypothetical machine model.

Another type of information is division of the instruction
stream into several types of groups. The most interesting
are bundles that are fetched together from memory and
instruction groups, which assembly programmers define
as candidates for parallel execution. Two additional
groups for more advanced assembly programmers are
issue groups (instructions that execute simultaneously)
and basic blocks (for control flow analysis).

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 7

Figure 4: Analysis window

Run-time information is not available during static
analysis. The Assembly Assistant provides information
about execution flow and predicate values. These values
control the simulated execution path and may activate or
deactivate instructions. As illustsrated in Figure 4, each
predicated instruction is preceded by a checkbox. Marking
the checkbox signifies that the qualifying predicate is true,
and the instruction executes. This interface eases analysis
and optimization of predicated blocks. The Assembly
Assistant provides the means to control predicate values.
In the future, the Assembly Assistant might also calculate
predicate relations for use in the static analysis , and
marking a single predicate as true or false will
automatically determine the values for all of the predicates
that are related to it .

The Assembly Assistant gives assembly programmers
more extensive control. Assembly programmers can
specify whether or not the branch is taken, and they can
set the probability of taking the branch in the simulation.
The Assembly Assistant uses this probability when
simulating loops: it provides assembly programmers with
the approximate time of loop execution together with
a-priori knowledge of possible execution paths.

The analysis window provides more than just loop
visualization. Assembly programmers may select the
number of iterations to simulate. Selecting a single

iteration provides performance information and shows any
conflicts between the main body of the loop and the
prologue code. Selecting two iterations also displays
conflicts between the head and tail of the loop code
section. Selecting more than two iterations provides the
approximate execution time of the loop calculated by
branch probabilities, as described above.

The assembly module may contain more than one
function. To help assembly programmers navigate in the
analysis window, the window is split into two panes, just
like the Microsoft Explorer∗ window. The left tree pane
contains a list of all the functions in the module, while the
right pane displays one function’s analyzed code.
Clicking on a function name or icon in the tree pane
displays the analysis of the selected function. Assembly
programmers work with one function at a time, viewing in
the tree pane the list of labels in the active function. This
allows easy navigation inside the function.

We have described above how assembly programmers can
analyze assembly code. But analysis is useless if
assembly programmers cannot apply their insights to

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 8

improve the code. The Assembly Assistant allows them
to do this.

Assembly programmers may want to move stalling
instructions and solve conflicts. The Assembly Assistant
provides a simple drag-and-drop interface so that
instructions can be moved manually. It displays the
instruction’s move boundaries as defined by data
dependencies. Assembly programmers can drop the
instructions into their new position. Assembly
programmers can also apply automatic optimizations that
reschedule the instruction stream to improve performance.

After completing code optimization in the analysis
window, the Assembly Assistant generates new,
improved code in a new source window.

OPTIMIZATION AIDES IN THE IA-64
ASSEMBLY ASSISTANT
When optimizing assembly code, a tool such as the
Assembly Assistant can generally use conventional
compiler techniques. However, a key challenge to
optimization is code analysis , since some of the
information visible to the compiler does not exist or is hard
to infer from such low-level representations. Examples
include branch targets for indirect branches, calling
conventions, memory disambiguation, and aliasing.

This information is critical for code speedup and
maintenance of correct code. An assembly optimizer also
has no choice but to deal with every feature of the
architecture, whereas a compiler might choose not to use
certain features or instructions; for example, system
instructions.

The first and simplest solution is to leave optimizations to
the assembly programmers but still help them with
available analysis data and IA-64 processor-specific
information. An advanced and friendly user interface
enables assembly programmers to easily perform the
optimizations.

The next level of automation requires assembly
programmers to provide missing information. A user-
friendly interface allows assembly programmers to interact
with the optimizer to define branch targets and more.
Using this information, a control flow graph is created and
analyzed. Assembly programmers can also provide
program behavior information such as branch
probabilities, which direct the optimizer to bias its
optimizations accordingly.

Automatic optimization is also used, but as mentioned
earlier, it is somewhat limited due to the conservative
approach to assembly-level optimizations.

Manual Optimization
Analysis provides many hints for manual optimization.
The analysis of register live ranges helps assembly
programmers better use the registers. The analysis of data
flow provides the assembly programmers with suspected
dead code, and it detects the use of registers that were not
initialized in the analyzed code. Data flow analysis is also
helpful when trying to attain optimal scheduling. Height
reduction (the process of reducing the control
dependence, for example as in ref. [4]) and strength
reduction (ref. [3] p.435) are easier for assembly
programmers to handle when all the dependency chain is
analyzed automatically.

For software pipelined loops, automatic tracking of the
rotating registers used in the loop helps assembly
programmers to write modulo-scheduled loops. This can
also greatly simplify modification of the code.

It is difficult to keep track of other machine resources
(such as control registers, functional units, and more). The
Assembly Assistant can automatically keep track of
machine resources, and it can warn assembly programmers
when machine resources are insufficient for the code. The
Assembly Assistant shows an assembly programmer the
penalty incurred by the code, and it suggests methods to
overcome the limitations inherent in the microarchitecture.

To aid in speculation, when moving a load beyond
ambiguous memory references or control dependencies,
the Assembly Assistant shows assembly programmers the
probable costs and benefits of the speculation. Load
instructions that inhibit scheduling can also be identified
and they can be suggested to assembly programmers as
likely candidates for speculation.

Automatic Optimization
While assembly programmers are certainly capable of
performing most optimizations that can be done
automatically, other optimizations are difficult. This is due
either to complexity or tedium. For example, scheduling
the instructions for optimal performance is mostly a
problem of brute force. Experienced assembly
programmers who are also familiar with all the
microarchitecture details can tweak the scheduling to get
the best performance, but sometimes the only way to get
the best scheduling is to simply try out all of the
combinations. The testing would have to be repeated
after every source code change. This is clearly a mission
for an automated tool.

In automatic optimization mode, the Assembly Assistant
schedules the instruction stream in a top-to-bottom issue-
group-scheduling approach. Instructions are scheduled
according to internal heuristics, taking into account critical

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 9

path, code size, instruction priorities, utilization of machine
resources, and more. Many possible templates are
checked against the heuristics, and the best one is chosen
for the issue group. The code in the example below will
execute significantly slower than the same code after
automatic optimization (~25%). Analyzing the example, we
can observe that the instructions at lines 8 and 9 of the
original code were moved up, and instructions on lines 3,
4, and 7 were moved down. This schedule was chosen
considering the latencies of various functional units and
in order to prevent unnecessary stalls .

Original code:

1 { .mii
2 ld4 r4 = [r33]
3 add r8 = 5, r8
4 mov r2 = r56 ;;
5 }
6 { .mii
7 add r32 = 5, r4
8 mov r3 = r33 ;;
9 add r33 = 4, r3 ;;
10 }
11 { .mib
12 cmp4.ltp6,p7=r2,r33
13 nop.i 999
14 (p7) br.cond.dpnt START
15 }

Code after automatic optimization:
1 { .mii
2 ld4 r4 = [r33]
3 mov r3 = r33 ;;
4 add r33 = 4, r3
5 }
6 { .mii
7 mov r2 = r56
8 add r8 = 5, r8 ;;
9 add r32 = 5, r4
10 }
11 { .mib
12 cmp4.ltp6,p7=r2,r33
13 nop.i 999
14 (p7) br.cond.dpnt START
15 }

Example 9: A small code sample before and after
automatic optimization

Optimal utilization of machine resources for parallel
execution is very important, and actual results show that
even code written by experienced assembly programmers
can gain a speed-up of 6 – 8% from the Assembly
Assistant’s automatic scheduling. In the case of code
written by inexperienced assembly programmers, the gain
is likely to be much higher.

Assembly programmers can choose from various
optimization schemes, actually changing the heuristics
used. For example, scheduling for the smallest code size
might incur significant penalties due to overloading of
machine resources. By default, automatic optimization
tries to address the issues most challenging to a human
assembly programmer. It optimizes for better utilization of
machine resources rather than concern itself with code
size. However, this might result in inflated code and affect
the instruction cache. Enabling various optimization
schemes offers assembly programmers greater control
over the automatic optimizations, and it allows expert
assembly programmers to take advantage of automatic
modes without losing flexibility.

Even for code that is not performance-critical, but still has
to be written in assembly, automatic optimization can be
valuable. It can be used either to speed up performance or
to pack the code more tightly.

FUTURE ENHANCEMENTS FOR THE
ASSEMBLY ASSISTANT
The Assembly Assistant is currently used by many IA-64
assembly programmers both beginners and experts to tune
their code. We received many requests for more features
and enhancements. The requests include a library of
optimized special-purpose code (for example, integer
divide and floating-point square root), more manual and
automatic optimizations, visualization of registers’ live
ranges, etc. We are also looking into integrating the
Assembly Assistant with other programming
environments such as Microsoft Visual Studio∗ and the
Intel® VTune performance analyzer.

CONCLUSION
It is strongly recommended that compilers be used in order
to generate highly optimized code for the IA-64
architecture. The use of compilers also guarantees
scalability and portability for future IA-64
implementations. However, we recognize the need of
some developers to continue to use assembly code in their
applications. We attempted to outline the difficulties
faced by assembly programmers when writing for the IA-
64 architecture, and we presented tools to alleviate or
overcome these difficulties. The tools presented
contribute to the following goals:

• Quickly familiarize assembly programmers with the
new IA-64 architecture.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal Q4, 1999

Assembly Language Programming Tools for the IA-64 Architecture 10

• Program in IA-64 assembly with relative ease.

• Provide a comprehensive development environment
for assembly programming.

• Analyze and optimize assembly programs to utilize
IA-64 unique features for optimal performance.

REFERENCES
[1] IA-64 Application Developer’s Architecture Guide,

Order number 245188.

[2] Analysis of Predicated Code, HPL-96-119.

[3] Steven S. Muchnick, Advanced compiler design and
implementation, Morgan Kaufmann, San Francisco,
California, 1997.

[4] “Control CPR: A Branch Height Reduction Optimization
for EPIC Architectures, ” in Proceedings of the ACM
SIGPLAN 99 Conference on PLDI, Atlanta, Georgia
1999, pp.155-168.

[5] IA-64 Assembler User’s Guide, Order number 712173.

AUTHORS’ BIOGRAPHIES
Ady Tal received his M.Sc. degree from the Technion in
1990. He has been working for Intel Israel since 1996, and
he leads the Optimizing Libraries development team. He
was a member of the Assembler and Assembly Assistant
development teams and has wide experience with all
aspects of IA-64 architecture features and assembly
optimization techniques. His e-mail is ady.tal@intel.com.

Vadim Bassin received an M.A. degree in computing from
the Belorussian Radio-Engineering Institute in 1987.
While he studied mostly hardware, he has worked only in
software. He spent six years programming in real time and
working on image processing in the Belorussian Science
Academy and a small Israeli-American company before
switching to network management. He finally found
himself working at Intel on GUI tools for programmers. His
e-mail is vadim.bassin@intel.com.

Shay Gal-On received his B.A. degree from the Technion
in 1997. Since then he has lingered at Intel Israel, mainly
working on assembly optimization techniques and bit
manipulations’ libraries. Professional interests run from
optimizations to security. His e-mail is
shay.gal-on@intel.com.

Elena Demikhovsky graduated from the Belorussian
Radio-Engineering Institute with an M.Sc. degree in 1991.
Since 1994, she has worked at Intel Israel as a software
engineer. Elena has wide experience in the development of
tools, especially the Assembler, for both the IA-32 and IA-

64 architectures. Her e-mail is
elena.demikhovsky@intel.com.

