
1

1

Code Optimization

Introduction
What is code optimization
Processor development
Memory development
Software design
Algorithmic complexity
What to optimize
How much can we win

2

What is code optimization?

To design programs so that they can be efficiently executed
on a processor

use the resources of the processor in an efficient way

In practice it is impossible to achieve optimal performance
but we can design computer programs so that they become more
(or less) efficient
use programming constructs that can be efficiently executed on the
processor

Performance should be a concern in all stages of the
development

from the choice of solution method to the executable program
easiest to improve the performance of a program in the early stages
of design (at the highest level of abstraction)

2

3

Theorethical peak performance

The maximal number of instructions a processor can execute
under ideal conditions
Example:

a processor with different functional units for addition and
multiplication
can do one addition and one multiplication in a clock cycle
cycle time 5 ns = 200 MHz
max performance is 400 M operations per second

Assumptions
infinite stream of additions and multiplications
operations are independent
no other instructions (no branches)
data can be accessed immediately without delays

4

Intel processor development
Processor Year MHz Transistors Addr. space Cache
 8086 1978 8 29 K 1 MB No

 286 1982 12.5 34 K 16 MB No

386 DX 1985 2 0 275 K 4 GB No

486 DX 1989 2 5 1.2 M 4 GB 8 KB L1

Pentium 1993 6 0 3.1 M 4 GB 16 KB L1

Pentium Pro 1995 200 5.5 M 64 GB 16 KB L1
 P6 256 KB / 512 KB L2

Pentium II 1997 266 7 M 64 GB 32 KB L1
256 KB / 512 KB L2

Pentium III Feb 500 8.2 M 64 GB 32 KB L1
1999 512 KB L2

Pentium III Oct 700 28 M 64 GB 32KB L1
 1999 256 KB L2

Pentium 4 2000 1500 42 M 64 GB 12 K µop
 NetBurst 8 KB L1

256 KB L2

3

5

Processor development

Moore’s law
number of transistors on a silicon die doubles every 18 months
means also that performance doubles every 18 months

Number of transistors on a die
from 29000 to 42 000 000 = 1448 times more

Clock rate
from 8 MHz to 1500 MHz in 22 years = 187 times faster

Memory size
from 640 KB to 256 MB = 409 times more

But memory access time has only decreased by 10–20 times

6

Processor development (cont.)

Microprocessor performance develops much faster than the
clock rate

the improved performance comes mainly from development in
microprocessor architecture
not so much from higher clock frequencies

Much more efficient instruction execution
RISC architecture
instruction pipelining
superscalar instruction execution (instruction level parallelism)
out-of-order execution (dynamic instruction execution)
speculative instruction execution

4

7

Memory system development

Memory size has developed about at the same rate as
processor performance
Memory access time has not developed in the same way

memory access is slow compared to instruction execution

Development in processor architecture to improve memory
access time

multilevel caches
instruction pre-fetching
write-combining

8

Conclusions

Very fast instruction execution
multiple instructions executed each clock cycle
instructions do not have to be executed in program order

Slow memory access
processor cycle is normally much faster than the bus cycle
only data in registers and cache can be accessed without delay

Cache memories are small (32 + 32 KB L1, 1 MB L2)
for large problems, data will not not fit into cache

Performance of a program depends strongly on
how well the program instructions can use the functional units of
the processor
how efficiently the processor can access data in memory

5

9

Software design

#include <stdio.h>
#define SIZE 1000
main(int argc, char** argv) {
 int A[SIZE], B[SIZE], C[SIZE];
 int i;

 for (i=0; i<SIZE; i++) {
 B[i] = i;
 C[i] = SIZE-i;
 }

 /* Add B and C */
 for (i=0; i<SIZE; i++) {
 A[i] = B[i]*C[i];
 }

Source code

Solution
m

ethod

Execution

.globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp,%ebp
 subl $12004,%esp
 pushl %edi
 pushl %esi
 pushl %ebx
 nop
 movl $0,-12004(%ebp)
.L2:
 cmpl $999,-12004(%ebp)
 jle .L5
 jmp .L3
 .align 4
.L5:
 movl -12004(%ebp),%eax
 movl %eax,%edx
 leal 0(,%edx,4),%eax
 leal -4000(%ebp),%edx
 movl -12004(%ebp),%ecx
 movl %ecx,%ebx
 leal 0(,%ebx,4),%ecx
 leal -8000(%ebp),%ebx
 movl -12004(%ebp),%esi
 movl %esi,%edi
 leal 0(,%edi,4),%esi
 leal -12000(%ebp),%edi
 movl (%ecx,%ebx),%ecx
 imull (%esi,%edi),%ecx
 movl %ecx,(%eax,%edx)
.L4:
 incl -12004(%ebp)
 jmp .L2
 .align 4
.L1:
 leal -12016(%ebp),%esp
 popl %ebx

.Lfe1:
 .size main,.Lfe1-main
 .ident "GCC: (GNU) 2.8.1"

Compiled and optimized code

Problem

Algorithms

Program
m

ing

Compiling

R
esult

Hierarchical code: Plummer model

nbody dtime eps theta usequad dtout tstop
 1024 0.03125 0.0250 1.00 false 0.2500 2.0000

 tnow T+U T/U nttot nbavg ncavg cputime
0.000 -0.2527 -0.4943 203185 84 114 0.00

 cm pos 0.0000 -0.0000 0.0000
 cm vel -0.0000 0.0000 0.0000
 am vec 0.0097 0.0196 -0.0222

 tnow T+U T/U nttot nbavg ncavg cputime
0.031 -0.2527 -0.4940 202260 81 115 0.01

 cm pos 0.0000 -0.0000 0.0000
 cm vel 0.0000 -0.0000 0.0000
 am vec 0.0097 0.0196 -0.0222

Time is: 9.5 seconds

Output

10

Choosing a solution method

A problem can typically be solved in many different ways
we have to choose a correct and efficient solution method

A solution may include many different stages of computation
using different algorithms

Example: sorting, matrix multiplication, ...

Each stage in the solution may operate on the same data
the data representation should be well suited for all the stages of
the computation
different stages in the solution may have conflicting reqirements on
how data is represented

6

11

Choosing an algorithm

A specific problem can typically be solved using a number of
different algorithms
The algorithm has to

be correct
give the required numerical accuracy
be efficient, both with respect to execution time and use of memory
be possible to implement within the time frame of the project

We can use algorithm analysis to estimate the running time
and memory requirements of an algorithm

tells us how the running time of an algorithm grows when the
problem size increases

12

Algorithmic complexity

Big-Oh notation
T(N) = O(f(n)) if there are positive constants c and n0 such that
T(N) ≤ c f(N) when N ≥ n0

N is the size of the problem to be solved

Establishes a relative order among the rates of growth of
functions
Example: T(N) = O(N2)

T(N) is the time to solve a problem of size N
for sufficiently large problems, the computation
time grows slower than N2 multiplied with a
constant factor c

Gives an upper bound on the running time

c Constant
log N Logarithmic
N Linear
N log N
N2 Quadratic
N3 Cubic
2N Exponential

7

13

Growth rate

Examples of growth rate for a few typical functions

Function N=10 N=50 N=100 N=500 N=1000
log N 3.2 5.6 6.6 8.9 9.9
N 10 50 100 500 1000
N log N 32 280 660 4450 9900
N2 100 2500 10 000 250 000 106

N3 1000 125 000 1 000 000 125 000 000 109

2N 1024 1.13*1015 1.27*1030 3.27*10150 3.07*10301

To compute 1015 operations on a 100 MFlop/s processor
takes about 130 days

to compute 1016 operations would take over 3.5 years

14

Constant factors

Constant factors and low-order terms are ignored in
algorithm analysis

if the running time depends on the problem size as 2N2 + 5N the
complexity of the algorithm is O(N2)

Lower order terms and constant factors are also important
when choosing an algorithm to solve a specific problem
Example: two algorithms with complexity O(N) and O(N2)

the O(N) algorithm has a constant factor c = 1000
the O(N2) algorithm has a constant factor c = 1

For problems of size smaller than 1000, the O(N2) algorithm
performs better

8

15

Choice of algorithm

Largest improvements in efficiency come from a good choice
of algorithm

make sure that you know the complexity of the algorithm
find alternative algorithms to solve the same problem
compare the complexity of the alternatives
compare the constant factors in the complexity analysis
compare the efforts of implementing the algorithms

Optimizing an inefficient algorithm will only affect the
constant factors of the execution time

16

Programming

Most often we program in high level languages
C, C++, Fortran, Java, ...

Assembly language is only used for special purposes
may be used for small, often executed parts of the code
(inner loops)
may be used to use features of the processor that are not
accessible from a high-level language

Automatically translated into machine code by a compiler
Compiler optimization

the compiler transforms the program into an equivalent but more
efficient program

9

17

Compiler optimization

The compiler analyzes the code and tries to apply
optimizations to improve its performance

recognizes code that can be replaced with equivalent, but more
efficient code

Modern compilers are good at low-level optimization
register allocation, instruction reordering, dead code removal, ...

Avoid using inefficient constructs
Write simple and well-structured code

easier for the compiler to analyze and optimize

Main issues
locality of reference
instruction level parallelism
special-purpose instructions

18

Program execution

Modern processors are very complex systems
superscalar, superpipelined architecture
multi-level cache with pre-fetching
rotating registers
branch prediction
out of order execution

Difficult to understand exactly how instruction are executed
by the processor
Difficult to understand how different alternative program
solutions will affect performance

programmers have a weak understanding of what happens when a
program is executed

10

19

What to optimize

Find out where the program spends its time
unnecessary effort to optimize code that is seldom executed

The 90/10 rule
a program spends 90% of its time in 10% of the code
look for optimizations in this 10% of the code

Tools to find out where a program spends its time
the time command – user and system time
measuring with timer functions in the code
profilers – gprof and tcov
performance counters

20

How much can we improve a program

Example: matrix multiplication
problem size: 1200 x 1200 single-presicion (float)

Execution times:
no optimization: 405 s
O(N3) algorithm from school mathematics, no compiler optimization
full compiler optimizations: 80 s
same algorithm, but with all compiler optimization turned on
manually optimized library code: 14 s
cache blocking, loop unrolling, software pipelining
compiled with all compiler optimization turned on

