Floating-point computation

- Real values and floating point values
- Floating-point representation
- IEEE 754 standard
 - representation
 - rounding
 - special values

Real values

- Not all values can be represented exactly in a computer with limited storage capacity
 - rational numbers: 1/3 ≈ 0,33333...
 - irrational numbers: $\pi \approx 3,1415...$
- If we know the needed accuracy, fixed-point representation can be used
 - always use a fixed number of decimals
- *Example*: two significant decimals
 - 125,01 is scaled by 100
 - 12501 can be exactly stored in binary representation
- When stored in a computer, real values have to be rounded to some accuracy

2

Real value representation

- ◆ 6.02 x 10⁶ = 6020000, 3.48 x 10⁻³ = 0,00348
- When stored in a computer, we use a fixed number of positions for the mantissa and exponent
 - the base is implicit and does not have to be stored
- Difference between two successive values is not uniform over the range of values we can represent
- Example: 3 digit mantissa, exponent between -6 and +6
 - + two consecutive small numbers: 1.72×10^{-6} and 1.73×10^{-6} the difference is $0.00000001 = 1.0 \times 10^{-8}$
 - two consecutive large numbers: 6.33 x 10⁶ and 6.34 x 10⁶ the difference is 10000 = 1.0 x 10⁴

3

4

Normalization

- There are multiple representations of a number in scientific notion

 - ◆ 0.20 x 10⁵ = 2000
 - 0.02 x 10⁶ = 2000
- In a normalized number the mantissa is shifted (and the exponent justified) so that there is exactly one nonzero digit to the left of the decimal point

Precision

Assume we store normalized numbers with 7 digits of precision (float)

- X = 1.25 x 10⁸ = 125 000 000,0
- Y = 7.50 x 10⁻³ = 0,0075
- X+Y = 1.25000000075 x 10⁸

+ 0.0075
125000000.0075

The result can not be stored with the available presicion

- will be truncated to 1.25 x 10⁸
- If we repeat this in a loop, the result may be far off from the expected

Associativity

- For the same reason, the order of caclulation may affect the result
 - the small values in the array Y sum up to a value that is significant when added to the large value in X
- Matemathically, associative transformations are allowed
 - not computationally when using floating-point values

```
float X;
float sum=1.0;
float Y[100000];
   . . .
for (i=0;i<100000;i++) {
   sum += Y[i]
}
X += sum;
```

- Fortran is very strict about the order of evaluation of expressions
 - C is not so strict

Guard digits

- To improve the precision of floating-point computations guard digits are used
 - extra bits of precision used while performing computations
 - no need for additional sigificant bits for stored values
- Assume we use five digits for representing floating-point numbers
 - 10.001 9.9993 = 0.0017
- If we use only five digits when aligning the decimal points in the computation, we get truncation

10.001
- 9.9993
0.002

 if we use 6 digits of accuracy when aligning operands and round the result before normalization, we get the correct result

7

IEEE 754 floating-point standard

- IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
- Describes the
 - storage formats
 - exact specificiation of the results of operations on floating-point values
 - special values
 - runtime behaviour on illegal operations (exceptions)
- Does not specify how floating-point operations should be implemented
 - computer vendors are free to develop efficient solutions, as long as they behave as specified in the standard

IEEE 754 formats

Floating-point numbers are 32-bit, 64-bit or 80-bit

- Fortran REAL*4 is also refered to as REAL
- Fortran REAL*8 is also refered to as DOUBLE

IEEE 754	FORTRAN	С	Bits	Exponent bits	Significand bits	
Single	REAL*4	float	32	8	24	1
Double	REAL*8	double	64	11	53	
Double Extended	REAL*10	long double	≥80	≥15	≥64	
					s Single [+	exp significand ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	Doubl	e ∭ ⊢	exp ↓ ↓ ↓ ↓ ↓ ◆ 11 ←		sigr	iificand 52 ←

Range and accuracy

The minimum normalized number is the smallest number that can be represented at full precision

IEEE 754	Minimum normalized nr	Largest finite nr	Base-10 accuracy
Single	1.2 E -38	3.4 E +38	6–9 digits
Double	2.2 E -308	1.8 E +308	15–17 digits
Double 3.4 E -4932 Extended		1.2 E +4932	18–21 digits

- Smaller values are represented as subnormal numbers, with loss of precision
 - smallest 32-bit subnormal number is 2.0 E -45
 - accuracy 1–2 base-10 digits

IEEE format

- The high-order bit (bit 31) is the sign of the number
 - does not use 2's complement
- The base-2 exponent is stored in bits 23-30
 - biased by adding 127
 - can represent exponent values from -126 to +127
 - for 64-bit values the bias is 1023
- The mantissa is converted to base-2 and normalized
 one non-zero digit to the left of the binary point
- All normalized binary numbers have a 1 as the first bit
 do not have to store the leading 1
- The mantissa stored in this format is called the *significand*

Rounding

- Decide wether to round the last storable bit up or down
- If both guard digits are zero, the result is exactly the extended sum
- If the guard digits are 01, the result is rounded down
 - error is one guard digit unit
- If both guard digits are one, the result is rounded up
- When guard digits are 10 we have the largest error
 - look at the sticky bit do decide which way to round the result

Extended sum	Stored value
1.0100 <mark>00</mark> x	1.0100
Extended sum	Stored value
1.0100 <mark>01x</mark>	1.0100
Extended sum	Stored value
Extended sum	Stored value
Extended sum	Stored value
Extended sum 1.0100 11x Extended sum	Stored value
Extended sum 1.0100 11x Extended sum 1.0100 1.0100 101	Stored value Stored value 1.0101

15

Special values

The standard also defines a number of special values

Special value	Exponent	Significand
+ or – 0	00000000	0
Denormalized number	00000000	nonzero
NaN (Not a Number)	11111111	nonzero
+ or – Infinity	11111111	0

- Denormalized numbers are used to repesent values smaller than the minimum normalized number
 - exponent is zero
 - significand bits are shifted right (incuding the implicit leading 1-bit)
 - gradual underflow last nonzero bit is shifted out
- Values that are increased beyond the maxmimum value get the special value Infinity
 - overflow

Special values (cont.)

NaN indicates a number that is not mathematically defined

- divide zero by zero
- divide Infinity by Infinity
- square root of -1
- any operation on NaN produces NaN as result
- The standard defines a way of detecting results that are not mathematically defined
 - cause a trap to a subroutine when results that can not be represented are produced
 - overflow to infinity, underflow to zero, division by zero, etc.
 - cause a jump to a subroutine that handles the exception
 - can cause significant overhead on the computation

17

Compiler options

- Some compilers may violate some of the rules in the standard to produce faster code
 - assumes arguments to square root function is non-negative
 - assumes no results of operations will be NaN
- May produce incorrect numerical results

Example:

gcc -ffast-math