
1

1

Floating-point computation

Real values and floating point values
Floating-point representation
IEEE 754 standard

representation
rounding
special values

2

Real values

Not all values can be represented exactly in a computer with
limited storage capacity

rational numbers: 1/3 ≈ 0,33333 . . .
irrational numbers: π ≈ 3,1415 . . .

If we know the needed accuracy, fixed-point representation
can be used

always use a fixed number of decimals

Example: two significant decimals
125,01 is scaled by 100
12501 can be exactly stored in binary representation

When stored in a computer, real values have to be rounded
to some accuracy

2

3

Real value representation

In scientific notion, values are represened by a mantissa,
base and exponent

6.02 x 106 = 6020000, 3.48 x 10-3 = 0,00348

When stored in a computer, we use a fixed number of
positions for the mantissa and exponent

the base is implicit and does not have to be stored

Difference between two successive values is not uniform
over the range of values we can represent
Example: 3 digit mantissa, exponent between -6 and +6

two consecutive small numbers: 1.72 x 10-6 and 1.73 x 10-6

the difference is 0.00000001 = 1.0 x 10-8

two consecutive large numbers: 6.33 x 106 and 6.34 x 106

the difference is 10000 = 1.0 x 104

4

Normalization

There are multiple representations of a number in scientific
notion

2.00 x 104 = 2000
0.20 x 105 = 2000
0.02 x 106 = 2000

In a normalized number the mantissa is shifted (and the
exponent justified) so that there is exactly one nonzero digit
to the left of the decimal point

Normalized form

3

5

Precision

Assume we store normalized numbers with 7 digits of
precision (float)

X = 1.25 x 108 = 125 000 000,0
Y = 7.50 x 10-3 = 0,0075
X+Y = 1.250000000075 x 108

The result can not be stored with the available presicion
will be truncated to 1.25 x 108

If we repeat this in a loop, the
result may be far off from
the expected

 125000000.0000
+ 0.0075

 125000000.0075

float X;
float Y[100000];
 . . .
for (i=0;i<100000;i++) {
 X += Y[i]
}

6

Associativity

For the same reason, the order of caclulation may affect the
result

the small values in the array Y
sum up to a value that is
significant when added to the
large value in X

Matemathically, associative
transformations are allowed

not computationally when using
floating-point values

Fortran is very strict about the order of evaluation of
expressions

C is not so strict

float X;
float sum=1.0;
float Y[100000];
 . . .
for (i=0;i<100000;i++) {
 sum += Y[i]
}
X += sum;

4

7

Guard digits

To improve the precision of floating-point computations guard
digits are used

extra bits of precision used while performing computations
no need for additional sigificant bits for stored values

Assume we use five digits for representing floating-point
numbers

10.001 - 9.9993 = 0.0017
If we use only five digits when aligning
the decimal points in the computation,
we get truncation

if we use 6 digits of accuracy when aligning operands and round
the result before normalization, we get the correct result

 10.001
- 9.9993

 0.002

8

IEEE 754 floating-point standard

IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
Describes the

storage formats
exact specificiation of the results of operations on floating-point
values
special values
runtime behaviour on illegal operations (exceptions)

Does not specify how floating-point operations should be
implemented

computer vendors are free to develop efficient solutions, as long as
they behave as specified in the standard

5

9

IEEE 754 formats

Floating-point numbers are 32-bit, 64-bit or 80-bit
Fortran REAL*4 is also refered to as REAL
Fortran REAL*8 is also refered to as DOUBLE

IEEE 754 FORTRAN C Bits Exponent
bits

Significand
bits

Single REAL*4 float 32 8 24

Double REAL*8 double 64 11 53

Double
Extended

REAL*10 long
double

≥80 ≥15 ≥64

s exp significand

238

s exp significand

5211

Single

Double

10

Range and accuracy

The minimum normalized number is the smallest number that
can be represented at full precision

IEEE 754 Minimum
normalized nr

Largest
finite nr

Base-10
accuracy

Single 1.2 E -38 3.4 E +38 6–9 digits

Double 2.2 E -308 1.8 E +308 15–17 digits

Double
Extended

3.4 E -4932 1.2 E +4932 18–21 digits

Smaller values are represented as subnormal numbers, with
loss of precision

smallest 32-bit subnormal number is 2.0 E -45
accuracy 1–2 base-10 digits

6

11

IEEE format

The high-order bit (bit 31) is the sign of the number
does not use 2’s complement

The base-2 exponent is stored in bits 23-30
biased by adding 127
can represent exponent values from -126 to +127
for 64-bit values the bias is 1023

The mantissa is converted to base-2 and normalized
one non-zero digit to the left of the binary point

All normalized binary numbers have a 1 as the first bit
do not have to store the leading 1

The mantissa stored in this format is called the significand
s exp significand

238

12

Converting from base-10 to IEEE format

Example of converting 172.625 from base-10 to IEEE format
First convert 172.625 to base-2

172 = 128 + 32 + 8 + 4 = 27 + 25 + 23 + 22

0.625 = 0.5 + 0.125 = 2-1 + 2-3

Normalize the base-2 number
shift the binary point 7 steps to the right
adjust the exponent by adding 7

172.625 Base 10
10101100.101 * 20 Base 2
1.0101100101 * 27 Base 2 normalized

7

13

Converting to IEEE format (cont.)

Add bias 127 to the exponent
7 + 127 = 134 = 128 + 4 + 2 = 27 + 22 + 21

Drop the leading 1-bit from the significand
extend to 23 bits

Set sign bit to 0
positive number

172.625 Base 10
10101100.101 * 20 Base 2
1.0101100101 * 27 Base 2 normalized

100001100 01011001010000000000000

SignificandExponentSign

14

Guard digits

The IEEE 754 standard requires the use of 2 guard digits and
one sticky bit in floating-point computations

used for rounding the result
The guard digits act as two extra bits of precision

as if the significand were 25 bits instead of 23
The sticky bit is set to 1 if any of the bits beyond the guard
bits would become nonzero, in either operand

used for rounding the result when
we can not decide only based
 on the guard digits

Example:
5 bits of precision

1.01000100000000000
0.00000100000001010

1.01001000000001010
1.0100101
1.0101

Can not be storedg s

Normal binary
addition

Infinite precise sum

Sum + guard + sticky

Rounded stored value

8

15

Rounding

Decide wether to round the last storable bit up or down
If both guard digits are zero, the
result is exactly the extended sum
If the guard digits are 01, the result
is rounded down

error is one guard digit unit

If both guard digits are one, the
result is rounded up
When guard digits are 10 we have
the largest error

look at the sticky bit do decide which
way to round the result

1.0100 00x 1.0100

Extended sum Stored value

1.0100 01x 1.0100

Extended sum Stored value

1.0100 11x 1.0101

Extended sum Stored value

1.0100 101 1.0101

Extended sum Stored value

16

Special values

The standard also defines a number of special values

Special value Exponent Significand

+ or – 0 00000000 0

Denormalized number 00000000 nonzero

NaN (Not a Number) 11111111 nonzero

+ or – Infinity 11111111 0

Denormalized numbers are used to repesent values smaller
than the minimum normalized number

exponent is zero
significand bits are shifted right (incuding the implicit leading 1-bit)
gradual underflow – last nonzero bit is shifted out

Values that are increased beyond the maxmimum value get
the special value Infinity

overflow

9

17

Special values (cont.)

NaN indicates a number that is not mathematically defined
divide zero by zero
divide Infinity by Infinity
square root of -1
any operation on NaN produces NaN as result

The standard defines a way of detecting results that are not
mathematically defined

cause a trap to a subroutine when results that can not be
represented are produced
overflow to infinity, underflow to zero, division by zero, etc.
cause a jump to a subroutine that handles the exception
can cause significant overhead on the computation

18

Compiler options

Some compilers may violate some of the rules in the
standard to produce faster code

assumes arguments to square root function is non-negative
assumes no results of operations will be NaN

May produce incorrect numerical results
Example:

gcc -ffast-math

