
1

1

MMX and SSE

Extensions to the instruction set for parallel SIMD operations
on packed data

SIMD – Single Instruction stream Multiple Data stream

MMX – Multimedia Extensions
SSE – Streaming SIMD Extension
SSE2 – Streaming SIMD Extension 2
Designed to speed up multimedia and communication
applications

graphics and image processing
video and audio processing
speech compression and recognition

2

MMX data types

MMX instructions operate on 8, 16, 32 or 64-bit integer
values, packed into a 64-bit field
4 MMX data types

packed byte
8 bytes packed into a 64-bit quantity
packed word
4 16-bit words packed into a
64-bit quantity
packed doubleword
2 32-bit doublewords packed into a
64-bit quantity
quadword
one 64-bit quantity

Operates on integer values only

b0b1b2b3b4b5b6b7
063

w0w1w2w3
063

dw0dw1

063

qw
063

2

3

MMX registers

8 64-bit MMX registers
aliased to the x87 floating-point
registers
no stack-organization

The 32-bit general-purouse
registers (EAX, EBX, ...) can also
be used for operands and adresses

MMX registers can not hold memory addresses
MMX registers have two access modes

64-bit access
64-bit memory access, transfer between MMX registers, most MMX
operations

32-bit access
32-bit memory access, transfer between MMX and general-purpose
registers, some unpack operations

063

MM0
MM1
MM2
MM3
MM4
MM5
MM6
MM7

Floating-point registers

4

MMX operation

SIMD execution
performs the same operation in parallel on 2, 4 or 8 values

MMX instructions perform arithmetic and logical operations in
parallel on the bytes, words or doublewords packed in a 64-
bit MMX register
Most MMX instructions have
 two operands

op dest source
destination is a MMX register
source is a MMX register or
a memory location

X0X1X2X3Source 1

Y0Y1Y2Y3Source 2

X0 op Y0X1 op Y1X2 op Y2X3 op Y3Destination

opop op op

3

5

MMX instructions

MMX instructions have names composed of four fields
a prefix P – stands for packed
the operation, for example ADD, SUB or MUL
1-2 characters specifying unsigned or signed saturated arithmetic

US – Unsigned Saturation
S – Signed Saturation

a suffix describing the data type
B – Packed Byte, 8 bytes
W – Packed Word, 4 16-bit words
D – Packed Doubleword, 2 32-bit double words
Q – Quadword, one single 64-bit quadword

Example:
PADDB – Add Packed Byte
PADDSB – Add Packed Signed Byte Integers with Signed
Saturation

6

Saturation and wraparound arithmetic

Operations may produce results that are out of range
the result can not be represented in the format of the destination

Example:
add two packed unsigned byte integers 154+205=359
the result can not be represented in 8 bits

Wraparound arithmetic
the result is truncated to the N least significant bits
carry or overflow bits are ignored

Saturation arithmetic
out of range results are limited to the smallest/largest value that can
be represented
can have both signed and unsigned saturation

 10011010
+11001101

101100111

4

7

Data ranges for saturation

Results smaller than the lower limit is saturated to the lower
limit
Results larger than the upper limit is saturated to the upper
limit
Natural way of
handling under/over-
flow in many
applications

Example: color calculations, if a pixel becomes black, it remains
black

MMX instructions do not generate over/underflow exceptions
or set over/underflow bits in the EFLAGS status register

Data type Bits Lower limit Upper limit
Signed byte 8 -128 127
Unsigned byte 8 0 255
Signed word 16 -32768 32767
Unsigned word 16 0 65535

8

MMX instructions

MMX instructions can be grouped into the following
categories:

data transfer
arithmetic
comparison
conversion
unpacking
logical
shift
empty MMX state instruction (EMMS)

5

9

Data transfer instructions

MOVD – Move Doubleword
copies 32 bits of packed data

from memory to a MMX register (and vice versa), or
from a general-purpose register to a MMX register (and vice versa)

operates on the lower doubleword of a MMX register (bits 0-31)

MOVQ – Move Quadword
copies 64 bits of packed data

from meory to a MMX register (and vice versa), or
between two MMX registers

MOVD/MOVQ implements
register-to-register transfer
load from memory
store to memory

10

Arithmetic instructions

Addition
PADDB, PADDW, PADDD – Add Packed Integers with Wraparound
Arithmetic
PADDSB, PADDSW – Add Packed Signed Integers with Signed
Saturation
PADDUSB, PADDUSW – Add Packed Unsigned Integers with
Unsigned Saturation

Subtraction
PSUBB, PSUBW, PSUBD – Wraparound arithmetic
PSUBSB, PSUBSW – Signed saturation
PSUBUSB, PSUBUSW – Unsigned saturation

Multiplication
PMULHW – Multiply Packed Signed Integers and Store High Result
PMULLW – Multiply Packed Signed Integers and Store Low Result

6

11

Arithmetic instructions (cont.)

Multiply and add
PMADDWD – Multiply And Add Packed Integers
multiplies the signed word operands (16 bits)
produces 4 intermediate 32-bit products
the intermediate products are summed pairwise and produce two
32-bit doubleword results

X0X1X2X3

Y0Y1Y2Y3

X0*Y0X1*Y1X2*Y2X3*Y3

X1*Y1 + X0*Y0X3*Y3 + X2*Y2

12

Comparison instructions

Compare Packed Data for Equal
PCMPEQB, PCMPEQW, PCMPEQD

Compare Packed Signed Integers for Greater Than
PCMPGTPB, PCMPGTPW, PCMPGTPD

Compare the corresponding packed values
sets corresponding destination element to a mask of all ones (if
comparison matches) or zeroes (if comparison does not match)

Does not affect EFLAGS register

7

13

Conversion instruction

PACKSSWB, PACKSSDW – Pack with Signed Saturation
PACKUSWB – Pack with Unsigned Saturation

converts words (16 bits) to bytes (8 bits) with saturation
converts doublewords (32 bits) to words (16 bits) with saturation

A’B’C’D’

ABCD

Destination Source

Destination

14

Unpacking instructions

PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ – Unpack and
Interleave High Order Data
PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ – Unpack and
Interleave Low Order Data

X0X1X2X3X4X5X6X7Y0Y1Y2Y3Y4Y5Y6Y7

Source Destination

X0Y0X1Y1X2Y2X3Y3

Destination

8

15

Logical instructions

PAND – Bitwise AND
PANDN – AND NOT
POR – OR
PXOR – Exclusive OR

operate on a 64-bit quadword

16

Shift instructions

PSLLW, PSLLD, PSLLQ - Shift Packed Data Left Logical
PSRLW, PSRLD, PSRLQ – Shift Packed Data Right Logical
PSRAW, PSRAD – Shift Packed Data Right Arithmetic

shifts the destination elements the number of bits specified in the
count operand

9

17

EMMS instruction

Empty MMX State
sets all tags in the x87 FPU tag word to indicate empty registers

Must be executed at the end of a MMX computation before
floating-point operations
Not needed when mixing MMX and SSE/SSE2 instructions

18

SSE

Streaming SIMD Extension
introduced with the Pentium III processor
designed to speed up performance of advanced 2D and 3D
graphics, motion video, videoconferencing, image processing,
speech recognition, ...

Parallel operations on packed single precision floating-point
values

128-bit packed single precision floating point data type
four IEEE 32-bit floating point values packed into a 128-bit field
must be aligned in memory on 16-byte boundaries

s0s1s2s3
0127

10

19

XMM registers

The MMX technology introduces 8 new 128-bit registers
XMM0 – XMM7

not aliased to other registers
independent of general purpose and
FPU/MMX registers
can mix MMX and SSE instructions

XMM registers can be accessed in 32-bit,
64-bit or 128-bit mode

only for operations on data, not addresses
MXCSR control and status register, 32 bit

flag and mask bits for floating-point exceptions
rounding control bits
flush-to-zero bit
denormals-are-zero bit

0127

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7

20

SSE instructions

Adds 70 new instructions to the instruction set
50 for SIMD floating-point operations
12 for SIMD integer operations
8 for cache control

Packed and scalar single precision floating-point instructions
operations on packed 32-bit floating-point values

packed instructions have the suffix PS
operations on a scalar 32-bit floating-point value (the 32 LSB)

scalar instructions have the suffix SS

64-bit SIMD integer instructions
extension to MMX
operations on packed integer values stored in MMX registers

11

21

SSE instructions (cont)

State manegement intructions
load and save state of the MXCSR control register

Cache control, prefetch and memory ordering instructions
instructions to control stores to / loads from memory
support for streaming data to/from memory without storing it in cache

Temporal data
will be reused in the program execution
should be accessed through the cache

Non-temporal data
will not be reused in the program execution
evicts temporal data if accessed through the cache (cache pollution)
can be accessed directly from memory using prefetching and write-
combining

22

SSE2

Streaming SIMD Extension 2
introduced in the Pentium 4 processor
designed to speed up performance of advanced 3D graphics, video
encoding/decodeing, speech recognition, E-commerce and Internet,
scientific and engineering applications

Extends MMX and SSE with support for
packed double precision floating point-values
packed integer values
adds over 70 new instructions to the instruction set

Operates on 128-bit entities
must be aligned on 16-bit boundaries when stored in memory

12

23

SSE2 data types

128-bit packed double precision floating point
2 IEEE double precision floating-point values

128-bit packed byte integer
16 byte integers (8 bits)

128-bit packed word integer
8 word integers (16 bits)

128-bit packed doubleword integer
4 doubleword integers (32 bits)

128-bit packed quadword integer
2 quadword integers (64 bits)

Same registers for SIMD operations as in SSE
eight 128-bit registers, XMM0 – XMM7

24

Compatibility with SSE and MMX operation

The SSE2 extension is an enhancement of the SSE
extension

no new registers or processor state
new instructions which operate on a wider variety of packed
floating-point and integer data

SSE2 instructions can be intermixed with SSE and
MMX/FPU instructions

same registers for SSE and SSE2 execution
separate set of registers for FPU/MMX instructions

13

25

SSE2 instructions

Operations on packed double-precision data has the suffix PD
examples: MOVAPD, ADDPD, MULPD, MAXPD, ANDPD, CPPPD

Operations on scalar double-precision data has the suffix SD
examples: MOVSD, ADDSD, MULSD, MINSD

Conversion instructions
between double precision and single precision floating-point
between double precision floating-point and doubleword integer
between single precision floating-point and doubleword integer

Integer SIMD operations
both 64-bit and 128-bit packed integer data
64-bit packed data uses the MMX register
128-bit data uses the XMM registers
instructions to move data between MMX and XMM registers

26

Programming with MMX and SSE

Assembly language
inline assembly language code
very good possibilities to arrange instructions for efficient execution
difficult to program, requires detailed knowledge of MMX/SSE
operation

Compiler intrisincs or MMX/SSE macro library
functions that provide access to the MMX/SSE instructions from a
high-level language
also requires a detailed knowledge of MMX/SSE operation

Classes
C++ classes that define an abstraction for the MMX/SSE datatypes
easy to program, does not require in-depth konwledge of MMX/SSE

Automatic vectorization
easy to program, but requires a vectorizing compiler

14

27

Assembly language

Use inline assembly code
for instance in a C program

Example:
multiply two arrays A and B
of 400 single precision
floating-point values

Can arrange instructions
to avoid stalls

MOVAPS
latency 6, throughput 1
MULPS
latency 6, throughput 2
ADD/SUB
latency 0.5, throughput 0.5
the branch will be correctly predicted, except the last time

asm {
 push esi
 push edi
 ; Set up for loop
 mov edi, A ; Address of A
 mov esi, B ; Address of B
 mov edx, C ; Address of C
 mov ecx, #100 ; Counter
L1:
 movaps xmm0, [edi] ; Load from A
 movaps xmm1, [esi] ; Load from B
 mulps xmm0, xmm1 ; Multiply
 add edi, #16 ; Incr. ptr to A
 add esi, #16 ; Incr. ptr to B
 movaps [edx], xmm0 ; Store into C
 add edx, #16 ; Incr. ptr to C
 sub ecx, #1 ; Decr. counter
 jnz L1 ; Loop if not done

 pop edi
 pop esi
}

28

C compiler intrisincs or MMX/SSE macro library

Macros containing inline assembly code for MMX/SSE
operations

allows the programmer to use C function calls and variables

Defines a C function for each MMX/SSE instruction
there are also intrisinc functions composed of several MMX/SSE
instructions

New data types to represent packed integer and floating-point
values

__m64 represents the contents of a 64-bit MMX register
 (8, 16 or 32 bit packed integers)
__m128 represents 4 packed single precision floating-point values
__m128d represents 2 packed double precision floating-point values
__m128i represents packed integer values (8, 16, 32 or 64-bit)

15

29

C intrisincs

Example:
multiply two arrays A
and B of 400 single precision
floating-point values

Register allocation and
instruction scheduling is left
to the compiler

Varialbles of intrisinc data types have to be aligned to 16-bit
boundaries

may also need to access the individual
values in the packed data
can be done by using a union structure

#define SIZE 400

float A[SIZE], B[SIZE], C[SIZE];
__m128 m1, m2, m3;

for (int i=0; i<SIZE; i+=4) {
 m1 = _mm_load_ps (A+i);
 m2 = _mm_load_ps (B+i);
 m3 = _mm_mul_ps (m1,m2);
 _mm_store_ps (C+i,m3);
}

union mmdata {
 __mm128 m;
 float f[4];
};

30

C++ classes

C++ class defining abstractions
for MMX and SSE data types
Oveloads the arithmetic
operations +, -, *, /

implemented using the intrisincs

Also possible to use automatic
vectorization

the compiler analyzes the code and concerts simple loops to SSE
instructions
the user can assist the compiler by inserting directives in the code

#include fvec.h
#define SIZE 400

F32Vec4 f1, f2, f3;

for (int i=0; i<SIZE; i+=4) {
 loadu(f1, A+i);
 loadu(f2, B+i);
 f3 = f1 * f2;
 storeu(C+i, f3);
}

