
1

1

High-level code optimization

Modern compilers are very good at low-level code
optimization

fairly simple code transformations
limited by the compilers’ ability to analyze the code

The programmer can help the compiler by using a clear and
simple programming style
More advanced optimizations have to be done by the
programmer

code transformation techniques applied at the source code level
need an understanding about the computations of program, how
data is accessed and the dependencies between data

2

Operation counting

Estimate how many load, store, floating-point and integer
operations are executed in a loop

indicates how well the instruction mix fits the processor architecture
we know how many load/store, floating-point and integer operations
can be executed per clock cycle

Example 1: adding two arrays
one floating-point addition,
three memory operations
load A[i], load B[i], add, store A[i]
ratio of memory to floating-point operations is 3:1
performance will be limited by the time to access memory

Assume that address calculations, loop counter incrementing
and branching are executed by separate functional units

for (i=0; i<N; i++) {
  A[i] = A[i]+B[i];
}



2

3

Operation counting (cont.)

Example 2:  element-wise multiplication of arrays of complex
numbers

real part in arrays xr, yr
imaginary part in arrays
xi, yi

Six memory operations, six floating-point operations
load xr[i], load yr[i], multiply, load xi[i], load yi[i], multiply, subtact,
store xr[i]
operands for the second statement are already loaded in registers
multiply, multiply, add, store xi[i]

Better balance than in previous example
values loaded into registers are reused
but if we use a multiply-and-add instruction, the loop is still limited
by memory references

for (i=0; i<N; i++) {
  tmp = xr[i]*yr[i] - xi[i]*yi[i];
  xi[i] = xr[i]*yi[i] + xi[i]*yr[i];
  xr[i] = tmp;
}

4

Loop optimization

Loops are important targets for high-level code optimization
heaviest computations in a program are normally in loop nests
(loops within loops)
compilers may not be able to analyze complicated loop structures
and do automatic code transformations

Goals
improve memory access patterns

access data with unit stride
reuse values that are loaded into registers

increase instruction level parallelism
bigger basic blocks

Loop unrolling is a very important code optimization method
also on source code level

can also unroll outer loops in a nested loop structure



3

5

Outer loop unrolling

If the inner loop can’t be unrolled, outer loops may be unrolled
if the inner loop is very short
if data dependencies makes it impossible to unroll the inner loop

Example:
unroll outer loop by 4
loads of Y[j] can be hoisted

Loop unrolling increases
register pressure

for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    A[i,j] += X[i]*Y[j];

for (i=0; i<N; i+=4)
  for (j=0; j<N; j++) {
    A[i,j]   += X[i]*Y[j];
    A[i+1,j] += X[i+1]*Y[j];
    A[i+2,j] += X[i+2]*Y[j];
    A[i+3,j] += X[i+3]*Y[j];
  }

6

Loop fusion

Combine loops that operate on the same data
improves cache usage, reuses values that have been loaded into
registers
reduces loop overhead
increases instruction level parallelism

Opposite technique is loop fission
split up big loops into smaller

for (i=0; i<N; i++) {
  tmp[i] = X[i]*Y[i];
}
for (i=0; i<N; i++) {
  Z[i] = W[i]+tmp[i];
}

for (i=0; i<N; i++) {
  Z[i] = W[i]+X[i]*Y[i];
}



4

7

Loop peeling

A small number of iterations from the beginning and/or end of
a loop are removed and executed separately

for example handling of boundary
conditions

Removes branches from the loop
results in larger basic blocks
more instruction level parallelism

for (i=0; i<N; i++) {
  if (i=0)
     X[i] = 0;
  else if (i=N)
     X[i] = N;
  else
    X[i] = X[i]*c;
}

X[i] = 0;
for (i=1; i<N-1; i++) {
  X[i] = X[i]*c;
}
X[N] = N;

8

Loop interchange

Rearrange loops so that memory is accessed with unit stride
In C and C++, matrixes are stored in row-major order

in Fortran, matrixes are stored in column-major order

Accessing consecutive memory locations uses all data in
cache lines

unit stride
automatic
prefetching

Accessing non-consecutive memory locations generates
large numbers of cache misses

for (i=0; i<rows; i++)
  for (j=0; j<cols; j++)
    X[i][j] = 0;

for (j=0; j<cols; j++)
  for (i=0; i<rows; i++)
    X[i][j] = 0;



5

9

Blocking

Optimization for data that does not fit in the cache
Divide the data into smaller blocks which fit in the cache

do the computation on one block of data at a time

Choose the blocksize so that all the data needed to compute
one block fits into cache
Example: matrix multiplication Z = X*Y

NxN matrixes, N divisible by blocksize
do the multiplication one block at a a time

Z X Y

for (i=0; i<N; i++)
   for (j=0; j<N; j++)
      for (k=0; k<N; k++)
         Z[i][j]+=X[i][k]*Y[k][j];

10

Matrix multiplication with cache blocking

The matrix is divided into blocks of size blocksize x blocksize

for (iblock=0; iblock<N; iblock+=blocksize) {
  ilimit = iblock + blocksize;

  for (jblock=0; jblock<N; jblock+=blocksize) {
    jlimit = jblock + blocksize;

    for (kblock=0; kblock<N; kblock+=blocksize) {
      klimit = kblock + blocksize;

      for (i=iblock; i<ilimit; i++) {
        for (j=jblock; j<jlimit; j++) {
          for (k=kblock; k<klimit; k++) {
            Z[i][j] += X[i][k] * Y[k][j];
          }
        }
      }
    }
  }
}



6

11

Pointers and aliasing

Pointers in C may specify the same memory location
called aliasing

When the compiler analyzes a program, it has to assume that
data that is accessed through pointers may overlap

the compiler is not allowed to rearrange instructions using loop
unrolling, instruction scheduling, hoisting or sinking
has to generate very conservative code for operations on data
accessed through pointers

Give the compiler as much information about data layout as
possible

use static allocation instead of
dynamic

Compilers often have an option
to assume no aliasing

#define N 1000
double A[N][N], B[N][N], d;
...
for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    A[i][j] += B[i][j]*d;

12

Memory alignment
Data alignment can have a significant impact on peformance
The compiler by default aligns data on natural boundaries

64-bit values are by default aligned on word boundaries
Aligning 64-bit values on 8 byte boundaries can improve
performance

increases memory usage
structures containing 64-bit data types will have a different memory
layout than the default

Data used in MMX and SSE operations should be aligned on
16 byte boundaries
Aligning branch targets is more important for architectures
with a traditional L1 data cache

not so important in architectures with a trace cache



7

13

gcc options for alignment
gcc compiler switches for alignment

-malign-double
aligns double-precision variables on 8 byte boundaries
(defalult is 4 byte boundaries)

-malign-jumps=n
align branch targets on 2n byte boundaries
(defalult is to align branches on 16 byte (=24) boundaries)

-malign-loops=n
align loops on 2n byte boundaries
(defalult is to align branches on 16 byte (=24) boundaries)

-malign-functions=n
align the start of functions to 2n byte boundaries
(default is 4 bytes for 386 and 16 bytes for 486 architecture)

-mpreferred-stack-boundary=n
attempt to keep stack aligned to 2n byte boundaries
(default is 16 bytes)

14

Explicite aligning

Can also explicitely align pointers to dynamically allocated
memory

Allocate memory for one more element than needed
advance pointer to the memory block with 7 bytes
(to end of the first doubleword)
mask out the 3 last bits to get
an 8-byte aligned address

/* Allocate an array of N 8-byte aligned double */
double *p_tmp, *p; 
p_tmp = (double *)malloc(sizeof(double)*(N+1));
p = (p_tmp+7) & (-0x7);

176

172

171 168 p_tmp

180

184

188

192

p[0]

p
p[1]

p[2]

164

p_tmp+7



8

15

Aligning structures

Members of structures should be naturally aligned
pad the structure to a multiple of the size of the largest member,
if necessary

Declare variables in a structure in order of size of members
largest members first, smallest last

Arrays of structures will be naturally aligned
Example:

two 8-byte double x, y
one 4-byte int value
one byte flag
three padding bytes

typedef struct {
    double x,y;
    int value;
    char flag;
    char pad[3];
} Point;

16

Arrays of Structures or Structures of Arrays

AoS – Array of Structures
define a structure describing the data items
we operate on
allocate an array of structures
structures are contiguous in memory
(in a cache line)

SoA – Structure of Arrays
structure containing a number of separate
arrays for the items we operate on
allocate a number of arrays of same length
items in one array are contiguous in memory
(in a cache line)

SoA is better suited for SIMD operation
also better if some elements are accessed more seldom

typedef struct {
    double x,y,z;
    int a,b,c;
} Vertex;

Vertex V[N];

typedef struct{
    double x[N];
    double y[N];
    double z[N];
    int a[N];
    int b[N];
    int c[N];
} VerticeList;

VerticeList V;



9

17

Avoiding cache trashing

Avoid allocating contiguous arrays with a size (in bytes) that
is a power of 2

arrays may map to the same
cache line
L1 cache is 4-way (or 2-way)
set associative
all accesses may map to the
same location in cache

Pad arrays with a multiple of
 the cache line size

add 128 bytes to the size
of arrays

const int N=1024
...
double X[N], Y[N], Z[N];
int    a[N], b[N], c[N];
...
for (i=0; i<N; i++) {
  X[N] = Y[N] + Z[X];
  a[N] = b[N] + c[N];
}

const int N=1024;
const int N_p=N+16;
...
double X[N_p], Y[N_p], Z[N_p];
int    a[N_p], b[N_p], c[N_p];
...
for (i=0; i<N; i++) {
   ...

18

Branch prediction

Eliminate branches
loop unrolling, unswitching, fusion, function inlining

Avoid branches that can not be predicted
brances that depend on the dynamic execution
random behaviour can not be predicted

Avoid deep nesting of subroutines
use iterative functions instead of recursive, if possible

Order the cases in switch statements according to probability
of occurence

most common case first



10

19

Floating-point computations

Ensure that floating-point data is aligned
Use multiplication instead of division

but beware of consequences for accuracy

Avoid over- and underflow and denormal operands
keep floating-point values within range

overflow and underflow may cause very high overhead
small floating-point values can be represented with highest precision

use float or double as needed by the application
float operations are faster, especially division and square root
float also need less memory

Minimise floating-point to integer conversions

20

Variables and declarations

Provide the compiler with information about the computation
use prototypes for all functions
declare local functions as static
use the const type qualifier for constants
use local variables, minimise use of global variables
use arrays instead of pointers

Use 32-bit data types for integer values
Avoid the register modifier

the compiler can do better register allocation than the programmer
Declare local variables in order of base type size
Avoid unnecessary type casting

floating-point constants are by default double, unless explicitely
declared as float:  x=y+3.1415f;


