
1

1

Microprocessor architecture

Instruction set architecture
CISC architecture
RISC architecture
Pipelining
Superscalar and superpipelined architectures
Post-RISC architecture
Out-of-order execution
VLIW architecture

2

Instruction set architecture

The part of the processor that is visible to the (assembly
language) programmer or compiler writer

defines the instructions, registers and mechanisms to access
memory that the processor can use to operate on data

Specifies the
registers
machine instructions
memory addresses
addressing modes

Example: Intel IA-32
defines a family of microprocessors, starting from 8086 (1978) to
the Pentium 4 (2000)
all binary compatible (within certain limits)

2

3

Registers

Registers are memory locations in which the processor
stores data that it operates on

implemented by very fast memory technology

Most modern microprocessors use a number of general
purpose registers
Register-memory architecture

operations can access both registers and memory

Load-store architecture
operations can only be performed on registers
memory can only be accessed with load or store operations

Number of registers vary
from about 10 to over 200

4

Machine instructions

The instruction set specifies the machine instructions that the
processor can execute

expressed as assembly language instructions

Instructions can have 2 or 3 operands
add a,b a ← a + b , result overwrites a
add c,a,b c ← a + b , result placed in c

Nr of memory references in an instruction can be
0 – load/store (RISC)
1 – Intel 80x86, Motorola 68000
2 or 3, CISC architectures

Translated to binary machine code (opcodes)
by an assembler

machine instructions can be of different lengths

c = a + b

C code

load R1, a
add R1, b
store c, R1

Assembly language
register – memory

load R1, a
load R2, b
add R1, R2
store c, R1

Assembly language
load – store

3

5

Memory addressing

Contigous, byte-addressable memory
Can address

byte (8 bits)
halfword (16 bits)
word (32 bits)
double word (64 bits)

Little endian
bytes of a word are numbered starting from the least significant byte
IA-32 architecture is little endian

Big endian
bytes of a word are numbered starting from the most significant byte

Highest address

Lowest addressByte 0Byte 1Byte 2Byte 3 0

4

8

12

16

20

24

28
08162431 Bit offsets

6

Memory alignment

An object of size S bytes at (byte) address A is
memory aligned if A mod S = 0

bytes are always aligned
halfwords are aligned at even byte addresses
words are aligned at byte offsets 0 and 4
double words are aligned at byte offsets 0

Misaligned data
Example: a word located at byte offset 6

Misaligned data can cause performance
degradation

most compilers can automatically align data

12

16

20

24

28

0

4

8

08162431

0

4

8

08162431

12

Halfword
Byte

Word

Long word

4

7

Addressing modes

The addressing modes describe how the processor can
specify the address of an object

can specify constant values, registers or memory locations
Immediate

add R1, #4 [R1] ← [R1]+4
Register

add R1, R2 [R1] ← [R1]+[R2]

Displacement
add R1, 20(R2) [R1] ← [R1]+Mem(20+[R2])

Indirect
add R1,(R2) [R1] ← [R1]+Mem([R2])

Indexed
add R1,(R1+R2) [R1] ← [R1]+Mem([R1]+[R2])

8

Addressing modes (cont.)

Direct or absolute
add R1,(2124) [R1] ← [R1]+Mem(2124)

Memory indirect
add R1, @(R2) [R1] ← [R1]+Mem(Mem([R2]))

Autoincrement
add R1, (R2)+ [R1] ← [R1]+Mem([R2])

[R2] ← [R2]+d

Autodecrement
add R1, -(R2) [R2] ← [R2]-d

[R1] ← [R1]+Mem([R2])

Scaled
add R1,100(R2)[R3] [R1] ← [R1]+

 Mem(100+[R2]+[R3]*d)

5

9

Instruction encoding

Assembly language instructios are encoded into numerical
machine instructions by the assembler
Instruction formats can be of three different types

variable, fixed or hybrid

Variable length
supports any number of operands

Fixed format
always the same number of operands
addressing mode specified as part of opcode

Hybrid format
multiple formats, depending on
the operation

Operation &
operands

mode 1 Address
field 1

mode n Address
field n

Operation
Address
field 1

Address
field 2

Address
field 3

Operation mode
Address

field

Operation mode2
Address

field
mode1

Operation
Address
field 1

Address
field 2

mode

10

CISC architecture

Complex Instruction Set Computer
large instruction set
instructions can perform very complex operations
variable instruction formats: 16, 32 or 64 bits
large number of addressing modes
few registers

Powerful assembly language
designed so that high-level language constructs could be compiled
into as few assembly instructions as possible

Implemented using microcode
Example: Motorola MC68000 family

18 different address modes in a MOVE-instruction

6

11

RISC architecture

Reduced Instruction Set Computer
Characteristic for a RISC processor is

no microcode
relatively few instructions
simple addressing modes
only load/store instructions access memory
uniform instruction length
more registers than CISC processors
pipelined instruction execution
delayed branching

Examples: SPARC, MIPS, HP-PA, Alpha, PowerPC

12

Instruction pipelining

Instruction execution is divided into a number of stages
instruction fetch
instruction decode
operand fetch
execute
writeback

The time to move an instruction one step through the pipeline
is called a machine cycle

can complete one instruction everey cycle

without pipelining we could complete one instruction every 5 cycles

CPI – Clock cycles Per Instruction
the number of cycles needed to execute an instruction

different for different instructions

IF ID X W

Instructions in Results out

OF

7

13

Pipelined instruction execution

All pipeline stages can execute in parallel
separate hardware units for each stage

Successive
instructions

Clock
cycles

1 2 3 4 5 6 7 8 9 10 11

load R1, a
load R2, b
load R3, c
load R4, d
store t1, R1
add R1, R2
add R2, #1

After 5 clock cycles, the pipeline is full
finishes one instruction every clock period
it takes 5 clock periods to finish one instruction

Pipelining increases the CPU instruction throughput
does not reduce the time to execute one instruction

14

Pipeline hazards

Situations that prevent the next instruction in the stream from
executing during its clock cycle
Structural hazards

arise from resource conflicts
two instructions need the same functional unit in the same pipeline
stage

Data hazards
arise when an instruction depends on the result of a previous
instruction, which has not completed yet

Control hazards
arise from branches in the instruction stream

Hazards force the pipeline to stall
stop the instruction fetch for a number of cycles until we have all
resources needed to continue

8

15

Structural hazards

Each stage of the pipeline is handled by a separate
functional unit

instruction fetch uses the instruction memory
instruction decode uses the program counter register
operand fetch uses the data memory
execute uses the ALU
writeback uses the registers

Example: two instructions
need access to the registers
in the same clock cycle

the last instruction will stall for one cycle

IM REG ALU REGDM

IM REG ALU REGDM

IM REG ALU REGDM

IM REG ALU REGDM

Clock cycle
0 1 2 3 4 5 6

16

Data hazards

An instruction depends on the result of a previous instruction,
which has not completed yet
Example:

the add-operation accesses R1 and R2
in cycle 4
the load-operations write the value into
register R2 in the write-back stage
R1 ready in cycle 4
R2 ready in cycle 5

The add must
stall for one cycle

load R1, a
load R2, b
add R1, R2

IF ID X WBOF

IF ID X WBOF

IF ID X WBOF

Clock cycle
0 1 2 3 4 5 6

load R1,a

 load R2,b

 add R1,R2

9

17

Control hazards

Branch instructions transfer control in the program execution
may assign a new value to the PC

Conditional branches may be taken or not taken
a taken branch assigns the target address to the PC
a branch that is not taken (falls through) continues at the next
instruction

The instruction is recognized as a
branch in the instruction decode phase
Can decide whether the branch will be
taken or not in the execute stage

IF ID X WBOF

IF ID X WBOF

IF ID X WBOF

Clock cycle
0 1 2 3 4 5 6

jnz R1,L1

 add R2,#1

 sub R3,R4

 jnz R1,L1
 add R2,#1
 sub R3,R4
L1:
 mov R1,#0

18

Stalling the pipeline

One way of executing branch instructions is to stall the
pipeline for 2 cycles when a branch instruction is decoded

wait until we know the outcome of the branch

The instruction executed after the branch is either the add
or the mov instruction

we don’t know which before the branch instruction has reached
execution stage in the pipeline

IF ID X WBOF

IF ID X WBOF

Clock cycle
0 1 2 3 4 5 6

branch instr.

branch successor

successor+1

successor+2 IF ID X WBOF

IF stall IF IDstall OF X WB

10

19

Branch delay slots

To simplify branch exeution we can insert a delay after a
branch instruction

forces the execution to wait until the outcome
of the branch is known

Insert nop instructions after a branch
called a branch delay slot

 jnz R1,L1
 nop
 nop
 add R2,#1
 sub R3,R4
L1:
 mov R1,#0

IF ID X WBOF

IF ID X WBOF

IF ID X WBOF

Clock cycle
0 1 2 3 4 5 6

jnz R1,L1

 nop

 nop

 branch successor IF ID X WBOF

20

Delayed branches

More efficient is to use the branch delay slot for useful work
instead of nop instructions we execute useful instructions in the
branch delay slot

These instructions are always executed regardless of how
the branch goes

can be useful instructions or at least
harmless instructions
 nop’s can also be used

Possible to use the branch delay slot
to compute something that will be needed
Branch instructions are not allowed

 jnz R1,L1
 mov R1,a
 mov R5,b
 add R2,#1
 sub R3,R4
L1:
 add R1,R5
 sto c,R1

11

21

Branch prediction

Guess the outcome of the branch
Predict as not taken

we assume the branch will not be taken
continue the execution with the instruction following the branch
if the branch turns out not to be taken, then we guessed right and
continue
the branch instruction behaves like a nop

If the prediction was wrong, we have to undo the effects of
the falsely executed instructions

not allowed to change the state of the processor until the branch
outcome is known (no writeback)
flush out the mispredicted instructions from the pipeline
restart the instruction fetch from the branch target

22

Scheduling branch delay slots

Three ways of scheduling instructions into branch delay slot
From code before the branch

the branch may not depend on
the rescheduled instruction
always improves performance

From the target of the branch
must be correct to execute the instruction also if the branch is
not taken
may need to duplicate instructions
improves performance
when the branch is taken

 add R1,R2
 jnz R3,L1

L1:
delay slot

 jnz R3,L1

L1:
 ...

add R1,R2

L1:
 sub R1,R2
 add R3,R4
 jz R3,L1

delay slot

L1:
 add R3,R4
 jz R3,L1

sub R1,R2

12

23

Scheduling branch delay slots (cont.)

From the fall through code
must be correct to execute the instruction also if the branch is taken
improves performance when the branch is not taken

 add R1,R2
 jz R3,L1

 sub R3,R4
L1:

delay slot

 add R1,R2
 jz R3,L1

L1:
sub R3,R4

24

Cancelling branch

Many architectures with branch delay slots have a cancelling
(or nullifying) branch instruction
The encoding of the branch instruction includes the direction
the branch was predicted

taken or not taken

When the branch behaves as predicted, the instruction in the
branch delay slot is executed as a normal delayed branch
When the branch is incorrectly predicted, the instruction in
the branch delay slot is modified into a nop instruction
Can use all three methods of scheduling instructions into the
branch delay slot

13

25

Superscalar architecture

Increases the ability of the processor to use instruction level
parallelism
Multiple instructions are issued every cycle

multiple pipelines operating in parallel

Example:
3 parallel pipelines each with 5 stages
3-way superscalar
processor

Successive
instructions

Clock
cycles1 2 3 4 5 6 7

load R1, a
load R2, b
load R3, c
load R4, d
store t1, R1
add R1, R2
add R2, #1
xor R3, R1
sub R4, #8
. . .

26

Superpipelined architecture

The instruction execution pipeline is divided into a large
number of simple stages

deep pipeline
higher clock frequency

Pipeline clock cycle can be a multiple of the processor clock
cycle
Often combined with a superscalar design

7

Successive
instructions

Clock
cycles

14

27

Post-RISC architecture

Modern processors have developed further from the basic
ideas behind RISC architecture

exploit more instruction level parallelism

Characteristics:
parallel instruction execution (superscalar)
deep pipeline (superpipelined)
extended instruction set
out-of-order execution
branch prediction
register renaming

28

In-order execution

Instructions are executed in program order
limits the opportunities for instruction level parallelism

Dependecies between instructions force them to be executed
in program order

the add instruction uses the value loaded
into R1
the store instruction uses the value produced
by the add
the sub instruction modifies the value in R0
the branch condition depends on R0

The chain of dependencies can be as long as the entire
program

L1:
 load R1,(R0)
 add R1,R2
 sto (R0),R1
 sub R0,#8
 jnz R0,L1

15

29

Out-of-order instruction execution

To be able to use more ILP we allow the processor to
execute instruction out of order

also called dynamic instruction execution or dynamic instruction
scheduling

Have to guarantee that the program produces the same
result as if executed in order
To make out-of-order execution possible we have to
eliminate dependences in the code
Three types of dependences:

data dependences
name dependences
control dependences

30

Data dependence

An instruction j depends on data from a previous instruction i
can not execute j before the earlier instruction i
can not execute i and j simultaneously

Data dependences are properties of the program
wether this leads to a data hazard and a pipeline stall depends on
the pipeline organization

We can overcome problems of data dependences by
sceduling instructions so that dependences do not cause hazards
transforming the code to eliminate the dependance

Loop unrolling can eliminate dependences
also removes branches and gives mor opportunities for instruction
scheduling

16

31

Name dependence

Two (or more) instructions use the same register, but there is
no data transfer between the instructions
Two types of name dependences

assume we have two instructions i and j,
in this order

Output dependence
instructions i and j write to the same
register or memory location

Antidependence
instruction j writes a register or memory
location that instruction i reads

The instructions can be executed in parallel if we choose
other registers for the operations

load R0,c
add R0,#1
sto c,R0
load R0,d
add R0,#1
sto d,R0

add (R0),R1
load R0,c
...

32

Control dependence

Control dependences determine the ordering of an instruction
with respect to a branch instruction

if the branch is taken, the instruction is executed
if the branch is not taken, the instruction is not executed

An instruction that is control dependent on a branch can not
be moved before the branch

instructions from the then-part of an if-statement can not be
executed before the branch

An instruction that is not control dependant on a branch can
not be moved after the branch

other instructions can not be moved into the then-part of an if-
statement

Can lift these restrictions by using branch prediction and
speculative execution

17

33

Register renaming

The instruction set architecture defines a set of logical
registers visible to the (assembly language) programmer

general-purpose registers
special registers (IP, SP, ...)

The pipeline execution uses a much larger set of internal
physical registers for use in program execution

register renaming dynamically associates
 physical registers to logical registers
removes name dependencies

Register renaming can be done already
in the instruction decode phase

R0
R1
R2
R3
R4
R5

Arcitectural
registers

Physical
registers

34

Rotating registers

Rotating registers help to avoid dependencies in loops
Example: copying elements between two arrays

counter i in R0
length of arrays N in R1
address of X in R2
address of Y i R3

Dependencies may introduce stalls
store can not start before the load is ready

But the assignments could all be done
in parallel

no dependencies between the iterations

for (i=0;i<N;i++){
 Y[i] = X[i]
}

 mov R0,#0
 mov R1,N
 mul R1,#d
L1:
 load R4,R0(R2)
 store R0(R3),R4
 add R0,#d
 cmp R0,R1
 jne L1

18

35

Rotating registers (cont.)

The registers are renumbered for every loop iteration
data in R1 in the first iteration will in the second iteration be in R2

The array copying can then be implementd like:
(using pseudo assembler code)
The store can start immediately

stores data that was loaded four
iterations ago

load X[0] into R4
load X[1] into R3
load X[2] into R2
load X[3] into R1
for (i=0,i<N-4;i++) {
 load R0, X[i+4]
 store Y[i], R4
}
store R3 to Y[N-4]
store R2 to Y[N-3]
store R1 to Y[N-2]
store R0 to Y[N-1]

X[4]
X[3]
X[2]
X[1]
X[0]

X[5]
X[6]
X[7]
X[8]R0

R1
R2
R3
R4Store

Load

36

Dynamic branch prediction

So far we have only presented methods for static branch
prediction

the prediction does not depend on the dynamic behaviour of the
program
predict as taken
predict backwards branches as taken and forward brances as not
taken

In dynamic branch prediction we base the prediction on the
outcome of the branch earlier in the execution

collect branch history information, on which we base the prediction

In practice it is not possible to store information about all
branches in a program

no upper limit on the number of branches

19

37

Branch history

Branch history information is collected in a small cache
memory called the branch history table

memory address of the branch instruction
branch history information (taken/not taken)

In its most simple implementation, entries in the branch
history table are indexed by the lower (least significant) part
of the branch instruction address

two branches may use the same table entry

Stores the outcome of the most recent branch executions
need at least one bit in each table entry to store the outcome of the
branch (taken / not taken)
if no branch history exists, use static prediction

38

One bit branch history

Predict that the branch goes the same way as the last time it
was executed

if the prediction turns out to be wrong, invert the prediction bit

Mispredicts both the first and the last iteration of a loop
misprediction of the last iteration is inevitable, since the branch has
been taken N-1 times (in a loop of length N)
after executing the last, mispredicted, iteration of the loop the
prediction bit is set to false
causes a misprediction in the first iteration when we execute the
loop the next time

20

39

N-bit branch history

Use two bits to store branch history
a prediction must miss twice
before it is changed
gives four different states

In general, we can use N bits for the
branch history

the counter takes values between 0 and 2N-1
incremented if branch is taken, decremented if branch is not taken
if the counter is greater or equal than half of the maximum value,
we predict the branch as taken, otherwise not taken

In practice, 2 bits is enough for accurate branch prediction

Predict
taken

Predict
taken

Predict
not taken

Predict
not taken

not taken

taken

not taken

taken

not taken
taken

taken

not taken

40

Branch target buffer

The branch target buffer stores also the target address of the
branch

we can find the target address of the branch already in the
instruction fetch phase
if the branch is predicted as taken, we can immediately start
fetching instructions from the branch target address

Implemented by associative memory
One alternative is to only store
information about branches that are
predicted to be taken

if we find an entry in the table, it is
predicted as taken
otherwise, we predict it as not taken and continue execution with
the next instruction
used with one-bit branch history

Branch instruction
address

Branch target
address

Branch prediction
taken / not taken

21

41

Predicting call/returns

Procedure calls are unconditional branches
always taken

Procedure calls and returns are paired
one return for each procedure call
can have nested procedure calls

Can use a return address stack (RAS) as a branch target
buffer to predict the return address

push the return address when the call instruction is executed
pop it when the return instruction is executed

42

Dynamic scheduling

In dynamic scheduling instructions are rearranged so that the
pipelines are kept busy
The pipeline is allowed to rearrange the instructions to avoid
hazards

makes it easier for the compiler to produce well optimized code
allows code optimized for one processor to execute efficiently on
another processor

Example:
the add depends on the result of the division
the load-instruction stalls until the div and add
are ready

No dependencies between div/add and load/sub
can execute the load/sub befor the div/add

div R0,R1
add R2,R0
load R5,a
sub R5,R6

22

43

Out-of-order execution

The instruction fetch, execution and retirement is separated
from each other

instructions are fetched and decoded in order
instructions are executed out of order
results of the execution are retired in order

Instructions can be executed when all operands are available
and a functional unit for the operation is available

result of execution is stored in internal registers
retired in program order, written back to registers or memory

Instruction
fetch

Instruction
decode

and renam
e

Issue

Instruction
w

indow

R
etire

W
rite back

ExecutionRS

RS Execution

44

Tomasulo’s algorithm

Method for dynamic instruction scheduling
out-of-order instruction execution
R.M. Tomasulo, An Efficient Algorithm for Exploiting Multiple
Arithmetic Units, IBM J. of Res.&Dev. 11:1 (Jan 1967)
developed for IBM 360/91

Similar out-of-order execution used in Alpha 21264,
HP 8000, MIPS R10000, Pentium II and PowerPC 604
Aviods pipeline stalls due to dependencies

instructions whose operands are available can execute out of order

Combines
register renaming
out-of-order instruction execution
data forwarding (short circuiting)

23

45

Reservation stations

Buffer area for each functional unit
holds instructions to be executed
each functional unit has its own set of reservation stations

Contains
instructions that have been issued and which are waiting to be
executed by the functional unit
operands of the instruction, if these are available
the source of the operands if they are not yet available – tags
(pointers to the reservation stations that will produce the operands)

Eliminates the need to fetch/write operands from/to registers
don’t have to write results back to registers, which are immediately
read by another instruction
implements register renaming
performs the same function as forwarding (short-circuiting)

46

Reservation stations (cont.)

Reservation stations, functional units,
load and store buffers are connected
by a Common Data Bus (CDB)

memory access (load/store) are treated
as functional units

When the operands of an instruction are
available, the instruction can be sent to a
functional unit for execution
Results of execution are broadcasted on the CDB
Reservation stations listen to the CDB for operand values

if a matching tag is seen on the bus, the RS copies the value into
its operand field
all reservation stations waiting for the value are updated at the
same time

Reservation
stations

Common Data Bus

Functional unit

24

47

Organization of Tomasulo’s algorithm

Load
buffer

From memory

Instructions

Instruction
fetch

Store
buffer

To memory

Reservation
stations

Adder Multiplier

Common Data Bus

Registers

48

Data structures in Tomasulos algorithm

Have to store data describing the state of instructions in
reservation stations, registers and load/store buffers
Tags identify entries in reservation stations

used as names for an extended set of registers
points to the reservation station that will produce a result needed as
an operand

Issued instructions refer to the operands by tag values
not by the registers

Registers need one additional field
the tag of the reservation station that will produce the result to be
stored in this register
if zero, no currently active instruction is computing a result destined
for this register

25

49

Data structures (cont.)

Reservation stations have 6 fields
op – the operation to perform on source operands S1 and S2

Qj, Qk – the tag of the reservation station that will produce the
corresponding source operand. A value of zero indicates that the
source operand is already available in Vj or Vk, or is not needed
Vj, Vk – the value of the source operands.
Only one of the V and Q fields is valid for each operand.
busy – indicates that the reservation station and its functional unit
are occupied

op Qj Qk Vj Vk b

50

Stages in Tomasulo’s algorithm

Issue
get instruction from instruction queue
get a free reservation station
assign instruction and fetch operands from register if they are
available

Execution
if operands are ready, dispatch the instruction to the functional unit
for execution
if operands are not ready, wait for operands on the CDB

Write result
after an instruction is executed, broadcast the result on the CDB
mark the reservation station holding this instruction as free

