Alpha 21164 Microprocessor

Data Sheet

Order Number: EC-QAEPC-TE

Revision/Update Information:

This document supersedes the *Alpha 21164 Microprocessor Data Sheet* (EC–QAEPB–TE).

Digital Equipment Corporation Maynard, Massachusetts

December 1995

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor.

While Digital believes the information included in this publication is correct as of the date of publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

© Digital Equipment Corporation 1994, 1995.

All rights reserved. Printed in U.S.A.

AlphaGeneration, DEC, DECchip, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

GRAFOIL is a registered trademark of Union Carbide Corporation. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc. NetWare is a registered trademark of Novell, Inc. OSF/1 is a registered trademark of Open Software Foundation, Inc. Prentice Hall is a registered trademark of Prentice-Hall, Inc. of Englewood Cliffs, NJ. Windows NT is a trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

1	About This Data Sheet	1
2	Alpha 21164 Microprocessor Features	2
3	Microarchitecture	3
3.1	Instruction Fetch/Decode and Branch Unit	5
3.1.1	Instruction Prefetch and Decode	5
3.1.2	Branch Prediction	5
3.1.3	Instruction Translation Buffer	5
3.1.4	Interrupts	6
3.2	Integer Execution Unit	6
3.3	Floating-Point Execution Unit	7
3.4	Memory Address Translation Unit	7
3.4.1	Data Translation Buffer	7
3.4.2	Miss Address File	8
3.4.3	Store Execution	8
3.4.4	Write Buffer	8
3.5	Cache Control and Bus Interface Unit	9
3.6	Cache Organization	9
3.6.1	Data Cache	9
3.6.2	Instruction Cache	9
3.6.3	Second-Level Cache	10
3.6.4	External Cache	10
3.7	Serial Read-Only Memory Interface	10
3.8	Pipeline Organization	10
4	Pinout and Signal Descriptions	12
4.1	Pin Assignment	12
4.2	Alpha 21164 Packaging	17
4.3	Alpha 21164 Microprocessor Logic Symbol	18
4.4	Alpha 21164 Signal Names and Functions	20
5	Alpha 21164 Microprocessor Functional Overview	33
5.1	Clocks	34
5.1.1	CPU Clock	35
5.1.2	System Clock	35
5.1.3	Reference Clock	36

5.2	Board-Level Backup Cache Interface	37
5.2.1	Bcache Victim Buffers	38
5.2.2	Cache Coherence Protocol	39
5.3	System Interface	41
5.3.1	Commands and Addresses	41
5.4	Interrupts	44
5.4.1	Interrupt Signals During Initialization	44
5.4.2	Interrupt Signals During Normal Operation	46
5.5	Test Modes	46
5.5.1	Normal Test Interface Mode	47
5.5.2	Serial ROM Interface Port	47
5.5.3	Serial Terminal Port	48
5.5.4	IEEE 1149.1 Test Access Port	48
5.5.5	Test Status Signals	48
6	Alpha Architecture Basics	49
6.1	The Architecture	49
6.2	Addressing	50
6.3	Integer Data Types	50
6.4	Floating-Point Data Types	51
7	Alpha 21164 Microprocessor IEEE Floating-Point	•••
-	Conformance	52
8	Internal Processor Registers	55
8.1	Instruction Fetch/Decode Unit and Branch Unit (Ibox)	
-	IPRs	59
8.1.1	Istream Translation Buffer Tag Register (ITB_TAG)	59
8.1.2	Instruction Translation Buffer Page Table Entry	
	(ITB_PTE) Register	60
8.1.3	Instruction Translation Buffer Address Space Number	
	(ITB_ASN) Register	62
8.1.4	Instruction Translation Buffer Page Table Entry	-
	Temporary (ITB_PTE_TEMP) Register	63
8.1.5	Instruction Translation Buffer Invalidate All Process	
00	(ITB_IAP) Register	63
8.1.6	Instruction Translation Buffer Invalidate All (ITB_IA)	
00	Register	63
8.1.7	Instruction Translation Buffer IS (ITB_IS) Register	64
8.1.8	Formatted Faulting Virtual Address	01
00	(IFAULT_VA_FORM) Register	65
8.1.9	Virtual Page Table Base Register (IVPTBR)	66
8.1.10	Icache Parity Error Status (ICPERR_STAT) Register	67
8.1.11	Icache Flush Control (IC_FLUSH_CTL) Register	67
8.1.12	Exception Address (EXC_ADDR) Register	68
8.1.13	Exception Summary (EXC_SUM) Register	69
0.1.10	Exception Summary (EXC_SOM) register	03

8.1.14	Exception Mask (EXC_MASK) Register	71
8.1.15	PAL Base Address (PAL_BASE) Register	72
8.1.16	Ibox Current Mode (ICM) Register	73
8.1.17	Ibox Control and Status Register (ICSR)	74
8.1.18	Interrupt Priority Level Register (IPLR)	77
8.1.19	Interrupt ID (INTID) Register	78
8.1.20	Asynchronous System Trap Request Register	
	(ASTRR)	79
8.1.21	Asynchronous System Trap Enable Register (ASTER)	80
8.1.22	Software Interrupt Request Register (SIRR)	81
8.1.23	Hardware Interrupt Clear (HWINT_CLR) Register	82
8.1.24	Interrupt Summary Register (ISR)	83
8.1.25	Serial Line Transmit (SL_XMIT) Register	85
8.1.26	Serial Line Receive (SL_RCV) Register	86
8.1.27	Performance Counter (PMCTR) Register	87
8.2	Memory Address Translation Unit (Mbox) IPRs	92
8.2.1	Dstream Translation Buffer Address Space Number	
	(DTB_ASN) Register	92
8.2.2	Dstream Translation Buffer Current Mode (DTB_CM)	
	Register	93
8.2.3	Dstream Translation Buffer Tag (DTB_TAG) Register	
		94
8.2.4	Dstream Translation Buffer Page Table Entry	
	(DTB_PTE) Register	95
8.2.5	Dstream Translation Buffer Page Table Entry Temporary	
	(DTB_PTE_TEMP) Register	97
8.2.6	Dstream Memory Management Fault Status (MM_STAT)	
	Register	98
8.2.7	Faulting Virtual Address (VA) Register	100
8.2.8	Formatted Virtual Address (VA_FORM) Register	101
8.2.9	Mbox Virtual Page Table Base Register (MVPTBR)	103
8.2.10	Dcache Parity Error Status (DC_PERR_STAT) Register	
		104
8.2.11	Dstream Translation Buffer Invalidate All Process	
	(DTB_IAP) Register	106
8.2.12	Dstream Translation Buffer Invalidate All (DTB_IA)	
0.0.40	Register	106
8.2.13	Dstream Translation Buffer Invalidate Single (DTB_IS)	407
0.0.4.4	Register	107
8.2.14	Mbox Control Register (MCSR)	108
8.2.15	Dcache Mode (DC_MODE) Register	110
8.2.16	Miss Address File Mode (MAF_MODE) Register	112
8.2.17	Dcache Flush (DC_FLUSH) Register	114

8.2.18	Alternate Mode (ALT_MODE) Register	114
8.2.19	Cycle Counter (CC) Register	115
8.2.20	Cycle Counter Control (CC_CTL) Register	116
8.2.21	Dcache Test Tag Control (DC_TEST_CTL) Register	117
8.2.22	Dcache Test Tag (DC_TEST_TAG) Register	118
8.2.23	Dcache Test Tag Temporary (DC_TEST_TAG_TEMP)	
	Register	120
8.3	External Interface Control (Cbox) IPRs	122
8.3.1	Scache Control (SC_CTL) Register (FF FFF0 00A8)	123
8.3.2	Scache Status (SC_STAT) Register (FF FFF0 00E8)	126
8.3.3	Scache Address (SC_ADDR) Register (FF FFF0 0188)	129
8.3.4	Bcache Control (BC_CONTROL) Register	
	(FF FFF0 0128)	132
8.3.5	Bcache Configuration (BC_CONFIG) Register	
	(FF FFF0 01C8)	138
8.3.6	Bcache Tag Address (BC_TAG_ADDR) Register	
	(FF FFF0 0108)	143
8.3.7	External Interface Status (EI_STAT) Register	
	(FF FFF0 0168)	145
8.3.8	External Interface Address (EI_ADDR) Register	
	(FF FFF0 0148)	148
8.3.9	Fill Syndrome (FILL_SYN) Register (FF FFF0 0068)	149
8.4	PALcode Storage Registers	153
8.5	Restrictions	154
8.5.1	Cbox IPR PALcode Restrictions	154
8.5.2	PALcode Restrictions—Instruction Definitions	155
9	PALcode	159
9.1	PALcode Entry Points	159
9.1.1	PALcode Trap Entry Points	160
9.2	Required PALcode Function Codes	161
9.3	Opcodes Reserved for PALcode	161
10	Alpha Instruction Summary	162
10.1	Opcodes Reserved for Digital	167
10.2	Opcodes Reserved for PALcode	168
10.3	IEEE Floating-Point Instructions	168
10.4	VAX Floating-Point Instructions	170
10.5	Opcode Summary	171
10.6	Required PALcode Function Codes	173
11	Electrical Data	174
11.1	Electrical Characteristics	174

11.2	dc Characteristics	175
11.2.1	Power Supply	175
11.2.2	Input Signal Pins	175
11.2.3	Output Signal Pins	175
11.3	Clocking Scheme	177
11.3.1	Input Clocks	177
11.3.2	Clock Termination and Impedance Levels	179
11.3.3	ac Coupling	179
11.4	ac Characteristics	182
11.4.1	Test Configuration	182
11.4.2	Pin Timing	183
11.4.3	Digital Phase-Locked Loop	189
11.4.4	Timing—Additional Signals	190
11.4.5	Timing of Test Features	194
11.4.6	Icache BiSt Operation Timing	194
11.4.7	Automatic SROM Load Timing	196
11.4.8	Clock Test Modes	197
11.4.9	Normal Mode	197
11.4.10	Chip Test Mode	198
11.4.11	Module Test Mode	198
11.4.12	Clock Test Reset Mode	198
11.4.13	IEEE 1149.1 (JTAG) Performance	198
11.5	Power Supply Considerations	199
11.5.1	Decoupling	199
11.5.2	Power Supply Sequencing	200
12	Thermal Management	202
12.1	Operating Temperature	202
12.2	Heat Sink Specifications	204
12.3	Thermal Design Considerations	205
13	Mechanical Specifications	206

Figures

1	Alpha 21164 Microprocessor Block/Pipe Flow Diagram	4
2	Instruction Pipeline Stages	11
3	Alpha 21164 Top View (Pin Down)	17
4	Alpha 21164 Bottom View (Pin Up)	18
5	Alpha 21164 Microprocessor Logic Symbol	19
6	Alpha 21164 Clock Signals	34
7	Alpha 21164 Uniprocessor Clock	35
8	Alpha 21164 Reference Clock for Multiprocessor Systems	36

9	Alpha 21164 Bcache Interface Signals	37
10	Alpha 21164 System Interface Signals	41
11	Alpha 21164 Interrupt Signals	44
12	Alpha 21164 Test Signals	46
13	Istream Translation Buffer Tag Register (ITB_TAG)	59
14	Instruction Translation Buffer Page Table Entry (ITB_PTE)	
	Register Write Format	60
15	Instruction Translation Buffer Page Table Entry (ITB_PTE)	
	Register Read Format	61
16	Instruction Translation Buffer Address Space Number	
	(ITB_ASN) Register	62
17	Instruction Translation Buffer IS (ITB_IS) Register	64
18	Formatted Faulting Virtual Address (IFAULT_VA_FORM)	05
10	Register (NT_Mode=0)	65
19	Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (NT_Mode=1)	65
20	Virtual Page Table Base Register (IVPTBR) (NT_Mode=0)	66
20	Virtual Page Table Base Register (IVPTBR) (NT_Mode=1)	66
22	Icache Parity Error Status (ICPERR_STAT) Register	67
23	Exception Address (EXC_ADDR) Register	68
24	Exception Summary (EXC_SUM) Register	69
25	Exception Mask (EXC_MASK) Register	71
26	PAL Base Address (PAL_BASE) Register	72
27	Ibox Current Mode (ICM) Register	73
28	Ibox Control and Status Register (ICSR)	74
29	Interrupt Priority Level Register (IPLR)	77
30	Interrupt ID (INTID) Register	78
31	Asynchronous System Trap Request Register (ASTRR)	79
32	Asynchronous System Trap Enable Register (ASTER)	80
33	Software Interrupt Request Register (SIRR)	81
34	Hardware Interrupt Clear (HWINT_CLR) Register	82
35	Interrupt Summary Register (ISR)	83
36	Serial Line Transmit (SL_XMIT) Register	85
37	Serial Line Receive (SL_RCV) Register	86
38	Performance Counter (PMCTR) Register	87
39	Dstream Translation Buffer Address Space Number	01
	(DTB_ASN) Register	92
	0	

40	Dstream Translation Buffer Current Mode (DTB_CM)	
	Register	93
41	Dstream Translation Buffer Tag (DTB_TAG) Register	94
42	Dstream Translation Buffer Page Table Entry (DTB_PTE)	00
40	Register—Write Format	96
43	Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP) Register	97
44	Dstream Memory Management Fault Status (MM_STAT)	97
44	Register	98
45	Faulting Virtual Address (VA) Register	100
46	Formatted Virtual Address (VA_FORM) Register	100
10	(NT_Mode=1)	101
47	Formatted Virtual Address (VA_FORM) Register	
	(NT_Mode=0)	101
48	Mbox Virtual Page Table Base Register (MVPTBR)	103
49	Dcache Parity Error Status (DC_PERR_STAT) Register	104
50	Dstream Translation Buffer Invalidate Single (DTB_IS)	
	Register	107
51	Mbox Control Register (MCSR)	108
52	Dcache Mode (DC_MODE) Register	110
53	Miss Address File Mode (MAF_MODE) Register	112
54	Alternate Mode (ALT_MODE) Register	114
55	Cycle Counter (CC) Register	115
56	Cycle Counter Control (CC_CTL) Register	116
57	Dcache Test Tag Control (DC_TEST_CTL) Register	117
58	Dcache Test Tag (DC_TEST_TAG) Register	118
59	Dcache Test Tag Temporary (DC_TEST_TAG_TEMP)	
	Register	120
60	Scache Control (SC_CTL) Register	123
61	Scache Status (SC_STAT) Register	126
62	Scache Address (SC_ADDR) Register	130
63	Bcache Control (BC_CONTROL) Register	132
64	Bcache Configuration (BC_CONFIG) Register	138
65	Bcache Tag Address (BC_TAG_ADDR) Register	143
66	External Interface Status (EI_STAT) Register	146
67	External Interface Address (EI_ADDR) Register	148
68	Fill Syndrome (FILL_SYN) Register	150
69	osc_clk_in_h,l Input Network and Terminations	178

70	Clock Input Differential Impedance	181
71	Input/Output Pin Timing	182
72	Bcache Timing	185
73	sys_clk System Timing	187
74	ref_clk System Timing	189
75	BiSt Timing Event–Time Line	195
76	SROM Load Timing Event-Time Line	196
77	Serial ROM Load Timing	197
78	Type 1 Heat Sink	204
79	Type 2 Heat Sink	205
80	Package Dimensions	207

Tables

1	Alphabetic Signal Pin List	12
2	Alpha 21164 Signal Descriptions	20
3	Alpha 21164 Signal Descriptions by Function	30
4	Bcache States for Cache Coherency Protocols	40
5	Alpha 21164 Commands for the System	42
6	System Commands for the 21164	43
7	System Clock Divisor	45
8	System Clock Delay	45
9	Alpha 21164 Test Port Pins	47
10	Ibox, Mbox, Dcache, and PALtemp IPR Encodings	56
11	Granularity Hint Bits in ITB_PTE_TEMP Read Format	63
12	Icache Parity Error Status Register Fields	67
13	Exception Summary Register Fields	69
14	Ibox Control and Status Register Fields	75
15	Software Interrupt Request Register Fields	81
16	Hardware Interrupt Clear Register Fields	82
17	Interrupt Summary Register Fields	84
18	Serial Line Transmit Register Fields	85
19	Serial Line Receive Register Fields	86
20	Performance Counter Register Fields	88
21	PMCTR Counter Select Options	89
22	Measurement Mode Control	91

23	Dstream Memory Management Fault Status Register	00
0.4	Fields	98
24	Formatted Virtual Address Register Fields	102
25	Dcache Parity Error Status Register Fields	105
26	Mbox Control Register Fields	109
27	Dcache Mode Register Fields	111
28	Miss Address File Mode Register Fields	113
29	Alternate Mode Register Settings	114
30	Cycle Counter Control Register Fields	116
31	Dcache Test Tag Control Register Fields	117
32	Dcache Test Tag Register Fields	119
33	Dcache Test Tag Temporary Register Fields	121
34	Cbox Internal Processor Register Descriptions	122
35	Scache Control Register Fields	124
36	Scache Status Register Fields	127
37	SC_CMD Field Descriptions	128
38	Scache Address Register Fields	131
39	Bcache Control Register Fields	133
40	PM_MUX_SEL Register Fields	137
41	Bcache Configuration Register Fields	139
42	Bcache Tag Address Register Fields	144
43	Loading and Locking Rules for External Interface	
	Registers	146
44	EI_STAT Register Fields	147
45	Syndromes for Single-Bit Errors	150
46	Cbox IPR PALcode Restrictions	154
47	PALcode Restrictions Table	155
48	PALcode Trap Entry Points	160
49	Required PALcode Function Codes	161
50	Opcodes Reserved for PALcode	161
51	Instruction Format and Opcode Notation	162
52	Architecture Instructions	163
53	Opcodes Reserved for Digital	167
54	Opcodes Reserved for PALcode	168
55	IEEE Floating-Point Instruction Function Codes	168
56	VAX Floating-Point Instruction Function Codes	170
57	Opcode Summary	172
	- •	

58	Required PALcode Function Codes	173
59	Alpha 21164 Absolute Maximum Ratings	174
60	CMOS dc Input/Output Characteristics	176
61	Input Clock Specification	180
62	Bcache Loop Timing	184
63	Output Driver Characteristics	184
64	Alpha 21164 System Clock Output Timing (sysclk= T_{\emptyset})	186
65	Alpha 21164 Reference Clock Input Timing	188
66	ref_clk System Timing Stages	190
67	Input Timing for sys_clk_out- or ref_clk_in-Based	
	Systems	191
68	Output Timing for sys_clk_out- or ref_clk_in-Based Systems	191
69	Bcache Control Signal Timing	194
70	BiSt Timing for Some System Clock Ratios, Port	101
	Mode=Normal (System Cycles)	195
71	BiSt Timing for Some System Clock Ratios, Port	
	Mode=Normal (CPU Cycles)	196
72	SROM Load Timing for Some System Clock Ratios (System	
	Cycles)	196
73	SROM Load Timing for Some System Clock Ratios (CPU	
	Cycles)	197
74	Test Modes	198
75	IEEE 1149.1 Circuit Performance Specifications	199
76	$\theta_{c}a$ at Various Airflows	202
77	Maximum T_a at Various Airflows	203

1 About This Data Sheet

This data sheet provides a technical overview of the Alpha 21164 microprocessor, including:

- Functional units
- Signal descriptions
- External interface
- Internal processor registers (IPRs)
- Privileged architecture library code (PALcode) instructions
- Electrical characteristics
- Thermal characteristics
- Mechanical packaging

This data sheet is not intended to provide the reader with everything needed to begin chip implementation. For a more comprehensive description of the 21164 and the Alpha architecture, refer to documents listed in the Technical Support and Ordering Information section located at the end of this document.

Document Conventions

Throughout this data sheet, the following conventions are used:

- INT*n* refers to NATURALLY ALIGNED groups of *n* 8-bit bytes. For example:
 - INT16—The four least significant address bits are 0.
 - INT8—The three least significant address bits are 0.
 - INT4—The two least significant address bits are 0.
- Values of 1, 0, and X are used in some tables. The X signifies a *don't care* (1 or 0) convention, which can be determined by the system designer.

2 Alpha 21164 Microprocessor Features

- Fully pipelined 64-bit advanced RISC architecture supports multiple operating systems, including:
 - Microsoft Windows NT
 - OSF/1
 - OpenVMS
- 266-MHz through 300-MHz operation
- Superscalar 4-way instruction issue
- High-bandwidth (128-bit) interface
- Peak execution rate of 1200 MIPS
- 0.50-µm CMOS technology
- Three onchip caches:
 - 8K-byte, direct-mapped, L1 instruction cache
 - 8K-byte, dual-ported, direct-mapped, write-through L1 data cache
 - 96K-byte, 3-way, set-associative, write-back L2 data and instruction cache
- Supports optional board-level L3 cache ranging from 1M byte to 64M bytes

The 21164 microprocessor implements IEEE S_floating and T_floating, and VAX F_floating and G_floating data types and supports longword (32-bit) and quadword (64-bit) integers. Provides byte (8-bit) and word (16-bit) support by byte-manipulation instructions. Limited hardware support is provided for the VAX D_floating data type.

3 Microarchitecture

The Alpha 21164 Microprocessor is a high-performance implementation of Digital's Alpha architecture. The following sections provide an overview of the chip's architecture and major functional units.

Figure 1 is a block diagram of the 21164. A larger version of this figure is printed on a foldout page at the end of the *Alpha 21164 Microprocessor Hardware Reference Manual*.

The 21164 consists of the following sections (Figure 1):

- Instruction fetch/decode and branch unit (Ibox)
- Integer execution unit (Ebox)
- Memory address translation unit (Mbox)
- Cache control and bus interface unit (Cbox)
- Floating-point execution unit (Fbox)
- Data cache (Dcache)
- Instruction cache (Icache)
- Secondary cache (Scache)
- Serial read-only memory (SROM) interface

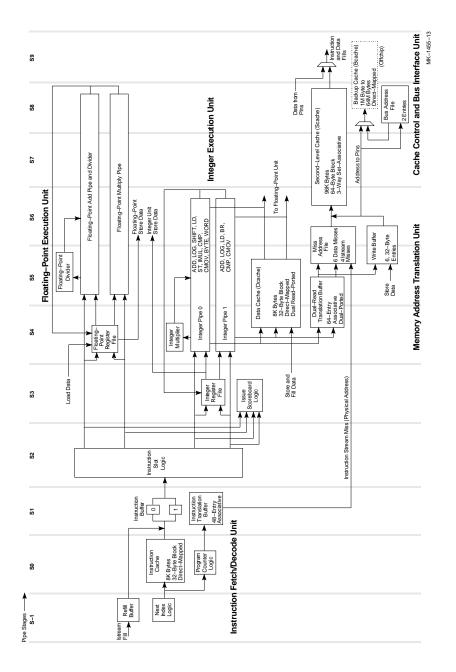


Figure 1 Alpha 21164 Microprocessor Block/Pipe Flow Diagram

3.1 Instruction Fetch/Decode and Branch Unit

The primary function of the instruction fetch/decode and branch unit (Ibox) is to manage and issue instructions to the Ebox, Mbox, and Fbox. It also manages the instruction cache. The Ibox contains:

- Prefetcher and instruction buffer
- Instruction slot and issue logic
- Program counter (PC) and branch prediction logic
- 48-entry instruction translation buffers (ITBs)
- Abort logic
- Register conflict logic
- Interrupt and exception logic

3.1.1 Instruction Prefetch and Decode

The Ibox handles only NATURALLY ALIGNED groups of four instructions (INT16). The Ibox does not advance to a new group of four instructions until all instructions in a group are issued. If a branch to the middle of an INT16 group occurs, then the Ibox attempts to issue the instructions from the branch target to the end of the current INT16, then it proceeds to the next INT16 of instructions after all the instructions in the target INT16 are issued. Thus, proper code scheduling is required to achieve optimal performance.

3.1.2 Branch Prediction

The branch unit, or prediction logic, is also part of the Ibox. Branch and PC prediction are necessary to predict and begin fetching the target instruction stream before the branch or jump instruction is issued. Each instruction location in the instruction cache (Icache) contains a 2-bit history state to record the outcome of branch instructions.

3.1.3 Instruction Translation Buffer

The Ibox includes a 48-entry, fully associative instruction translation buffer (ITB). The buffer stores recently used instruction stream (Istream) address translations and protection information for pages ranging from 8 to 512 kilobytes and uses a not-last-used replacement algorithm.

The 21164 provides two optional translation extensions called superpages. Access to superpages is allowed only while executing in privileged mode.

• One superpage maps virtual address bits <39:13> to physical address bits <39:13>, on a one-to-one basis, when virtual address bits <42:41> equal 2.

• The other superpage maps virtual address bits <29:13> to physical address bits <29:13>, on a one-to-one basis, and forces physical address bits <39:30> to 0 when virtual address bits <42:30> equal 1FFE(hex).

3.1.4 Interrupts

The Ibox exception logic supports three sources of interrupts:

• Hardware interrupts

There are seven level-sensitive hardware interrupt sources supplied by the following signals:

irq_h<3:0>
sys_mch_chk_irq_h
pwr_fail_irq_h
mch_halt_irq_h

• Software interrupts

There are 15 prioritized software interrupts sourced by an onchip internal processor register (IPR).

• Asynchronous system traps

There are four asynchronous system traps (ASTs) controlled by onchip IPRs.

Most interrupts can be independently masked in onchip enable registers. In addition, AST interrupts are qualified by the current processor mode. All interrupts are disabled when the processor is executing PALcode.

3.2 Integer Execution Unit

The integer execution unit (Ebox) contains two 64-bit integer execution pipelines—E0 and E1, which include the following:

- Two adders
- Two logic boxes
- A barrel shifter
- Byte-manipulation logic
- An integer multiplier

The Ebox also includes the 40-entry, 64-bit integer register file (IRF) that contains the 32 integer registers defined by the Alpha architecture and 8 PALshadow registers. The register file has four read ports and two write ports, which provide operands to both integer execution pipelines and accept results from both pipes. The register file also accepts load instruction results (memory data) on the same two write ports.

3.3 Floating-Point Execution Unit

The onchip, pipelined floating-point unit (FPU) can execute both IEEE and VAX floating-point instructions. The 21164 supports IEEE S_floating and T_floating data types, and all rounding modes. It also supports VAX F_floating and G_floating data types, and provides limited support for the D_floating format. The FPU contains:

- A 32-entry, 64-bit floating-point register file (FRF).
- A user-accessible control register.
- A floating-point multiply pipeline.
- A floating-point add pipeline—The floating-point divide unit is associated with the floating-point add pipeline but is not pipelined.

The FPU can accept two instructions every cycle, with the exception of floatingpoint divide instructions. The result latency for nondivide, floating-point instructions is four cycles.

3.4 Memory Address Translation Unit

The memory address translation unit (Mbox) contains three major sections:

- Data translation buffer (dual ported)
- Miss address file (MAF)
- Write buffer address file

The Mbox receives up to two virtual addresses every cycle from the Ebox. The translation buffer generates the corresponding physical addresses and access control information for each virtual address. The 21164 implements a 43-bit virtual address and a 40-bit physical address.

3.4.1 Data Translation Buffer

The 64-entry, fully associative, dual-read-ported data translation buffer (DTB) stores recently used data stream (Dstream) page table entries (PTEs). Each entry supports all four granularity hint-bit combinations, so that a single DTB entry can provide translation for up to 512 contiguously mapped, 8K-byte pages.

The DTB also supports the register-enabled superpage extension. The DTB superpage maps provide virtual-to-physical address translation for two regions of the virtual address space.

3.4.2 Miss Address File

The Mbox begins the execution of each load instruction by translating the virtual address and by accessing the data cache (Dcache). Translation and Dcache tag read operations occur in parallel. If the addressed location is found in the Dcache (a hit), then the data from the Dcache is formatted and written to either the integer register file (IRF) or floating-point register file (FRF). The formatting required depends on the particular load instruction executed. If the data is not found in the Dcache (a miss), then the address, target register number, and formatting information are entered in the miss address file (MAF).

The MAF performs a load-merging function. When a load miss occurs, each MAF entry is checked to see if it contains a load miss that addresses the same Dcache (32-byte) block. If it does, and certain merging rules are satisfied, then the new load miss is merged with an existing MAF entry. This allows the Mbox to service two or more load misses with one data fill from the Cbox.

There are six MAF entries for load misses and four more for Ibox instruction fetches and prefetches. Load misses are usually the highest Mbox priority.

3.4.3 Store Execution

The Dcache follows a write-through protocol. During the execution of a store instruction, the Mbox probes the Dcache to determine whether the location to be overwritten is currently cached. If so (a Dcache hit), the Dcache is updated. Regardless of the Dcache state, the Mbox forwards the data to the Cbox.

A load instruction that is issued one cycle after a store instruction in the pipeline creates a conflict if both the load and store operations access the same memory location. (The store instruction has not yet updated the location when the load instruction reads it.) This conflict is handled by forcing the load instruction to take a replay trap; that is, the Ibox flushes the pipeline and restarts execution from the load instruction. By the time the load instruction has written the Dcache and the load instruction is executed normally.

Replay traps can be avoided by scheduling the load instruction to issue three cycles after the store instruction. If the load instruction is scheduled to issue two cycles after the store instruction, then it will be issue-stalled for one cycle.

3.4.4 Write Buffer

The Mbox also contains a write buffer that has six 32-byte entries. The write buffer provides a finite, high-bandwidth resource for receiving store data to minimize the number of CPU stall cycles.

3.5 Cache Control and Bus Interface Unit

The cache control and bus interface unit (Cbox) processes all accesses sent by the Mbox and implements all memory-related external interface functions, particularly the coherence protocol functions for write-back caching. It controls the second-level cache (Scache) and the optional board-level backup cache (Bcache). The Cbox handles all instruction and primary Dcache read misses, performs the function of writing data from the write buffer into the shared coherent memory subsystem, and has a major role in executing the Alpha memory barrier (MB) instruction. The Cbox also controls the 128-bit bidirectional data bus, address bus, and I/O control.

3.6 Cache Organization

The 21164 has three onchip caches—a primary L1 data cache, a primary L1 instruction cache, and a second-level L2 combined data and instruction cache. All memory cells in the onchip caches are fully static, 6-transistor, CMOS structures.

The 21164 also provides control for an optional board-level, external L3 cache.

3.6.1 Data Cache

The data cache (Dcache) is a dual-read-ported, single-write-ported, 8K-byte cache. It is a write-through, read-allocate, direct-mapped, physical cache with 32-byte blocks.

3.6.2 Instruction Cache

The instruction cache (Icache) is an 8K-byte, virtual, direct-mapped cache with 32-byte blocks. Each block tag contains:

- A 7-bit address space number (ASN) field as defined by the Alpha architecture
- A 1-bit address space match (ASM) field as defined by the Alpha architecture
- A 1-bit PALcode (physically addressed) indicator

Software, rather than Icache hardware, maintains Icache coherence with memory.

3.6.3 Second-Level Cache

The second-level cache (Scache) is a 96K-byte, 3-way, set-associative, physical, write-back, write-allocate cache with 32- or 64-byte blocks. It is a mixed data and instruction cache. The Scache is fully pipelined; it processes read and write operations at the rate of one INT16 per CPU cycle and can alternate between read and write accesses without bubble cycles.

When operating in 32-byte block mode, the Scache has 64-byte blocks with 32-byte subblocks, one tag per block. If configured to 32 bytes, the Scache is organized as three sets of 512 blocks, with each block divided into two 32-byte subblocks. If configured to 64 bytes, the Scache is three sets of 512 64-byte blocks.

3.6.4 External Cache

The Cbox implements control for an optional, external, direct-mapped, physical, write-back, write-allocate cache with 32- or 64-byte blocks. The 21164 supports board-level cache sizes of 1, 2, 4, 8, 16, 32, and 64 megabytes.

3.7 Serial Read-Only Memory Interface

The serial read-only memory (SROM) interface provides the initialization data load path from a system SROM to the instruction cache. Following initialization, this interface can function as a diagnostic port by using privileged architecture library code (PALcode).

3.8 Pipeline Organization

The 21164 has a 7-stage (or 7-cycle) pipeline for integer operate and memory reference instructions, and a 9-stage pipeline for floating-point operate instructions. The Ibox maintains state for all pipeline stages to track outstanding register write operations.

Figure 2 shows the integer operate, memory reference, and floating-point operate pipelines for the Ibox, FPU, Ebox, and Mbox. The first four stages are executed in the Ibox. Remaining stages are executed by the Ebox, Fbox, Mbox, and Cbox.

					— In	structi	on Cac	he Re	ad					
							on Buff ne Next		anch D	ecode	,			
							Functio							
					R	eaister	File A	ccess	Check	S.				
							Registe							
Integer Operate Pipeline	IC 0	IB 1	SL 2	AC 3	4	5	6		nmetic,					
	t Intege erate Sta							stag		cycle	latency	ν). CΜ	OV co	mpletes
	eeded, a erate Sta		d Integ	er				an 8	age 5 3- or 9- issue i	cycle I	atency	. ČMO	V or E	3R
Wri	te Integ	er Reg	ister F	ile —				with	a dep	enden	t CMP	instruc	ction.	y)
Floating- Point Pipeline	IC 0	IB 1	SL 2	AC 3	4	5	6	7	8]				
File Firs Op Wri Reg Floi	ating-Pc Access at Floatin erate Sta te Float jister Fil ating-Po erate Sta	ng-Poir age ing-Po e, Las int	nt —											
Memory Reference Pipeline	IC 0	IB 1	SL 2	AC 3	4	5	6	7	8	9	10	11	12]
-	iche Re	ad Beg	jins _											-
Use Dca Sca Sca	ache Re Dcach ache, Sc ache Da ache Da Dcache Dcache	e Data cache, ta Acco ta Acco	, Store Tag Ad ess Be ess En	ccess gins -										
													LJ-0	3560-TI0A

Preliminary—Subject to Change—December 1995 11

4 Pinout and Signal Descriptions

Sections 4.1 and 4.2 list and describe the 21164 microprocessor external signals, and their associated pins.

4.1 Pin Assignment

The 21164 package has 499 pins aligned in an interstitial pin grid array (IPGA) design. Table 1 lists the 21164 signal pins and their corresponding pin grid array (PGA) locations in alphabetic order. There are 292 functional signal pins, 2 spare (unused) signal pins, 104 power (**Vdd**) pins, and 101 ground (**Vss**) pins.

Signal	PGA Location	Signal	PGA Location	Signal	PGA Location
addr_bus_req_h	E23	addr_cmd_par_h	B20	addr_h<4>	BB14
addr_h<5>	BC13	addr_h<6>	BA13	addr_h<7>	AV14
addr_h<8>	AW13	addr_h<9>	BC11	addr_h<10>	BA11
addr_h<11>	AV12	addr_h<12>	AW11	addr_h<13>	BC09
addr_h<14>	BA09	addr_h<15>	AV10	addr_h<16>	AW09
addr_h<17>	BC07	addr_h<18>	BA07	addr_h<19>	AV08
addr_h<20>	AW07	addr_h<21>	BC05	addr_h<22>	BC39
addr_h<23>	AW37	addr_h<24>	AV36	addr_h<25>	BA37
addr_h<26>	BC37	addr_h<27>	AW35	addr_h<28>	AV34
addr_h<29>	BA35	addr_h<30>	BC35	addr_h<31>	AW33
addr_h<32>	AV32	addr_h<33>	BA33	addr_h<34>	BC33
addr_h<35>	AW31	addr_h<36>	AV30	addr_h<37>	BA31
addr_h<38>	BC31	addr_h<39>	BB30	addr_res_h<0>	C27
addr_res_h<1>	F26	addr_res_h<2>	E27	cack_h	G21
cfail_h	C25	clk_mode_h<0>	AU21	clk_mode_h<1>	BA23
cmd_h<0>	F20	cmd_h<1>	A19	cmd_h<2>	C19
cmd_h<3>	E19	cpu_clk_out_h	BA25	dack_h	B24
data_bus_req_h	E25	data_check_h<0>	J41	data_check_h<1>	K38
data_check_h<2>	J39	data_check_h<3>	G43	data_check_h<4>	G41
				(continued	l on next pa

Table 1 Alphabetic Signal Pin List

Signal	PGA Location	Signal	PGA Location	Signal	PGA Location
data_check_h<5>	H38	data_check_h<6>	G39	data_check_h<7>	E43
data_check_h<8>	J03	data_check_h<9>	K06	data_check_h<10>	J05
data_check_h<11>	G01	data_check_h<12>	G03	data_check_h<13>	H06
data_check_h<14>	G05	data_check_h<15>	E01	data_h<0>	J43
data_h<1>	L39	data_h<2>	M38	data_h<3>	L41
data_h<4>	L43	data_h<5>	N39	data_h<6>	P38
data_h<7>	N41	data_h<8>	N43	data_h<9>	P42
data_h<10>	R39	data_h<11>	T38	data_h<12>	R41
data_h<13>	R43	data_h<14>	U39	data_h<15>	V38
data_h<16>	U41	data_h<17>	U43	data_h<18>	W39
data_h<19>	W41	data_h<20>	W43	data_h<21>	Y38
data_h<22>	Y42	data_h<23>	AA39	data_h<24>	AA41
data_h<25>	AA43	data_h<26>	AB38	data_h<27>	AC43
data_h<28>	AC41	data_h<29>	AC39	data_h<30>	AD42
data_h<31>	AD38	data_h<32>	AE43	data_h<33>	AE41
data_h<34>	AE39	data_h<35>	AG43	data_h<36>	AG41
data_h<37>	AF38	data_h<38>	AG39	data_h<39>	AJ43
data_h<40>	AJ41	data_h<41>	AH38	data_h<42>	AJ39
data_h<43>	AK42	data_h<44>	AL43	data_h<45>	AL41
data_h<46>	AK38	data_h<47>	AL39	data_h<48>	AN43
data_h<49>	AN41	data_h<50>	AM38	data_h<51>	AN39
data_h<52>	AR43	data_h<53>	AR41	data_h<54>	AP38
data_h<55>	AR39	data_h<56>	AU43	data_h<57>	AU41
data_h<58>	AT38	data_h<59>	AU39	data_h<60>	AW43
data_h<61>	AW41	data_h<62>	AV38	data_h<63>	AW39
data_h<64>	J01	data_h<65>	L05	data_h<66>	M06
data_h<67>	L03	data_h<68>	L01	data_h<69>	N05
data_h<70>	P06	data_h<71>	N03	data_h<72>	N01

Table 1 (Cont.) Alphabetic Signal Pin List

Signal	PGA Location	Signal	PGA Location	Signal	PGA Location
data_h<73>	P02	data_h<74>	R05	data_h<75>	T06
data_h<76>	R03	data_h<77>	R01	data_h<78>	U05
data_h<79>	V06	data_h<80>	U03	data_h<81>	U01
data_h<82>	W05	data_h<83>	W03	data_h<84>	W01
data_h<85>	Y06	data_h<86>	Y02	data_h<87>	AA05
data_h<88>	AA03	data_h<89>	AA01	data_h<90>	AB06
data_h<91>	AC01	data_h<92>	AC03	data_h<93>	AC05
data_h<94>	AD02	data_h<95>	AD06	data_h<96>	AE01
data_h<97>	AE03	data_h<98>	AE05	data_h<99>	AG01
data_h<100>	AG03	data_h<101>	AF06	data_h<102>	AG05
data_h<103>	AJ01	data_h<104>	AJ03	data_h<105>	AH06
data_h<106>	AJ05	data_h<107>	AK02	data_h<108>	AL01
data_h<109>	AL03	data_h<110>	AK06	data_h<111>	AL05
data_h<112>	AN01	data_h<113>	AN03	data_h<114>	AM06
data_h<115>	AN05	data_h<116>	AR01	data_h<117>	AR03
data_h<118>	AP06	data_h<119>	AR05	data_h<120>	AU01
data_h<121>	AU03	data_h<122>	AT06	data_h<123>	AU05
data_h<124>	AW01	data_h<125>	AW03	data_h<126>	AV06
data_h<127>	AW05	data_ram_oe_h	F22	data_ram_we_h	A23
dc_ok_h	AU23	fill_error_h	A25	fill_h	G23
fill_id_h	F24	fill_nocheck_h	G25	idle_bc_h	A27
index_h<4>	A29	index_h<5>	C29	index_h<6>	F28
index_h<7>	E29	index_h<8>	B30	index_h<9>	A31
index_h<10>	C31	index_h<11>	F30	index_h<12>	E31
index_h<13>	A33	index_h<14>	C33	index_h<15>	F32
index_h<16>	E33	index_h<17>	A35	index_h<18>	C35
index_h<19>	F34	index_h<20>	E35	index_h<21>	A37
index_h<22>	C37	index_h<23>	F36	index_h<24>	E37

Table 1 (Cont.) Alphabetic Signal Pin List

Signal	PGA Location	Signal	PGA Location	Signal	PGA Location
index_h<25>	A39	int4_valid_h<0>	F38	int4_valid_h<1>	E41
int4_valid_h<2>	F06	int4_valid_h<3>	E03	irq_h<0>	BA29
irq_h<1>	AU27	irq_h<2>	BC29	irq_h<3>	AW27
mch_hlt_irq_h	AU25	osc_clk_in_h	BC21	osc_clk_in_l	BB22
perf_mon_h	AW29	port_mode_h<0>	AY20	port_mode_h<1>	BB20
pwr_fail_irq_h	AV26	ref_clk_in_h	AW25	<pre>scache_set_h<0></pre>	C17
scache_set_h<1>	A17	shared_h	C23	srom_clk_h	BA19
srom_data_h	BC19	srom_oe_l	AW19	srom_present_l	AV20
st_clk_h	E05	system_lock_flag_h	G27	sys_clk_out1_h	AW23
sys_clk_out1_l	BB24	sys_clk_out2_h	AV24	sys_clk_out2_l	BC25
sys_mch_chk_irq_h	BA27	sys_reset_l	BC27	tag_ctl_par_h	F18
tag_data_h<20>	A05	tag_data_h<21>	E07	tag_data_h<22>	F08
tag_data_h<23>	C07	tag_data_h<24>	A07	tag_data_h<25>	E09
tag_data_h<26>	F10	tag_data_h<27>	C09	tag_data_h<28>	A09
tag_data_h<29>	E11	tag_data_h<30>	F12	tag_data_h<31>	C11
tag_data_h<32>	A11	tag_data_h<33>	E13	tag_data_h<34>	F14
tag_data_h<35>	C13	tag_data_h<36>	A13	tag_data_h<37>	B14
tag_data_h<38>	E15	tag_data_par_h	C15	tag_dirty_h	E17
tag_ram_oe_h	C21	tag_ram_we_h	A21	tag_shared_h	A15
tag_valid_h	F16	tck_h	AW17	tdi_h	BC17
tdo_h	BA17	temp_sense	AW15	test_status_h<0>	BA15
test_status_h<1>	AV16	tms_h	AV18	trst_l	BC15
victim_pending_h	E21	spare_in<438>	E39	spare_io<250>	AV28

Table 1 (Cont.) Alphabetic Signal Pin List

Table 1 (Cont.) Alphabetic Signal Pin List

Signal	PGA Location
Vss —Metal planes 2 ¹ and 5 ²	A03, A41, AA07, AA37, AC07, AC37, AD04, AD40, AF02, AF42, AG07, AG37, AH04, AH40, AL07, AL37, AM04, AM40, AP02, AP42, AR07, AR37, AT04, AT40, AU09, AU13, AU17, AU31, AU35, AV02, AV22, AV42, AW21, AY04, AY08, AY12, AY16, AY22, AY24, AY28, AY32, AY36, AY40, B02, B06, B10, B18, B26, B34, B38, B42, BA01, BA21, BA43, BB02, BB06, BB10, BB18, BB26, BB34, BB38, BB42, BC03, BC41, C01, C43, D04, D08, D12, D16, D20, D24, D28, D32, D36, D40, F02, F42, G09, G13, G17, G31, G35, H04, H40, J07, J37, K02, K42, M04, M40, N07, N37, T04, T40, U07, U37, V02, V42, Y04, Y40
Vdd Metal planes 4 and 6	AB02, AB04, AB40, AB42, AE07, AE37, AF04, AF40, AH02, AH42, AJ07, AJ37, AK04, AK40, AM02, AM42, AN07, AN37, AP04, AP40, AT02, AT42, AU07, AU11, AU15, AU19, AU29, AU33, AU37, AV04, AV40, AY02, AY06, AY10, AY14, AY18, AY26, AY30, AY34, AY38, AY42, B04, B08, B12, B16, B22, B28, B32, B36, B40, BA03, BA05, BA39, BA41, BB04, BB08, BB12, BB16, BB28, BB32, BB36, BB40, BC23, C03, C05, C39, C41, D02, D06, D10, D14, D18, D22, D26, D30, D34, D38, D42, F04, F40, G11, G15, G19, G29, G33, G37, H02, H42, K04, K40, L07, L37, M02, M42, P04, P40, R07, R37, T02, T42, V04, V40, W07, W37

¹Metal plane 2—Seal ring connection tied to **Vss**

 $^2\mbox{Metal}$ plane 5—Heat slug braze pad connections tied to \mbox{Vss}

4.2 Alpha 21164 Packaging

Figure 3 shows the 21164 pinout from the top view with pins facing down.

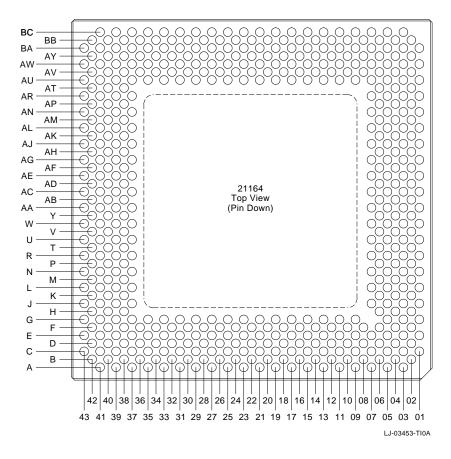


Figure 3 Alpha 21164 Top View (Pin Down)

Figure 4 shows the 21164 pinout from the bottom view with pins facing up.

BС .0 0 0 .0 .0, 0 \odot 6 BB ر صر ص . (0_ر (0) . ص_ر (0, ΒA Ó 6 AY 6 . (0_ر (0) AW 6 രി 6 രി 6 6 രി 6 6 6 AV 6 6 6 6 6 ര 6 6 AU 6 \odot \odot \odot \odot \odot AT AR 6 ÷ 6 6 AP AN 6 AM 6 AL 6 6 6 AK AJ 6 AH AG െ AF AE AD AC 21164 AB Bottom View AA Y (Pin Up) 6 W V U 6 т R Р Ν 6 Μ 6 κ 6 6 J н <u>-</u> ر@ G 0 0 0 0 0 0 6 0 0 0 0 0 6 0 F \odot 6 6 Е $(\bigcirc$ $(\bigcirc$ 6 6 $(\bigcirc$ 6 6 $(\bigcirc$ 6 D 6 6 С P (þ В (q A Ô Ô (Ģ (Ģ ିକ Ó Í Í Í Í ିକ ଢ଼ ଜ ବ e P e Ģ 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 LJ-03413-TI0B

Figure 4 Alpha 21164 Bottom View (Pin Up)

4.3 Alpha 21164 Microprocessor Logic Symbol

Figure 5 shows the logic symbol for the 21164 chip.

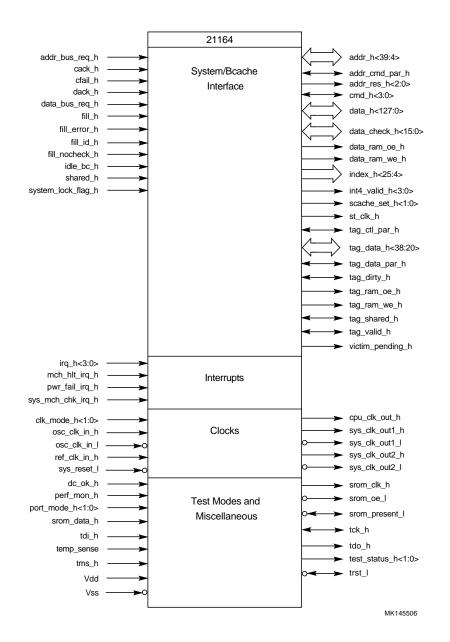


Figure 5 Alpha 21164 Microprocessor Logic Symbol

4.4 Alpha 21164 Signal Names and Functions

The following table defines the 21164 signal types referred to in this section:

Signal Type	Definition
В	Bidirectional
Ι	Input only
0	Output only

The remaining two tables describe the function of each 21164 external signal. Table 2 lists all signals in alphanumeric order. This table provides full signal descriptions. Table 3 lists signals by function and provides an abbreviated description.

Signal	Туре	Count	Descrip	otion			
addr_h<39:4>	В	36	Address bus. These bidirectional signals provide the address of the requested data or operation between th 21164 and the system. If bit 39 is asserted, then the reference is to noncached, I/O memory space.				
addr_bus_req_h	Ι	1	Address bus request. The system interface uses this signal to gain control of the addr_h<39:4 >, addr_cmd_par_h , and cmd_h<3:0 > pins.				
addr_cmd_par_h	В	1	Address command parity. This is the odd parity bit on the current command and address buses. The 21164 takes a machine check if a parity error is detected. The system should do the same if it detects an error.				
addr_res_h<1:0>	0	2	Address response bits <1> and <0>. For system commands, the 21164 uses these pins to indicate the state of the block in the Scache:				
			Bits	Command	Meaning		
			00	NOP	Nothing.		
			01	NOACK	Data not found or clean.		
			10	ACK/Scache	Data from Scache.		
			11	ACK/Bcache	Data from Bcache.		

Table 2 Alpha 21164 Signal Descriptions

Signal	Туре	Count	Description
addr_res_h<2>	0	1	Address response bit <2>. For system commands, the 21164 uses this pin to indicate if the command hits in the Scache or onchip load lock register.
cack_h	Ι	1	Command acknowledge. The system interface uses this signal to acknowledge any one of the commands driven by the 21164.
cfail_h	Ι	1	Command fail. This signal has two uses. It can be asserted during a cack cycle of a WRITE BLOCK LOCK command to indicate that the write operation is not successful. In this case, both cack_h and cfail_h are asserted together. It can also be asserted instead of cack_h to force an instruction fetch/decode unit (Ibox) timeout event. This causes the 21164 to do a partial reset and trap to the machine check (MCHK) PALcode entry point, which indicates a serious hardware error.
clk_mode_h<1:0>	Ι	2	Clock test mode. These signals specify a relationship between osc_clk_in_h,l and the CPU cycle time. These signals should be deasserted in normal operation mode.
cmd_h<3:0>	В	4	Command bus. These signals drive and receive the commands from the command bus. The following tables define the commands that can be driven on the cmd_h<3:0> bus by the 21164 or the system.

Table 2 (Cont.) Alpha 21164 Signal Descriptions Signal Type Count Description

Table 2 (Cont.)	Alpha 21164 Signal Descriptions
-----------------	---------------------------------

Signal	Туре	Count	Descript	ion	
			21164 C	ommands to System:	
			cmd_h <3:0>	Command	Meaning
			0000	NOP	Nothing.
			0001	LOCK	Lock register address
			0010	FETCH	The 21164 passes a FETCH instruction to the system.
			0011	FETCH_M	The 21164 passes a FETCH_M instruction to the system.
			0100	MEMORY BARRIER	MB instruction.
			0101	SET DIRTY	Dirty bit set if shared bit is clear.
			0110	WRITE BLOCK	Request to write a block.
			0111	WRITE BLOCK LOCK	Request to write a block with lock.
			1000	READ MISS0	Request for data.
			1001	READ MISS1	Request for data.
			1010	READ MISS MOD0	Request for data; modify intent.
			1011	READ MISS MOD1	Request for data; modify intent.
			1100	BCACHE VICTIM	Bcache victim should be removed.
			1101	_	Reserved.
			1110	READ MISS MOD STC0	Request for data, ST <i>x_</i> C data.
			1111	READ MISS MOD STC1	Request for data, ST <i>x</i> _C data.

Signal	Туре	Count	Descript	ion			
			System Commands to 21164:				
			cmd_h <3:0>	Command	Meaning		
			0000	NOP	Nothing.		
			0001	FLUSH	Remove block from caches; return dirty data.		
			0010	INVALIDATE	Invalidate the block from caches.		
			0011	SET SHARED	Block goes to the shared state.		
			0100	READ	Read a block.		
			0101	READ DIRTY	Read a block; set shared.		
			0111	READ DIRTY/INV	Read a block; invalidate.		
cpu_clk_out_h	0	1	CPU cloo	ck output. This signal i	s used for test purposes.		
dack_h	Ι	1		knowledge. The system control data transfer b em.			
data_h<127:0>	В	128		s. These signals are use 4, the system, and the	ed to move data between Bcache.		
data_bus_req_h	Ι	1	Data bus request. If the 21164 samples this signal asserted on the rising edge of sysclk n , then the 21164 does not drive the data bus on the rising edge of sysclk $n+1$. Before asserting this signal, the system should assert idle_bc_h for the correct number of cycles. If the 21164 samples this signal deasserted on the rising edge of sysclk n , then the 21164 drives the data bus on the rising edge of sysclk $n+1$.				
data_check_h<15:0>	В	16		eck. These signals set e the current data cycle.	ven byte parity or INT8		
					(continued on next page)		

Table 2 (Cont.) Alpha 21164 Signal Descriptions

	·	•	
Signal	Туре	Count	Description
data_ram_oe_h	0	1	Data RAM output enable. This signal is asserted for Bcache read operations.
data_ram_we_h	0	1	Data RAM write-enable. This signal is asserted for any Bcache write operation.
dc_ok_h	I	1	dc voltage OK. Must be deasserted until dc voltage reaches proper operating level. After that, dc_ok_h is asserted.
fill_h	I	1	Fill warning. If the 21164 samples this signal asserted on the rising edge of sysclk n , then the 21164 provides the address indicated by fill_id_h to the Bcache on the rising edge of sysclk $n+1$. The Bcache begins to write in that sysclk. At the end of sysclk $n+1$, the 21164 waits for the next sysclk and then begins the write operation again if dack_h is not asserted.
fill_error_h	Ι	1	Fill error. If this signal is asserted during a fill from memory, it indicates to the 21164 that the system has detected an invalid address or hard error. The system still provides an apparently normal read sequence with correct ECC/parity though the data is not valid. The 21164 traps to the machine check (MCHK) PALcode entry point and indicates a serious hardware error. fill_error_h should be asserted when the data is returned. Each assertion produces a MCHK trap.
fill_id_h	Ι	1	Fill identification. Asserted with fill_h to indicate which register is used. The 21164 supports two outstanding load instructions. If this signal is asserted when the 21164 samples fill_h asserted, then the 21164 provides the address from miss register 1. If it is deasserted, then the address in miss register 0 is used for the read operation.
fill_nocheck_h	Ι	1	Fill checking off. If this signal is asserted, then the 21164 does not check the parity or ECC for the current data cycle on a fill.
idle_bc_h	Ι	1	Idle Bcache. When asserted, the 21164 finishes the current Bcache read or write operation but does not start a new read or write operation until the signal is deasserted. The system interface must assert this signal in time to idle the Bcache before fill data arrives.
index_h<25:4>	0	22	Index. These signals index the Bcache.
			(continued on next page)

Table 2 (Cont.) Alpha 21164 Signal Descriptions

Signal	Туре	Count	Description	
int4_valid_h<3:0>	0 4		space, these signals bytes of data are val	ring write operations to noncached are used to indicate which INT4 id. This is useful for noncached t have been merged in the write
			int4_valid_h<3:0>	Write Meaning
			xxx1	data_h<31:0 > valid
			xx1x	data_h<63:32 > valid
			x1xx	data_h<95:64> valid
			1 <i>xxx</i>	data_h<127:96> valid
			signals indicate which need to be read and	ons to noncached space, these ch INT8 bytes of a 32-byte block returned to the processor. This is tions to noncached memory.
			int4_valid_h<3:0>	Read Meaning
			xxx1	data_h<63:0 > valid
			xx1x	data_h<127:64 > valid
			x1xx	data_h<191:128> valid
			1 <i>xxx</i>	data h<255:192> valid

Table 2 (Cont.) Alpha 21164 Signal Descriptions

int4_valid_h<3:0> bits can be set simultaneously.

Signal	Туре	Count	Description				
irq_h<3:0>	Ι	4	System interrupt requests. These signals have multi- modes of operation. During normal operation, these level-sensitive signals are used to signal interrupt requests. During initialization, these signals are use set up the CPU cycle time divisor for sys_clk_out1_ as follows:				
				i	rq_h		
			<3>	<2>	<1>	<0>	Ratio
			Low	Low	High	High	3
			Low	High	Low	Low	4
			Low	High	Low	High	5
			Low	High	High	Low	6
			Low	High	High	High	7
			High	Low	Low	Low	8
			High	Low	Low	High	9
			High	Low	High	Low	10
			High	Low	High	High	11
			High	High	Low	Low	12
			High	High	Low	High	13
			High	High	High	Low	14
			High	High	High	High	15
mch_hlt_irq_h	I	1	multiple this sign During request.	e modes of nal is used normal ope	eration, it is	During init ys_clk_out s used to sig	ialization, 2_h,l delay. gnal a halt
osc_clk_in_h osc_clk_in_l	I I	1 1	differen of the 2 desired operatir	tial clock in 1164. Thes internal clo	e signals a ock frequen ns the CPU	the fundar re driven a cy. (Under	nental timing t twice the normal
						(continue	d on next nage

Table 2 (Cont.) Alpha 21164 Signal Descriptions

Signal	Туре	Count	Description
perf_mon_h	Ι	1	Performance monitor. This signal can be used as an input to the 21164 internal performance monitoring hardware from offchip events (such as bus activity).
port_mode_h<1:0>	Ι	2	Select test port interface modes (normal, manufacturing, and debug). For normal operation, both signals must be deasserted.
pwr_fail_irq_h	Ι	1	Power failure interrupt request. This signal has multiple modes of operation. During initialization, this signal is used to set up sys_clk_out2_h,l delay. During normal operation, this signal is used to signal a power failure.
ref_clk_in_h	Ι	1	Reference clock input. Optional. Used to synchronize the timing of multiple microprocessors to a single reference clock. If this signal is not used, it must be tied to Vdd for proper operation.
scache_set_h<1:0>	0	2	Secondary cache set. During a read miss request, these signals indicate the Scache set number that will be filled when the data is returned. This information can be used by the system to maintain a duplicate copy of the Scache tag store.
shared_h	Ι	1	Keep block status shared. For systems without a Bcache, when a WRITE BLOCK/NO VICTIM PENDING or WRITE BLOCK LOCK command is acknowledged, this pin can be used to keep the block status shared or private in the Scache.
srom_clk_h	0	1	Serial ROM clock. Supplies the clock that causes the SROM to advance to the next bit. The cycle time of this clock is 128 times the cycle time of the CPU clock.
srom_data_h	Ι	1	Serial ROM data. Input for the SROM.
srom_oe_l	0	1	Serial ROM output enable. Supplies the output enable to the SROM.
srom_present_l ¹	В	1	Serial ROM present. Indicates that SROM is present and ready to load the Icache.

Table 2 (Cont.) Alpha 21164 Signal Descriptions

¹This signal is shown as bidirectional. However, for normal operation it is input only. The output function is used during manufacturing test and verification only.

Signal	Туре	Count	Description
st_clk_h	0	1	STRAM clock. Clock for Bcache synchronously timed RAMs (STRAMs). This signal is synchronous with index_h<25:4 > during private read and write operations, and with sys_clk_out1_h,l during read and fill operations.
sys_clk_out1_h sys_clk_out1_l	0 0	1 1	System clock outputs. Programmable system clock (cpu_clk_out_h divided by a value of 3 to 15) is used for board-level cache and system logic.
sys_clk_out2_h sys_clk_out2_l	0 0	1 1	System clock outputs. A version of sys_clk_out1_h,l delayed by a programmable amount from 0 to 7 CPU cycles.
sys_mch_chk_irq_h	Ι	1	System machine check interrupt request. This signal has multiple modes of operation. During initialization, it is used to set up sys_clk_out2_h,l delay. During normal operation, it is used to signal a machine interrupt check request.
sys_reset_l	Ι	1	System reset. This signal protects the 21164 from damage during initial power-up. It must be asserted until dc_ok_h is asserted. After that, it is deasserted and the 21164 begins its reset sequence.
system_lock_flag_h	Ι	1	System lock flag. During fills, the 21164 logically ANDs the value of the system copy with its own copy to produce the true value of the lock flag.
tag_ctl_par_h	В	1	Tag control parity. This signal indicates odd parity for tag_valid_h , tag_shared_h , and tag_dirty_h . During fills, the system should drive the correct parity based on the state of the valid, shared, and dirty bits.
tag_data_h<38:20>	В	19	Bcache tag data bits. This bit range supports 1M-byte to 64M-byte Bcaches.
tag_data_par_h	В	1	Tag data parity bit. This signal indicates odd parity for tag_data_h<38:20 >.
tag_dirty_h	В	1	Tag dirty state bit. During fills, the system should assert this signal if the 21164 request is a READ MISS MOD, and the shared bit is not asserted.
tag_ram_oe_h	0	1	Tag RAM output enable. This signal is asserted during any Bcache read operation.

Table 2 (Cont.) Alpha 21164 Signal Descriptions

Signal	Туре	Count	Description
tag_ram_we_h	0	1	Tag RAM write-enable. This signal is asserted during any tag write operation. During the first CPU cycle of a write operation, the write pulse is deasserted. In the second and following CPU cycles of a write operation, the write pulse is asserted if the corresponding bit in the write pulse register is asserted. Bits BC_WE_CTL<8:0 > control the shape of the pulse.
tag_shared_h	В	1	Tag shared bit. During fills, the system should drive this signal with the correct value to mark the cache block as shared.
tag_valid_h	В	1	Tag valid bit. During fills, this signal is asserted to indicate that the block has valid data.
tck_h	В	1	JTAG boundary scan clock.
tdi_h	Ι	1	JTAG serial boundary scan data-in signal.
tdo_h	0	1	JTAG serial boundary scan data-out signal.
temp_sense	Ι	1	Temperature sense. This signal is used to measure the die temperature and is for manufacturing use only. For normal operation, this signal must be left disconnected.
test_status_h<1:0>	Ο	2	Icache test status. These signals are used for manufacturing test purposes only to extract Icache test status information from the chip. test_status_h<0> is asserted if ICSR<39> is true, on Ibox timeout, or remains asserted if the Icache built-in self-test (BiSt) fails. Also, test_status_h<0> outputs the value written by PALcode to test_status_h<1> through IPR access.
tms_h	Ι	1	JTAG test mode select signal.
trst_l ¹	В	1	JTAG test access port (TAP) reset signal.
victim_pending_h	0	1	Victim pending. When asserted, this signal indicates that the current read miss has generated a victim.

 Table 2 (Cont.)
 Alpha 21164 Signal Descriptions

 Signal
 Type
 Count
 Description

 1 This signal is shown as bidirectional. However, for normal operation it is input only. The output function is used during manufacturing test and verification only.

Table 3 lists signals by function and provides an abbreviated description.

	-	-	-
Signal	Туре	Count	Description
Clocks			
clk_mode_h<1:0>	Ι	2	Clock test mode.
cpu_clk_out_h	0	1	CPU clock output.
osc_clk_in_h,l	Ι	2	Oscillator clock inputs.
ref_clk_in_h	Ι	1	Reference clock input.
st_clk_h	0	1	Bcache STRAM clock output.
sys_clk_out1_h,l	0	2	System clock outputs.
sys_clk_out2_h,l	0	2	System clock outputs.
sys_reset_l	Ι	1	System reset.
Bcache			
data_h<127:0>	В	128	Data bus.
data_check_h<15:0>	В	16	Data check.
data_ram_oe_h	0	1	Data RAM output enable.
data_ram_we_h	0	1	Data RAM write-enable.
index_h<25:4>	0	22	Index.
tag_ctl_par_h	В	1	Tag control parity.
tag_data_h<38:20>	В	19	Bcache tag data bits.
tag_data_par_h	В	1	Tag data parity bit.
tag_dirty_h	В	1	Tag dirty state bit.
tag_ram_oe_h	0	1	Tag RAM output enable.
tag_ram_we_h	0	1	Tag RAM write-enable.
tag_shared_h	В	1	Tag shared bit.
tag_valid_h	В	1	Tag valid bit.

Table 3 Alpha 21164 Signal Descriptions by Function

Signal	Туре	Count	Description
System Interface			
addr_h<39:4>	В	36	Address bus.
addr_bus_req_h	Ι	1	Address bus request.
addr_cmd_par_h	В	1	Address command parity.
addr_res_h<2:0>	0	3	Address response.
cack_h	Ι	1	Command acknowledge.
cfail_h	Ι	1	Command fail.
cmd_h<3:0>	В	4	Command bus.
dack_h	Ι	1	Data acknowledge.
data_bus_req_h	Ι	1	Data bus request.
fill_h	Ι	1	Fill warning.
fill_error_h	Ι	1	Fill error.
fill_id_h	Ι	1	Fill identification.
fill_nocheck_h	Ι	1	Fill checking off.
idle_bc_h	Ι	1	Idle Bcache.
int4_valid_h<3:0>	0	4	INT4 data valid.
scache_set_h<1:0>	0	2	Secondary cache set.
shared_h	Ι	1	Keep block status shared.
system_lock_flag_h	Ι	1	System lock flag.
victim_pending_h	0	1	Victim pending.
Interrupts			
irq_h<3:0>	I	4	System interrupt requests.
mch_hlt_irq_h	Ι	1	Machine halt interrupt request.
pwr_fail_irq_h	Ι	1	Power failure interrupt request.
sys_mch_chk_irq_h	Ι	1	System machine check interrupt request.
			(continued on next pag

 Table 3 (Cont.)
 Alpha 21164 Signal Descriptions by Function

 Signal
 Type
 Count
 Description

Signal	Туре	Count	Description		
Test Modes and Miscellaneous					
dc_ok_h	Ι	1	dc voltage OK.		
perf_mon_h	Ι	1	Performance monitor.		
port_mode_h<1:0>	Ι	2	Select test port interface modes (normal, manufacturing, and debug).		
srom_clk_h	0	1	Serial ROM clock.		
srom_data_h	Ι	1	Serial ROM data.		
srom_oe_l	0	1	Serial ROM output enable.		
<pre>srom_present_l¹</pre>	В	1	Serial ROM present.		
tck_h	В	1	JTAG boundary scan clock.		
tdi_h	Ι	1	JTAG serial boundary scan data in.		
tdo_h	0	1	JTAG serial boundary scan data out.		
temp_sense	Ι	1	Temperature sense.		
test_status_h<1:0>	0	2	Icache test status.		
tms_h	Ι	1	JTAG test mode select.		
trst_l ¹	В	1	JTAG test access port (TAP) reset.		

Table 3 (Cont.) Alpha 21164 Signal Descriptions by Function

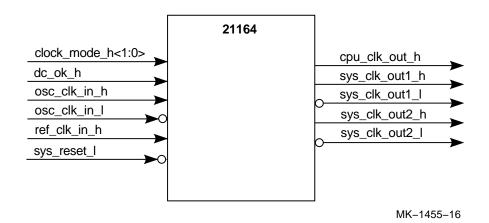
 1 This signal is shown as bidirectional. However, for normal operation it is input only. The output function is used during manufacturing test and verification only.

5 Alpha 21164 Microprocessor Functional Overview

This section provides an overview of 21164 external signals that support the following:

- Clocks
- Bcache interface
- System interface
- Interrupts
- Test modes

See Figure 1 for a block diagram of the 21164.


5.1 Clocks

The 21164 accepts two clock signal inputs and develops three clock signal outputs:

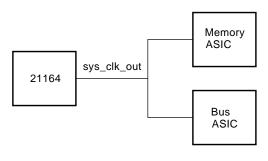
Signal	Description				
Input Clock Signals	3				
osc_clk_in_h,l	Differential inputs normally driven at two times the desired internal frequency.				
ref_clk_in_h	A system-supplied clock to which the 21164 synchronizes its tim for multiprocessor systems.				
Output Clock Signa	als				
cpu_clk_out_h	A 21164 internal clock that may or may not drive the system clock.				
sys_clk_out1_h,l	A clock of programmable speed supplied to the external interface.				
sys_clk_out2_h,l	A delayed copy of sys_clk_out1_h,l . The delay is programmable and is an integer number of cpu_clk_out_h periods.				

Figure 6 shows the 21164 clock signals.

Figure 6 Alpha 21164 Clock Signals

5.1.1 CPU Clock

The 21164 uses the differential input clock lines **osc_clk_in_h,l** as a source to generate its CPU clock. The input signals **clk_mode_h<1:0>** control generation of the CPU clock.

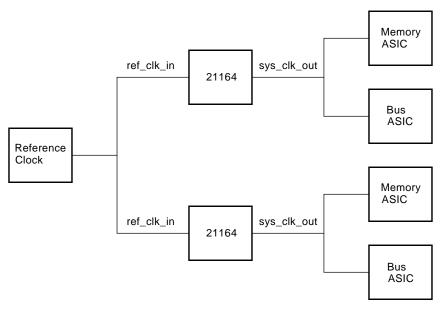

5.1.2 System Clock

The CPU clock is divided by a programmable value of between 3 and 15 to generate a system clock. The programmable feature allows the system designer maximum flexibility when choosing external logic to interface with the 21164.

The **sys_clk_out1_h,l** signals are delayed by a programmable number of CPU cycles between 0 and 7 to produce **sys_clk_out2_h,l**. The output of the programmable divider is symmetric if the divisor is even. The output is asymmetric if the divisor is odd.

Figure 7 shows the 21164 driving the system clock on a uniprocessor system.

Figure 7 Alpha 21164 Uniprocessor Clock

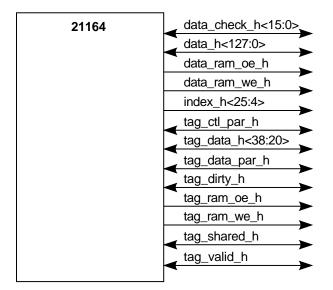


LJ-03676-TI0

5.1.3 Reference Clock

The 21164 provides a reference clock input so that other CPUs and system devices can be synchronized in multiprocessor systems. If a clock is asserted on signal **ref_clk_in_h**, then the **sys_clk_out1_h,l** signals are synchronized to that reference clock by means of a digital phase-locked loop (DPLL). Figure 8 shows the 21164 synchronized to a system reference clock.

LJ-03675-TI0


5.2 Board-Level Backup Cache Interface

The 21164 includes an interface and control for an optional board-level backup cache (Bcache). This section describes the Bcache interface. The Bcache interface is made up of the following:

- A data bus (which it shares with the system interface)
- Tag and tag control bits for determining hit and coherence
- SRAM output and SRAM write control signals

Figure 9 shows the 21164 system interface signals.

Figure 9 Alpha 21164 Bcache Interface Signals

MK-1455-18

The Bcache interface is managed by the cache control and bus interface unit (Cbox). The Bcache interface is a 128-bit bidirectional data bus. The read and write speed of the Bcache can be programmed independently of each other and independently of the system clock ratio. Optionally, the Bcache can operate in a psuedo-pipeline manner. Internal processor registers are used to program the Bcache timing and to enable wave pipelining. See the *Alpha 21164 Microprocessor Hardware Reference Manual* for more information.

The Bcache system supports block sizes of 32 or 64 bytes but it be must set like the secondary cache (Scache). The block size is selected by a mode bit. The Scache is 3-way, set-associative but is a subset of the larger externally implemented, direct-mapped Bcache. In systems with no Bcache, the Scache block size must be set to 64 bytes.

5.2.1 Bcache Victim Buffers

The 21164 is designed to support systems with one or more offchip Bcache victim buffers. External victim buffers improve the overall performance of the Bcache. A Bcache victim is generated when the 21164 deallocates a dirty block from the Bcache. Each time a Bcache victim is produced, the 21164 stops reading the Bcache until the system takes the current victim, and then the Bcache operations resume.

5.2.2 Cache Coherence Protocol

Cache coherency is a concern for single and multiprocessor 21164-based systems as there may be several caches on a processor module and several more in multiprocessor systems.

The system hardware designer need not be concerned about Icache and Dcache coherency. Coherency of the Icache is a software concern—it is flushed with an IMB (PALcode) instruction. The 21164 maintains coherency between the Dcache and the Scache.

If the system does not have a Bcache, the system designer must create mechanisms in the system interface logic to support cache coherency between the Scache, main memory, and other caches in the system.

If the system has a Bcache, the 21164 maintains cache coherency between the Scache and the Bcache. The Scache is a subset of the Bcache. In this case, the designer must create mechanisms in the system interface logic to support cache coherency between the Bcache, main memory, and other caches in the system.

The following tasks must be performed to maintain cache coherency:

- The Cbox in the 21164 maintains coherency in the Dcache and keeps it as a subset of the Scache.
- If an optional Bcache is present, then the 21164 maintains the Scache as a subset of the Bcache. The Scache is set-associative but is kept a subset of the larger externally implemented direct-mapped Bcache.
- System logic must help the 21164 to keep the Bcache coherent with main memory and other caches in the system.
- The Icache is not a subset of any cache and also is not kept coherent with the memory system.

Table 4 describes the Bcache states that determine cache coherence protocol for 21164 systems.

Valid ¹	Shared ¹	Dirty ¹	State of Cache Line
0	Х	Х	Not valid.
1	0	0	Valid for read or write operations. This cache line contains the only cached copy of the block and the copy in memory is identical to this line.
1	0	1	Valid for read or write operations. This cache line contains the only cached copy of the block. The contents of the block have been modified more recently than the copy in memory.
1	1	0	Valid for read or write operations. This block may be in another CPU's cache.
1	1	1	Valid for read or write operations. This block may be in another CPU's cache. The contents of the block have been modified more recently than the copy in memory.

 Table 4
 Bcache States for Cache Coherency Protocols

¹The **tag_valid_h**, **tag_shared_h**, and **tag_dirty_h** signals are described in Table 2.

5.3 System Interface

The system interface is made up of bidirectional address and command buses, a data bus that it shares with the Bcache interface, and several control signals.

Figure 10 shows the 21164 system interface signals.

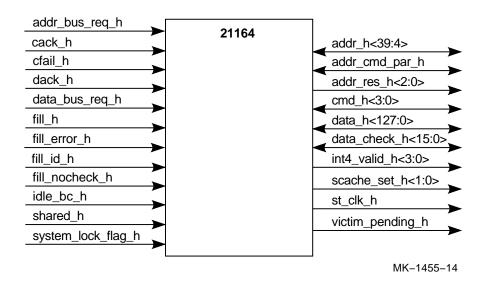


Figure 10 Alpha 21164 System Interface Signals

The system interface is under the control of the cache control and bus interface unit (Cbox). The system interface is a 128-bit bidirectional data bus. The cycle time of the system interface is programmable to speeds of one-third to one-fifteenth the CPU cycle time. All system interface signals are driven or sampled by the 21164 on the rising edge of **sys_clk_out1_h**.

5.3.1 Commands and Addresses

The 21164 can take up to two commands from the system at a time. The bus interface buffer can hold one or two misses and one or two Scache victim addresses at a time. A miss occurs when the 21164 searches its caches but does not find the addressed block. The 21164 can queue two misses to the system. An Scache victim occurs when the 21164 deallocates a dirty block from the Scache.

The system requests the misses, and the victims arbitrate for the Bcache.

• The highest priority for the Bcache is data movement for the system, which includes fill, read dirty data, invalidate, and set shared activities.

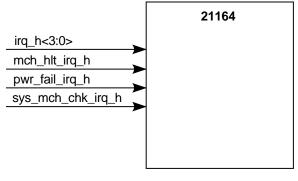
• If there are no system requests for the Bcache, then a 21164 command is selected.

Tables 5 and 6 provide a brief description of the commands that the 21164 and the system can drive on the command bus.

cmd<3:0>	Command	Meaning
0000	NOP	Nothing.
0001	LOCK	New lock register address.
0010	FETCH	21164 passes a FETCH to system.
0011	FETCH_M	21164 passes a FETCH_M to system.
0100	MEMORY BARRIER	MB instruction.
0101	SET DIRTY	Dirty bit set if shared bit is clear.
0110	WRITE BLOCK	Request to write a block.
0111	WRITE BLOCK LOCK	Request to write a block with lock.
1000	READ MISS0	Request for data.
1001	READ MISS1	Request for data.
1010	READ MISS MOD0	Request for data; modify intent.
1011	READ MISS MOD1	Request for data; modify intent.
1100	BCACHE VICTIM	Bcache victim should be removed.
1101	_	Spare.
1110	READ MISS MOD STC0	Request for data, ST <i>x</i> _C data.
1111	READ MISS MOD STC1	Request for data, ST <i>x</i> _C data.

Table 5 Alpha 21164 Commands for the System

 Table 6
 System Commands for the 21164


cmd<3:0>	Command	Meaning
0000	NOP	Nothing.
0001	FLUSH	Remove block from caches; return dirty data (flush protocol).
0010	INVALIDATE	Remove the block (write invalidate protocol).
0011	SET SHARED	Block goes to the shared state (write invalidate protocol).
0100	READ	Read a block (flush protocol).
0101	READ DIRTY	Read a block; set shared (write invalidate protocol).
0111	READ DIRTY/INV	Read a block; invalidate (write invalidate protocol).

5.4 Interrupts

The 21164 has seven interrupt signals that have different uses during initialization and normal operation.

Figure 11 shows the 21164 interrupt signals.

MK-1455-17

5.4.1 Interrupt Signals During Initialization

The 21164 interrupt signals work in tandem with the **sys_reset_l** signal to set the values for many of the user-selectable clocking ratios and interface timing parameters. During initialization, the 21164 reads system clock configuration parameters from the interrupt pins.

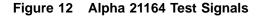
Table 7 shows the system clock divisor settings. The system clock frequency is determined by dividing the ratio into the CPU clock frequency.

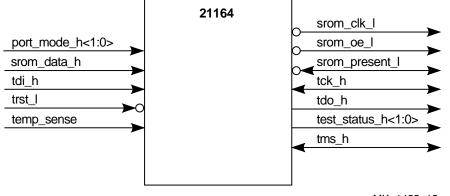
irq_h<3>	irq_h<2>	irq_h<1>	irq_h<0>	Ratio	
Low	Low	High	High	3	
Low	High	Low	Low	4	
Low	High	Low	High	5	
Low	High	High	Low	6	
Low	High	High	High	7	
High	Low	Low	Low	8	
High	Low	Low	High	9	
High	Low	High	Low	10	
High	High	High	High	15	

Table 7 System Clock Divisor

Table 8 shows how the three remaining interrupt signals are used to determine the length of the **sys_clk_out2** delay. These signals provide flexible timing for system use.

sys_mch_chk_irq_h	pwr_fail_irq_h	mch_halt_irq_h	Delay Cycles
Low	Low	Low	0
Low	Low	High	1
Low	High	Low	2
Low	High	High	3
High	Low	Low	4
High	Low	High	5
High	High	Low	6
High	High	High	7


Table 8 System Clock Delay


5.4.2 Interrupt Signals During Normal Operation

During normal operation, interrupt signals request various interrupts as described in Table 2.

5.5 Test Modes

Figure 12 shows the 21164 test signals.

MK-1455-15

The 21164 test interface port consists of 13 dedicated signals. Table 9 summarizes the 21164 test port signals and their function.

Pin Name	Туре	Function	
port_mode_h<1>	Ι	Must be false.	
port_mode_h<0>	Ι	Must be false.	
srom_present_l	Ι	Tied low if serial ROMs (SROMs) are present in system.	
srom_data_h/Rx	Ι	Receives SROM or serial terminal data.	
srom_clk_h/Tx	0	Supplies clock to SROMs or transmits serial terminal data.	
srom_oe_l	0	SROM enable.	
tdi_h	Ι	IEEE 1149.1 TDI port.	
tdo_h	0	IEEE 1149.1 TDO port.	
tms_h	Ι	IEEE 1149.1 TMS port.	
tck_h	В	IEEE 1149.1 TCK port.	
trst_l	Ι	IEEE 1149.1 optional TRST port.	
test_status_h<0>	0	Indicates Icache BiSt status.	
test_status_h<1> O Outputs an IPR-written value and		Outputs an IPR-written value and timeout reset.	

Table 9 Alpha 21164 Test Port Pins

5.5.1 Normal Test Interface Mode

The test port is in the default or normal test interface mode when the **port_mode_h<1:0**> signals are tied to 00. In this mode, the test port supports the following:

- Serial ROM interface port
- Serial diagnostic terminal interface port
- IEEE 1149.1 test access port

5.5.2 Serial ROM Interface Port

The following signals make up the serial ROM (SROM) interface:

srom_present_l srom_data_h srom_oe_l srom_clk_h During system reset, the 21164 samples the **srom_present_l** signal for the presence of SROM. If no SROMs are detected at reset, then **srom_present_l** is deasserted and the SROM load is disabled. The reset sequence clears the Icache valid bits, which causes the first instruction fetch to miss the Icache and seek instructions from offchip memory.

If SROMs are present during setup, then the system performs an SROM load as follows:

- 1. The **srom_oe_l** signal supplies the output enable to the SROM.
- 2. The **srom_clk_h** signal supplies the clock to the ROM that causes it to advance to the next bit. The cycle time of this clock is $126\pm$ times the system clock ratio.
- 3. The **srom_data_h** signal reads the SROM data.

5.5.3 Serial Terminal Port

After the serial ROM data is loaded into the Icache, the three SROM load signals become parallel I/O pins that can drive a diagnostic terminal such as an RS422.

5.5.4 IEEE 1149.1 Test Access Port

The test access port complies with all requirements of the IEEE 1149.1 (JTAG) standard. The following signals make up the test access port:

- tms_h—Test access port select.
- trst_l—Test access port reset.
- tck_h—Test access port clock.
- **tdi_h** and **tdo_h**—Input and output for serial boundary scan, die-ID, bypass, and instruction registers.

5.5.5 Test Status Signals

The test_status_h signals extract test status information from the chip.

- The **test_status_h<0**> signal indicates when the Icache built-in self-test (BiSt) fails.
- The **test_status_h<1**> signal detects unrepairable Icache by indicating more than two failing Icache rows.

6 Alpha Architecture Basics

This section provides some basic information about the Alpha architecture. For more detailed information about the Alpha architecture, see the *Alpha Architecture Reference Manual*.

6.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with particular emphasis on speed, multiple instruction issue, multiple processors, and software migration from many operating systems.

All registers are 64 bits in length and all operations are performed between 64-bit registers. All instructions are 32 bits in length. Memory operations are either load or store operations. All data manipulation is done between registers.

The Alpha architecture supports the following data types:

- 8-, 16-, 32-, and 64-bit integers
- IEEE 32-bit and 64-bit floating-point formats
- VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruction writing to a register or memory location and another instruction reading from that register or memory location. This use of resources makes it easy to build implementations that issue multiple instructions every CPU cycle.

The 21164 uses a set of subroutines, called privileged architecture library code (PALcode), that is specific to a particular Alpha operating system implementation and hardware platform. These subroutines provide operating system primitives for context switching, interrupts, exceptions, and memory management. These subroutines can be invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the function field of the instruction to vector to a specified subroutine. PALcode is written in standard machine code with some implementation-specific extensions to provide direct access to low-level hardware functions. PALcode supports optimizations for multiple operating systems, flexible memory-management implementations, and multi-instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, register-to-register instructions; it does not include single-byte load and store instructions.

6.2 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21164 supports a 43-bit virtual address.

Virtual addresses as seen by the program are translated into physical memory addresses by the memory-management mechanism. The 21164 supports a 40-bit physical address.

6.3 Integer Data Types

Alpha architecture supports four integer data types:

Data Type	Description
Byte	A byte is 8 contiguous bits that start at an addressable byte boundary. A byte is an 8-bit value. A byte is supported in Alpha architecture by the EXTRACT, MASK, INSERT, and ZAP instructions.
Word	A word is 2 contiguous bytes that start at an arbitrary byte boundary. A word is a 16-bit value. A word is supported in Alpha architecture by the EXTRACT, MASK, and INSERT instructions.
Longword	A longword is 4 contiguous bytes that start at an arbitrary byte boundary. A longword is a 32-bit value. A longword is supported in the Alpha architecture by sign-extended load and store instructions and by longword arithmetic instructions.
Quadword	A quadword is 8 contiguous bytes that start at an arbitrary byte boundary. A quadword is supported in Alpha architecture by load and store instructions and quadword integer operate instructions.

_ Note _____

Alpha implementations may impose a significant performance penalty when accessing operands that are not NATURALLY ALIGNED. Refer to the *Alpha Architecture Reference Manual* for details.

6.4 Floating-Point Data Types

The 21164 supports the following floating-point data types:

- Longword integer format in floating-point unit
- Quadword integer format in floating-point unit
- IEEE floating-point formats
 - S_floating
 - T_floating
- VAX floating-point formats
 - F_floating
 - G_floating
 - D_floating (limited support)

7 Alpha 21164 Microprocessor IEEE Floating-Point Conformance

The 21164 supports the IEEE floating-point operations as defined by the Alpha architecture. Support for a complete implementation of the IEEE *Standard for Binary Floating-Point Arithmetic* (ANSI/IEEE Standard 754 1985) is provided by a combination of hardware and software as described in the *Alpha Architecture Reference Manual*.

Additional information about writing code to support precise exception handling (necessary for complete conformance to the standard) is in the *Alpha Architecture Reference Manual*.

The following information is specific to the 21164:

• Invalid operation (INV)

The invalid operation trap is always enabled. If the trap occurs, then the destination register is UNPREDICTABLE. This exception is signaled if any VAX architecture operand is nonfinite (reserved operand or dirty zero) and the operation can take an exception (that is, certain instructions, such as CPYS, never take an exception). This exception is signaled if any IEEE operand is nonfinite (NAN, INF, denorm) and the operation can take an exception. This trap is also signaled for an IEEE format divide of +/- 0 divided by +/- 0. If the exception occurs, then FPCR<INV> is set and the trap is signaled to the Ibox.

• Divide-by-zero (DZE)

The divide-by-zero trap is always enabled. If the trap occurs, then the destination register is UNPREDICTABLE. For VAX architecture format, this exception is signaled whenever the numerator is valid and the denominator is zero. For IEEE format, this exception is signaled whenever the numerator is valid and non-zero, with a denominator of +/- 0. If the exception occurs, then FPCR<DZE> is set and the trap is signaled to the Ibox.

For IEEE format divides, 0/0 signals INV, not DZE.

• Floating overflow (OVF)

The floating overflow trap is always enabled. If the trap occurs, then the destination register is UNPREDICTABLE. The exception is signaled if the rounded result exceeds in magnitude the largest finite number, which can be represented by the destination format. This applies only to operations whose destination is a floating-point data type. If the exception occurs, then FPCR<OVF> is set and the trap is signaled to the Ibox.

Underflow (UNF)

The underflow trap can be disabled. If underflow occurs, then the destination register is forced to a true zero, consisting of a full 64 bits of zero. This is done even if the proper IEEE result would have been -0. The exception is signaled if the rounded result is smaller in magnitude than the smallest finite number that can be represented by the destination format. If the exception occurs, then FPCR<UNF> is set. If the trap is enabled, then the trap is signaled to the Ibox. The 21164 never produces a denormal number; underflow occurs instead.

Inexact (INE)

The inexact trap can be disabled. The destination register always contains the properly rounded result, whether the trap is enabled. The exception is signaled if the rounded result is different from what would have been produced if infinite precision (infinitely wide data) were available. For floating-point results, this requires both an infinite precision exponent and fraction. For integer results, this requires an infinite precision integer and an integral result. If the exception occurs, then FPCR<INE> is set. If the trap is enabled, then the trap is signaled to the Ibox.

The IEEE-754 specification allows INE to occur concurrently with either OVF or UNF. Whenever OVF is signaled (if the inexact trap is enabled), INE is also signaled. Whenever UNF is signaled (if the inexact trap is enabled), INE is also signaled. The inexact trap also occurs concurrently with integer overflow. All valid opcodes that enable INE also enable both overflow and underflow.

If a CVTQL results in an integer overflow (IOV), then FPCR<INE> is automatically set. (The INE trap is never signaled to the Ibox because there is no CVTQL opcode that enables the inexact trap.)

• Integer overflow (IOV)

The integer overflow trap can be disabled. The destination register always contains the low-order bits (<64> or <32>) of the true result (not the truncated bits). Integer overflow can occur with CVTTQ, CVTGQ, or CVTQL. In conversions from floating to quadword integer or longword integer, an integer overflow occurs if the rounded result is outside the range $-2^{63} ... 2^{63-1}$. In conversions from quadword integer to longword integer, an integer overflow occurs if the result is outside the range $-2^{31} ... 2^{31-1}$. If the exception occurs, then the appropriate bit in the floating-point control register (FPCR) is set. If the trap is enabled, then the trap is signaled to the Ibox. • Software completion (SWC)

The software completion signal is not recorded in the FPCR. The state of this signal is always sent to the Ibox. If the Ibox detects the assertion of any of the listed exceptions concurrent with the assertion of the SWC signal, then it sets EXC_SUM<SWC>.

Input exceptions always take priority over output exceptions. If both exception types occur, then only the input exception is recorded in the FPCR and only the input exception is signaled to the Ibox.

8 Internal Processor Registers

This section describes the 21164 microprocessor internal processor registers (IPRs). It is organized as follows:

- Instruction fetch/decode unit and branch unit (Ibox) IPRs
- Memory address translation unit (Mbox) IPRs
- Cache control and bus interface unit (Cbox) IPRs
- PAL storage registers
- Restrictions

Ibox, Mbox, data cache (Dcache), and PALtemp IPRs are accessible to PALcode by means of the HW_MTPR and HW_MFPR instructions. Table 10 lists the IPR numbers for these instructions.

Cbox, second-level cache (Scache), and backup cache (Bcache) IPRs are accessible in the physical address region FF FFF0 0000 to FF FFFF FFFF. Table 34 summarizes the Cbox, Scache, and Bcache IPRs. Table 47 lists restrictions on the IPRs.

_____ Note for Windows NT ____

For 21164–P1 and 21164–P2 users, the following bits must be set:

- IBOX control and status register (ICSR<28>) SPE<0> must always be set (Section 8.1.17). Clearing this bit will cause 21164–P*n* operation to be UNPREDICTABLE.
- MBOX control register (MCSR<01>) SP<0> must always be set (Section 8.2.14). Clearing this bit will cause 21164–P*n* operation to be UNPREDICTABLE.

_____ Note _____

Unless explicitly stated, IPRs are not cleared or set by hardware on chip or timeout reset.

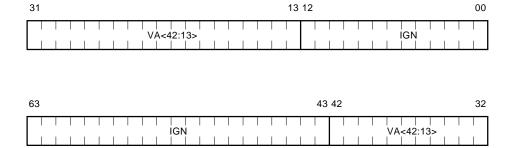
IPR Mnemonic	Access	Index ₁₆	Ibox Slots to Pipe
Ibox IPRs			
ISR	R	100	E1
ITB_TAG	W	101	E1
ITB_PTE	R/W	102	E1
ITB_ASN	R/W	103	E1
ITB_PTE_TEMP	R	104	E1
ITB_IA	W	105	E1
ITB_IAP	W	106	E1
ITB_IS	W	107	E1
SIRR	R/W	108	E1
ASTRR	R/W	109	E1
ASTER	R/W	10A	E1
EXC_ADDR	R/W	10B	E1
EXC_SUM	R/W0C	10C	E1
EXC_MASK	R	10D	E1
PAL_BASE	R/W	10E	E1
ICM	R/W	10F	E1
IPLR	R/W	110	E1
INTID	R	111	E1
IFAULT_VA_FORM	R	112	E1
IVPTBR	R/W	113	E1
HWINT_CLR	W	115	E1
SL_XMIT	W	116	E1
SL_RCV	R	117	E1
ICSR	R/W	118	E1
IC_FLUSH_CTL	W	119	E1
ICPERR_STAT	R/W1C	11A	E1
PMCTR	R/W	11C	E1

Table 10 Ibox, Mbox, Dcache, and PALtemp IPR Encodings

IPR Mnemonic	Access	Index ₁₆	Ibox Slots to Pipe
PALtemp IPRs			
PALtemp0	R/W	140	E1
PALtemp1	R/W	141	E1
PALtemp2	R/W	142	E1
PALtemp3	R/W	143	E1
PALtemp4	R/W	144	E1
PALtemp5	R/W	145	E1
PALtemp6	R/W	146	E1
PALtemp7	R/W	147	E1
PALtemp8	R/W	148	E1
PALtemp9	R/W	149	E1
PALtemp10	R/W	14A	E1
PALtemp11	R/W	14B	E1
PALtemp12	R/W	14C	E1
PALtemp13	R/W	14D	E1
PALtemp14	R/W	14E	E1
PALtemp15	R/W	14F	E1
PALtemp16	R/W	150	E1
PALtemp17	R/W	151	E1
PALtemp18	R/W	152	E1
PALtemp19	R/W	153	E1
PALtemp20	R/W	154	E1
PALtemp21	R/W	155	E1
PALtemp22	R/W	156	E1
PALtemp23	R/W	157	E1
Mbox IPRs			
DTB_ASN	W	200	E0
DTB_CM	W	201	E0

 Table 10 (Cont.)
 Ibox, Mbox, Dcache, and PALtemp IPR Encodings

IPR Mnemonic	Access	Index ₁₆	Ibox Slots to Pipe
DTB_TAG	W	202	E0
DTB_PTE	R/W	203	E0
DTB_PTE_TEMP	R	204	E0
MM_STAT	R	205	E0
VA	R	206	E0
VA_FORM	R	207	E0
MVPTBR	W	208	E0
DTB_IAP	W	209	E0
DTB_IA	W	20A	E0
DTB_IS	W	20B	E0
ALT_MODE	W	20C	E0
CC	W	20D	E0
CC_CTL	W	20E	E0
MCSR	R/W	20F	E0
DC_FLUSH	W	210	E0
DC_PERR_STAT	R/W1C	212	E0
DC_TEST_CTL	R/W	213	E0
DC_TEST_TAG	R/W	214	E0
DC_TEST_TAG_TEMP	R/W	215	E0
DC_MODE	R/W	216	E0
MAF_MODE	R/W	217	E0


Table 10 (Cont.) Ibox, Mbox, Dcache, and PALtemp IPR Encodings

8.1 Instruction Fetch/Decode Unit and Branch Unit (Ibox) IPRs

The Ibox internal processor registers (IPRs) are described in Section 8.1.1 through Section 8.1.27.

8.1.1 Istream Translation Buffer Tag Register (ITB_TAG)

ITB_TAG is a write-only register written by hardware on an ITBMISS/IACCVIO, with the tag field of the faulting virtual address. To ensure the integrity of the instruction translation buffer (ITB), the TAG and page table entry (PTE) fields of an ITB entry are updated simultaneously by a write operation to the ITB_PTE register. This write operation causes the contents of the ITB_TAG register to be written into the tag field of the ITB location, which is determined by a not-last-used replacement algorithm. The PTE field is obtained from the HW_MTPR ITB_PTE instruction. Figure 13 shows the ITB_TAG register format.

Figure 13 Istream Translation Buffer Tag Register (ITB_TAG)

LJ-03473-TI0

8.1.2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register

ITB_PTE is a read/write register.

Write Format

A write operation to this register writes both the PTE and TAG fields of an ITB location determined by a not-last-used replacement algorithm. The TAG and PTE fields are updated simultaneously to ensure the integrity of the ITB. A write operation to the ITB_PTE register increments the not-last-used (NLU) pointer, which allows for writing the entire set of ITB PTE and TAG entries. If the HW_MTPR ITB_PTE instruction falls in the shadow of a trapping instruction, the NLU pointer may be incremented multiple times. The TAG field of the ITB location is determined by the contents of the ITB_TAG register. The PTE field is provided by the HW_MTPR ITB_PTE instruction. Write operations to this register use the memory format bits, as described in the *Alpha Architecture Reference Manual*. Figure 14 shows the ITB_PTE register write format.

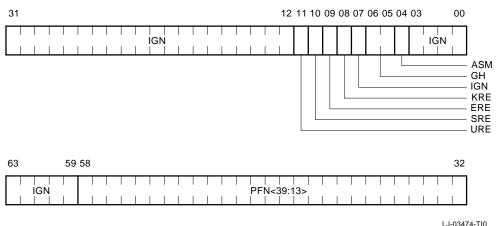
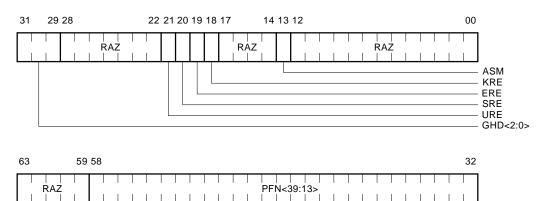



Figure 14 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Write Format

Read Format

A read of the ITB_PTE requires two instructions. A read of the ITB_PTE register returns the PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and increments the NLU pointer. If the HW_MFPR ITB_PTE instruction falls in the shadow of a trapping instruction, the NLU pointer may be incremented multiple times. A zero value is returned to the integer register file. A second read of the ITB_PTE_TEMP register returns the PTE to the general purpose integer register file (IRF). Figure 15 shows the ITB_PTE register read format.

Figure 15 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Read Format

LJ-03475-TI0

8.1.3 Instruction Translation Buffer Address Space Number (ITB_ASN) Register ITB_ASN is a read/write register that contains the address space number (ASN) of the current process. Figure 16 shows the ITB_ASN register format.

Figure 16 Instruction Translation Buffer Address Space Number (ITB_ASN) Register

31														1	1 1 ()					04	4 0	3		00
				RA	 \Z/I	 GN 											AS	SN<	6:0)>			RA	Z/I(GN
63																									32

LJ-03476-TI0

8.1.4 Instruction Translation Buffer Page Table Entry Temporary (ITB_PTE_TEMP) Register

ITB_PTE_TEMP is a read-only holding register for ITB_PTE read data. A read of the ITB_PTE register returns data to this register. A second read of the ITB_PTE_TEMP register returns data to the general purpose integer register file (IRF). Figure 15 shows the ITB_PTE register format.

Table 11 shows the GHD settings for the ITB_PTE_TEMP register.

 Table 11 Granularity Hint Bits in ITB_PTE_TEMP Read Format

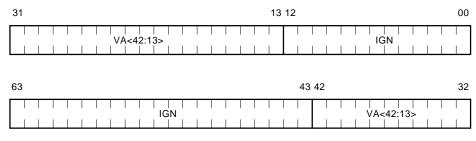
Name	Extent	Туре	Description
GHD	<29>	RO	Set if granularity hint equals 01, 10, or 11.
GHD	<30>	RO	Set if granularity hint equals 10 or 11.
GHD	<31>	RO	Set if granularity hint equals 11.

8.1.5 Instruction Translation Buffer Invalidate All Process (ITB_IAP) Register

ITB_IAP is a write-only register. Any write operation to this register invalidates all ITB entries that have an address space match (ASM) bit that equals zero.

8.1.6 Instruction Translation Buffer Invalidate All (ITB_IA) Register

ITB_IA is a write-only register. A write operation to this register invalidates all ITB entries, and resets the ITB not-last-used (NLU) pointer to its initial state. RESET PALcode must execute an HW_MTPR ITB_IA instruction in order to initialize the NLU pointer.

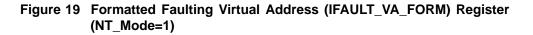

8.1.7 Instruction Translation Buffer IS (ITB_IS) Register

ITB_IS is a write-only register. Writing a virtual address to this register invalidates the ITB entry that meets either of the following criteria:

- An ITB entry whose virtual address (VA) field matches ITB_IS<42:13> and whose ASN field matches ITB_ASN<10:04>.
- An ITB entry whose VA field matches ITB_IS<42:13> and whose ASM bit is set.

Figure 17 shows the ITB_IS register format.

LJ-03478-TI0


8.1.8 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register

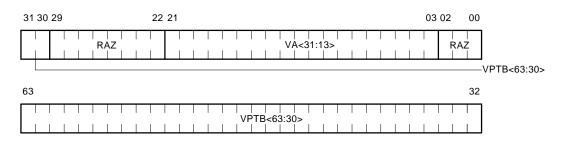

IFAULT_VA_FORM is a read-only register containing the formatted faulting virtual address on an ITBMISS/IACCVIO (except on IACCVIOs generated by sign-check errors). The formatted faulting address generated depends on whether NT superpage mapping is enabled through ICSR bit SPE<0>. Figure 18 shows the IFAULT_VA_FORM register format in non-NT mode.

Figure 18	Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
	(NT_Mode=0)

31	03 02 00
VA<42:13>	RAZ
63	33 32
VPTB<63:33>	
	VA<42:13>
	LJ-03479-TI0

Figure 19 shows the IFAULT_VA_FORM register format in NT mode.

LJ-03480-TI0

8.1.9 Virtual Page Table Base Register (IVPTBR)

IVPTBR is a read/write register. Bits $<\!32{:}30\!>$ are UNDEFINED on a read of this register in non-NT mode. Figure 20 shows the IVPTBR format in non-NT mode.

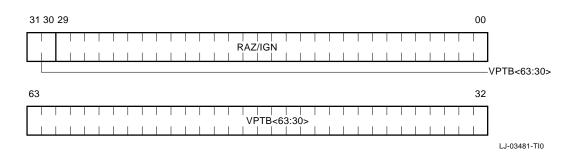

31 30 29 00 IGN RAZ/IGN 63 33 32 VPTB<63:33> GN

Figure 20 Virtual Page Table Base Register (IVPTBR) (NT_Mode=0)

MA0602

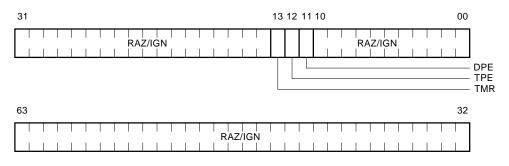

Figure 21 shows the IVPTBR format in NT mode.

Figure 21 Virtual Page Table Base Register (IVPTBR) (NT_Mode=1)

8.1.10 Icache Parity Error Status (ICPERR_STAT) Register

ICPERR_STAT is a read/write register. The Icache parity error status bits may be cleared by writing a 1 to the appropriate bits. Figure 22 and Table 12 describe the ICPERR_STAT register format.

Figure 22 Icache Parity Error Status (ICPERR_STAT) Register

LJ-03482-TI0

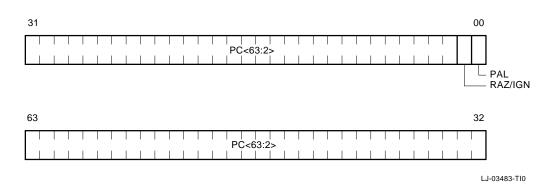
Table 12 Icache Parity Error Status Register Fields

Name	Extent	Туре	Description
DPE	<11>	W1C	Data parity error
TPE	<12>	W1C	Tag parity error
TMR	<13>	W1C	Timeout reset error or cfail_h /no cack_h error

8.1.11 Icache Flush Control (IC_FLUSH_CTL) Register

IC_FLUSH_CTL is a write-only register. Writing any value to this register flushes the entire Icache.

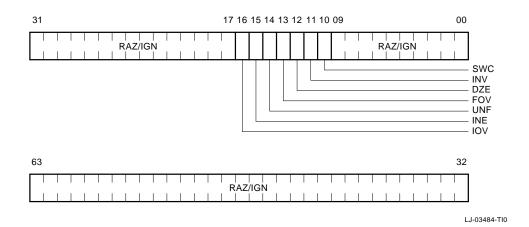
8.1.12 Exception Address (EXC_ADDR) Register


EXC_ADDR is a read/write register used to restart the system after exceptions or interrupts. The HW_REI instruction causes a return to the instruction pointed to by the EXC_ADDR register. This register can be written both by hardware and software. Hardware write operations occur as a result of exceptions/interrupts and CALL_PAL instructions. Hardware write operations that occur as a result of exceptions/interrupts take precedence over all other write operations.

In case of an exception/interrupt, hardware writes a program counter (PC) to this register. In case of precise exceptions, this is the PC value of the instruction that caused the exception. In case of imprecise exceptions/interrupts, this is the PC value of the next instruction that would have issued if the exception/interrupt was not reported.

In case of a CALL_PAL instruction, the PC value of the next instruction after the CALL_PAL is written to EXC_ADDR.

Bit <00> of this register is used to indicate PALmode. On a HW_REI instruction, the mode of the system is determined by bit <00> of EXC_ADDR. Figure 23 shows the EXC_ADDR register format.


Figure 23 Exception Address (EXC_ADDR) Register

68 Preliminary—Subject to Change—December 1995

8.1.13 Exception Summary (EXC_SUM) Register

EXC_SUM is a read/write register that records the different arithmetic traps that occur between EXC_SUM write operations. Any write operation to this register clears bits <16:10>. Figure 24 and Table 13 describe the EXC_SUM register format.

Figure 24 Exception Summary (EXC_SUM) Register

Table 13 Exception Summary Register Fields

	•	-	
Name	Extent	Туре	Description
SWC	<10>	WA	Indicates software completion possible. This bit is set after a floating-point instruction containing the /S modifier completes with an arithmetic trap and if all previous floating-point instructions that trapped since the last HW_MTPR EXC_SUM instruction also contained the /S modifier.
			The SWC bit is cleared whenever a floating-point instruction without the /S modifier completes with an arithmetic trap. The bit remains cleared regardless of additional arithmetic traps until the register is written by an HW_MTPR instruction. The bit is always cleared upon any HW_MTPR write operation to the EXC_SUM register.
			(continued on next page)

Name	Extent	Туре	Description
INV	<11>	WA	Indicates invalid operation.
DZE	<12>	WA	Indicates divide by zero.
FOV	<13>	WA	Indicates floating-point overflow.
UNF	<14>	WA	Indicates floating-point underflow.
INE	<15>	WA	Indicates floating inexact error.
IOV	<16>	WA	Indicates floating-point execution unit (Fbox) convert to integer overflow or integer arithmetic overflow.

Table 13 (Cont.) Exception Summary Register Fields

8.1.14 Exception Mask (EXC_MASK) Register

EXC_MASK is a read/write register that records the destinations of instructions that have caused an arithmetic trap between EXC_MASK write operations. The destination is recorded as a single bit mask in the 64-bit IPR representing F0–F31 and I0–I31. A write operation to EXC_SUM clears the EXC_MASK register. Figure 25 shows the EXC_MASK register format.

Figure 25 Exception Mask (EXC_MASK) Register

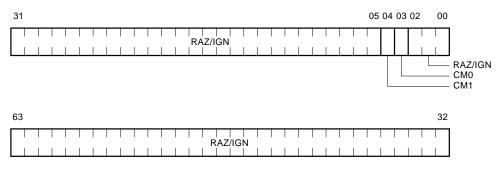
31																										00
131130129	1	1	1	1		1			1	1	1	1	1	1		1	1	1		1	T	1			11	10
63																										32
F31F30F29	1		Τ		Τ					Τ		1	Τ					Ι		Τ	Τ		Τ			F0
F31F30F29	1	I	I	1		1	L	1	1	1	1	I	1	1	1	1	L	I	L	1				T		

LJ-03485-TI0

8.1.15 PAL Base Address (PAL_BASE) Register

PAL_BASE is a read/write register containing the base address for PALcode. The register is cleared by hardware on reset. Figure 26 shows the PAL_BASE register format.

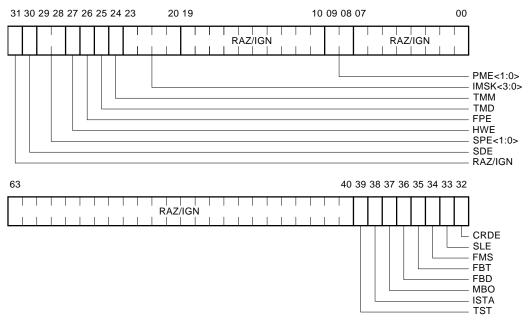
31											1	4 1	3								00
		 P/	 \L_	BAS	SE-	 <39 	 :14: 	> 								RAZ	 Z/IC	SN			
63															40	39					32


Figure 26 PAL Base Address (PAL_BASE) Register

LJ-03486-TI0

8.1.16 Ibox Current Mode (ICM) Register

ICM is a read/write register containing the current mode bits of the architecturally defined processor status, as described in the *Alpha Architecture Reference Manual*. Figure 27 shows the ICM register format.


Figure 27 Ibox Current Mode (ICM) Register

LJ-03487-TI0

8.1.17 Ibox Control and Status Register (ICSR)

ICSR is a read/write register containing Ibox-related control and status information. Figure 28 and Table 14 describe ICSR format.

Figure 28 Ibox Control and Status Register (ICSR)

LJ-03488-TI0

Name	Extent	Туре	Description
PME<1:0>	<09:08>	RW,0	Performance counter master enable bits. If both PME<1> and PME<0> are clear, all performance counters in the PMCTR IPR are disabled. If either PME<1> or PME<0> are set, the counter is enabled according to the settings of the PMCTR CTL fields.
IMSK<3:0>	<23:20>	RW,0	If set, each IMSK<3:0> signal disables the corresponding IRQ_H<3:0> interrupt.
ТММ	<24>	RW,0	If set, the timeout counter counts 5 thousand cycles before asserting timeout reset. If clear, the timeout counter counts 1 billion cycles before asserting timeout reset.
TMD	<25>	RW,0	If set, disables the Ibox timeout counter. Does not affect cfail_h /no cack_h error.
FPE	<26>	RW,0	If set, floating-point instructions may be issued. If clear, floating-point instructions cause FEN exceptions.
HWE	<27>	RW,0	If set, allows PALRES instructions to be issued in kernel mode.
SPE<1:0>	<29:28>	RW,0	21164–266, 21164–300, and 21164–333
			If SPE<1> is set, it enables superpage mapping of Istream virtual address VA<39:13> directly to physical address PA<39:13> assuming VA<42:41> = 10. Virtual address bit VA<40> is ignored in this translation. Access is allowed only in kernel mode.
			If SPE<0> is set (NT mode), it enables superpage mapping of Istream virtual addresses $VA<42:30> = 1FFE_{16}$ directly to physical address $PA<39:30> = 0_{16}$. $VA<30:13>$ is mapped directly to PA<30:13>. Access is allowed only in kernel mode.
			21164–P1 and 21164–P2
			SPE<0> must always be set. Clearing this bit will cause 21164–P <i>n</i> operation to be UNPREDICTABLE.
			(continued on next page)

Table 14 Ibox Control and Status Register Fields

Name	Extent	Туре	Description
SDE	<30>	RW,0	If set, enables PAL shadow registers.
CRDE	<32>	RW,0	If set, enables correctable error interrupts.
SLE	<33>	RW,0	If set, enables serial line interrupts.
FMS	<34>	RW,0	If set, forces miss on Icache references. MBZ in normal operation.
FBT	<35>	RW,0	If set, forces bad Icache tag parity. MBZ in normal operation.
FBD	<36>	RW,0	If set, forces bad Icache data parity. MBZ in normal operation.
Reserved	<37>	RW, 1	Reserved to Digital. Must be one.
ISTA	<38>	RO	Reading this bit indicates ICACHE BIST status. If set, ICACHE BIST was successful.
TST	<39>	RW,0	Writing a 1 to this bit asserts the test_status_h<1> signal.

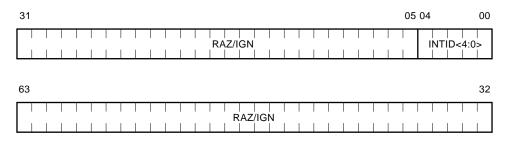
Table 14 (Cont.) Ibox Control and Status Register Fields

8.1.18 Interrupt Priority Level Register (IPLR)

IPLR is a read/write register that is accessed by PALcode to set the value of the interrupt priority level (IPL). Whenever hardware detects an interrupt whose target IPL is greater than the value in IPLR<04:00>, an interrupt is taken. Figure 29 shows the IPLR register format.

31																0	50	4			0
							R	AZ/I	GN		1							 	PL∢	<4:()>
63																					3
63			T	T		T		R	AZ/I	GN	1		1	1	1	-					3

Figure 29 Interrupt Priority Level Register (IPLR)

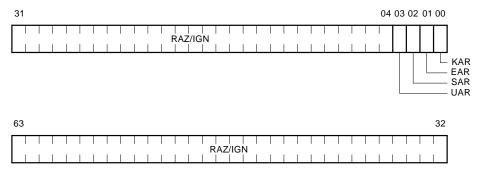

LJ-03489-TI0

8.1.19 Interrupt ID (INTID) Register

INTID is a read-only register that is written by hardware with the target IPL of the highest priority pending interrupt. The hardware recognizes an interrupt if the IPL being read is greater than the IPL given by IPLR<04:00>.

Interrupt service routines may use the value of this register to determine the cause of the interrupt. PALcode, for the interrupt service, must ensure that the IPL in INTID is greater than the IPL specified by IPLR. This restriction is required because a level-sensitive hardware interrupt may disappear before the interrupt service routine is entered (passive release).

The contents of INTID are not correct on a HALT interrupt because this particular interrupt does not have a target IPL at which it can be masked. When a HALT interrupt occurs, INTID indicates the next highest priority pending interrupt. PALcode for interrupt service must check the interrupt summary register (ISR) to determine if a HALT interrupt has occurred. Figure 30 shows the INTID register format.

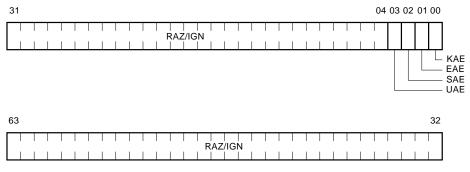

Figure 30 Interrupt ID (INTID) Register

LJ-03490-TI0

8.1.20 Asynchronous System Trap Request Register (ASTRR)

ASTRR is a read/write register containing bits to request asynchronous system trap (AST) interrupts in each of the four processor modes (U,S,E,K). In order to generate an AST interrupt, the corresponding enable bit in the ASTER must be set and the current processor mode given in the ICM<04:03> should be equal to or higher than the mode associated with the AST request. Figure 31 shows the ASTRR format.

Figure 31 Asynchronous System Trap Request Register (ASTRR)



LJ-03491-TI0

8.1.21 Asynchronous System Trap Enable Register (ASTER)

ASTER is a read/write register containing bits to enable corresponding asynchronous system trap (AST) interrupt requests. Figure 32 shows the ASTER format.

Figure 32 Asynchronous System Trap Enable Register (ASTER)

LJ-03492-TI0

8.1.22 Software Interrupt Request Register (SIRR)

SIRR is a read/write register used to control software interrupt requests. A software request for a particular IPL may be requested by setting the appropriate bit in SIRR<15:01>. Figure 33 and Table 15 describe the SIRR format.

	 RAZ	/IG	- SN	Ι	Ι		Τ					SIR	R<	15:	 1>	Ι	Ι	Τ	RA	 Z/I(
1 1 1																				Ĺ	
3																					3
3												 									3
3			1	1		1		Τ													3
3					1		1		RAZ	Z/IGI	N		1						1	1	3

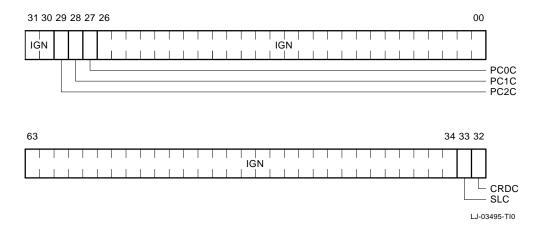

Figure 33 Software Interrupt Request Register (SIRR)

Table 15 Software Interrupt Request Register Fields

Name	Extent	Туре	Description
SIRR<15:1>	<18:04>	RW	Request software interrupts.

8.1.23 Hardware Interrupt Clear (HWINT_CLR) Register

HWINT_CLR is a write-only register used to clear edge-sensitive hardware interrupt requests. Figure 34 and Table 16 describe the HWINT_CLR register format.

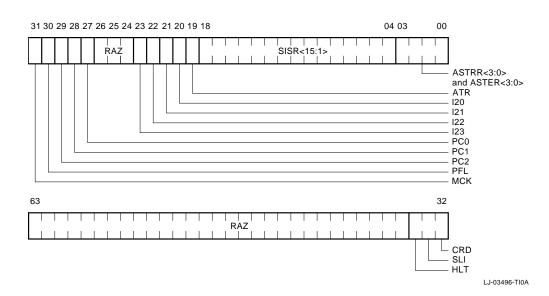

Figure 34 Hardware Interrupt Clear (HWINT_CLR) Register

Table 16 Hard	dware Interrupt	Clear Registe	r Fields
---------------	-----------------	----------------------	----------

Name	Extent	Туре	Description
PC0C	<27>	W1C	Clears performance counter 0 interrupt requests.
PC1C	<28>	W1C	Clears performance counter 1 interrupt requests.
PC2C	<29>	W1C	Clears performance counter 2 interrupt requests.
CRDC	<32>	W1C	Clears correctable read data interrupt requests.
SLC	<33>	W1C	Clears serial line interrupt requests.

8.1.24 Interrupt Summary Register (ISR)

ISR is a read-only register containing information about all pending hardware, software, and asynchronous system trap (AST) interrupt requests. Figure 35 and Table 17 describe the ISR format.

Figure 35 Interrupt Summary Register (ISR)

Name	Extent	Туре	Description
ASTRR<3:0> and ASTER<3:0>	<03:00>	RO	Boolean AND of ASTRR <usek> with ASTER<usek> used to indicate enabled AST requests.</usek></usek>
SISR<15:1>	<18:04>	RO,0	Software interrupt requests 15 through 1 corresponding to IPL 15 through 1.
ATR	<19>	RO	Set if any AST request and corresponding enable bit is set and if the processor mode is equal to or higher than the AST request mode.
I20	<20>	RO	External hardware interrupt— irq_h<0 >.
I21	<21>	RO	External hardware interrupt— irq_h<1> .
I22	<22>	RO	External hardware interrupt— irq_h<2 >.
I23	<23>	RO	External hardware interrupt— irq_h<3> .
PC0	<27>	RO	External hardware interrupt—performance counter 0 (IPL 29).
PC1	<28>	RO	External hardware interrupt—performance counter 1 (IPL 29).
PC2	<29>	RO	External hardware interrupt—performance counter 2 (IPL 29).
PFL	<30>	RO	External hardware interrupt—power failure (IPL 30).
МСК	<31>	RO	External hardware interrupt—system machine check (IPL 31).
CRD	<32>	RO	Correctable ECC errors (IPL 31).
SLI	<33>	RO	Serial line interrupt.
HLT	<34>	RO	External hardware interrupt—halt.

Table 17 Interrupt Summary Register Fields

8.1.25 Serial Line Transmit (SL_XMIT) Register

SL_XMIT is a write-only register used to transmit bit-serial data out of the microprocessor chip under the control of a software timing loop. The value of the TMT bit is transmitted offchip on the **srom_clk_h** signal. In normal operation mode (not in debugging mode), the **srom_clk_h** signal serves both the serial line transmission and the Icache serial ROM interface. Figure 36 and Table 18 describe the SL_XMIT register format.

Figure 36 Serial Line Transmit (SL_XMIT) Register

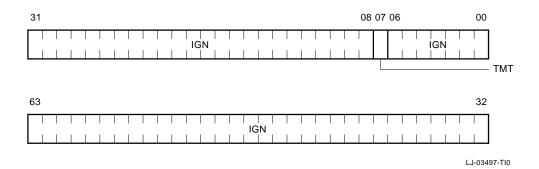


Table 18 Serial Line Transmit Register Fields

Name	Extent	Туре	Description
TMT	<07>	WO,1	Serial line transmit data

8.1.26 Serial Line Receive (SL_RCV) Register

SL_RCV is a read-only register used to receive bit-serial data under the control of a software timing loop. The RCV bit in the SL_RCV register is functionally connected to the **srom_data_h** signal. A serial line interrupt is requested whenever a transition is detected on the **srom_data_h** signal and the SLE bit in the ICSR is set. During normal operations (not in test mode), the **srom_data_h** signal serves both the serial line reception and the Icache serial ROM (SROM) interface. Figure 37 and Table 19 describe the SL_RCV register format.

Figure 37 Serial Line Receive (SL_RCV) Register

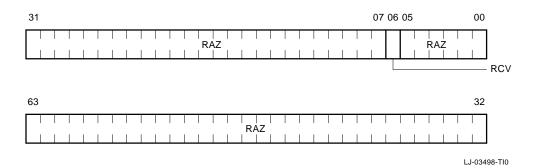
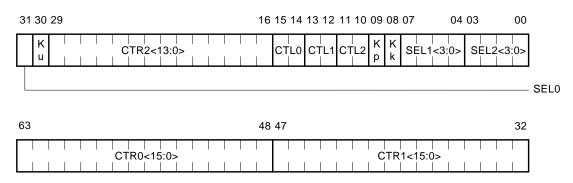


Table 19 Serial Line Receive Register Fields

Name	Extent	Туре	Description
RCV	<06>	RO	Serial line receive data


8.1.27 Performance Counter (PMCTR) Register

PMCTR is a read/write register that controls the three onchip performance counters. Figure 38 and Table 20 describe the PMCTR format. Performance counter interrupt requests are summarized in Section 8.1.24. Cbox inputs to the counter select options are described in Table 40.

Note .

The arrangement of the select option tables is not meant to imply any restrictions on permitted combinations of selections. The only cases in which the selection for one counter influences another's count is SEL1=8 (SEL 2=2, 3, other).

Figure 38 Performance Counter (PMCTR) Register

MA-0601A

Name	Extent	Туре	Description
CTR0<15:0>	<63:48>	RW	A 16-bit counter of events selected by SEL0 and enabled by CTL0<1:0>.
CTR1<15:0>	<47:32>	RW	A 16-bit counter.
SEL0	<31>	RW	Counter0 Select—refer to Table 21.
Ku	<30>	RW	Kill user mode—disables all counters in user mode (refer to Table 22).
CTR2<13:0>	<29:16>	RW	14-bit counter
CTL0<1:0>	<15:14>	RW,0	CTR0 counter control: 00 counter disable, interrupt disable 01 counter enable, interrupt disable 10 counter enable, interrupt at count 65536 (Refer to Section 8.1.23 and Section 8.1.24.) 11 counter enable, interrupt at count 256
CTL1<1:0>	<13:12>	RW,0	CTR1 counter control: 00 counter disable,interrupt disable 01 counter enable, interrupt disable 10 counter enable, interrupt at count 65536 11 counter enable, interrupt at count 256
CTL2<1:0>	<11:10>	RW,0	CTR2 counter control: 00 counter disable,interrupt disable 01 counter enable, interrupt disable 10 counter enable, interrupt at count 16384 11 counter enable, interrupt at count 256
Кр	<09>	RW	Kill PALmode—disables all counters in PALmode (refer to Table 22).
Kk	<08>	RW	Kill kernel, executive, supervisor mode— disables all counters in kernel, executive, and supervisor modes (refer to Table 22). Ku=1, Kp=1, and Kk=1 enables counters in executive and supervisor modes only.
SEL1<3:0>	<07:04>	RW	Counter1 Select—refer to Table 21.
SEL2<3:0>	<03:00>	RW	Counter2 Select—refer to Table 21.

 Table 20
 Performance Counter Register Fields

Table 21 shows the PMCTR counter select options.

Counter0 SEL0<0>	Counter1 SEL1<3:0>	Counter2 SEL2<3:0>
0:Cycles	0x0: nonissue cycles Valid instruction in S3 but none issued.	0x0: long(>15 cycle) stalls
	0x1: split-issue cycles Some, but not all, instructions at S3 issued.	0x1: reserved
	0x2: pipe-dry cycles No valid instruction at S3.	
	0x3: replay trap A replay trap occurred.	
	0x4: single-issue cycles Exactly one instruction issued.	
	0x5: dual-issue cycles Exactly two instructions issued.	
	0x6: triple-issue cycles Exactly three instructions issued.	
	0x7: quad-issue cycles Exactly four instructions issued.	
1:Instructions	0x8: jsr-ret if sel2=PC-M Instruction issued if sel2 is PC-M.	0x2: PC-mispredicts
	0x8: cond-branch if sel2=BR-M Instruction issued if sel2 is BR-M	0x3: BR-mispredicts
	0x8: all flow-change instructions if sel2=! (PC-M or BR-M)	
	0x9: IntOps issued	0x4: Icache/RFB misses
	0xA: FPOps issued	0x5: ITB misses
	0xB: loads issued	0x6: Dcache LD misses
	0xC: stores issued	0x7: DTB misses
	0xD: Icache issued	0x8: LDs merged in MAF
		(continued on next page)

 Table 21
 PMCTR Counter Select Options

Counter0 SEL0<0>	Counter1 SEL1<3:0>	Counter2 SEL2<3:0>
	0xE: Dcache accesses	0x9: LDU replay traps
		0xA:WB/MAF full replay traps
		0xB: external perf_mon_h input. This counts in CPU cycles, but input is sampled in sysclk cycles. The external status perf_mon_h is sampled once per system clock and held through the system clock period. This means that "sysclock ratio" counts occur for each system clock cycle in which the status is true.
		0xC: CPU cycles
		0xD: MB stall cycles
		0xE: LDxL instructions issued
	0xF: pick CBOX input 1	0xF: pick CBOX input 2

Table 21 (Cont.) PMCTR Counter Select Options

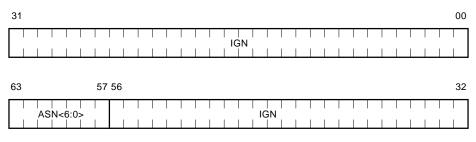
	Kill Bit	Settings		
Measurement Mode Desired	Ku	Кр	Kk	
Program	0	0	0	
PAL only	1	0	1	
OS only (kernel, executive, supervisor)	1	1	0	
User only	0	1	1	
All except PAL	0	1	0	
OS + PAL (not user)	1	0	0	
User + PAL (not kernel, executive, and supervisor)	0	0	1	
Executive and supervisor only ¹	1	1	1	

Table 22 Measurement Mode Control

 $^1 \rm{In}$ this instance, Kk means kill kernel only. The combination Ku=1, Kp=1, and Kk=1 is used to gather events for the executive and supervisor modes only.

Note ____

Both the user and the operating system can make PAL subroutine calls that put the machine in PALmode. The "OS only," "user only," and "executive and supervisor only" modes do not measure the events during the PAL subroutine calls made by the OS or user. The "OS + PAL" and "user + PAL" modes should be used carefully. "OS + PAL" mode measures the events during the PAL calls made by the user, whereas "user + PAL" mode measures the events during the PAL calls made by the OS.


8.2 Memory Address Translation Unit (Mbox) IPRs

The Mbox internal processor registers (IPRs) are described in Section 8.2.1 through Section 8.2.23.

8.2.1 Dstream Translation Buffer Address Space Number (DTB_ASN) Register

DTB_ASN is a write-only register that must be written with an exact duplicate of the ITB_ASN register ASN field. Figure 39 shows the DTB_ASN register format.

Figure 39 Dstream Translation Buffer Address Space Number (DTB_ASN) Register

LJ-03499-TI0

8.2.2 Dstream Translation Buffer Current Mode (DTB_CM) Register

DTB_CM is a write-only register that must be written with an exact duplicate of the Ibox current mode (ICM) register CM field. These bits indicate the current mode of the machine, as described in the *Alpha Architecture Reference Manual*. Figure 40 shows the DTB_CM register format.

Figure 40 Dstream Translation Buffer Current Mode (DTB_CM) Register

LJ-03500-TI0

8.2.3 Dstream Translation Buffer Tag (DTB_TAG) Register

DTB_TAG is a write-only register that writes the DTB tag and the contents of the DTB_PTE register to the DTB. To ensure the integrity of the DTBs, the DTB's PTE array is updated simultaneously from the internal DTB_PTE register when the DTB_TAG register is written.

The entry to be written is chosen at the time of the DTB_TAG write operation by a not-last-used replacement algorithm implemented in hardware. A write operation to the DTB_TAG register increments the translation buffer (TB) entry pointer of the DTB, which allows writing the entire set of DTB PTE and TAG entries. The TB entry pointer is initialized to entry zero and the TB valid bits are cleared on chip reset but not on timeout reset. Figure 41 shows the DTB_TAG register format.

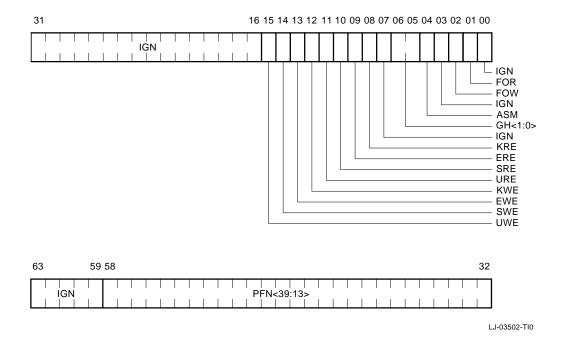
Figure 41 Dstream Translation Buffer Tag (DTB_TAG) Register

31								13	3 1:	2						00
			VA<	<42:	 13> 									IGN		
63										1	2 1	r				30

63		43 42	32
	IGN	VA<42:13>	

LJ-03501-TI0

8.2.4 Dstream Translation Buffer Page Table Entry (DTB_PTE) Register


DTB_PTE is a read/write register representing the 64-entry DTB page table entries (PTEs). The entry to be written is chosen by a not-last-used replacement algorithm implemented in hardware. Write operations to DTB_PTE use the memory format bit positions, as described in the *Alpha Architecture Reference Manual*, with the exception that some fields are ignored. In particular, the page frame number (PFN) valid bit is not stored in the DTB.

To ensure the integrity of the DTB, the PTE is actually written to a temporary register and is not transferred to the DTB until the DTB_TAG register is written. As a result, writing the DTB_PTE and then reading without an intervening DTB_TAG write operation does not return the data previously written to the DTB_PTE register.

Read operations of the DTB_PTE require two instructions. First, a read from the DTB_PTE sends the PTE data to the DTB_PTE_TEMP register. A zero value is returned to the integer register file (IRF) on a DTB_PTE read operation. A second instruction reading from the DTB_PTE_TEMP register returns the PTE entry to the register file. Reading the DTB_PTE register increments the TB entry pointer of the DTB, which allows reading the entire set of DTB PTE entries. Figure 42 shows the DTB_PTE register format.

Note _____

The *Alpha Architecture Reference Manual* provides descriptions of the fields of the PTE.

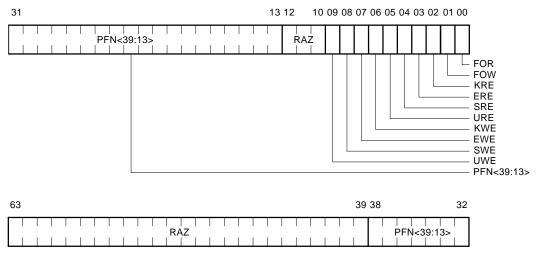
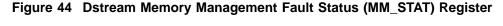
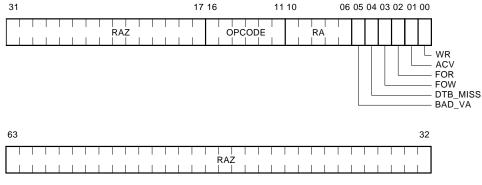


Figure 42 Dstream Translation Buffer Page Table Entry (DTB_PTE) Register—Write Format

8.2.5 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP) Register

DTB_PTE_TEMP is a read-only holding register used for DTB_PTE data. Read operations of the DTB_PTE require two instructions to return the PTE data to the register file. The first reads the DTB_PTE register to the DTB_PTE_TEMP register and returns zero to the register file. The second returns the DTB_PTE_TEMP register to the integer register file (IRF). Figure 43 shows the DTB_PTE_TEMP register format.


Figure 43 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP) Register



LJ-03503-TI0

8.2.6 Dstream Memory Management Fault Status (MM_STAT) Register

MM_STAT is a read-only register that stores information on Dstream faults and Dcache parity errors. The VA, VA_FORM, and MM_STAT registers are locked against further updates until software reads the VA register. The MM_ STAT bits are only modified by hardware when the register is not locked and a memory management error, DTB miss, or Dcache parity error occurs. The MM_STAT register is not unlocked or cleared on reset. Figure 44 and Table 23 describe the MM_STAT register format.

LJ-03504-TI0

Table 23	Dstream	Memory	Management	Fault	Status	Register	Fields
----------	---------	--------	------------	-------	--------	----------	--------

Name	Extent	Туре	Description
WR	<00>	RO	Set if reference that caused error was a write operation.
ACV	<01>	RO	Set if reference caused an access violation. Includes bad virtual address.
FOR	<02>	RO	Set if reference was a read operation and the PTE FOR bit was set.
FOW	<03>	RO	Set if reference was a write operation and the PTE FOW bit was set.
DTB_MISS	<04>	RO	Set if reference resulted in a DTB miss.
BAD_VA	<05>	RO	Set if reference had a bad virtual address.
			(continued on next page)

Name	Extent	Туре	Description
RA	<10:06>	RO	RA field of the faulting instruction.
OPCODE	<16:11>	RO	Opcode field of the faulting instruction.

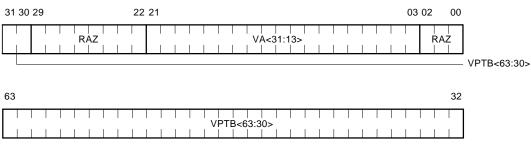
Table 23 (Cont.) Dstream Memory Management Fault Status Register Fields

8.2.7 Faulting Virtual Address (VA) Register

VA is a read-only register. When Dstream faults, DTB misses, or Dcache parity errors occur, the effective virtual address associated with the fault, miss, or error is latched in the VA register. The VA, VA_FORM, and MM_STAT registers are locked against further updates until software reads the VA register. The VA register is not unlocked on reset. Figure 45 shows the VA register format.

Figure 45 Faulting Virtual Address (VA) Register

3	I																00
									\neg							\top	\top
								Virtual	Add	ess							
63	3	 			 						 	 	 		 		32
								Virtual	Add	ess							
1												1			1		


LJ-03505-TI0

8.2.8 Formatted Virtual Address (VA_FORM) Register

VA_FORM is a read-only register containing the virtual page table entry (PTE) address calculated as a function of the faulting virtual address and the virtual page table base (VA and MVPTBR registers). This is done as a performance enhancement to the Dstream TBmiss PAL flow.

The virtual address is formatted as a 32-bit PTE when the NT_Mode bit (MCSR<01>) is set (see Figure 46). VA_FORM is locked on any Dstream fault, DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers are locked against further updates until software reads the VA register. The VA_FORM register is not unlocked on reset. Figure 47 shows the VA_FORM register format when MCSR<01> is clear.

Figure 46 Formatted Virtual Address (VA_FORM) Register (NT_Mode=1)

LJ-03507-TI0

Figure 47 Formatted Virtual Address (VA_FORM) Register (NT_Mode=0)

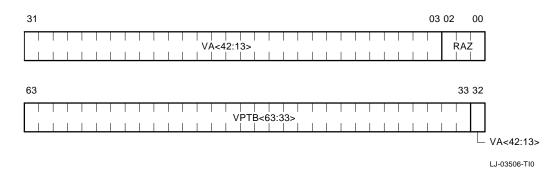


Table 24 describes the VA_FORM register fields.

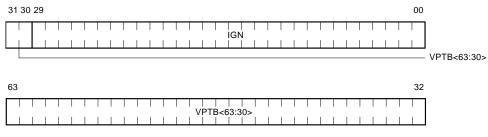
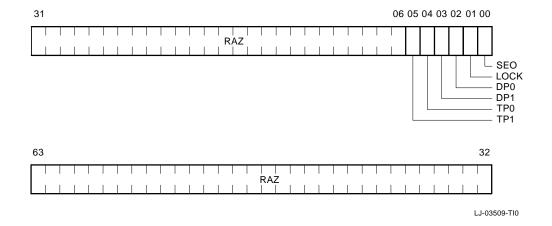

Name	Extent	Туре	Description
NT_Mode=0			
VPTB	<63:33>	RO	Virtual page table base address as stored in MVPTBR
VA<42:13>	<32:03>	RO	Subset of the original faulting virtual address
NT_Mode=1			
VPTB	<63:30>	RO	Virtual page table base address as stored in MVPTBR
VA<31:13>	<21:03>	RO	Subset of the original faulting virtual address

Table 24 Formatted Virtual Address Register Fields

8.2.9 Mbox Virtual Page Table Base Register (MVPTBR)

MVPTBR is a write-only register containing the virtual address of the base of the page table structure. It is stored in the Mbox to be used in calculating the VA_FORM value for the Dstream TBmiss PAL flow. Unlike the VA register, the MVPTBR is not locked against further updates when a Dstream fault, DTB Miss, or Dcache parity error occurs. Figure 48 shows the MVPTBR format.

Figure 48 Mbox Virtual Page Table Base Register (MVPTBR)


LJ-03508-TI0

8.2.10 Dcache Parity Error Status (DC_PERR_STAT) Register

DC_PERR_STAT is a read/write register that locks and stores Dcache parity error status. The VA, VA_FORM, and MM_STAT registers are locked against further updates until software reads the VA register. If a Dcache parity error is detected while the Dcache parity error status register is unlocked, the error status is loaded into DC_PERR_STAT<05:02>. The LOCK bit is set and the register is locked against further updates (except for the SEO bit) until software writes a 1 to clear the LOCK bit.

The SEO bit is set when a Dcache parity error occurs while the Dcache parity error status register is locked. Once the SEO bit is set, it is locked against further updates until the software writes a 1 to DC_PERR_STAT<00> to unlock and clear the bit. The SEO bit is not set when Dcache parity errors are detected on both pipes within the same cycle. In this particular situation, the pipe0/pipe1 Dcache parity error status bits indicate the existence of a second parity error. The DC_PERR_STAT register is not unlocked or cleared on reset.

Figure 49 and Table 25 describe the DC_PERR_STAT register format.

Figure 49 Dcache Parity Error Status (DC_PERR_STAT) Register

Name	Extent	Туре	Description
SEO	<00>	W1C	Set if second Dcache parity error occurred in a cycle after the register was locked. The SEO bit is not set as a result of a second parity error that occurs within the same cycle as the first.
LOCK	<01>	W1C	Set if parity error detected in Dcache. Bits $<05:02>$ are locked against further updates when this bit is set. Bits $<05:02>$ are cleared when the LOCK bit is cleared.
DP0	<02>	RO	Set on data parity error in Dcache bank 0.
DP1	<03>	RO	Set on data parity error in Dcache bank 1.
TP0	<04>	RO	Set on tag parity error in Dcache bank 0.
TP1	<05>	RO	Set on tag parity error in Dcache bank 1.

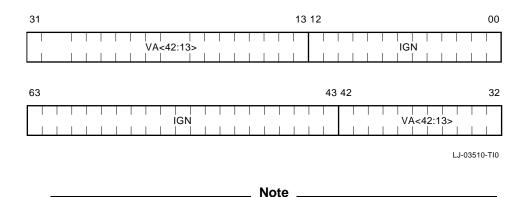
Table 25 Dcache Parity Error Status Register Fields

8.2.11 Dstream Translation Buffer Invalidate All Process (DTB_IAP) Register

DTB_IAP is a write-only register. Any write operation to this register invalidates all data translation buffer (DTB) entries in which the address space match (ASM) bit is equal to zero.

8.2.12 Dstream Translation Buffer Invalidate All (DTB_IA) Register

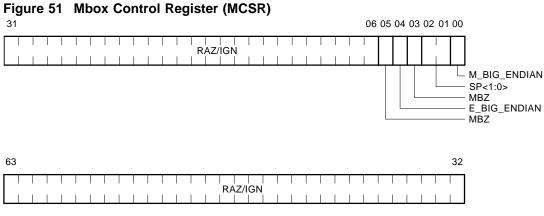
DTB_IA is a write-only register. Any write operation to this register invalidates all 64 DTB entries, and resets the DTB not-last-used (NLU) pointer to its initial state.


8.2.13 Dstream Translation Buffer Invalidate Single (DTB_IS) Register

DTB_IS is a write-only register. Writing a virtual address to this register invalidates the DTB entry that meets either of the following criteria:

- A DTB entry whose VA field matches DTB_IS<42:13> and whose ASN field matches DTB_ASN<63:57>.
- A DTB entry whose VA field matches DTB_IS<42:13> and whose ASM bit is set.

Figure 50 shows the DTB_IS register format.



The DTB_IS register is written before the normal Ibox trap point. The DTB invalidate single operation is aborted by the Ibox only for the following trap conditions:

- ITB miss
- PC mispredict
- When the HW_MTPR DTB_IS is executed in user mode

8.2.14 Mbox Control Register (MCSR)

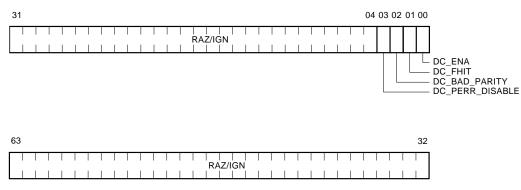
MCSR is a read/write register that controls features and records status in the Mbox. This register is cleared on chip reset but not on timeout reset. Figure 51 and Table 26 describe the MCSR format.

LJ-03511-TI0

Name	Extent	Туре	Description
M_BIG_ ENDIAN	<00>	RW,0	Mbox Big Endian mode enable. When set, bit 2 of the physical address is inverted for all longword Dstream references.
SP<1:0>	<02:01>	RW,0	21164–266, 21164–300, and 21164–333
			Superpage mode enables. Note: Superpage access is only allowed in kernel mode.
			SP<1> enables superpage mapping when VA<42:41> = 2. In this mode, virtual addresses VA<39:13> are mapped directly to physical addresses PA<39:13>. Virtual address bit VA<40> is ignored in this translation.
			SP<0> enables one-to-one superpage mapping of Dstream virtual addresses with VA<42:30> = $1FFE_{16}$. In this mode, virtual addresses VA<29:13> are mapped directly to physical addresses PA<29:13>, with bits <39:30> of physical address set to 0. SP<0> is the NT_Mode bit that is used to control virtual address formatting on a read operation from the VA_FORM register.
			21164-P1 and 21164-P2
			SP<0> must always be set. Clearing this bit will cause $21164-Pn$ operation to be UNPREDICTABLE.
Reserved	<03>	RW,0	Reserved to Digital. Must be zero (MBZ).
E_BIG_ ENDIAN	<04>	RW,0	Ebox Big Endian mode enable. This bit is sent to the Ebox to enable Big Endian support for the EXT <i>xx</i> , MSK <i>xx</i> and INS <i>xx</i> byte instructions. This bit causes the shift amount to be inverted (one's-complemented) prior to the shifter operation.
Reserved	<05>	RW,0	Reserved to Digital. Must be zero (MBZ).

 Table 26
 Mbox Control Register Fields

8.2.15 Dcache Mode (DC_MODE) Register


DC_MODE is a read/write register that controls diagnostic and test modes in the Dcache. This register is cleared on chip reset but not on timeout reset. Figure 52 and Table 27 describe the DC_MODE register format.

_ Note _

The following bit settings are required for normal operation:

DC_ENA = 1 DC_FHIT = 0 DC_BAD_PARITY = 0 DC_PERR_DISABLE = 0

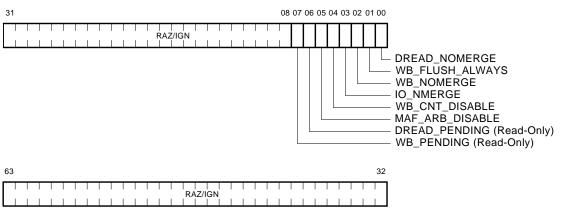
Figure 52 Dcache Mode (DC_MODE) Register

LJ-03512-TI0

Table 27	Dcache	Mode	Register	Fields
----------	--------	------	----------	--------

Name	Extent	Туре	Description
DC_ENA	<00>	RW,0	Software Dcache enable. The DC_ENA bit enables the Dcache unless the Dcache has been disabled in hardware (DC_DOA is set). (The Dcache is enabled if DC_ENA=1 and DC_DOA=0). When clear, the Dcache command is not updated by ST or FILL operations, and all LD operations are forced to miss in the Dcache. Must be one (MBO) in normal operation.
DC_FHIT	<01>	RW,0	Dcache force hit. When set, the DC_FHIT bit forces all Dstream references to hit in the Dcache. Must be zero in normal operation.
DC_BAD_ PARITY	<02>	RW,0	When set, the DC_BAD_PARITY bit inverts the data parity inputs to the Dcache on integer stores. This has the effect of putting bad data parity into the Dcache on integer stores that hit in the Dcache. This bit has no effect on the tag parity written to the Dcache during FILL operations, or the data parity written to the Cbox write data buffer on integer store instructions.
			Floating-point store instructions should <i>not</i> be issued when this bit is set because it may result in bad parity being written to the Cbox write data buffer. Must be zero (MBZ) in normal operation.
DC_PERR_ DISABLE	<03>	RW,0	When set, the DC_PERR_DISABLE bit disables Dcache parity error reporting. When clear, this bit enables all Dcache tag and data parity errors. Parity error reporting is enabled during all other Dcache test modes unless this bit is explicitly set. Must be zero (MBZ) in normal operation.

8.2.16 Miss Address File Mode (MAF_MODE) Register


MAF_MODE is a read/write register that controls diagnostic and test modes in the Mbox miss address file (MAF). This register is cleared on chip reset. MAF_MODE<05> is also cleared on timeout reset. Figure 53 and Table 28 describe the MAF_MODE register format.

_ Note _

The following bit settings are required for normal operation:

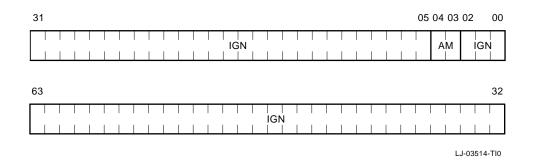
DREAD_NOMERGE = 0 WB_FLUSH_ALWAYS = 0 WB_NOMERGE = 0 MAF_ARB_DISABLE = 0 WB_CNT_DISABLE = 0

Figure 53 Miss Address File Mode (MAF_MODE) Register

LJ-03513-TI0A

Name	Extent	Туре	Description
DREAD_ NOMERGE	<00>	RW,0	Miss address file (MAF) DREAD Merge Disable. When set, this bit disables all merging in the DREAD portion of the MAF. Any load instruction that is issued when DREAD_NOMERGE is set is forced to allocate a new entry. Subsequent merging to that entry is not allowed (even if DREAD_NOMERGE is cleared). Must be zero (MBZ) in normal operation.
WB_FLUSH_ ALWAYS	<01>	RW,0	When set, this bit forces the write buffer to flush whenever there is a valid WB entry. Must be zero (MBZ) in normal operation.
WB_ NOMERGE	<02>	RW,0	When set, this bit disables all merging in the write buffer. Any store instruction that is issued when WB_ NOMERGE is set is forced to allocate a new entry. Subsequent merging to that entry is not allowed (even if WB_NOMERGE is cleared). Must be zero (MBZ) in normal operation.
IO_NMERGE	<03>	RW,0	When set, this bit prevents loads from I/O space (address bit <39>=1) from merging in the MAF. Should be zero (SBZ) in typical operation.
WB_CNT_ DISABLE	<04>	RW,0	When set, this bit disables the 64-cycle WB counter in the MAF arbiter. The top entry of the WB arbitrates at low priority only when a LDx_L instruction is issued or a second WB entry is made. Must be zero (MBZ) in normal operation.
MAF_ARB_ DISABLE	<05>	RW,0	When set, this bit disables all DREAD and WB requests in the MAF arbiter. WB_Reissue, Replay, Iref and MB requests are not blocked from arbitrating for the Scache. This bit is cleared on both timeout and chip reset. Must be zero (MBZ) in normal operation.
DREAD_ PENDING	<06>	R,0	Indicates the status of the MAF DREAD file. When set, there are one or more outstanding DREAD requests in the MAF file. When clear, there are no outstanding DREAD requests.
WB_ PENDING	<07>	R,0	This bit indicates the status of the MAF WB file. When set, there are one or more outstanding WB requests in the MAF file. When clear, there are no outstanding WB requests.

Table 28 Miss Address File Mode Register Fields Name Extent Type Description


8.2.17 Dcache Flush (DC_FLUSH) Register

DC_FLUSH is a write-only register. A write operation to this register clears all the valid bits in both banks of the Dcache.

8.2.18 Alternate Mode (ALT_MODE) Register

ALT_MODE is a write-only register that specifies the alternate processor mode used by some HW_LD and HW_ST instructions. Figure 54 and Table 29 describe the ALT_MODE register format.

Figure 54 Alternate Mode (ALT_MODE) Register

mode Register Settings
Mode
Kernel
Executive
Supervisor
User

Table 29 Alternate Mode Register Settings

8.2.19 Cycle Counter (CC) Register

CC is a read/write register. The 21164 supports it as described in the *Alpha Architecture Reference Manual*. The low half of the counter, when enabled, increments once each CPU cycle. The upper half of the CC register is the counter offset. An HW_MTPR instruction writes CC<63:32>. Bits <31:00> are unchanged. CC_CTL<32> is used to enable or disable the cycle counter. The CC<31:00> is written to CC_CTL by an HW_MTPR instruction.

The CC register is read by the RPCC instruction as defined in the *Alpha Architecture Reference Manual.* The RPCC instruction returns a 64-bit value. The cycle counter is enabled to increment only three cycles after the MTPR CC_CTL (with CC_CTL<32> set) instruction is issued. This means that an RPCC instruction issued four cycles after an HW_MTPR CC_CTL instruction that enables the counter reads a value that is one greater than the initial count.

The CC register is disabled on chip reset. Figure 55 shows the CC register format.

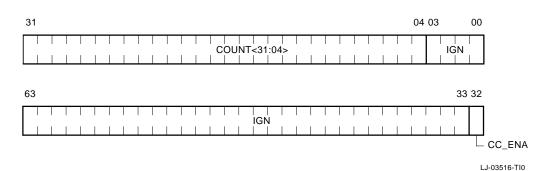
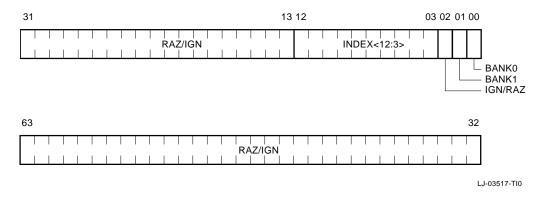

IGN IGN 33	31																		0
												1						Т	Т
33										IG	N								
33	1	1	1					<u> </u>				1							
	53																		3
									C	COF	FS	FT							
CC, OFFSET																			

Figure 55 Cycle Counter (CC) Register

LJ-03515-TI0

8.2.20 Cycle Counter Control (CC_CTL) Register

CC_CTL is a write-only register that writes the low 32 bits of the cycle counter to enable or disable the counter. Bits CC<31:04> are written with the value in CC_CTL<31:04> on a HW_MTPR instruction to the CC_CTL register. Bits CC<03:00> are written with zero. Bits CC<63:32> are not changed. If CC_CTL<32> is set, then the counter is enabled; otherwise, the counter is disabled. Figure 56 and Table 30 describe the CC_CTL register format.


Figure 56 Cycle Counter Control (CC_CTL) Register

•			•
Name	Extent	Туре	Description
COUNT<31:04>	<31:04>	WO	Cycle count. This value is loaded into $CC < 31:04 >$.
CC_ENA	<32>	wo	Cycle Counter enable. When set, this bit enables the CC register to begin incrementing 3 cycles later. An RPCC issued 4 cycles after CC_CTL<32> is written "sees" the initial count incremented by 1.

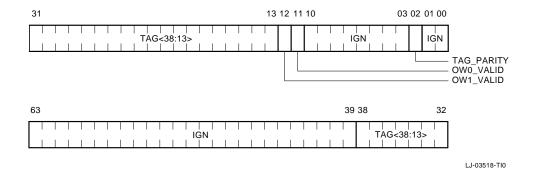
Table 30 Cycle Counter Control Register Fields

8.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register

DC_TEST_CTL is a read/write register used exclusively for testing and diagnostics. An address written to this register is used to index into the Dcache array when reading or writing to the DC_TEST_TAG register. Figure 57 and Table 31 describe the DC_TEST_CTL register format. Section 8.2.22 describes how this register is used.

Figure 57 Dcache Test Tag Control (DC_TEST_CTL) Register

Name	Extent	Туре	Description
BANK0	<00>	RW	Dcache Bank0 enable. When set, reads from DC_TEST_TAG return the tag from Dcache bank0, writes to DC_TEST_TAG write to Dcache bank0. When clear, reads from DC_TEST_TAG return the tag from Dcache bank1.
BANK1	<01>	RW	Dcache Bank1 enable. When set, writes to DC_TEST_TAG write to Dcache bank1. This bit has no effect on reads.
INDEX<12:3>	<12:03>	RW	Dcache tag index. This field is used on reads from and writes to the DC_TEST_TAG register to index into the Dcache tag array.


Table 31 Dcache Test Tag Control Register Fields

8.2.22 Dcache Test Tag (DC_TEST_TAG) Register

DC_TEST_TAG is a read/write register used exclusively for testing and diagnostics. When DC_TEST_TAG is read, the value in the DC_TEST_CTL register is used to index into the Dcache. The value in the tag, tag parity, valid and data parity bits for that index are read out of the Dcache and loaded into the DC_TEST_TAG_TEMP register. A zero value is returned to the integer register file (IRF). If BANK0 is set, the read operation is from Dcache bank0. Otherwise, the read operation is from Dcache bank1.

When DC_TEST_TAG is written, the value written to DC_TEST_TAG is written to the Dcache index referenced by the value in the DC_TEST_CTL register. The tag, tag parity, and valid bits are affected by this write operation. Data parity bits are not affected by this write operation (use DC_MODE<02> and force hit modes). If BANK0 is set, the write operation is to Dcache bank0. If BANK1 is set, the write operation is to Dcache bank1. If both are set, both banks are written.

Figure 58 and Table 32 describe the DC_TEST_TAG register format.

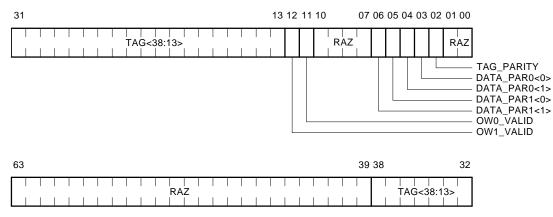
Figure 58 Dcache Test Tag (DC_TEST_TAG) Register

118 Preliminary—Subject to Change—December 1995

Name	Extent	Туре	Description
TAG_PARITY	<02>	WO	Tag parity. This bit refers to the Dcache tag parity bit that covers tag bits 38 through 13 (valid bits not covered).
OW0_VALID	<11>	WO	Octaword valid bit 0. This bit refers to the Dcache valid bit for the low-order octaword within a Dcache 32-byte block.
OW1_VALID	<12>	WO	Octaword valid bit 1. This bit refers to the Dcache valid bit for the high-order octaword within a Dcache 32-byte block.
TAG<38:13>	<38:13>	WO	TAG<38:13>. These bits refer to the tag field in the Dcache array.
			Note: Bit 39 is not stored in the array.

Table 32 Dcache Test Tag Register Fields

8.2.23 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register


DC_TEST_TAG_TEMP is a read-only register used exclusively for testing and diagnostics.

Reading the Dcache tag array requires a two-step read process:

- 1. The first read operation from DC_TEST_TAG reads the tag array and data parity bits and loads them into the DC_TEST_TAG_TEMP register. An UNDEFINED value is returned to the integer register file (IRF).
- 2. The second read operation of the DC_TEST_TAG_TEMP register returns the Dcache test data to the integer register file (IRF).

Figure 59 and Table 33 describe the DC_TEST_TAG_TEMP register format.

Figure 59 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register

LJ-03519-TI0

Name	Extent	Туре	Description
TAG_PARITY	<02>	RO	Tag parity. This bit refers to the Dcache tag parity bit that covers tag bits 38 through 13 (valid bits not covered).
DATA_PAR0<0>	<03>	RO	Data parity. This bit refers to the Bank0 Dcache data parity bit that covers the lower longword of data indexed by DC_TEST_CTL<12:03>.
DATA_PAR0<1>	<04>	RO	Data parity. This bit refers to the Bank0 Dcache data parity bit that covers the upper longword of data indexed by DC_TEST_CTL<12:03>.
DATA_PAR1<0>	<05>	RO	Data parity. This bit refers to the Bank1 Dcache data parity bit that covers the lower longword of data indexed by DC_TEST_CTL<12:03>.
DATA_PAR1<1>	<06>	RO	Data parity. This bit refers to the Bank1 Dcache data parity bit that covers the upper longword of data indexed by DC_TEST_CTL<12:03>.
OW0_VALID	<11>	RO	Octaword valid bit 0. This bit refers to the Dcache valid bit for the low-order octaword within a Dcache 32-byte block.
OW1_VALID	<12>	RO	Octaword valid bit 1. This bit refers to the Dcache valid bit for the high-order octaword within a Dcache 32-byte block.
TAG<38:13>	<38:13>	RO	TAG<38:13>. These bits refer to the tag field in the Dcache array.
			Note: Bit 39 is not stored in the array.

 Table 33 Dcache Test Tag Temporary Register Fields

8.3 External Interface Control (Cbox) IPRs

Table 34 lists specific IPRs for controlling Scache, Bcache, system configuration, and logging error information. These IPRs cannot be read or written from the system. They are placed in the 1 MB region of 21164-specific I/O address space ranging from FF FFF0 0000 to FF FFFF FFFF. Any read or write operation to an undefined IPR in this address space produces UNDEFINED behavior. The operating system should not map any address in this region as writable in any mode.

The Cbox internal processor registers are described in Section 8.3.1 through Section 8.3.9.

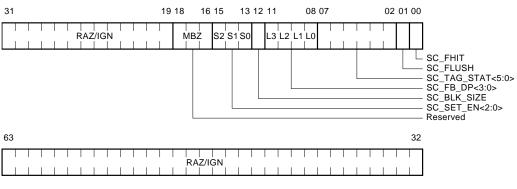

Register	Address	Type ¹	Description
SC_CTL	FF FFF0 00A8	RW	Controls Scache behavior.
SC_STAT	FF FFF0 00E8	R	Logs Scache-related errors.
SC_ADDR	FF FFF0 0188	R	Contains the address for Scache- related errors.
BC_CONTROL	FF FFF0 0128	W	Controls Bcache/system interface and Bcache testing.
BC_CONFIG	FF FFF0 01C8	W	Contains Bcache configuration parameters.
BC_TAG_ADDR	FF FFF0 0108	R	Contains tag and control bits for FILLs from Bcache.
EI_STAT	FF FFF0 0168	R	Logs Bcache/system-related errors.
EI_ADDR	FF FFF0 0148	R	Contains the address for Bcache/system-related errors.
FILL_SYN	FF FFF0 0068	R	Contains fill syndrome or parity bits for FILLs from Bcache or main memory.

 Table 34
 Cbox Internal Processor Register Descriptions

¹BC_CONTROL<01> must be 0 when reading any IPR in this table.

8.3.1 Scache Control (SC_CTL) Register (FF FFF0 00A8)

SC_CTL is a read/write register that controls Scache activity. Figure 60 and Table 35 describe the SC_CTL register format. The bits in this register are initialized to the value indicated in Table 35 on reset, but not on timeout reset.

Figure 60 Scache Control (SC_CTL) Register

LJ-03520-TI0

Field	Extent	Туре	Description	
SC_FHIT	<00>	RW,0	and store instruct Scache, irrespectiv Noncacheable refe hit in the Scache a In this mode, only	ve of the tag status bits. rences are not forced to and will be driven offchip. one Scache set may be the tag and data parity
			tag status and par the SC_TAG_STAT	ions, the value of the rity bits are specified by $\Gamma < 5:0>$ field. The tag is address provided to the core instruction.
SC_FLUSH	<01>	RW,0	All the Scache tag valid bits are cleared every time this bit field is written to 1.	
SC_TAG_ STAT<5:0>	<07:02>	RW,0	to write any comb parity bits in the S	only in the SC_FHIT mode ination of tag status and Scache. The parity bit can ad tag parity. The correct v is even.
			The following bits operation:	must be zero for normal
			Scache Tag Status<5:0>	Description
			SC_TAG_ STAT<5:2>	Tag parity, valid, shared, dirty; bits 7, 6, 5, and 4 respectively
			SC_TAG_ STAT<1:0>	Octaword modified bits

Table 35 Scache Control Register Fields

(continued on next page)

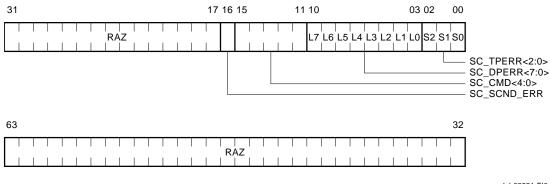

Field	Extent	Туре	Description
SC_FB_DP<3:0>	<11:08>	RW,0	Force bad parity—This field is used to write bad data parity for the selected longwords within the octaword when writing the Scache. If any one of these bits is set to one, then the corresponding longword's computed parity value is inverted when writing the Scache.
			For Scache write transactions, the Cbox allocates two consecutive cycles to write up to two octawords based on the longword valid bits received from the Mbox. Therefore, the same longword parity control bits are used for writing both octawords. For example, SC_FB_DP<0> corresponds to LW0 and LW4. This bit field must be zero during normal operation.
SC_BLK_SIZE	<12>	RW, 1	This bit selects the Scache and Bcache block size to be either 64 bytes or 32 bytes. The Scache and Bcache always have identical block sizes. All the Bcache and main memory FILLs or write transactions are of the selected block size. At power-up time, this bit is set and the default block size is 64 bytes. When clear, the block size is 32 bytes. This bit must be set to the desired value to reflect the correct Scache/Bcache block size before the 21164 does the first cacheable read or write transaction from Bcache or system.
SC_SET_EN<2:0>	<15:13>	RW,7	This field is used to enable the Scache sets. Only <i>one</i> or <i>all three</i> sets may be enabled at a time. Enabling any combination of <i>two</i> sets at a time results in UNPREDICTABLE behavior. One of the Scache sets must always be enabled irrespective of the Bcache.
Reserved	<18:16>	RW,0	Reserved to Digital. Must be zero (MBZ).

Table 35 (Cont.) Scache Control Register Fields

8.3.2 Scache Status (SC_STAT) Register (FF FFF0 00E8)

SC_STAT is a read-only register. It is not cleared or unlocked by reset. Any PALcode read of this register unlocks SC_ADDR and SC_STAT and clears SC_STAT.

If an Scache tag or data parity error is detected during an Scache lookup, the SC_STAT register is locked against further updates from subsequent transactions. Figure 61 and Table 36 describe the SC_STAT register format.

Figure 61 Scache Status (SC_STAT) Register

LJ-03521-TI0

Field	Extent	Туре	Description
SC_TPERR<2:0>	<02:00>	RO	When set, these bits indicate that an Scache tag lookup resulted in a tag parity error and identify the set that had the tag parity error.
SC_DPERR<7:0>	<10:03>	RO	When set, these bits indicate that an Scache read transaction resulted in a data parity error and indicate which longword within the two octawords had the data parity error. These bits are loaded if any longword within two octawords read from the Scache during lookup had a data parity error. If SC_FHIT (SC_CTL<00>) is set, this field is used for loading the longword parity bits read out from the Scache.
SC_CMD<4:0>	<15:11>	RO	This field indicates the Scache transaction that resulted in a Scache tag or data parity error. This field is written at the time the actual Scache error bit is written. The Scache transaction may be DREAD, IREAD, or WRITE command from the Mbox, Scache victim command, or the system command being serviced. Refer to Table 37 for field encoding.
SC_SCND_ERR	<16>	RO	When set, this bit indicates that an Scache transaction resulted in a parity error while the SC_TPERR or SC_DPERR bit was already set from the earlier transaction. This bit is not set for two errors in different octawords of the same transaction.

Table 36 Scache Status Register Fields

	•	
C_CMD<4:3> Source	SC_CMD<2:0> Encoding	Description
x	110	Set shared from system
	101	Read dirty from system
	100	Invalidate from system
	001	Scache victim
0	001	Scache IREAD
1	001	Scache DREAD
	011	Scache DWRITE

Table 37 SC_CMD Field Descriptions

8.3.3 Scache Address (SC_ADDR) Register (FF FFF0 0188)

SC_ADDR is a read-only register. It is not cleared or unlocked by reset. The address is loaded into this register every time the Scache is accessed if one of the error bits in the SC_STAT register is not set. If an Scache tag or data parity error is detected, then this register is locked preventing further updates. This register is unlocked whenever SC_STAT is read.

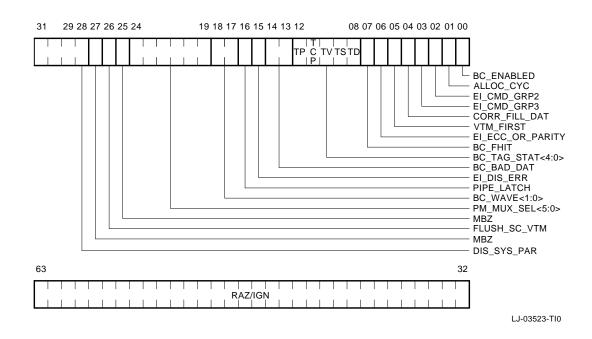
For Scache read transactions, address bits <39:04> are valid to identify the address being driven to the Scache. Address bit <04> identifies which octaword was accessed first. For each Scache lookup, there is one tag access and two data access cycles. If there is a hit, two octawords are read out in consecutive CPU cycles. Tag parity error is detected only while reading the first octaword. However, data parity error can be detected on either of the two octawords. SC_ADDR<39> is always zero.

If SC_CTL<00> is set (force hit mode), SC_ADDR is used for storing the Scache tag and status bits. For each tag in the Scache, there are unique valid, shared, and dirty bits for a 32-byte subblock, and modify bits for each octaword (16 bytes). There is a single tag and a parity bit for two consecutive 32-byte subblocks. In force hit mode, only reads and probes load tag and status into the SC_ADDR register. In this mode, tag and data parity checking are disabled and the SC_ADDR and SC_STAT registers are not locked on an error.

In force hit mode, to write the Scache and read back the same block and corresponding tag status bits, a minimum of 5-cycle spacing is required between the Scache write and read of the SC_ADDR or SC_STAT.

Figure 62 and Table 38 describe the SC_ADDR register format.

Normal Mode 31	04 03 00
SC_ADDR<38:04>	RAO
63 40 39 38	32
RAO 0 SC	ADDR<38:04>
Force Hit Mode 31 15 14 13 12 11 10 09 08 07 0	5 04 03 00
TAG<38:15> M1 M0 D1 S1 V1D0 S0 V	0TP RAO
63 40 39 38	32
	TAG<38:15>
	RAZ


Figure 62 Scache Address (SC_ADDR) Register

Name	Extent	Туре	Description
Normal Mode			
SC_ADDR<38:04>	<38:04>	RO	Scache address.
Force Hit Mode			
TP	<04>	RO	Scache tag parity bit.
V0	<05>	RO	Subblock0 tag valid bit.
S0	<06>	RO	Subblock0 tag shared bit.
D0	<07>	RO	Subblock0 tag dirty bit.
V1	<08>	RO	Subblock1 tag valid bit.
S1	<09>	RO	Subblock1 tag shared bit.
D1	<10>	RO	Subblock1 tag dirty bit.
M0	<12,11>	RO	Octawords modified for subblock0.
M1	<14,13>	RO	Octawords modified for subblock1.
TAG<38:15>	<38:15>	RO	Scache tag.

Table 38 Scache Address Register Fields

8.3.4 Bcache Control (BC_CONTROL) Register (FF FFF0 0128)

BC_CONTROL is a write-only register. It is used to enable and control the external Bcache. Figure 63 and Table 39 describe the BC_CONTROL register format.

Figure 63 Bcache Control (BC_CONTROL) Register

<00>	WO,0	When set, the external Bcache is enabled. When clear, the Bcache is disabled. When the Bcache is disabled, the BIU does not perform external cache read or write transactions.
<01>	WO,0	When set, the issue unit does not allocate a cycle for noncacheable fill data. When clear, the instruction issue unit allocates a cycle for returning noncacheable fill data to be written to the Dcache. Ir either case, a cycle is always allocated for cacheable integer fill data. If this bit is clear, the latency for all noncacheable read operations increases by 1 CPU cycle.
		Note: This bit <i>must</i> be clear before reading any Cbox IPR. It can be set when reading all other IPRs and noncacheable LDs.
<02>	WO,0	When set, the optional commands, LOCK and SET DIRTY are driven to the 21164 external interface command pins to be acknowledged by the system interface. When clear, the SET DIRTY command is not driven to the command pins. It is UNPREDICTABLE if the LOCK command is driven to the pins. However, the system should never CACK the LOCK command if this bit is clear.
<03>	WO,0	When set, the MB command is driven to the 21164 external interface command pins to be acknowledged by the system interface. When clear, the MB command is not driven to the command pins.
<04>	WO,1	Correct fill data from Bcache or main memory, in ECC mode. When set, fill data from Bcache or main memory first goes through error correction logic before being driven to the Scache or Dcache. If the error is correctable, it is transparent to the system.
		When clear, fill data from Bcache or main memory is driven directly to the Dcache before an ECC error is detected. If the error is correctable, corrected data is returned again, Dcache is invalidated, and an error trap is taken.This bit should be clear during normal operation.
	<02>	<02> WO,0

Table 39 Bcache Control Register Fields

¹When clear, the read speed (BC_RD_SPD<3:0>) and the write speed (BC_WR_SPD<3:0>) must be equal to the sysclk to CPU clock ratio.

Table 39 ((Cont.)	Bcache	Control	Register	Fields

Field	Extent	Туре	Description
VTM_FIRST	<05>	WO,1	This bit is set for systems without a victim buffer. On a Bcache miss, the 21164 first drives out the victimized block's address on the system address bus, followed by the read miss address and command. This bit is cleared for systems with a victim buffer. On a Bcache miss with victim, the 21164 first drives out the read miss followed by the victim address and command.
EI_ECC_OR_ PARITY	<06>	WO,1	When set, the 21164 generates or expects quadword ECC on the data check pins. When clear, the 21164 generates or expects even-byte parity on the data check pins.
BC_FHIT	<07>	WO,0	Bcache force hit. When set, and the Bcache is enabled, all references in cached space are forced to hit in the Bcache. A FILL to the Scache is forced to be private. Software should turn off BC_CONTROL<02> to allow clean to private transitions without going to the system.
			For write transactions, the values of tag status and parity bits are specified by the BC_TAG_STAT field. Bcache tag and index are the address received by the BIU. The Bcache tag RAMs are written with the address minus the Bcache index. This bit must be zero during normal operation.
BC_TAG_ STAT<4:0>	<12:08>	WO	This bit field is used only in BC_FHIT=1 mode to write any combination of tag status and parity bits in the Bcache. The parity bit can be used to write bad tag parity. These bits are UNDEFINED on reset. This bit field must be zero during normal operation. The field encoding is as follows:

Field	Extent	Туре	Description	
			Bcache Tag Status Bit	Description
			BC_TAG_STAT<4>	Parity for Bcache tag
			BC_TAG_STAT<3>	Parity for Bcache tag status bits
			BC_TAG_STAT<2>	Bcache tag valid bit
			BC_TAG_STAT<1>	Bcache tag shared bit
			BC_TAG_STAT<0>	Bcache tag dirty bit
			and <64> are inverted bit <1> and <65> are octaword is read from a correctable/uncorrec quadwords based on	bit <13> is set, data bit <0> ed. When bit <14> is set, data e inverted. When the same n the Bcache, the 21164 detects ectable ECC error on both the the value of bits <14:13> used bit field must be zero during
EI_DIS_ERR	<15>	WO,1	any ECC (parity) err the Bcache or main control parity error.	auses the 21164 to ignore for on fill data received from memory; or Bcache tag or It also ignores a system rity error. No machine check is is set.
PIPE_LATCH	<16>	WO,0	system control pins (uses the 21164 to pipe the (addr_bus_req_h, cack_h, and tem clock. Refer to Section 11

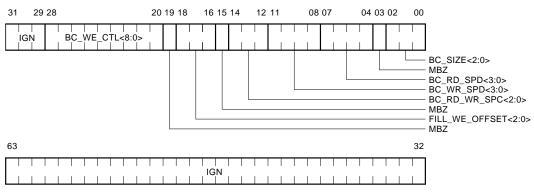
Table 39 (Cont.) Bcache Control Register Fields

Field	Extent	Туре	Description
BC_WAVE<1:0>	<18:17>	WO,0	The bits in this field determine the number of cycles of wave pipelining that should be used during private read transactions of the Bcache. Wave pipelining cannot be used in 32-byte block systems.
			To enable wave pipelining, BC_CONFIG<07:04> should be set to the latency of the Bcache read. BC_CONTROL<18:17> should be set to the number of cycles to subtract from BC_CONFIG<07:04> to obtain the Bcache repetition rate. For example, if BC_CONFIG<07:04>=7 and BC_CONTROL<18:17>=2 it takes seven cycles for valid data to arrive at the interface pins, but a new read will start every five cycles.
			The read repetition rate must be greater than 3. For example, it is not permitted to set BC_CONFIG<07:04>=5 and BC_CONTROL<18:17>=2
			The value of BC_CONTROL<18:17> should be added to the normal value of BC_CONFIG<14:12> to increase the time between read and write transactions. This prevents a write transaction from starting before the last data of a read transaction is received.
PM_MUX_ SEL<5:0>	<24:19>	WO,0	The bits in this field are used for selecting the BIU parameters to be driven to the two performance monitoring counters in the Ibox. Refer to Table 40 for the field encoding.
Reserved	<25>	WO,0	Reserved—MBZ.
FLUSH_SC_VTM	<26>	WO,0	Flush Scache victim buffer. For systems without a Bcache, when this bit is clear, the 21164 flushes the onchip victim buffer if it has to write-back any entry from the victim buffer. When this bit is set, the 21164 writes only one entry back from the victim buffer as needed. This tends to cause read and write operations to be batched rather than interleaved.
			For systems with a Bcache, this bit must always be clear. At power-up, this bit is initialized to a value of 0.
Reserved	<27>	WO,0	Reserved—MBZ.

Table 39 (Cont.) Bcache Control Register Fields

Field	Extent	Туре	Description
DIS_SYS_PAR	<28>	WO,0	When set, the 21164 does not check parity on the system command/address bus. However, correct parity will still be generated.

Table 39 (Cont.) Bcache Control Register Fields


Table 40 describes the PM_MUX_SEL fields.

PM_MUX_SEL<21:19>	Counter 1	
0x0	Scache accesses	
0x1	Scache read operations	
0x2	Scache write operations	
0x3	Scache victims	
0x4	Undefined	
0x5	Bcache accesses	
0x6	Bcache victims	
0x7	System command requests	
PM_MUX_SEL<24:22>	Counter 2	
0x0	Scache misses	
0x1	Scache read misses	
0x2	Scache write misses	
0x3	Scache shared write operations	
0x4	Scache write operations	
0x5	Bcache misses	
0x6	System invalidate operations	
0x7	System read requests	

Table 40 PM_MUX_SEL Register Fields

8.3.5 Bcache Configuration (BC_CONFIG) Register (FF FFF0 01C8)

BC_CONFIG is a write-only register used to configure the size and speed of the external Bcache array. The bits in this register are initialized to the values indicated in Table 41 on reset, but not on timeout reset. Figure 64 and Table 41 describe the BC_CONFIG register format.

Figure 64 Bcache Configuration (BC_CONFIG) Register

MLO-012926

Field	Extent	Туре	Description	
BC_SIZE<2:0> <02:00> W		WO,1	the size of the field is initiali	is field are used to indicate Bcache. At power-on, this zed to a value representing iche. The field encoding is as
			BC_ SIZE<2:0> ¹	Size
			000	Invalid Bcache size
			001	1 MB
			010	2 MB
			011	4 MB
			100	8 MB
			101	16 MB
			110	32 MB
			111	64 MB
Reserved	<03>	WO,0	Must be zero ((MBZ).

 Table 41
 Bcache Configuration Register Fields

Field	Extent	Туре	Description
BC_RD_SPD<3:0>	<07:04>	WO,4	The bits in this field are used to indicate to the BIU the read access time of the Bcache, measured in CPU cycles, from the start of a read transaction until data is valid at the input pins. The Bcache read speed must be within 4 to 10 CPU cycles. At power-up, this field is initialized to a value of 4 CPU cycles.
			The Bcache read and write speeds must be within three cycles of each other (absolute value = $(BC_RD_SPD - BC_WR_SPD) < 4$).
			For systems without a Bcache, the read speed must be equal to the sysclk to CPU clock ratio. In this configuration, BC_RD_SPD can be set to a value ranging from 3 to 15.
BC_WR_SPD<3:0>	<11:08>	WO,4	The bits in this field are used to indicate to the BIU the write time of the Bcache, measured in CPU cycles. The Bcache write speed must be within 4 to 10 CPU cycles. At power-up, this field is initialized to a value of four CPU cycles.
			For systems without a Bcache, the write speed must be equal to sysclk to CPU clock ratio.
			(continued on next page)

Table 41 (Cont.) Bcache Configuration Register Fields

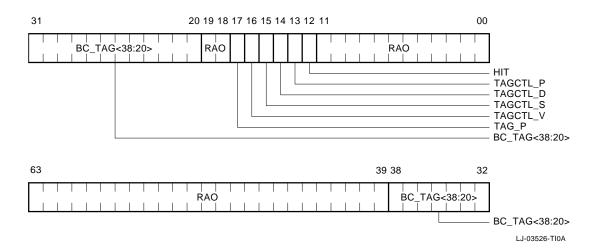
SPC<2:0>to the BIU the number of CPU cycles t wait when switching from a private ree to a private write Bcache transaction. 1 other data movement commands, such READ DIRTY or FILL from main mem it is up to the system to direct system wdata movement in a way that is safe. 4 value of 1 must be the minimum value this field.The BIU always inserts three CPU cycles between private Bcache read and private Bcache write transactions, in addition to the number of CPU cycles specified by this field. The maximum vx (BC_RD_WR_SPC+3) should not be gre than the Bcache READ speed when Bca is enabled.Reserved<15>WO,0Must be zero (MBZ).FILL_WE_ OFFSET<2:0><18:16>WO,1Bcache write-enable pulse offset, from the system. This fiel does not affect private write transaction to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles to wait before shifting out the contents of write pulse field.This field is programmed with a value the range of one to seven CPU cycles.This field is programmed with a value the range of one to seven CPU cycles.must never exceed the systek ratio is 3, this field	Field	Extent	Туре	Description
cycles between private Bcache read and private Bcache write transactions, in addition to the number of CPU cycles specified by this field. The maximum va (BC_RD_WR_SPC+3) should not be gre than the Bcache READ speed when Bca is enabled.Reserved<15>WO,0Must be zero (MBZ).FILL_WE_ OFFSET<2:0><18:16>WO,1Bcache write-enable pulse offset, from the sys_clk_outn_x edge, for FILL transactions from the system. This fiel does not affect private write transaction to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles.This field is programmed with a value the range of one to seven CPU cycles.must nove exceed the syscik ratio is 3, this field us not be larger than 3. At power-up this field is initialized to a write offset value of one CPU cycle.		<14:12>	WO,7	The bits in this field are used to indicate to the BIU the number of CPU cycles to wait when switching from a private read to a private write Bcache transaction. For other data movement commands, such as READ DIRTY or FILL from main memory, it is up to the system to direct systemwide data movement in a way that is safe. A value of 1 must be the minimum value for this field.
Reserved <15> WO,0 Must be zero (MBZ). FILL_WE_ <18:16> WO,1 Bcache write-enable pulse offset, from the sys_clk_outn_x edge, for FILL transactions from the system. This fiel does not affect private write transaction to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles to wait before shifting out the contents of write pulse field. This field is programmed with a value the range of one to seven CPU cycles. must never exceed the syscelk ratio. For example, if the syscelk ratio is 3, this fiel must not be larger than 3. At power-up this field is initialized to a write offset value of one CPU cycle.				cycles between private Bcache read and private Bcache write transactions, in addition to the number of CPU cycles specified by this field. The maximum value (BC_RD_WR_SPC+3) should not be greater than the Bcache READ speed when Bcache
FILL_WE_ OFFSET<2:0><18:16>WO,1Bcache write-enable pulse offset, from the sys_clk_outn_x edge, for FILL transactions from the system. This fiel does not affect private write transaction to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles to wait before shifting out the contents of write pulse field.This field is programmed with a value the range of one to seven CPU cycles.must never exceed the sysclk ratio. For example, if the sysclk ratio is 3, this fiel using the syscle ratio is 3, this field using the syscle ratio is 3, this field is initialized to a write offset value of one CPU cycle.				At power-up, this field is initialized to a read/write spacing of seven CPU cycles.
OFFSET<2:0> the sys_clk_outn_x edge, for FILL transactions from the system. This fiel does not affect private write transaction to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles to wait before shifting out the contents of write pulse field. This field is programmed with a value the range of one to seven CPU cycles. must never exceed the sysclk ratio. For example, if the sysclk ratio is 3, this fiel must not be larger than 3. At power-up this field is initialized to a write offset value of one CPU cycle.	Reserved	<15>	WO,0	Must be zero (MBZ).
the range of one to seven CPU cycles. must never exceed the sysclk ratio. For example, if the sysclk ratio is 3, this fie must not be larger than 3. At power-up this field is initialized to a write offset value of one CPU cycle.		<18:16>	WO,1	the sys_clk_outn_x edge, for FILL transactions from the system. This field does not affect private write transactions to Bcache. It is used during FILLs from the system when writing the Bcache to determine the number of CPU cycles to wait before shifting out the contents of the
Reserved <19> WO,0 Must be zero (MBZ).				
	Reserved	<19>	WO,0	Must be zero (MBZ).

Table 41 (Cont.) Bcache Configuration Register Fields

Field	Extent	Туре	Description
BC_WE_CTL<8:0>	<28:20>	WO,0	Bcache write-enable control. This field is used to control the timing of the write- enable during a write or FILL transaction. If the bit is set, the write pulse is asserted. If the bit is clear, the write pulse is not asserted. Each bit corresponds to a CPU cycle. The least-significant bit corresponds to the CPU cycle in which the 21164 starts to drive the index for the write operation.
			For private Bcache write and shared- write transactions, this field is used to assert the write pulse without any write- enable pulse offset as indicated by the FILL_WE_OFFSET<2:0> field.
			For FILLs to the Bcache, the FILL_WE_OFFSET<2:0> field determines the number of CPU cycles to wait before asserting the write pulse as programmed in this field.
			At power-up, all bits in this field are cleared.
Reserved	<63:29>	WO	Ignored.

Table 41 (Cont.) Bcache Configuration Register Fields

8.3.6 Bcache Tag Address (BC_TAG_ADDR) Register (FF FFF0 0108)


BC_TAG_ADDR is a read-only register. Unless locked, the BC_TAG_ADDR register is loaded with the results of every Bcache tag read. When a tag or tag control parity error occurs, this register is locked against further updates. Software may read this register by using the 21164-specific I/O space address instruction. This register is unlocked whenever the EI_STAT register is read, or the user enters BC_FHIT mode. It is not unlocked by reset.

Note

The correct address is not loaded into BC_TAG_ADDR if a tag parity error is detected when servicing a system command from the Bcache.

Unused tag bits in the TAG field of this register are always zero, based on the size of the Bcache as determined by the BC_SIZE field of the BC_CONTROL register. Figure 65 and Table 42 describe the BC_TAG_ADDR register format.

Figure 65 Bcache Tag Address (BC_TAG_ADDR) Register

Preliminary—Subject to Change—December 1995 143

Field	Extent	Туре	Description
HIT	<12>	RO	If set, Bcache access resulted in a hit in the Bcache.
TAGCTL_P	<13>	RO	Value of the parity bit for the Bcache tag status bits.
TAGCTL_D	<14>	RO	Value of the Bcache TAG dirty bit.
TAGCTL_S	<15>	RO	Value of the Bcache TAG shared bit.
TAGCTL_V	<16>	RO	Value of the Bcache TAG valid bit.
TAG_P	<17>	RO	Value of the tag parity bit.
BC_TAG<38:20>	<38:20>	RO	Bcache tag bits as read from the Bcache. Unused bits are read as zero.

Table 42 Bcache Tag Address Register Fields

8.3.7 External Interface Status (EI_STAT) Register (FF FFF0 0168)

EI_STAT is a read-only register. Any PALcode read access of this register unlocks and clears it. A read access of EI_STAT also unlocks the EI_ADDR, BC_TAG, and FILL_SYN registers subject to some restrictions. The EI_STAT register is not unlocked or cleared by reset.

Fill data from Bcache or main memory could have correctable (c) or uncorrectable (u) errors in ECC mode. In parity mode, fill data parity errors are treated as uncorrectable hard errors. System address/command parity errors are always treated as uncorrectable hard errors irrespective of the mode. The sequence for reading, unlocking, and clearing EI_ADDR, BC_TAG, FILL_ SYN, and EI_STAT is as follows:

- 1. Read EI_ADDR, BC_TAG, and FILL_SYN in any order. Does not unlock or clear any register.
- 2. Read EI_STAT register. Reading this register unlocks EI_ADDR, BC_TAG, and FILL_SYN registers. EI_STAT is also unlocked and cleared when read, subject to conditions described in Table 43.

Loading and locking rules for external interface registers are defined in Table 43.

Note _

If the first error is correctable, the registers are loaded but not locked. On the second correctable error, registers are neither loaded nor locked.

Registers are locked on the first uncorrectable error except the second hard error bit. The second hard error bit is set only for an uncorrectable error followed by an uncorrectable error. If a correctable error follows an uncorrectable error, it is not logged as a second error. Bcache tag parity errors are uncorrectable in this context.

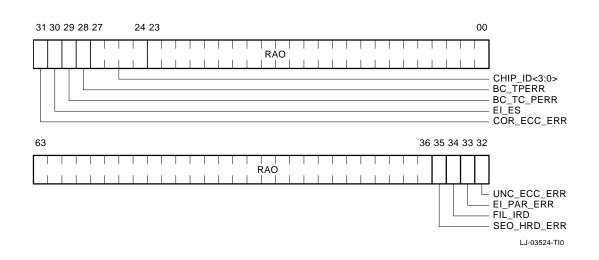

Correctable Error	Uncorrectable Error	Second Hard Error	Load Register	Lock Register	Action when EI_STAT is read
0	0	Not possible	No	No	Clears and unlocks everything.
1	0	Not possible	Yes	No	Clears and unlocks everything.
0	1	0	Yes	Yes	Clears and unlocks everything.
1 ¹	1	0	Yes	Yes	Clear (c) bit does not unlock. Transition to (0,1,0) state.
0	1	1	No	Already locked	Clears and unlocks everything.
1 ¹	1	1	No	Already locked	Clear (c) bit does not unlock. Transition to (0,1,1) state.

Table 43 Loading and Locking Rules for External Interface Registers

¹These are special cases. It is possible that when EI_ADDR is read, only the correctable error bit is set and the registers are not locked. By the time EI_STAT is read, an uncorrectable error is detected and the registers are loaded again and locked. The value of EI_ADDR read earlier is no longer valid. Therefore, for the (1,1,x) case, when EI_STAT is read correctable, the error bit is cleared and the registers are not unlocked or cleared. Software must reexecute the IPR read sequence. On the second read operation, error bits are in (0,1,x) state, all the related IPRs are unlocked, and EI_STAT is cleared.

The EI_STAT register is a read-only register used to control external interface registers. Figure 66 and Table 44 describe the EI_STAT register format.

Figure 66 External Interface Status (EI_STAT) Register

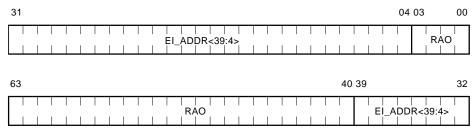


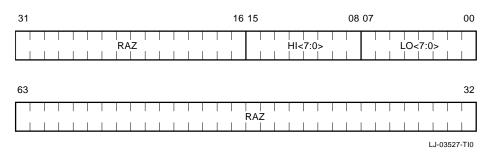
Table 44 EI_STAT Register Field	S
---------------------------------	---

Field	Extent	Туре	Description
CHIP_ID<3:0>	<27:24>	RO	Read as "4." Future update revisions to the chip will return new unique values.
BC_TPERR	<28>	RO	Indicates that a Bcache read transaction encountered bad parity in the tag address RAM.
BC_TC_PERR	<29>	RO	Indicates that a Bcache read transaction encountered bad parity in the tag control RAM.
EI_ES	<30>	RO	When set, this bit indicates that the error source is fill data from main memory or a system address/command parity error.
			When clear, the error source is fill data from the Bcache. This bit is only meaningful when COR_ECC_ERR, UNC_ECC_ERR, or EI_PAR_ERR is set.
			This bit is not defined for a Bcache tag error (BC_TPERR) or a Bcache tag control parity error (BC_TC_ERR).
COR_ECC_ERR	<31>	RO	Correctable ECC error. This bit indicates that a fill data received from outside the CPU contained a correctable ECC error.
UNC_ECC_ERR	<32>	RO	Uncorrectable ECC error. This bit indicates that fill data received from outside the CPU contained an uncorrectable ECC error. In the parity mode, it indicates data parity error.
EI_PAR_ERR	<33>	RO	External interface command/address parity error. This bit indicates that an address and command received by the CPU has a parity error.
FIL_IRD	<34>	RO	This bit has meaning only when one of the ECC or parity error bit is set. It is set to indicate that the error occurred during an I-ref FILL and clear to indicate that the error occurred during a D-ref FILL.
			This bit is not defined for a Bcache tag error (BC_TPERR) or a Bcache tag control parity error (BC_TC_ERR).
SEO_HRD_ERR	<35>	RO	Second external interface hard error. This bit indicates that a FILL from Bcache or main memory, or a system address/command received by the CPU has a hard error while one of the hard error bits in the EI_STAT register is already set.

8.3.8 External Interface Address (EI_ADDR) Register (FF FFF0 0148)

EI_ADDR is a read-only register that contains the physical address associated with errors reported by the EI_STAT register. Its content is meaningful only when one of the error bits is set. A read of EI_STAT unlocks the EI_ADDR register. Figure 67 shows the EI_ADDR register format.

Figure 67 External Interface Address (EI_ADDR) Register


LJ-03525-TI0

8.3.9 Fill Syndrome (FILL_SYN) Register (FF FFF0 0068)

FILL_SYN is a 16-bit read-only register. It is loaded but not locked on a correctable ECC error, so that another correctable error does not reload it. It is loaded and locked if an uncorrectable ECC error or parity error is recognized during a FILL from Bcache or main memory, as shown in Table 43. The FILL_SYN register is unlocked when the EI_STAT register is read. This register is not unlocked by reset.

If the 21164 is in ECC mode and an ECC error is recognized during a cache fill transaction, the syndrome bits associated with the bad quadword are loaded in the FILL_SYN register. FILL_SYN<07:00> contains the syndrome associated with the lower quadword of the octaword. FILL_SYN<15:08> contains the syndrome associated with the higher quadword of the octaword. A syndrome value of 0 means that no errors where found in the associated quadword.

If the 21164 is in parity mode and a parity error is recognized during a cache fill transaction, the FILL_SYN register indicates which of the bytes in the octaword has bad parity. FILL_SYNDROME<07:00> is set appropriately to indicate the bytes within the lower quadword that were corrupted. Likewise, FILL_SYN<15:08> is set to indicate the corrupted bytes within the upper quadword. Figure 68 shows the FILL_SYN register format.

Figure 68 Fill Syndrome (FILL_SYN) Register

Table 45 lists the syndromes associated with correctable single-bit errors.

Data Bit	Syndrome ₁₆	Check Bit	Syndrome ₁₆	
00	CE	00	01	
01	СВ	01	02	
02	D3	02	04	
03	D5	03	08	
04	D6	04	10	
05	D9	05	20	
06	DA	06	40	
07	DC	07	80	
08	23			
09	25			
10	26			
11	29			
12	2A			
13	2C			
14	31			
15	34			
16	0E			
17	0B			

Table 45 Syndromes for Single-Bit Errors

Data Bit	Syndrome ₁₆	Check Bit	Syndrome ₁₆	
18	13			
19	15			
20	16			
21	19			
22	1A			
23	1C			
24	E3			
25	E5			
26	E6			
27	E9			
28	EA			
29	EC			
30	F1			
31	F4			
32	4 F			
33	4A			
34	52			
35	54			
36	57			
37	58			
38	5B			
39	5D			
40	A2			
41	A4			
42	A7			
43	A8			
44	AB			
45	AD			
46	B0			

Table 45 (Cont.) Syndromes for Single-Bit Errors

Data Bit	Syndrome ₁₆	Check Bit	Syndrome ₁₆	
47	B5			
48	8F			
49	8A			
50	92			
51	94			
52	97			
53	98			
54	9B			
55	9D			
56	62			
57	64			
58	67			
59	68			
60	6B			
61	6D			
62	70			
63	75			

Table 45 (Cont.) Syndromes for Single-Bit Errors

8.4 PALcode Storage Registers

The 21164 Ebox register file has eight extra registers that are called the PALshadow registers. The PALshadow registers overlay R8 through R14 and R25 when the CPU is in PALmode and ICSR<SDE> is set. Thus, PALcode can consider R8 through R14 and R25 as local scratch. PALshadow registers can not be written in the last two cycles of a PALcode flow. The normal state of the CPU is ICSR<SDE> = ON. PALcode disables SDE for the unaligned trap and for error flows.

The Ibox holds a bank of 24 PALtemp registers. The PALtemp registers are accessed with the HW_MTPR and HW_MFPR instructions. The latency from a PALtemp read operation to availability is one cycle.

8.5 Restrictions

The following sections list all known register access restrictions. A software tool called the PALcode violation checker (PVC) is available. This tool can be used to verify adherence to many of the PALcode restrictions.

8.5.1 Cbox IPR PALcode Restrictions

Table 46 describes the Cbox IPR PALcode restrictions.

Condition	Restriction
Store to SC_CTL, BC_CONTROL, BC_ CONFIG except if no bit is changed other than BC_CONTROL <alloc_cyc>, BC_CONTROL<pm_mux_sel>, or BC_ CONTROL<dbg_mux_sel>.</dbg_mux_sel></pm_mux_sel></alloc_cyc>	Must be preceded by MB, must be followed by MB, must have no concurrent cacheable Istream references or concurrent system commands.
Store to BC_CONTROL that only changes bits BC_CONTROL <alloc_ CYC>, BC_CONTROL<pm_mux_sel>, or BC_CONTROL<dbg_mux_sel>.</dbg_mux_sel></pm_mux_sel></alloc_ 	Must be preceded by MB and must be followed by MB.
Load from SC_STAT.	Unlocks SC_ADDR and SC_STAT.
Load from EI_STAT.	Unlocks EI_ADDR, EI_STAT, FILL_SYN, and BC_TAG_ADDR.
Any Cbox IPR address.	No LDx_L or STx_C.
Any undefined Cbox IPR address.	No store instructions.
Scache or Bcache in force hit mode.	No STx_C to cacheable space.
Clearing of SC_FHIT in SC_CTL.	Must be followed by MB, read operation of SC_STAT, then MB prior to subsequent store.
Clearing of BC_FHIT in BC_CONTROL.	Must be followed by MB, read operation of EI_STAT, then MB prior to subsequent store.
Load from any Cbox IPR.	BC_CONTROL<01> (ALLOC_CYCLE) must be clear.

Table 46 Cbox IPR PALcode Restrictions

8.5.2 PALcode Restrictions—Instruction Definitions

Mbox instructions are: LD*x*, LDQ_U, LD*x*_L, HW_LD, ST*x*, STQ_U, ST*x*_C, HW_ST, and FETCHx.

Virtual Mbox instructions are: LD*x*, LDQ_U, LD*x*_L, HW_LD (virtual), ST*x*, STQ_U, ST*x*_C, HW_ST (virtual), and FETCHx.

Load instructions are: LDx, LDQ_U, LDx_L, and HW_LD.

Store instructions are: ST*x*, STQ_U, ST*x*_C, and HW_ST.

Table 47 lists PALcode restrictions.

The following in cycle 0:	Restrictions (Note: Numbers refer to cycle number):	Y if checked by PVC ¹
CALL_PAL entry	No HW_REI or HW_REI_STALL in cycle 0. No HW_MFPR EXC_ADDR in cycle 0,1.	Y Y
PALshadow write instruction	No HW_REI or HW_REI_STALL in 0, 1.	Y
HW_LD, lock bit set	PAL must slot to E0. No other Mbox instruction in 0.	
HW_LD, VPTE bit set	No other virtual reference in 0.	
Any load instruction	No Mbox HW_MTPR or HW_MFPR in 0. No HW_MFPR MAF_MODE in 1,2 (DREAD_PENDING may not be updated).	Y Y
	No HW_MFPR DC_PERR_STAT in 1,2. No HW_MFPR DC_TEST_TAG slotted in 0.	Y
Any store instruction	No HW_MFPR DC_PERR_STAT in 1,2. No HW_MFPR MAF_MODE in 1,2 (WB_PENDING may not be updated).	Y Y
Any virtual Mbox instruction	No HW_MTPR DTB_IS in 1.	Y
Any Mbox instruction or WMB, if it traps	HW_MTPR any Ibox IPR not aborted in 0,1 (except that EXC_ADDR is updated with correct faulting PC). HW MTPR DTB IS not aborted in 0,1.	Y Y
Any Ibox trap except PC- mispredict, ITBMISS, or OPCDEC due to user mode	HW_MTPR DTB_IS not aborted in 0,1.	ĩ
HW_REI_STALL	Only one HW_REI_STALL in an aligned block of four instructions.	

Table 47 PALcode Restrictions Table

¹PALcode violation checker

Table 47 (Cont.) PALcode Restrictions Table

The following in cycle 0:	Restrictions (Note: Numbers refer to cycle number):	Y if checked by PVC ¹
HW_MTPR any undefined IPR number	Illegal in any cycle.	
ARITH trap entry	No HW_MFPR EXC_SUM or EXC_MASK in cycle 0,1.	Y
Machine check trap entry	No register file read or write access in 0,1,2,3,4,5,6,7. No HW_MFPR EXC_SUM or EXC_MASK in cycle 0,1.	Y
HW_MTPR any Ibox IPR (including PALtemp registers)	No HW_MFPR same IPR in cycle 1,2. No floating-point conditional branch in 0. No FEN or OPCDEC instruction in 0.	Y
HW_MTPR ASTRR, ASTER	No HW_MFPR INTID in 0,1,2,3,4,5. No HW_REI in 0,1.	Y Y
HW_MTPR SIRR	No HW_MFPR INTID in 0,1,2,3,4.	Y
HW_MTPR EXC_ADDR	No HW_REI in cycle 0,1.	Y
HW_MTPR IC_FLUSH_CTL	Must be followed by 44 inline PALcode instructions.	
HW_MTPR ICSR: HWE	No HW_REI in 0,1,2,3.	Y
HW_MTPR ICSR: FPE	No floating-point instructions in 0, 1, 2, 3. No HW_REI in 0,1,2.	
HW_MTPR ICSR: SPE, FMS	If HW_REI_STALL, then no HW_REI_STALL in 0,1. If HW_REI, then no HW_REI in 0,1,2,3,4.	Y Y
HW_MTPR ICSR: SPE	Must flush Icache.	
HW_MTPR ICSR: SDE	No PALshadow read/write access in 0,1,2,3. No HW_REI in 0,1,2.	Y
HW_MTPR ITB_ASN	Must be followed by HW_REI_STALL. No HW_REI_STALL in cycle 0,1,2,3,4. No HW_MTPR ITB_IS in 0,1,2,3.	Y Y
HW_MTPR ITB_PTE	Must be followed by HW_REI_STALL.	
HW_MTPR ITB_IAP, ITB_IS, ITB_IA	Must be followed by HW_REI_STALL.	
HW_MTPR ITB_IS	HW_REI_STALL must be in the same Istream octaword.	
HW_MTPR IVPTBR	No HW_MFPR IFAULT_VA_FORM in 0,1,2.	Y
HW_MTPR PAL_BASE	No CALL_PAL in 0,1,2,3,4,5,6,7. No HW_REI in 0,1,2,3,4,5,6.	Y Y
HW_MTPR ICM	No HW_REI in 0,1,2. No private CALL_PAL in 0,1,2,3.	Y

¹PALcode violation checker

The following in cycle 0:	Restrictions (Note: Numbers refer to cycle number):	Y if checked by PVC ¹
HW_MTPR CC, CC_CTL	No RPCC in 0,1,2. No HW_REI in 0,1.	Y Y
HW_MTPR DC_FLUSH	No Mbox instructions in 1,2. No outstanding fills in 0. No HW_REI in 0,1.	Y Y
HW_MTPR DC_MODE	No Mbox instructions in 1,2,3,4. No HW_MFPR DC_MODE in 1,2. No outstanding fills in 0. No HW_REI in 0,1,2,3. No HW_REI_STALL in 0,1.	Y Y Y Y
HW_MTPR DC_PERR_STAT	No load or store instructions in 1. No HW_MFPR DC_PERR_STAT in 1,2.	Y Y
HW_MTPR DC_TEST_CTL	No HW_MFPR DC_TEST_TAG in 1,2,3. No HW_MFPR DC_TEST_CTL issued or slotted in 1,2.	Y
HW_MTPR DC_TEST_TAG	No outstanding DC fills in 0. No HW_MFPR DC_TEST_TAG in 1,2,3.	Y
HW_MTPR DTB_ASN	No virtual Mbox instructions in 1,2,3. No HW_REI in 0,1,2.	Y Y
HW_MTPR DTB_CM, ALT_ MODE	No virtual Mbox instructions in 1,2. No HW_REI in 0,1.	Y Y
HW_MTPR DTB_PTE	No virtual Mbox instructions in 2. No HW_MTPR DTB_ASN, DTB_CM, ALT_MODE, MCSR, MAF_MODE, DC_MODE, DC_PERR_STAT, DC_TEST_CTL, DC_TEST_TAG in 2.	Y Y
HW_MTPR DTB_TAG	No virtual Mbox instructions in 1,2,3. No HW_MTPR DTB_TAG in 1. No HW_MFPR DTB_PTE in 1,2. No HW_MTPR DTB_IS in 1,2. No HW_REI in 0,1,2.	Y Y Y Y Y
HW_MTPR DTB_IAP, DTB_IA	No virtual Mbox instructions in 1,2,3. No HW_MTPR DTB_IS in 0,1,2. No HW_REI in 0,1,2.	Y Y Y
HW_MTPR DTB_IA	No HW_MFPR DTB_PTE in 1.	Y
HW_MTPR MAF_MODE	No Mbox instructions in 1,2,3. No WMB in 1,2,3. No HW_MFPR MAF_MODE in 1,2. No HW_REI in 0,1,2.	Y Y Y Y

Table 47 (Cont.) PALcode Restrictions Table

¹PALcode violation checker

Table 47 (Cont.)	PALcode Restrictions Table

The following in cycle 0:	Restrictions (Note: Numbers refer to cycle number):	Y if checked by PVC ¹
HW_MTPR MCSR	No virtual Mbox instructions in 0,1,2,3,4. No HW_MFPR MCSR in 1,2. No HW_MFPR VA_FORM in 1,2,3. No HW REI in 0.1.2.3.	Y Y Y Y
	No HW_REI_III 0,1,2,3. No HW_REI_STALL in 0,1.	Y
HW_MTPR MVPTBR	No HW_MFPR VA_FORM in 1,2.	Y
HW_MFPR ITB_PTE	No HW_MFPR ITB_PTE_TEMP in 1,2,3.	Y
HW_MFPR DC_TEST_TAG	No outstanding DC fills in 0. No HW_MFPR DC_TEST_TAG_TEMP issued or slotted in 1. No LD <i>x</i> instructions slotted in 0. No HW_MTPR DC_TEST_CTL between HW_MFPR DC_TEST_TAG and HW_MFPR DC_TEST_TAG_TEMP.	
HW_MFPR DTB_PTE	No Mbox instructions in 0,1. No HW_MTPR DC_TEST_CTL, DC_TEST_TAG in 0,1. No HW_MFPR DTB_PTE_TEMP issued or slotted in 1.2,3.	Y Y
	No HW_MFPR DTB_PTE in 1. No virtual Mbox instructions in 0,1,2.	Y Y
HW_MFPR VA	Must be done in ARITH, MACHINE CHECK, DTBMISS_SINGLE, UNALIGN, DFAULT traps and ITBMISS flow after the VPTE load.	

Preliminary—Subject to Change—December 1995

9 PALcode

Privileged architecture library code (PALcode) is macrocode that provides an architecturally defined operating-system-specific programming interface that is common across all Alpha microprocessors. The actual implementation of PALcode differs for each operating system.

PALcode runs with privileges enabled, instruction stream (Istream) mapping disabled, and interrupts disabled. PALcode has privilege to use five special opcodes that allow functions such as physical data stream (Dstream) references and internal processor register (IPR) manipulation.

PALcode can be invoked by the following events:

- Reset
- System hardware exceptions (MCHK, ARITH)
- Memory-management exceptions
- Interrupts
- CALL_PAL instructions

9.1 PALcode Entry Points

PALcode is invoked at specific entry points. The 21164 has two types of PALcode entry points:

- CALL_PAL entry points are used whenever the Ibox encounters a CALL_PAL instruction in the Istream.
 - Privileged CALL_PAL instructions start at offset 2000.
 - Unprivileged CALL_PAL instructions start at offset 3000.
- Chip-specific trap entry points start PALcode.

9.1.1 PALcode Trap Entry Points

Table 48 shows the PALcode trap entry points and their offset from the PAL_BASE IPR. Entry points are listed from highest to lowest priority.

Entry Name	Offset ₁₆	Description	
RESET	0000	Reset	
IACCVIO	0080	Istream access violation or sign check error on PC	
INTERRUPT	0100	Interrupt: hardware, software, and AST	
ITBMISS	0180	Istream TBMISS	
DTBMISS_SINGLE	0200	Dstream TBMISS	
DTBMISS_DOUBLE	0280	Dstream TBMISS during virtual page table entry (PTE) fetch	
UNALIGN	0300	Dstream unaligned reference	
DFAULT	0380	Dstream fault or sign check error on virtual address	
МСНК	0400	Uncorrected hardware error	
OPCDEC	0480	Illegal opcode	
ARITH	0500	Arithmetic exception	
FEN	0580	Floating-point operation attempted with:	
		 Floating-point instructions (LD, ST, and operates) disabled through FPE bit in the ICSR IPR 	
		• Floating-point IEEE operation with data type other than S, T, or Q	

 Table 48
 PALcode Trap Entry Points

9.2 Required PALcode Function Codes

Table 49 lists opcodes required for all Alpha implementations. The notation used is *oo.ffff*, where *oo* is the hexadecimal 6-bit opcode and *ffff* is the hexadecimal 26-bit function code.

 Table 49 Required PALcode Function Codes

Mnemonic	Туре	Function Code
DRAINA	Privileged	00.0002
HALT	Privileged	00.0000
IMB	Unprivileged	00.0086

9.3 Opcodes Reserved for PALcode

Table 50 lists the opcodes reserved by the Alpha architecture for implementation-specific use. These opcodes are privileged and are only available in PALmode. Section 10.2 shows the opcodes reserved for PALcode.

Table 50	Opcodes Reserved for PALcode
----------	------------------------------

Opcode	Architecture Mnemonic
1B	PAL1B
1F	PAL1F
1E	PAL1E
19	PAL19
1D	PAL1D

10 Alpha Instruction Summary

This section contains a summary of all Alpha architecture instructions. All values are in hexadecimal radix. Table 51 describes the contents of the Format and Opcode columns that are in Table 52.

Instruction Format	Format Symbol	Opcode Notation	Meaning
Branch	Bra	00	oo is the 6-bit opcode field.
Floating- point	F-P	oo.fff	<i>oo</i> is the 6-bit opcode field. <i>fff</i> is the 11-bit function code field.
Memory	Mem	00	oo is the 6-bit opcode field.
Memory/ function code	Mfc	oo.ffff	<i>oo</i> is the 6-bit opcode field. <i>ffff</i> is the 16-bit function code in the displacement field.
Memory/ branch	Mbr	oo.h	<i>oo</i> is the 6-bit opcode field. <i>h</i> is the high-order 2 bits of the displacement field.
Operate	Opr	oo.ff	<i>oo</i> is the 6-bit opcode field. <i>ff</i> is the 7-bit function code field.
PALcode	Pcd	00	<i>oo</i> is the 6-bit opcode field; the particular PALcode instruction is specified in the 26-bit function code field.

 Table 51 Instruction Format and Opcode Notation

Qualifiers for operate instructions are shown in Table 52. Qualifiers for IEEE and VAX floating-point instructions are shown in Tables 55 and 56, respectively.

Mnemonic	Format	Opcode	Description
ADDF	F-P	15.080	Add F_floating
ADDG	F-P	15.0A0	Add G_floating
ADDL	Opr	10.00	Add longword
ADDL/V	Opr	10.40	Add longword
ADDQ	Opr	10.20	Add quadword
ADDQ/V	Opr	10.60	Add quadword
ADDS	F-P	16.080	Add S_floating
ADDT	F-P	16.0A0	Add T_floating
AND	Opr	11.00	Logical product
BEQ	Bra	39	Branch if $=$ zero
BGE	Bra	3E	Branch if \geq zero
BGT	Bra	3F	Branch if > zero
BIC	Opr	11.0	Bit clear
BIS	Opr	11.20	Logical sum
BLBC	Bra	38	Branch if low bit clear
BLBS	Bra	3C	Branch if low bit set
BLE	Bra	3B	Branch if \leq zero
BLT	Bra	3A	Branch if $\overline{<}$ zero
BNE	Bra	3D	Branch if \neq zero
BR	Bra	30	Unconditional branch
BSR	Mbr	34	Branch to subroutine
CALL_PAL	Pcd	00	Trap to PALcode
CMOVEQ	Opr	11.24	\overrightarrow{CMOVE} if = zero
CMOVGE	Opr	11.46	CMOVE if \geq zero
CMOVGT	Opr	11.66	CMOVE if $\overline{>}$ zero
CMOVLBC	Opr	11.16	CMOVE if low bit clear
CMOVLBS	Opr	11.14	CMOVE if low bit set
CMOVLE	Opr	11.64	CMOVE if \leq zero
CMOVLT	Opr	11.44	CMOVE if $\stackrel{-}{<}$ zero
CMOVNE	Opr	11.26	CMOVE if \neq zero
CMPBGE	Opr	10.0F	Compare byte
CMPEQ	Opr	10.2D	Compare signed quadword equal
CMPGEQ	F-P	15.0A5	Compare G_floating equal
CMPGLE	F-P	15.0A7	Compare G_floating less than or equal

Table 52 Architecture Instructions

Mnemonic	Format	Opcode	Description	
CMPGLT	F-P	15.0A6	Compare G_floating less than	
CMPLE	Opr	10.6D	Compare signed quadword less than or equal	
CMPLT	Opr	10.4D	Compare signed quadword less than	
CMPTEQ	F-P	16.0A5	Compare T_floating equal	
CMPTLE	F-P	16.0A7	Compare T_floating less than or equal	
CMPTLT	F-P	16.0A6	Compare T_floating less than	
CMPTUN	F-P	16.0A4	Compare T_floating unordered	
CMPULE	Opr	10.3D	Compare unsigned quadword less than or equal	
CMPULT	Opr	10.1D	Compare unsigned quadword less than	
CPYS	F-P	17.020	Copy sign	
CPYSE	F-P	17.022	Copy sign and exponent	
CPYSN	F-P	17.021	Copy sign negate	
CVTDG	F-P	15.09E	Convert D_floating to G_float	
CVTGD	F-P	15.0AD	Convert G_floating to D_floating	
CVTGF	F-P	15.0AC	Convert G_floating to F_float	
CVTGQ	F-P	15.0AF	Convert G_floating to quadword	
CVTLQ	F-P	17.010	Convert longword to quadword	
CVTQF	F-P	15.0BC	Convert quadword to F_floating	
CVTQG	F-P	15.0BE	Convert quadword to G_floating	
CVTQL	F-P	17.030	Convert quadword to longwor	
CVTQL/SV	F-P	17.530	Convert quadword to longword	
CVTQL/V	F-P	17.130	Convert quadword to longword	
CVTQS	F-P	16.0BC	Convert quadword to S_floating	
CVTQT	F-P	16.0BE	Convert quadword to T_floating	
CVTST	F-P	16.2AC	Convert S_floating to T_floating	
CVTTQ	F-P	16.0AF	Convert T_floating to quadword	
CVTTS	F-P	16.0AC	Convert T_floating to S_floating	
DIVF	F-P	15.083	Divide F_floating	
DIVG	F-P	15.0A3	Divide G_floating	
DIVS	F-P	16.083	Divide S_floating	
DIVT	F-P	16.0A3	Divide T_floating	
EQV	Opr	11.48	Logical equivalence	
EXCB	Mfc	18.0400	Exception barrier	
EXTBL	Opr	12.06	Extract byte low	
EXTLH	Opr	12.6A	Extract longword high	

Table 52 (Cont.) Architecture Instructions

Mnemonic	Format	Opcode	Description
EXTLL	Opr	12.26	Extract longword low
EXTQH	Opr	12.7A	Extract quadword high
EXTQL	Opr	12.36	Extract quadword low
EXTWH	Opr	12.5A	Extract word high
EXTWL	Opr	12.16	Extract word low
FBEQ	Bra	31	Floating branch if = zero
FBGE	Bra	36	Floating branch if \geq zero
FBGT	Bra	37	Floating branch if > zero
FBLE	Bra	33	Floating branch if \leq zero
FBLT	Bra	32	Floating branch if < zero
FBNE	Bra	35	Floating branch if \neq zero
FCMOVEQ	F-P	17.02A	FCMOVE if = zero
FCMOVGE	F-P	17.02D	FCMOVE if \geq zero
FCMOVGT	F-P	17.02F	FCMOVE if > zero
FCMOVLE	F-P	17.02E	FCMOVE if \leq zero
FCMOVLT	F-P	17.02C	FCMOVE if < zero
FCMOVNE	F-P	17.02B	FCMOVE if \neq zero
FETCH	Mfc	18.80	Prefetch data
FETCH_M	Mfc	18.A0	Prefetch data, modify intent
INSBL	Opr	12.0B	Insert byte low
INSLH	Opr	12.67	Insert longword high
INSLL	Opr	12.2B	Insert longword low
INSQH	Opr	12.77	Insert quadword high
INSQL	Opr	12.3B	Insert quadword low
INSWH	Opr	12.57	Insert word high
INSWL	Opr	12.1B	Insert word low
JMP	Mbr	1A.0	Jump
JSR	Mbr	1A.1	Jump to subroutine
JSR_COROUTINE	Mbr	1A.3	Jump to subroutine return
LDA	Mem	08	Load address
LDAH	Mem	09	Load address high
LDF	Mem	20	Load F_floating
LDG	Mem	21	Load G_floating
LDL	Mem	28	Load sign-extended longword
LDL_L	Mem	2A	Load sign-extended longword locked
LDQ	Mem	29	Load quadword
LDQ_L	Mem	2B	Load quadword locked
LD&_L			

Table 52 (Cont.) Architecture Instructions

Mnemonic	Format	Opcode	Description	
LDS	Mem	22	Load S_floating	
LDT	Mem	23	Load T_floating	
MB	Mfc	18.4000	Memory barrier	
MF_FPCR	F-P	17.025	Move from floating-point control	
			register	
MSKBL	Opr	12.02	Mask byte low	
MSKLH	Opr	12.62	Mask longword high	
MSKLL	Opr	12.22	Mask longword low	
MSKQH	Opr	12.72	Mask quadword high	
MSKQL	Opr	12.32	Mask quadword low	
MSKWH	Opr	12.52	Mask word high	
MSKWL	Opr	12.12	Mask word low	
MT_FPCR	F-P	17.024	Move to floating-point control	
			register	
MULF	F-P	15.082	Multiply F_floating	
MULG	F-P	15.0A2	Multiply G_floating	
MULL	Opr	13.00	Multiply longword	
MULL/V	Opr	13.40	Multiply longword	
MULQ	Opr	13.20	Multiply quadword	
MULQ/V	Opr	13.60	Multiply quadword	
MULS	F-P	16.082	Multiply S_floating	
MULT	F-P	16.0A2	Multiply T_floating	
ORNOT	Opr	11.28	Logical sum with complement	
RC	Mfc	18.E0	Read and clear	
RET	Mbr	1A.2	Return from subroutine	
RPCC	Mfc	18.C0	Read process cycle counter	
RS	Mfc	18.F000	Read and set	
S4ADDL	Opr	10.02	Scaled add longword by 4	
S4ADDQ	Opr	10.22	Scaled add quadword by 4	
S4SUBL	Opr	10.0B	Scaled subtract longword by 4	
S4SUBQ	Opr	10.2B	Scaled subtract quadword by 4	
S8ADDL	Opr	10.12	Scaled add longword by 8	
S8ADDQ	Opr	10.32	Scaled add quadword by 8	
S8SUBL	Opr	10.1B	Scaled subtract longword by 8	
S8SUBQ	Opr	10.3B	Scaled subtract quadword by 8	
SLL	Opr	12.39	Shift left logical	
SRA	Opr	12.3C	Shift right arithmetic	
SRL	Opr	12.34	Shift right logical	

Table 52 (Cont.) Architecture Instructions

Mnemonic	Format	Opcode	Description	
STG	Mem	25	Store G_floating	
STS	Mem	26	Store S_floating	
STL	Mem	2C	Store longword	
STL_C	Mem	2 E	Store longword conditional	
STQ	Mem	2D	Store quadword	
STQ_C	Mem	2F	Store quadword conditional	
STQ_U	Mem	0F	Store unaligned quadword	
STT	Mem	27	Store T_floating	
SUBF	F-P	15.081	Subtract F_floating	
SUBG	F-P	15.0A1	Subtract G_floating	
SUBL	Opr	10.09	Subtract longword	
SUBL/V		10.49		
SUBQ	Opr	10.29	Subtract quadword	
SUBQ/V		10.69		
SUBS	F-P	16.081	Subtract S_floating	
SUBT	F-P	16.0A1	Subtract T_floating	
TRAPB	Mfc	18.00	Trap barrier	
UMULH	Opr	13.30	Unsigned multiply quadword high	
WMB	Mfc	18.44	Write memory barrier	
XOR	Opr	11.40	Logical difference	
ZAP	Opr	12.30	Zero bytes	
ZAPNOT	Opr	12.31	Zero bytes not	

Table 52 (Cont.) Architecture Instructions

10.1 Opcodes Reserved for Digital

Table 53 lists opcodes reserved for Digital.

Mnemonic	Opcode	Mnemonic	Opcode	Mnemonic	Opcode
OPC01	01	OPC05	05	OPC0B	0B
OPC02	02	OPC06	06	OPC0C	0C
OPC03	03	OPC07	07	OPC0D	0D
OPC04	04	OPC0A	0A	OPC14	14

Table 53 Opcodes Reserved for Digital

10.2 Opcodes Reserved for PALcode

Table 54 lists the 21164-specific instructions. For more information, refer to the *Alpha 21164 Microprocessor Hardware Reference Manual*.

21164 Mnemonic	Opcode	Architecture Mnemonic	Function
HW_LD	1B	PAL1B	Performs Dstream load instructions.
HW_ST	1F	PAL1F	Performs Dstream store instructions.
HW_REI	1E	PAL1E	Returns instruction flow to the program counter (PC) pointed to by EXC_ADDR internal processor register (IPR).
HW_MFPR	19	PAL19	Accesses the Ibox, Mbox, and Dcache IPRs.
HW_MTPR	1D	PAL1D	Accesses the Ibox, Mbox, and Dcache IPRs.

Table 54 Opcodes Reserved for PALcode

10.3 IEEE Floating-Point Instructions

Table 55 lists the hexadecimal value of the 11-bit function code field for the IEEE floating-point instructions, with and without qualifiers. The opcode for these instructions is 16_{16} .

Mnemonic	None	/C	/M	/D	/U	/UC	/UM	/UD	
ADDS	080	000	040	0C0	180	100	140	1C0	
ADDT	0A0	020	060	0E0	1A0	120	160	1E0	
CMPTEQ	0A5								
CMPTLT	0A6								
CMPTLE	0A7								
CMPTUN	0A4								
CVTQS	0BC	03C	07C	0FC					
CVTQT	0BE	03E	07E	0FE					
CVTTS	0AC	02C	06C	0EC	1AC	12C	16C	1EC	
							(continued on next page)		

 Table 55
 IEEE Floating-Point Instruction Function Codes

Mnemonic	None	/C	/M	/D	/U	/UC	/UM	/UD
DIVS	083	003	043	0C3	183	103	143	1C3
DIVT	0A3	023	063	0E3	1A3	123	163	1E3
MULS	082	002	042	0C2	182	102	142	1C2
MULT	0A2	022	062	0E2	1A2	122	162	1E2
SUBS	081	001	041	0C1	181	101	141	1C1
SUBT	0A1	021	061	0E1	1A1	121	161	1E1
Mnemonic	/SU	/SUC	/SUM	/SUD	/SUI	/SUIC	/SUIM	/SUID
ADDS	580	500	540	5C0	780	700	740	7C0
ADDT	5A0	520	560	5E0	7A0	720	760	7E0
CMPTEQ	5A5							
CMPTLT	5A6							
CMPTLE	5A7							
CMPTUN	5A4							
CVTQS					7BC	73C	77C	7FC
CVTQT					7BE	73E	77E	7FE
CVTTS	5AC	52C	56C	5EC	7AC	72C	76C	7EC
DIVS	583	503	543	5C3	783	703	743	7C3
DIVT	5A3	523	563	5E3	7A3	723	763	7E3
MULS	582	502	542	5C2	782	702	742	7C2
MULT	5A2	522	562	5E2	7A2	722	762	7E2
SUBS	581	501	541	5C1	781	701	741	7C1
SUBT	5A1	521	561	5E1	7A1	721	761	7E1
Mnemonic	None	/S						
CVTST	2AC	6AC						
Mnemonic	None	/C	N	/VC	/SV	/SVC	/SVI	/SVIC
CVTTQ	0AF	02F	1AF	12F	5AF	52F	7AF	72F
Mnemonic	D	/VD	/SVD	/SVID	/M	/VM	/SVM	/SVIM
CVTTQ	0EF	1EF	5EF	7EF	06F	16F	56F	76F

Table 55 (Cont.) IEEE Floating-Point Instruction Function Codes

Programming Note

Because underflow cannot occur for CMPT*xx*, there is no difference in function or performance between CMPT*xx*/S and CMPT*xx*/SU. It is intended that software generate CMPT*xx*/SU in place of CMPT*xx*/S.

In the same manner, CVTQS and CVTQT can take an inexact result trap, but not an underflow. Because there is no encoding for a CVTQx/SI instruction, it is intended that software generate CVTQx/SUI in place of CVTQx/SI.

10.4 VAX Floating-Point Instructions

Table 56 lists the hexadecimal value of the 11-bit function code field for the VAX floating-point instructions. The opcode for these instructions is 15_{16} .

Mnemonic	None	/C	/U	/UC	/S	/SC	/SU	/SUC
ADDF	080	000	180	100	480	400	580	500
CVTDG	09E	01E	19E	11E	49E	41E	59E	51E
ADDG	0A0	020	1A0	120	4A0	420	5A0	520
CMPGEQ	0A5				4A5			
CMPGLT	0A6				4A6			
CMPGLE	0A7				4A7			
CVTGF	0AC	02C	1AC	12C	4AC	42C	5AC	52C
CVTGD	0AD	02D	1AD	12D	4AD	42D	5AD	52D
CVTQF	0BC	03C						
CVTQG	0BE	03E						
DIVF	083	003	183	103	483	403	583	503
DIVG	0A3	023	1A3	123	4A3	423	5A3	523
MULF	082	002	182	102	482	402	582	502
MULG	0A2	022	1A2	122	4A2	422	5A2	522
SUBF	081	001	181	101	481	401	581	501
SUBG	0A1	021	1A1	121	4A1	421	5A1	521
Mnemonic	None	/C	N	/VC	/S	/SC	/SV	/SVC
CVTGQ	0AF	02F	1AF	12F	4AF	42F	5AF	52F

Table 56 VAX Floating-Point Instruction Function Codes

10.5 Opcode Summary

Table 57 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the table, the column headings that appear over the instructions have a granularity of 8_{16} . The rows beneath the Offset column supply the individual hexadecimal number to resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that 0 with the number to the left of the backslash (\setminus) in the Offset column on the instruction's row. If an instruction column has an 8 in the right (low) hexadecimal digit, replace that 8 with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under the 10_{16} column contains the symbol INTS*, representing the all-integer shift instructions. The opcode for those instructions would then be 12_{16} because the 0 in 10 is replaced by the 2 in the Offset column. Likewise, the third row under the 18_{16} column contains the symbol JSR*, representing all jump instructions. The opcode for those instructions is 1A because the 8 in the heading is replaced by the number to the right of the backslash in the Offset column.

The instruction format is listed under the instruction symbol.

Table 57 Opcode Summary

Offset	00	08	10	18	20	28	30	38
0/8	PAL* (pal)	LDA (mem)	INTA* (op)	MISC* (mem)	LDF (mem)	LDL (mem)	BR (br)	BLBC (br)
1/9	Res	LDAH (mem)	INTL* (op)	\PAL\	LDG (mem)	LDQ (mem)	FBEQ (br)	BEQ (br)
2/A	Res	Res	INTS* (op)	JSR* (mem)	LDS (mem)	LDL_L (mem)	FBLT (br)	BLT (br)
3/B	Res	LDQ_U (mem)	INTM* (op)	\PAL\	LDT (mem)	LDQ_L (mem)	FBLE (br)	BLE (br)
4/C	Res	Res	Res	Res	STF (mem)	STL (mem)	BSR (br)	BLBS (br)
5/D	Res	Res	FLTV* (op)	\PAL\	STG (mem)	STQ (mem)	FBNE (br)	BNE (br)
6/E	Res	Res	FLTI* (op)	\PAL\	STS (mem)	STL_C (mem)	FBGE (br)	BGE (br)
7/F	Res	STQ_U (mem)	FLTL* (op)	\PAL\	STT (mem)	STQ_C (mem)	FBGT (br)	BGT (br)

Symbol	Meaning
Symbol	TEEL 0.8

FĽTI*	IEEE floating-point instruction opcodes
FLTL*	Floating-point operate instruction opcodes
FLTV*	VAX floating-point instruction opcodes
INTA*	Integer arithmetic instruction opcodes
INTL*	Integer logical instruction opcodes
INTM*	Integer multiply instruction opcodes
INTS*	Integer shift instruction opcodes
JSR*	Jump instruction opcodes
MISC*	Miscellaneous instruction opcodes
PAL*	PALcode instruction (CALL_PAL) opcodes
\PAL\	Reserved for PALcode
Res	Reserved for Digital
	0

10.6 Required PALcode Function Codes

Table 58 lists opcodes required for all Alpha implementations. The notation used is *oo.ffff*, where *oo* is the hexadecimal 6-bit opcode and *ffff* is the hexadecimal 26-bit function code.

Mnemonic	Туре	Function Code	
DRAINA	Privileged	00.0002	
HALT	Privileged	00.0000	
IMB	Unprivileged	00.0086	

Table 58 Required PALcode Function Codes

11 Electrical Data

This chapter describes the electrical characteristics of the 21164 component and its interface pins. It is organized as follows:

- Electrical characteristics
- dc characteristics
- Clocking scheme
- ac characteristics
- Power supply considerations

11.1 Electrical Characteristics

Table 59 lists the maximum ratings for the 21164.

Characteristics	Ratings
Storage temperature	–55°C to 125°C (–67°F to 257°F)
Junction temperature	15°C to 90°C (59°F to 194°F)
Supply voltage	Vss –0.5 V, Vdd 3.6 V
Input or output applied ¹	–0.5 V to 6.3 V
Typical worst case power @Vdd = 3.3 V	
Frequency = 266 MHz	46 W
Frequency = 300 MHz	51 W
Frequency = 333 MHz	56 W

Table 59 Alpha 21164 Absolute Maximum Ratings

_ Caution _

Stress beyond the absolute maximum rating can cause permanent damage to the 21164. Exposure to absolute maximum rating conditions for extended periods of time can affect the 21164 reliability.

11.2 dc Characteristics

The 21164 is designed to run in a CMOS/TTL environment. The 21164 is tested and characterized in a CMOS environment.

11.2.1 Power Supply

The Vss pins are connected to 0.0 V, and the Vdd pins are connected to 3.3 V, $\pm 5\%.$

11.2.2 Input Signal Pins

Nearly all input signals are ordinary CMOS inputs with standard TTL levels (see Table 60). (See Section 11.3.1 for a description of an exception—**osc_clk_in_h.**)

After power has been applied, input and bidirectional pins can be driven to a maximum dc voltage of 6.3 V (6.8 V for 1 ns) without harming the 21164. (It is not necessary to use static RAMs with 3.3-V outputs.)

11.2.3 Output Signal Pins

Output pins are ordinary 3.3-V CMOS outputs. Although output signals are rail-to-rail, timing is specified to $\frac{Vdd}{2}$.

Bidirectional pins are either input or output pins, depending on control timing. When functioning as output pins, they are ordinary 3.3-V CMOS outputs.

Table 60 shows the CMOS dc input and output pins.

	Parameter	Requ	lirements		
Symbol	Description	Min.	Max.	Units	Test Conditions
Vih	High-level input voltage	2.0	_	V	_
Vil	Low-level input voltage	_	0.8	V	_
Voh	High-level output voltage	2.4	_	V	Ioh = -6.0 mA
Vol	Low-level output voltage	_	0.4	V	Iol = 6.0 mA
Iil_pd	Input with pull-down leakage current	—	± 50	μA	$\mathbf{Vin} = 0 \ \mathbf{V}$
Iih_pd	Input with pull-down current	—	200	μA	Vin = 2.4 V
Iil_pu	Input with pull-up current	_	-800	μA	Vin = 0.4 V
Iih_pu	Input with pull-up leakage current	—	± 50	μA	Vin = Vdd V
Iozl_pd	Output with pull-down leakage current (tristate)	—	± 50	μA	$\mathbf{Vin} = 0 \ \mathbf{V}$
Iozh_pd	Output with pull-down current (tristate)	_	200	μA	Vin = 2.4 V
Iozl_pu	Output with pull-up current (tristate)	—	-800	μA	Vin = 0.4 V
Iozh_pu	Output with pull-up leakage current (tristate)	—	± 50	μA	Vin = Vdd V
Idd	Peak power supply current	_	18	Α	Vdd = 3.465 V Frequency = 266 MHz
Idd	Peak power supply current	_	20	Α	Vdd = 3.465 V Frequency = 300 MHz
Idd	Peak power supply current	—	22	Α	Vdd = 3.465 V Frequency = 333 MHz

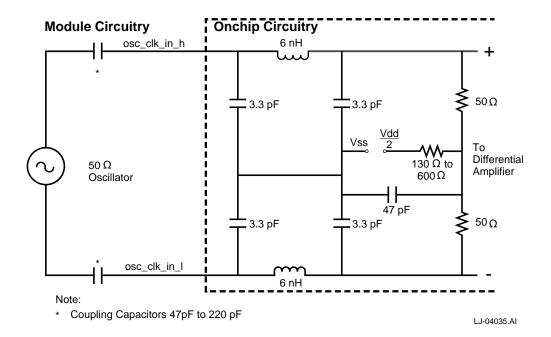
 Table 60
 CMOS dc Input/Output Characteristics

Most pins have low current pull-down devices to **Vss**. However, two pins have a pull-up device to **Vdd**. The pull-downs (or pull-ups) are always enabled. This means that some current will flow from the 21164 (if the pin has a pull-up device) or into the 21164 (if the pin has a pull-down device) even when the pin is in the high-impedance state. All pins have pull-down devices, except for the pins in the following table:

Signal Name	Notes
tms_h	Has a pull-up device
tdi_h	Has a pull-up device
osc_clk_in_h	50 Ω to Vterm ($\approx \frac{V dd}{2}$) (See Figure 69)
osc_clk_in_l	50 Ω to Vterm ($\approx \frac{V dd}{2}$) (See Figure 69)
temp_sense	150 Ω to Vss

11.3 Clocking Scheme

The differential input clock signals **osc_clk_in_h,l** run at two times the internal frequency of the time base for the 21164. Input clocks are divided by two onchip to generate a 50% duty cycle clock for internal distribution. The output signal **cpu_clk_out_h** toggles with an unspecified propagation delay relative to the transitions on **osc_clk_in_h,l**.


System designers have a choice of two system clocking schemes to run the 21164 synchronous to the system:

- 1. The 21164 generates and drives out a system clock, **sys_clk_out1_h,l**. It runs synchronous to the internal clock at a selected ratio of the internal clock frequency. There is a small clock skew between the internal clock and **sys_clk_out1_h,l**.
- 2. The 21164 synchronizes to a system clock, **ref_clk_in_h**, supplied by the system. The **ref_clk_in_h** clock runs at a selected ratio of the 21164 internal clock frequency. The internal clock is synchronized to the reference clock by an onchip digital phase-locked loop (DPLL).

11.3.1 Input Clocks

The differential input clocks **osc_clk_in_h,l** provide the time base for the chip when **dc_ok_h** is asserted. These pins are self-biasing, and must be capacitively coupled to the clock source on the module, or they can be directly driven. The terminations on these signals are designed to be compatible with system oscillators of arbitrary dc bias. The oscillator must have a duty cycle of 60%/40% or tighter. Figure 69 shows the input network and the schematic equivalent of **osc_clk_in_h,l** terminations.

Ring Oscillator

When signal **dc_ok_h** is deasserted, the clock outputs follow the internal ring oscillator. The 21164 runs off the ring oscillator, just as it would when an external clock is applied. The frequency of the ring oscillator varies from chip to chip within a range of 10 MHz to 100 MHz. This corresponds to an internal CPU clock frequency range of 5 MHz to 50 MHz. The system clock divisor is forced to 8, and the **sys_clk_out2** delay is forced to 3.

Clock Sniffer

A special onchip circuit monitors the **osc_clk_in** pins and detects when input clocks are not present. When activated, this circuit switches the 21164 clock generator from the **osc_clk_in** pins to the internal ring oscillator. This happens independently of the state of the **dc_ok_h** pin. The **dc_ok_h** pin functions normally if clocks are present on the **osc_clk_in** pins.

11.3.2 Clock Termination and Impedance Levels

In Figure 69, the clock is designed to approximate a 50- Ω termination for the purpose of impedance matching for those systems that drive input clocks across long traces. The clock input pins appear as a 50- Ω series termination resistor connected to a high impedance voltage source. The voltage source produces a nominal voltage value of $\frac{V dd}{2}$. The source has an impedance of between 130 Ω and 600 Ω . This voltage is called the self-bias voltage and sources current when the applied voltage at the clock input pins is less than the self-bias voltage. It sinks current when the applied voltage exceeds the self-bias voltage. This high impedance bias driver allows a clock source of arbitrary dc bias to be ac coupled to the 21164. The peak-to-peak amplitude of the clock source must be between 0.6 V and 3.0 V. Either a square-wave or a sinusoidal source may be used. Full-rail clocks may be driven by testers. In any case, the oscillator should be ac coupled to the **osc_clk_in_h,l** inputs by 47 pF through 220 pF capacitors.

11.3.3 ac Coupling

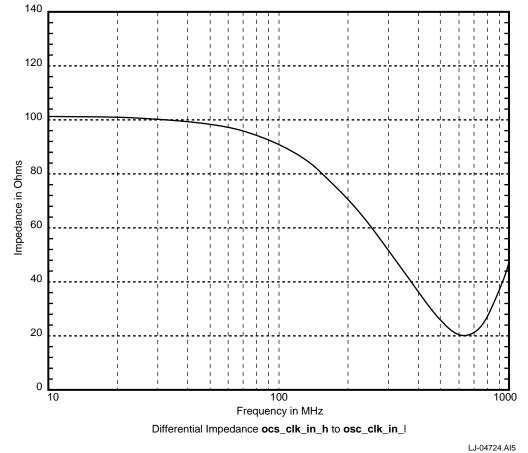
Using series coupling (blocking) capacitors renders the 21164 clock input pins insensitive to the oscillator's dc level. When connected this way, oscillators with any dc offset relative to **Vss** can be used provided they can drive a signal into the **osc_clk_in_h,l** pins with a peak-to-peak level of at least 600 mV, but no greater than 3.0 V peak to peak.

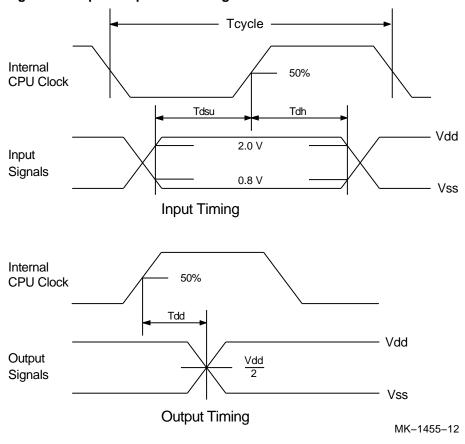
The value of the coupling capacitor is not overly critical. However, it should be sufficiently low impedance at the clock frequency so that the oscillator's output signal (when measured at the **osc_clk_in_h,l** pins) is not attenuated below the 600 mV peak-to-peak lower limit. For sine waves or oscillators producing nearly sinusoidal (pseudo square wave) outputs, 220 pF is recommended at 533.3 MHz (266.6 MHz \times 2). A high quality dielectric such as NPO is required to avoid dielectric losses.

Table 61 shows the input clock specification.

Signal Parameter	Minimum	Maximum	Unit		
osc_clk_in_h,l symmetry	40	60	%		
osc_clk_in_h,l voltage	0.6	3.0	V (peak-to-peak)		
osc_clk_in_h,l Z input	Refer to Figure 70, Clock Input Differential Impedance.				
Tfreq (CPU clock frequency)	100	333 ¹	MHz		
Tcycle $\left(\frac{1}{T freg}\right)$	3^1	10	ns		

Table 61 Input Clock Specification




Figure 70 Clock Input Differential Impedance

11.4 ac Characteristics

This section describes the ac timing specifications for the 21164.

11.4.1 Test Configuration

All input timing is specified relative to the crossing of standard TTL input levels of 0.8 V and 2.0 V. Output timing is to the nominal CMOS switch point of $\frac{V dd}{2}$ (see Figure 71).

Because the speed and complexity of microprocessors has increased substantially over the years, it is necessary to change the way they are tested. Traditional assumptions that all loads can be lumped into some accumulation of capacitance cannot be employed any more. Rather, the model of a transmission line with discrete loads is a much more realistic approach for current test technology.

Typically, printed circuit board (PCB) etch has a characteristic impedance of approximately 75 Ω . This may vary from 60 Ω to 90 Ω with tolerances. If the line is driven in the electrical center, the load could be as low as 30 Ω . Therefore, a characteristic impedance range of 30 Ω to 90 Ω could be experienced.

The 21164 output drivers are designed with typical printed circuit board applications in mind rather than trying to accommodate a 40-pF test load specification. As such, it "launches" a voltage step into a characteristic impedance, ranging from 30 Ω to 90 Ω .

To prevent signal quality problems due to overshoot or ringing, "near end" terminated transmission line design rules are used. By combining the source impedance of the driver transistors with an additional 20- Ω onchip resistor, a source impedance of approximately 40 Ω is achieved. Additionally, a load value of 10 pF, when added to the PCB etch delays, provides a realistic estimate of actual system timing. When employing this test configuration, the signal at the end of the line will transition cleanly through the TTL input specification range of 0.8 V to 2.0 V without plateaus, or reversal into the range.

11.4.2 Pin Timing

The following sections describe Bcache loop timing, sys_clk-based system timing, and reference clock-based system timing.

Backup Cache Loop Timing

The 21164 can be configured to support an optional offchip backup cache (Bcache). Private Bcache read or write (Scache victims) transactions initiated by the 21164 are independent of the system clocking scheme. Bcache loop timing must be an integer multiple of the 21164 cycle time.

Table 62 lists the Bcache loop timing.

Table 62 Bcache Loop Timing

Signal	Specification	Value	Name
data_h<127:0>	Input setup	1.1 ns	Tdsu
data_h<127:0>	Input hold	0.0 ns	Tdh
index_h<25:4>	Output delay	Tdd + 0.4 ns ¹	Tiod
index_h<25:4>	Output hold time	Tmdd	Tioh
data_h<127:0>	Output delay	Tdd + Tcycle + 0.4 ns^1	Tdod
data_h<127:0>	Output hold	Tmdd + Tcycle	Tdoh

¹The value 0.4 ns accounts for onchip driver and clock skew.

Outgoing Bcache index and data signals are driven off the internal clock edge and the incoming Bcache tag and data signals are latched on the same internal clock edge. Table 63 shows the output driver characteristics.

Table 65 Output Driver Characteristics								
Specification	40-pF Load	10-pF Load	Name					
Maximum driver delay	2.6 ns	1.6 ns	Tdd					

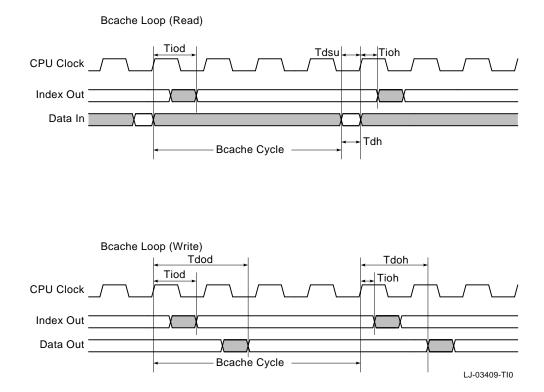
1.0 ns

Table 63 Output Driver Characteristics

Minimum driver delay

Output pin timing is specified for lumped 40-pF and 10-pF loads. In some cases, the circuit may have loads higher than 40 pF. The 21164 can safely drive higher loads provided the average charging or discharging current from each pin is 10 mA or less. The following equation can be used to determine the maximum capacitance that can be safely driven by each pin:

1.0 ns


Tmdd

Cmax (in pF) = 3t, where t is the waveform period (measured from rising to rising or falling to falling edge), in nanoseconds.

For example, if the waveform appearing on a given I/O pin has a 20.4-ns period, it can safely drive up to and including 61 pF.

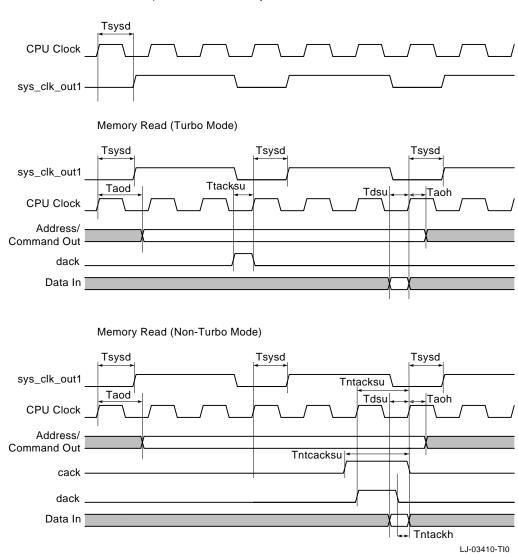
Figure 72 shows the Bcache read and write timing.

sys_clk-Based Systems

All timing is specified relative to the rising edge of the internal CPU clock.

Table 64 shows 21164 system clock **sys_clk_out1_h,l** output timing. Setup and hold times are specified independent of the relative capacitive loading of **sys_clk_out1_h,l**, **addr_h<39:4**>, **data_h<127:0**>, and **cmd_h<3:0**> signals. The **ref_clk_in_h** signal must be tied to **Vdd** for proper operation.

Signal	Specification	Value	Name
sys_clk_out1_h,l	Output delay	Tdd	Tsysd
sys_clk_out1_h,l	Minimum output delay	Tmdd	Tsysdm
data_bus_req_h, data_h<127:0>, addr_h<39:4>	Input setup	1.1 ns	Tdsu
data_bus_req_h, data_h<127:0>, addr_h<39:4>	Input hold	0 ns	Tdh
addr_h<39:4>	Output delay	Tdd + 0.4 ns ¹	Taod
addr_h<39:4>	Output hold time	Tmdd	Taoh
data_h<127:0>	Output delay	Tdd + Tcycle + 0.4 ns ¹	\mathbf{Tdod}^2
data_h<127:0>	Output hold time	Tmdd + Tcycle ¹	Tdoh ²
	Non-Pipe_Late	ch Mode	
addr_bus_req_h	Input setup	3.8 ns	Tabrsu
addr_bus_req_h	Input hold	–1.0 ns	Tabrh
dack_h	Input setup	3.4 ns	Tntacksu
cack_h	Input setup	3.7 ns	Tntcacksu
cack, dack	Input hold	–1.0 ns	Tntackh
	Pipe_Latch	Mode ³	
addr_bus_req_h, cack_h, dack_h	Input setup	1.1 ns	Ttacksu
addr_bus_req_h, cack_h, dack_h	Input hold	0 ns	Ttackh
¹ The value 0.4 ns acco	unts for onchip driver and cloo	ek skew.	


Table 64 Alpha 21164 System Clock Output Timing (sysclk=T_ø)

 2For all write transactions initiated by the 21164, data is driven one CPU cycle after the sys_clk_out1 or $index_h<25:4>$ pins.

³In pipe_latch mode, control signals are piped onchip for one **sys_clk_out1_h,l** before usage.

Figure 73 shows sys_clk system timing.

Figure 73 sys_clk System Timing

Relationship of CPU Clock and sys_clk_out1

Reference Clock-Based Systems

Systems that generate their own system clock expect the 21164 to synchronize its **sys_clk_out1_h,l** outputs to their system clock. The 21164 uses a digital phase-locked loop (DPLL) to synchronize its **sys_clk_out1** signals to the system clock that is applied to the **ref_clk_in_h** signal.

Table 65 shows all timing relative to the rising edge of **ref_clk_in_h**.

Signal	Specification	Value	Name
data_bus_req_h, data_h<127:0>, addr_h<39:4>	Input setup	1.1 ns	Tdsu
data_bus_req_h, data_h<127:0>, addr_h<39:4>	Input hold	0.5 x Tcycle	Troh
addr_h<39:4>	Output delay	Tdd + 0.5 x Tcycle + 0.9 ns^{1}	Traod
addr_h<39:4>	Output hold time	Tmdd	Traoh
data_h<127:0>	Output delay	Tdd + 1.5 x Tcycle + 0.9 ns^1	Trdod ²
data_h<127:0>	Output hold time	Tmdd + Tcycle	Trdoh ²
	Non-P	ipe_Latch Mode	
addr_bus_req_h	Input setup	3.8 ns	Tntrabrsu
addr_bus_req_h	Input hold	0.5 x Tcycle	Tntrabrh
dack_h	Input setup	3.3 ns	Tntracksu
cack_h	Input setup	3.7 ns	Tntrcacksu
cack_h, dack_h	Input hold	(0.5 x Tcycle)	Tntrackh

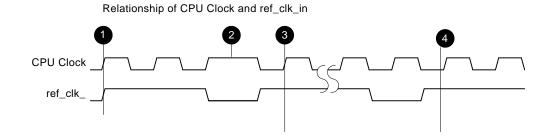
 Table 65
 Alpha 21164 Reference Clock Input Timing

¹The value 0.9 ns accounts for onchip skews that include 0.4 ns for driver and clock skew, phase detector skews due to circuit delay (0.2 ns), and delay in **ref_clk_in_h** due to the package (0.3 ns).

²For all write transactions initiated by the 21164, data is driven one CPU cycle later.

(continued on next page)

Signal	Specification	Value	Name	
	Pip	e_Latch Mode ³		
addr_bus_req_h, cack_h, dack_h	Input setup	1.1 ns	Ttracksu	
addr_bus_req_h, cack_h, dack_h	Input hold	0.5 x Tcycle	Ttrackh	


Table 65 (Cont.) Alpha 21164 Reference Clock Input Timing

³In pipe_latch mode, control signals are piped onchip for one **sys_clk_out1_h**,**l** before usage.

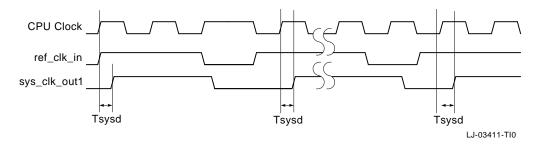

11.4.3 Digital Phase-Locked Loop

Figure 74 and Table 66 describe the digital phase-locked loop (DPLL) stages of operation.

Figure 74 ref_clk System Timing

Relationship of CPU Clock, ref_clk_in, and sys_clk_out1

Stage	Description
0	The internal CPU clock rising edge coincides with the rising edge of ref_clk_in_h .
0	The DPLL causes the internal CPU clock to stretch for one phase (1 cycle of osc_clk_in_h,l).
0	The stretch causes ref_clk_in_h to lead the internal CPU clock by one phase.
0	The CPU clock is always slightly faster than the external ref_clk_in_h and gains on ref_clk_in_h over time. Eventually the gain equals one phase and a new stretch phase follows.

Table 66 ref_clk System Timing Stages

Although systems that supply a **ref_clk_in_h** do not use **sys_clk_out1_h,l**, a relationship between the two signals exists, just as in the **sys_clk**-based systems, because the 21164 uses **sys_clk_out1_h,l** internally to determine timing during system transactions.

11.4.4 Timing—Additional Signals

This section lists timing for all other signals.

Asynchronous Input Signals

The following is a list of the asynchronous input signals:

clk_mode_h	dc_ok_h	ref_clk_in_h	
sys_reset_l ¹			
perf_mon_h ²	<u> </u>	<u>_</u>	
irq_h<3:0> ²	mch_hlt_irq_h ²	pwr_fail_irq_h ²	sys_mch_chk_irq_h ²

 $^1Signal~{{\color{black} sys_reset_l}}$ may be deasserted synchronously.

²These signals can also be used synchronously.

Miscellaneous Signals

Table 67 and Table 68 list the timing for miscellaneous input-only and outputonly signals. All timing is expressed in nanoseconds.

		Va	lue	Na	me
Signal	Specification	sys_clk_oı	ut ref_clk_in	sys_clk_ou	ıt ref_clk_in
cfail_h, fill_h, fill_error_h, fill_id_h, fill_nocheck_h, idle_bc_h, shared_h, system_lock_flag_h	Input setup	1.1 ns	1.1 ns	Tdsu	Tdsu
irq_h<3:0>, mch_hlt_irq_h, pwr_ fail_irq_h, sys_mch_chk_irq_h					
Testability pins: port_mode_h, srom_data_h, srom_present_l					
cfail_h, fill_h, fill_error_h, fill_id_h, fill_nocheck_h, idle_bc_h, shared_h, system_lock_flag_h	Input hold	0 ns	0.5* Tcycle	Tdh	Troh
irq_h<3:0>, mch_hlt_irq_h, pwr_ fail_irq_h, sys_mch_chk_irq_h					
sys_reset_l					
Testability pins: port_mode_h, srom_data_h, srom_present_l					

Table 67 Input Timing for sys_clk_out- or ref_clk_in-Based Systems

Table 68 Output Timing for sys_clk_out- or ref_clk_in-Based Systems

Signal S		Clock	ing System Value	Clocking System Name	
	Specification	sys_clk_out	ref_clk_in	sys_clk_out	ref_clk_in
Unidirectional Signa	lls				
addr_res_h, int4_valid_h, ¹ scache_set_h, srom_clk_h, srom_oe_l, victim_pending_h	Output delay	Tdd +0.4 ns	Tdd +0.5* Tcycle +0.9 ns	Taod	Traod

¹Read transaction

(continued on next page)

		Clocking System Value		Clocking System Name	
Signal	Specification	sys_clk_out	ref_clk_in	sys_clk_out	ref_clk_in
Unidirectional Signa	als				
addr_res_h, int4_valid_h, ¹ scache_set_h, srom_clk_h, srom_oe_l, victim_pending_h	Output hold	Tmdd	Tmdd	Taoh	Traoh
int4_valid_h ²	Output delay	Tdd+Tcycle+0.4 ns	Tdd +1.5* Tcycle +0.9 ns	Tdod	Trdod
int4_valid_h ²	Output hold	Tmdd+Tcycle	Tmdd+Tcycle	Tdoh	Trdoh
Bidirectional Signal	s				
Input mode:					
addr_cmd_par_h,	Input setup	1.1 ns	1.1 ns	Tdsu	Tdsu
cmd_h, data_check_h, ¹ tag_ctl_par_h, ³ tag_dirty_h, ³ tag_shared_h ³ addr_cmd_par_h,	Input hold	0 ns	0.5* Tcycle	Tdh	Tsdadh
cmd_h, data_check_h, ¹ tag_ctl_par_h, ³ tag_dirty_h, ³ tag_shared_h ³	1				
¹ Read transaction					

Table 68 (Cont.) Output Timing for sys_clk_out- or ref_clk_in-Based Systems

²Write transaction ³Fills from memory

(continued on next page)

		Clocking	Clocking System Name		
Signal	Specification	sys_clk_out	ref_clk_in	sys_clk_out	ref_clk_in
Bidirectional Signal	S				
Output mode:					
addr_cmd_par_h,	Output delay	Tdd +0.4 ns	Tdd +0.5* Tcycle +0.9 ns	Taod	Traod
cmd_h, tag_ctl_par_h, ⁴ tag_dirty_h, ⁴ tag_shared_h, ⁴ tag_valid_h ⁴	5				
data_check_h ²	Output delay	Tdd+Tcycle+0.4 ns	Tdd +1.5* Tcycle +0.9 ns	Tdod	Trdod
addr_cmd_par_h,	Output hold	Tmdd	Tmdd	Taoh	Traoh
cmd_h, tag_ctl_par_h, ⁴ tag_dirty_h, ⁴ tag_shared_h, ⁴ tag_valid_h ⁴					
data_check_h ²	Output hold	Tmdd+Tcycle	Tmdd+Tcycle	Tdoh	Trdoh

Table 68 (Cont.) Output Timing for sys_clk_out- or ref_clk_in-Based Systems

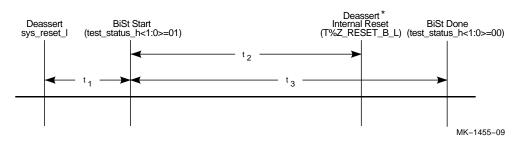
⁴Only for write broadcasts and system transactions

Signals in Table 69 are used to control Bcache data transfers. These signals are driven off the CPU clock. The choice of **sys_clk_out** or **ref_clk_in** has no impact on the timing of these signals.

Table 69 Bcache Control Signal Timing

Signal	Specification	Value	Name
Input mode:			
tag_data_h, tag_data_par_h, tag_valid_h	Input setup	1.1 ns	Tdsu
tag_data_h, tag_data_par_h, tag_valid_h	Input hold	0 ns	Tdh
Output mode:			
data_ram_oe_h, data_ram_we_h, ¹ tag_ram_oe_h, tag_ram_we_h ¹	Output delay	Tdd +0.4 ns	Taod
tag_data_h, tag_data_par_h, tag_valid_h	Output delay	Tdd +0.4 ns	Taod
data_ram_oe_h, data_ram_we_h, ¹ tag_ram_oe_h, tag_ram_we_h ¹	Output hold	Tmdd	Taoh
tag_data_h, tag_data_par_h, tag_valid_h	Output hold	Tmdd	Taoh

¹Pulse width for this signal is controlled through the BC_CONFIG IPR.


11.4.5 Timing of Test Features

Timing of 21164 testability features depends on the system clock rate and the test port's operating mode. This section provides timing information that may be needed for most common operations.

11.4.6 Icache BiSt Operation Timing

The Icache BiSt is invoked by deasserting the external reset signal **sys_reset_l**. Figure 75 shows the timing between various events relevant to BiSt operations.

Figure 75 BiSt Timing Event-Time Line

The timing for deassertion of internal reset (time t_2 , see asterisk) is valid only if an SROM is not present (indicated by keeping signal **srom_present_l** deasserted). If an SROM is present, the SROM load is performed once the BiSt completes. The internal reset signal T%Z_RESET_B_L is extended until the end of the SROM load (Section 11.4.7). In this case, the end of the time line shown in Figure 75 connects to the beginning of the time line shown in Figure 76.

Table 70 and Table 71 list timing shown in Figure 75 for some of the system clock ratios. Time t_1 is measured starting from the rising edge of sysclk following the deassertion of the **sys_reset_l** signal.

Sysclk	System	n Cycles	
Ratio	t_1	t_2	t_3
3	8	22644+21/2	22645
4	7	$19721 + 2\frac{1}{2}$	19722
15	7	$13291 + 14\frac{1}{2}$	13292

Table 70 BiSt Timing for Some System Clock Ratios, Port Mode=Normal (System Cycles)

CPU Cy	cles		
t_1	t_2	t_3	
24	67934½	67935	
28	78886½	78888	
105	199379½	199380	
	t ₁ 24 28	t1 t2 24 67934½ 28 78886½	t1 t2 t3 24 67934½ 67935 28 78886½ 78888

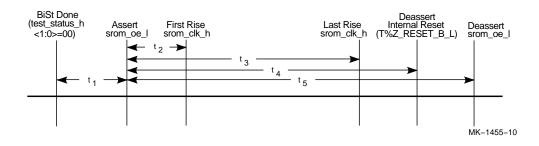
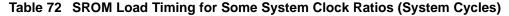


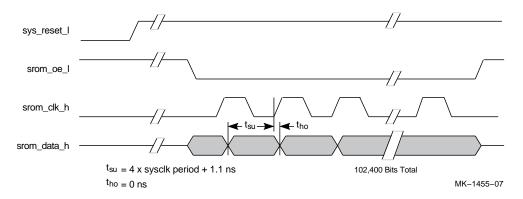
 Table 71
 BiSt Timing for Some System Clock Ratios, Port Mode=Normal (CPU Cycles)


11.4.7 Automatic SROM Load Timing

The SROM load is triggered by the conclusion of BiSt if **srom_present_l** is asserted. The SROM load occurs at the internal cycle time of approximately 126 CPU cycles for **srom_clk_h**, but the behavior at the pins may shift slightly.

Timing events are shown in Figure 76 and are listed in Table 72 and Table 73.

Figure 76 SROM Load Timing Event–Time Line


Sysclk	Syste	em Cycles ¹				
Ratio	t_1	t_2	t_3	t_4	t_5	
3	4	22	4408090	4408216+1/2	4408217	
4	3	48	3306099	3306193+21/2	3306194	
15	3	13	881627	881651+9½	881652	
¹ Measured in sysclk cycles, where $+n$ refers to an additional <i>n</i> CPU cycles.						

Syscik	CPU	Cycles			
Ratio	t_1	t_2	t_3	t_4	t_5
3	12	66	13224270	13224648½	13224651
4	12	192	13224396	13224774½	13224776
15	45	195	13224405	13224774½	13224780

Table 73 SROM Load Timing for Some System Clock Ratios (CPU Cycles)

Figure 77 is a timing diagram of an SROM load sequence.

The minimum **srom_clk_h** cycle = (126 – sysclk ratio) * (CPU cycle time).

The maximum **srom_clk_h** to **srom_data_h** delay allowable (in order to meet the required setup time) = [126 - (5 * sysclk ratio)] * (CPU cycle time).

11.4.8 Clock Test Modes

This section describes the 21164 clock test modes.

11.4.9 Normal Mode

When the **clk_mode_h**<1:0> signals are not asserted, the **osc_clk_in_h**,l frequency is divided by 2. This is the normal operational mode of the clock circuitry.

11.4.10 Chip Test Mode

To lower the maximum frequency that the chip manufacturing tester is required to supply, a divide-by-1 mode has been designed into the clock generator circuitry. When the **clk_mode_h<0**> signal is asserted and **clk_mode_h<1**> is not asserted, the clock frequency that is applied to the input clock signals **osc_clk_in_h,l** bypasses the clock divider and is sent to the chip clock driver. This allows the chip internal circuitry to be tested at full speed with a one-half frequency **osc_clk_in_h,l**.

11.4.11 Module Test Mode

When the **clk_mode_h<0**> signal is not asserted and **clk_mode_h<1**> is asserted, the clock frequency that is applied to the input clock signals **osc_clk_in_h,l** is divided by 4 and is sent to the chip clock driver. The digital phase-locked loop (DPLL) continues to keep the onchip **sys_clk_out1_h,l** locked to **ref_clk_in_h** within the normal limits if a **ref_clk_in_h** signal is applied (0 ns to 1 **osc_clk_in_h,l** cycle after **ref_clk_in_h**).

11.4.12 Clock Test Reset Mode

When both the **clk_mode_h<0**> and the **clk_mode_h<1**> signals are asserted, the **sys_clk_out** generator circuit is forced to reset to a known state. This allows the chip manufacturing tester to synchronize the chip to the tester cycle. Table 74 lists the test modes.

Mode	clk_mode_h<0>	clk_mode_h<1>
Normal	0	0
Chip test	1	0
Module test	0	1
Clock reset	1	1

Table 74 Test Modes

11.4.13 IEEE 1149.1 (JTAG) Performance

Table 75 lists the standard mandated performance specifications for the IEEE 1149.1 circuits.

Item	Specification
trst_l is asynchronous. Minimum pulse width.	4 ns
<pre>trst_l setup time for deassertion before a transition on tck_h.</pre>	4 ns
Maximum acceptable tck_h clock frequency.	16.6 MHz
tdi_h/tms_h setup time (referenced to tck_h rising edge).	4 ns
tdi_h/tms_h hold time (referenced to tck_h rising edge).	4 ns
Maximum propagation delay at pin tdo_h (referenced to tck_h falling edge).	14 ns
Maximum propagation delay at system output pins (referenced to tck_h falling edge).	20 ns

Table 75 IEEE 1149.1 Circuit Performance Specifications

11.5 Power Supply Considerations

For correct operation of the 21164, all of the **Vss** pins must be connected to ground and all of the **Vdd** pins must be connected to a 3.3 V \pm 5% power source. This source voltage should be guaranteed (even under transient conditions) at the 21164 pins, and not just at the PCB edge.

Plus 5 V is not used in the 21164. The voltage difference between the **Vdd** pins and **Vss** pins must never be greater than 3.6 V. If the differential exceeds this limit, the 21164 chip will be damaged.

11.5.1 Decoupling

The effectiveness of decoupling capacitors depends on the amount of inductance placed in series with them. The inductance depends both on the capacitor style (construction) and on the module design. In general, the use of small, high frequency capacitors placed close to the chip package's power and ground pins with very short module etch will give best results. Depending on the user's power supply and power supply distribution system, bulk decoupling may also be required on the module.

Each individual case must be separately analyzed, but generally designers should plan to use at least 6 μ F of capacitance. Typically, 40 to 60 small, high frequency 0.1- μ F capacitors are placed near the chip's **Vdd** and **Vss** pins. Actually placing the capacitors in the pin field is the best approach. Several tens of μ F of bulk decoupling (comprised of tantalum and ceramic capacitors) should be positioned near the 21164 chip.

Use capacitors that are as physically small as possible. Connect the capacitors directly to the 21164 **Vdd** and **Vss** pins by short (0.64 cm [0.25 in] or less) surface etch. The small capacitors generally have better electrical characteristics than the larger units, and will more readily fit close to the IPGA pin field.

11.5.2 Power Supply Sequencing

Although the 21164 uses a 3.3-V (nominal) power source, most of the other logic on the PCB probably requires a 5-V power supply. These 5-V devices can damage the 21164's I/O circuits if the 5-V power source powering the PCB logic and the 3.3-V (**Vdd**) supply feeding the 21164 are not sequenced correctly.

Caution

To avoid damaging the 21164's I/O circuits, the I/O pin voltages must not exceed 4.0 V until the **Vdd** supply is at least 3.0 V or greater.

This rule can be satisfied if the **Vdd** and the 5-V supplies come up together, or if the **Vdd** supply comes up before the 5-V supply is asserted. Bringing the lower voltage up before the higher voltage is the opposite of the way that CMOS systems with multiple power supplies of different voltages are usually sequenced, but it is required for the 21164.

A three-terminal voltage regulator can be used to make 3.3-V Vdd from the 5-V supply, provided the output of the regulator (Vdd) tracks the 5-V supply with only a small offset. The requirement is that when the 5-V supply reaches 4.0 V, Vdd must be 3.0 V or higher. While the 5-V supply is below 4.0 V, Vdd can be less than 3.0 V.

All 5-V sources on the 21164's I/O pins should be disabled if the power supply sequencing is such that the 5-V supply will exceed 4.0 V before **Vdd** is at least 3.0 V. The 5-V sources should remain disabled until the **Vdd** power supply is equal to or greater than 3.0 V.

Disabling all 5-V sources can be very difficult because there are so many possible sneak paths. Inputs, for example, on bipolar TTL logic can be a source of current, and will put a voltage across a 21164 I/O pin high enough to violate the (no higher than 4.0 V until there is 3.0 V) rule. TTL outputs are specified to drive a logic one to at least 2.4 V, but usually drive voltages much higher. CMOS logic and CMOS SRAMs usually drive "full rail" signals that match the value of the 5-V power supply.

Another concern is parallel (dc) terminations or pull-ups connected between the 21164 and the 5-V supply. The 3.3 V (Vdd) supply should be used to power parallel terminations.

Disabling the non-21164 5-V outputs of PCB logic is generally possible, but raises the PCB complexity and can reduce system performance by increasing critical path timing. If the 5-V logic device has an enable pin, circuits (such as power supply supervisor chips) on the PCB can monitor the **Vdd** and 5-V supplies. When the supervision circuit detects that 5.0 V is increasing from zero while the **Vdd** supply is below 3.0 V, the power supply supervisor circuit produces a disable signal to force all PCB logic with 5-V outputs into the high impedance state. This technique will not prevent bipolar TTL inputs from acting as a 5-V source, but it can be used to disable sources such as cache RAM outputs.

12 Thermal Management

This section describes the 21164 thermal management and thermal design considerations.

12.1 Operating Temperature

The 21164 is specified to operate when the temperature at the center of the heat sink (T_c) is no higher than 72°C (266 MHz), 70°C (300 MHz), or 68°C (333 MHz). Temperature (T_c) should be measured at the center of the heat sink (between the two package studs). The GRAFOIL pad is the interface material between the package and the heat sink.

Table 76 lists the values for the center of heat-sink-to-ambient ($\theta_c a$) for the 499-pin grid array. Table 77 shows the allowable T_a (without exceeding T_c) at various airflows.

Note

Digital recommends using the heat sink because it greatly improves the ambient temperature requirement.

Airflow (linear ft/min)	100	200	400	600	800	1000	
Frequency: 266, 300, and 333 MHz							
$\theta_{c}a$ with heat sink 1 (°C/W)	2.30	1.30	0.70	0.53	0.45	0.41	
$\theta_{c}a$ with heat sink 2 (°C/W)	1.25	0.75	0.48	0.40	0.35	0.32	

Table 76 $\theta_c a$ at Various Airflows

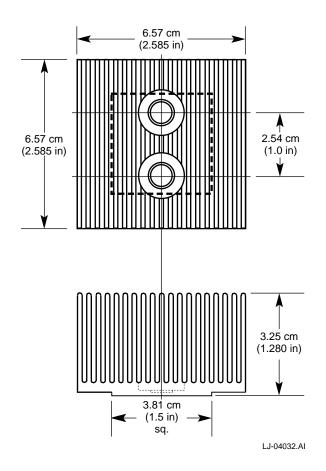

Airflow (linear ft/min)	100	200	400	600	800	1000
Frequency: 266 MHz, Power: 46 W @Vdd = 3.3 V						
T_a with heat sink 1 (°C)	_	_	39.8	47.6	51.3	53.2
T_a with heat sink 2 (°C)	14.5	37.5	49.9	53.6	55.9	57.3
Frequency: 300 MHz, Power:	51 W @Vdd	= 3.3 V				
T _a with heat sink 1 (°C)	_	_	34.3	43.0	47.1	49.1
T_a with heat sink 2 (°C)	—	31.8	45.5	49.6	52.2	53.7
Frequency: 333 MHz, Power:	56 W @Vdd	= 3.3 V				
T _a with heat sink 1 (°C)		_	28.8	38.3	42.8	45.0
$\rm T_a$ with heat sink 2 (°C)	_	26.0	41.1	45.6	48.4	46.2

Table 77 Maximum Ta at Various Airflows

12.2 Heat Sink Specifications

Two heat sinks are specified. Heat sink type 1 mounting holes are in line with the cooling fins. Heat sink type 2 mounting holes are rotated 90° from the cooling fins. The heat sink composition is aluminum alloy 6063. Type 1 heat sink is shown in Figure 78, and type 2 heat sink is shown in Figure 79, along with their approximate dimensions.

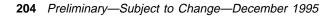
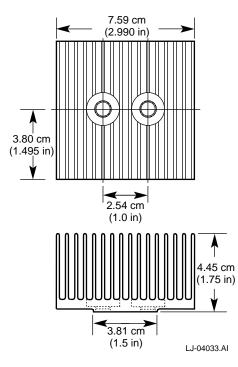
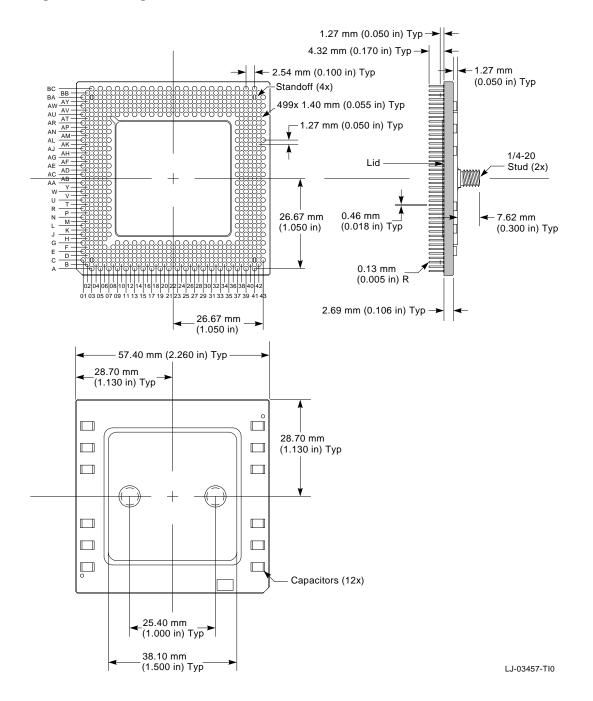



Figure 79 Type 2 Heat Sink

12.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

- Orient the 21164 on the PCB with the heat sink fins aligned with the airflow direction.
- Avoid preheating ambient air. Place the 21164 on the PCB so that inlet air is not preheated by any other PCB components.
- Do not place other high power devices in the vicinity of the 21164.
- Do not restrict the airflow across the 21164 heat sink. Placement of other devices must allow for maximum system airflow in order to maximize the performance of the heat sink.


13 Mechanical Specifications

This section shows the 21164 mechanical package dimensions without a heat sink. For heat sink information and dimensions, refer to Section 12.

Package Dimensions

Figure 80 shows the package physical dimensions without a heat sink.

Preliminary—Subject to Change—December 1995 207

Technical Support and Ordering Information

Technical Support

If you need technical support or help deciding which literature best meets your needs, call the Digital Semiconductor Information Line:

United States and Canada	1-800-332-2717
Outside North America	+1-508-628-4760

Ordering Digital Semiconductor Products

To order Alpha 21164 microprocessor evaluation boards and motherboards, contact your local distributor.

You can order the following semiconductor products from Digital:

Product	Order Number
Alpha 21164 333-MHz Microprocessor	21164-333
Alpha 21164 300-MHz Microprocessor	21164-300
Alpha 21164 300-MHz Microprocessor for Windows NT	21164–P2
Alpha 21164 266-MHz Microprocessor	21164-266
Alpha 21164 266-MHz Microprocessor for Windows NT	21164-P1
Alpha 21164 Microprocessor Evaluation Board 266 MHz Kit (Supports Digital UNIX, OpenVMS, and Windows NT operating systems.)	21A04-01
Alpha 21164 Microprocessor Motherboard 266-MHz Kit (Supports the Windows NT operating system.)	21A04-A0

Ordering Digital Semiconductor Sample Kits

To order an Alpha 21164 Microprocessor Sample Kit, which contains one Alpha 21164 microprocessor, one heat sink, and supporting documentation, call **1–800–DIGITAL**. You will need a purchase order number or credit card to order the following products:

Product	Order Number
Alpha 21164–266 Sample Kit	21164-SA

Ordering Associated Literature

The following table lists some of the available Digital Semiconductor literature. For a complete list, contact the Digital Semiconductor Information Line.

Title	Order Number
Alpha Architecture Reference Manual ¹	EY-L520E-DP-YCH
Alpha AXP Architecture Handbook	EC-QD2KA-TE
Alpha 21164 Microprocessor Hardware Reference Manual	EC-QAEQC-TE
Alpha 21164 Microprocessor Product Brief	EC-QAENB-TE
Alpha 21164 Evaluation Board Read Me First	EC-QD2VB-TE
Alpha 21164 Evaluation Board Product Brief	EC-QCZZD-TE
Alpha 21164 Evaluation Board User's Guide	EC-QD2UC-TE
Alpha 21164 Microprocessor Motherboard Product Brief	EC-QSAGA-TE
Alpha 21164 Microprocessor Motherboard User's Manual	EC-QLJLB-TE
DECchip 21171 Core Logic Chipset Product Brief	EC-QC3EB-TE
DECchip 21171 Core Logic Chipset Technical Reference Manual	EC-QE18B-TE
Answers to Common Questions about PALcode for Alpha AXP Systems	EC-N0647-72
PALcode for Alpha Microprocessors System Design Guide	EC-QFGLB-TE
Alpha Microprocessors Evaluation Board Windows NT 3.51 Installation Guide	EC-QLUAD-TE
SPICE Models for Alpha Microprocessors and Peripheral Chips: An Application Note	EC-QA4XC-TE
Alpha Microprocessors SROM Mini-Debugger User's Guide	EC-QHUXA-TE
Alpha Microprocessors Evaluation Board Debug Monitor User's Guide	EC-QHUVB-TE
Alpha Microprocessors Evaluation Board Software Design Tools User's Guide	EC-QHUWA-TE

¹To order and purchase the *Alpha Architecture Reference Manual*, call **1-800-DIGITAL** from the U.S. or Canada, or contact your local Digital office, or technical or reference bookstore where Digital Press books are distributed by Prentice Hall.

Ordering Associated Third-Party Literature You can order the following third-party literature directly from the vendor:

Title	Vendor
PCI System Design Guide	PCI Special Interest Group 1–800–433–5177 (U.S.) 1–503–797–4207 (International) 1–503–234–6762 (FAX)
PCI Local Bus Specification Revision 2.1	See previous entry.
IEEE Standard 754, Standard for Binary Floating-Point Arithmetic	IEEE Service Center 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855–1331 1–800–678–IEEE (U.S. and Canada) 908–562–3805 (Outside U.S. and Canada)
IEEE Standard 1149.1, A Test Access Port and Boundary Scan Architecture	See previous entry.