
1

1

Memory systems

Memory technology
Memory hierarchy
Virtual memory

2

Memory technology

DRAM – Dynamic Random Access Memory
bits are represented by an electric charge in a small capacitor
charge leaks away, need to be refreshed at regular intervals
reading the memory also discarges the capacitors

DRAM has better price/performance than SRAM
also higher densities, need less power and dissipate less heat

SRAM – Static Random Access Memory
based on gates, a bit is stored in 4–6 transistors
no refreshing, retain data as long as they have power

SRAM provides higher speed
used for high-performance memories
cache, video memory, ...

2

3

Access time and cycle time

Memory access time is the time it takes read or write a
memory location
Memory cycle time is the minimum time between two
successive memory references

can not do repeated accesses immediately after each other
have to refresh the memory after an access

Example:
50 ns access time
100 ns cycle time

4

Memory banks and interleaving

The memory is organized as a number of banks
each bank consists of a separate memory device

Interleaving
consecutive memory accesses address different banks
when one bank is refreshed, another bank can be accesed
can overlap accesses and refreshing

Gives a continous flow of data from memory
Example:

2-way interleaved memory

0
2
4
6
8

10
12
14

1
3
5
7
9

11
13
15

3

5

Dynamic RAM technology

Fast page mode DRAM
improves access to memory in sequentially located addresses
(cache lines)
the entire address does not have to be transmitted to the memory
for each access, only the least significant bits

EDO RAM (Extended Data OUT RAM)
very similar to fast page mode RAM

SDRAM (Synchronous DRAM)
CPU and memory is synchronized by an external clock
consecutive data is output synchronously on a clock pulse
memory chips are divided into two independent cell banks,
interleaving
PC66, PC100, PC133 SDRAM, etc.
133 MHz * 64 bits / 8 bits = 1064 MB/s peak bandwidth
typical efficiency approx. 75 % = 800 MB/s

6

Dynamic RAM technology (cont.)

DDR SDRAM (Double Data Rate SDRAM)
memory architecture chosen by AMD
synchronous DRAM
the memory chips perform accesses on both the rising and falling
edges of the clock
a memory with a 133 MHz clock operates effectively at 266 MHz
64-bit data bus
133 MHz clock cycle * 2 clocks/cycle * 64 bits / 8 bits = 2128 MB/s
peak bandwidth
typical efficiency approx. 65 % = 1380 MB/s
184 pin SIMMs

4

7

Dynamic RAM technology (cont.)

Direct RAMBUS
proprietary technology of Rambus Inc., memory architecture
chosen by Intel
new, fast DRAM architecture, 400 MHz
operates on both rising and falling edge of clock cycle
transfers data ovar a narrow 16-bit bus (Direct Rambus Channel)
multiple memory banks
use pipelining technology to send four 16-bit packets at a time
(64-bit memory accesses)
400 MHz * 2 clocks/cycle * 16 bits / b bits = 1600 MB/s
typical efficiency approx. 65 % = 1360 MB/s

RIMMs
similar as DIMMs but different pin count (184 vs. 168)
covered by an aluminium heat spreader

8

Memory hierarchy

Hierarchical memory organisation
registers
cache memory
main memory
disk memory

From small, fast and expensive to large, slow and cheap
Example: memory access times on a 500 MHz 21164 Alpha

register 2 ns
L1 (on-chip) 4 ns
L2 (on-chip) 5 ns
L3 (off-chip) 30 ns
memory 220 ns

RAM

Virtual
memory

Cache

ALU

Registers

Page
4 KB

Line
128 b

Element

5

9

Registers

Small, very fast memory storage located close to the ALU
Implemented by static RAM

operates at the same speed as instruction execution

IA-32 ISA defines 8 general purpose 32-bit registers
+ special purpose registers: EIP,EFLAGS, 6 segment registers
+ 8 80 bit floating-point registers and 6 special-purpose registers
8 64-bit MMX registers, aliased to FP registers

GPR are used by the processor for operand evaluation
stores intermediate values in expression evaluation
Example:
x = G*2.41 + A/M -W*M

Optimizing compilers make efficient use of registers for
expression evaluation

10

Caches

Small, fast memory located between the processor and main
memory

implemented by static RAM
store a subset of the memory

Separate caches for instructions and data
Harvard memory architecture
can simultaneously fetch instructions and operands

Data in a lower memory level is also stored in the higher level
Strategies to maintain coherence between cache and
memory:

write-through: data is immediately written back to memory when it is
updated
write-back: data is written to memory when a modified cache line is
replaced in cache

6

11

Cache lines

The unit of data transferred between RAM and cache is
called a cache line

consists of N consecutive memory locations

When we access a memory location, a consecutive memory
block is copied to the cache

a cache replacement policy defines how old data in cache is
replaced with new data
tries to keep frequently used data in the cache
Typical cache line sizes range from 128 bits to 512 bits

For each memory access, the computer first checks if the
cache line containing this memory location is in cache

if not (on a cache miss) the line is brought in
has to decide which old cache line to throw out – LRU algorithm

12

Cache organization

A cache mapping defines how memory locations are placed
into caches

mapping of addresses to cache lines

Each cache line records the memory
addresses it represents

called a tag
used to find out which memory addesses are
stored in a cache line

Cache is much smaller than RAM
two memory blocks can be mapped to the same
cache line

Think of memory as being divided into blocks
 of the size of a cache line

Memory

Cache

7

13

Direct mapped caches

A memory block can be placed in exactly one cache line
The mapping is

(block address) MOD (nr. of lines in cache)

Easy to find out if a memory address is
in cache or not

check the tag in the cache line where it is
supposed to be

Cache
0
1
2
3
4
5

Memory

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

14

Fully associative cache

A memory block can be placed in any cache line
Can not calculate in which cache line a memory block should
be placed

have to search through all cache lines to find the location
containing the tag we are looking for

Associative memory
search through all cache lines simultaneously for a matching tag

Associative caches are small and expensive

8

15

Set associative cache

A memory block can be placed in a restricted set of cache
lines

the block is first mapped onto a set of cache lines
then it is decedied into which of these it is placed

The mapping is
(block address) MOD (nr. of sets)

If there are N sets, the cache placement
is called N-way associative
Can compute in which set a block is placed

only have to do associative search in a small set

Memory

Cache

Set 0

Set 1

0
1
0
1
0
1

0
1
0
1
0
1

0
1
0
1
0
1

0
1
0
1
0
1

16

Cache misses

Assume a L1 cache access time of 5 ns, L2 access time of
10 ns and memory access time of 200 ns

if we have a 80% L1 hit rate, 15% L2 hit rate and 5% memory
references the average memory access time is
0.8*5 + 0.15*10 + 0.05*200 = 15.5 ns

Caches are based on the principle of locality
spatial locality – we access data located near each other
(sequential access)
temporal locality – we do repeated accesses to the same data

 Three different reasons for cache misses
compulsory
capacity
conflict

9

17

Compulsory cache misses

Cold start misses or first reference misses
the first access to a block of memory always causes a cache miss
when the line is brought in to the cache

Can increase the cache line size
increases cache miss penalty
increases conflict misses, because the cache contains fewer lines

Can use prefetching
bring in the next contigous cache line at the same time
some processors also have a prefetch instruction, which the
compiler can insert into the code
works for contiguous memory accesses, not for random access
patterns

18

Capacity cache misses

The cache can not hold all of the memory referenced in the
program

capacity misses occur when some cache lines are replaced
because the cache is full and later need to be brought in again

Capacity misses can be overcome by increasing the cache
size
Can also modify the data structures and algorithm to improve
spatial and temporal locality

compiler optimization
high-level code optimization techniques

10

19

Conflict cache misses

In direct mapped and set associative caches, many memory
blocks can map to the same cache line

a cache line may have to be thrown out because some other line
needs its place in the cache
the same line may have to be brought in immediately after

Conflict misses can be overcome by using higher
associativity

4-way associative instead of 2-way
can also try to avoid conflict misses in the program design

2:1 cache rule of thumb
a direct mapped cache of size N has about the same miss rate as a
2-way set-associative cace of size N/2

20

Cache trashing

Repeatedly throws out a cache line that we need in the next
memory access

can occur with direct mapped and 2-way set associative caches

Assume we have a direct mapped cache
cache line size of 32 bytes (= 8 words)

Two arrays X and Y contiguosly located cache size apart
(address of X) MOD (nr. of lines in cache) =
(address of Y) MOD (nr. of lines in cache)

X[0] and Y[0] are mapped to the same cache line
when one is brought in to cache, the other is thrown out
causes cache trashing if we access both arrays
sequentially

X

Y

b

b+CSIZE

b+2*CSIZE

11

21

Example of cache trashing

In the first iteration, the reference to X[0] causes a
compulsory cache miss

the cache line containing X[0] – X[3] is brought in
X[0] is placed in a register

The cache line containing
Y[0] – Y[3] is brought in

maps to the same line,
replaces X[0] – X[3]
X[0] is placed in a register

X[0] and Y[0] are added and Y[0] is stored
In the next iteration the cache line containing X[1] has to be
brought in again

conflict cache misses in all iterations

SIZE = 64*1024; /* 64K */
double X[SIZE], Y[SIZE];
 . . .
for (i=0; i<SIZE; i++) {
 Y[i] = X[I]+Y[i];
}

22

Cache trashing (cont.)

Can also get cache trashing in 2-way set associative caches
Three consecutive arrays of cache size

X[k], Y[k] and Z[k] all map to the same set
the set size is two
one will always be thrown out in each iteration

Can be avoided by
padding the arrays

insert an array of the
cache line size between
the arrays
X[0], Y[0] and Z[0] map
to different cache lines

Trashing may be a problem when array size is a power of two

SIZE = 64*1024; /* 64K */
double X[SIZE], Y[SIZE], Z[SIZE];
 . . .
for (i=0; i<SIZE; i++) {
 Z[i] = X[I]*Y[i]+Z[i];
}

12

23

Virtual memory

Decouples addresses used by the program (virtual
addresses) from physical addresses

the program uses a large contigous address space
actual memory blocks may be located anywhere in physical
memory
some memory blocks may also be on secondary
storage

Memory is divided into pages
page size can be from 512 bytes
to 4 MB

Virtual addresses are translated
to physical addresses using a
page table

Physical address

A
B
C
D

Virtual address

0
4 K

8 K
12 K

C

A

B
D

4 K
0

8 K
12 K
16 K
20 K
24 K
28 K
32 K
36 K
40 K
44 K
48 K
52 K

24

Page tables

Stores the mapping of logical to physical addresses
Indexed by the virtual page number

one entry per page in the virtual address space

Page tables are usually large
stored in virtual memory
need two virtual-to-physical
translations to find a physical
address

Use a translation lookaside buffer
(TLB) as a cache for addess
translations

Page number Offset

Virtual address

Page table

Physical memory

13

25

Translation lookaside buffer

Cache memory for address translations
tag field holds a part of the virtual address
data field holds the physical page frame number
also status bits: valid, use, dirty

Implemented by an associative cache memory
TLB is limited in size

virtual addresses not in the TLB cause a TLB miss

Repeated TLB misses cause very bad performance
same as for repeated cache misses

Good cache behaviour usually implies good TLB behaviour

