
PSoC Designer: C Language Compiler User Guide

PSoC� Designer:
C Language Compiler

User Guide
Revision 1.09

CMS10004A
Last Revised: May 30, 2001
Cypress MicroSystems, Inc.

PSoC Designer: C Language Compiler User Guide

Page 1 of 37

Copyright Information

Copyright 2000-2001 Cypress MicroSystems, Inc. All rights reserved.

Copyright © 1999-2000 ImageCraft Creations Inc. All rights reserved.

Copyright 1981-1998 Microsoft Corp. as related to Windows

All third-party products referenced herein are either trademarks or registered
trademarks of their respective companies.

The information contained herein is subject to change without notice.

PSoC Designer: C Language Compiler User Guide

Page 2 of 37

Two Minute Overview

This two-minute overview of PSoC Designer: C Language Compiler User Guide
was purposefully placed up front for you advanced engineers who are ready to
write source for the M8C but need a quick jump-start (Now we only have a
minute and-a-half left.)

Overview 35 seconds You have the M8C, PSoC™ Designer, and the C

compiler… This guide provides:

��enabling and accessing procedures
��instructions for using the C compiler within

PSoC Designer parameters
��references for the internal workings of the

compiler.

Basics 30 seconds After generating your device configuration, click the

Application Editor icon in the toolbar to access the C
compiler and pre-configured source files.

The source tree of project files appears in the left
frame. The folders can be expanded to reveal the
files. Double-click individual files to open and edit
them in the main window. Click File >> New to add .c
files to your project.

Quick
Reference

15 seconds Click a hyperlink to reference key material:

��Notation Standards
��Accessing/Enabling the Compiler
��Compiler Files
��Basics
��Functions
��Processing Directives (#’s)
��Librarian
��Status Window Messages

Bottom
Line

10 seconds The PSoC™ Designer C Compiler is an “extra” tool
you can use to customize the functionality you desire
into the M8C microprocessor.

 Time’s up… Now get to work.

PSoC Designer: C Language Compiler User Guide

Page 3 of 37

Documentation Conventions

Following, are easily identifiable conventions used throughout the PSoC
Designer suite of product documentation.

Convention Usage
Times New Roman Size 10-12 Displays input:

//---
// Sample Code
// Burn some cycles
//---

void main()
{
 char cOuter, cInner;
 for(cOuter=0x20; cOuter>0; cOuter--)
 {
 for(cInner=0x7F; cInner>0; cInner--)
 {
 }
 }

 }
Courier Size 12 Displays file locations:

c:\Program Files\Cypress
MicroSystems\PSoC Designer\tools

Italics Displays file names:
projectname.rom

[Ctrl] [C] Displays keyboard commands:
[Enter]

File >> Open Displays menu paths:
Edit >> Cut

PSoC Designer: C Language Compiler User Guide

Page 4 of 37

Notation Standards

Following, are notation standards used throughout the PSoC Designer suite of
product documentation.

Virtual Registers: Virtual registers _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7, _r8, _r9,
_r10, _r11, _rX, _rY occupy 14 bytes of RAM. These locations are used for
temporary data when using the C language compiler. Currently, these virtual
memory register locations are allocated even if the source for the M8C in PSoC
Designer is written only in assembly language.

PSoC Designer: C Language Compiler User Guide

Page 5 of 37

Table of Contents

Two Minute Overview.. 2

Quick-start summary for advanced users who are ready to dive in.

Documentation Conventions.. 3

Lists conventions used in this guide and throughout PSoC Designer documentation.

Notation Standards ... 4

Lists notation for quick-reference used in throughout PSoC Designer documentation.

Section 1. Introduction.. 7

Describes purpose of this guide and overviews section and product information.
1.1. Purpose... 7
1.2. Section Overview.. 7
1.3. Product Updates ... 8
1.4. Support ... 8

Section 2. Accessing the Compiler .. 9

Describes how to enable and access the C Compiler from within PSoC Designer.
2.1. Enabling the Compiler... 9
2.2. Accessing the Compiler .. 9
2.3. Menu Options.. 10

Section 3. Compiler Files .. 11

Lists active/available PSoC Designer C Compiler files.
3.1. Startup File.. 11
3.2. Library Descriptions .. 11

Section 4. Compiler Basics... 12

Discusses C Compiler basics within PSoC Designer.
4.1. Types .. 12
4.2. Operators .. 13
4.3. Expressions .. 14
4.4. Statements.. 14
4.5. Pointers... 15
4.6. Re-entrancy .. 15
4.7. Processing Directives (#’s).. 15

Section 5. Functions ... 16
Describes C Compiler functions supported by PSoC Designer.

5.1. Library Functions ... 16
5.2. Interfacing C and Assembly... 17

PSoC Designer: C Language Compiler User Guide�

Page 6 of 37

Section 6. Additional Considerations .. 18
Describes additional options to leverage functionality.

6.1. Accessing M8C Features... 18
6.2. Addressing Absolute Memory Locations.. 18
5.3. Assembly Interface and Calling Conventions................................... 18
6.4. Bit Twiddling... 19
6.5. Inline Assembly.. 20
6.6. Interrupts.. 20
6.7. IO Registers.. 20
6.8. Long Jump/Call... 20
6.9. Memory Areas.. 21
6.10. Program and Data Memory Usage .. 21
6.11. Program Memory as Related to Constant Data 22
6.12. Stack Architecture and Frame Layout.. 23
6.13. Strings.. 23
6.14. Virtual Registers... 24

Section 7. Linker.. 25

Describes C Compiler linker functionality.
7.1. Linker Operations...

Section 8. Librarian ... 26

Describes the C Compiler Librarian.
8.1. Librarian... 26

Section 9. Command Line Overview .. 27

Describes PSoC Designer C Compiler command-line capabilities.
9.1. Compilation Process .. 27
9.2. Driver ... 27
9.3. Compiler Arguments .. 28

Appendix A: Status Window Messages 30

Index... 36

PSoC Designer: C Language Compiler User Guide

Page 7 of 37

Section 1. Introduction

1.1. Purpose

The purpose of the PSoC Designer: C Language Compiler User Guide is
reference for using a C language compiler within the parameters of PSoC
Designer.

The PSoC Designer C Compiler compiles each .c source file to an M8C
assembly file. The PSoC Designer Assembler then translates each assembly file
(either those produced by the compiler or those that have been added) into a
relocatable object file, .o. After all the files have been translated into object files,
the builder/linker combines them together to form an executable file. This .rom
file is then downloaded to the emulator where it is debugged to perfect M8C
design functionality.

For comprehensive details on system use and assembly language, see:

��PSoC Designer: Integrated Development Environment User Guide

��PSoC Designer: Assembly Language User Guide

Together, these three user guides complete the PSoC Designer documentation
suite.

1.2. Section Overview

Section 1. Introduction Describes the purpose of this guide,

overviews each section, and gives
product upgrade and support
information.

Section 2. Accessing the Compiler Describes enabling and accessing the
compiler and its options.

Section 3. Compiler Files Discusses and lists startup and C
library options within PSoC Designer.

Section 4. Compiler Basics Lists C compiler types, operators,
expressions, statements, and pointers
that are compatible within PSoC
Designer parameters.

PSoC Designer: C Language Compiler User Guide�

Page 8 of 37

Section 5. Functions Lists C compiler functions that are
compatible within PSoC Designer
parameters.

Section 6. Linker Discusses C compiler linker options
deployed within PSoC Designer.

Section 7. Librarian Discusses C compiler library functions
used within PSoC Designer.

Section 8. Command Line Overview Overviews C compiler command line
features that can be used strictly within
the constraints of PSoC Designer.

Section 9. Tool References Directs users to available reference
resources.

1.3. Product Upgrades

Cypress MicroSystems provides scheduled upgrades and version
enhancements, as requested by customers, for PSoC Designer free of charge.
Compiler upgrades are included in your PSoC Designer Support Contract.

You can order PSoC Designer and Compiler upgrades from your distributor on
CD-ROM or, better yet, download them directly from the Cypress MicroSystems
web site at http://www.cypressmicro.com/.

Also provided at the web site are critical updates to system documentation. To
stay current with system functionality you can find documentation updates under
the Support hyperlink, again, at http://www.cypressmicro.com/.

Check the Cypress MicroSystems web site frequently for both product and
documentation updates. As the M8C and PSoC Designer evolve, you can be
sure that new features and enhancements will be added.

1.4. Support

Support for the C Language Compiler is bundled into a PSoC Designer Support
Contract. For details, see the PSoC Designer: Integrated Development
Environment User Guide.

http://www.cypressmicro.com/
http://www.cypressmicro.com/
http://www.cypressmicro.com/

PSoC Designer: C Language Compiler User Guide

Page 9 of 37

Section 2. Accessing the Compiler

In this section you will learn how to enable and access the compiler and its
options.

2.1. Enabling the Compiler

Enabling the compiler is done within PSoC Designer. To accomplish this,
execute the following steps:

1. Access Tools >> Customize menu option.

2. Select Compiler tab.

3. Enter your key code.

You have this key code if you purchased the C Language Compiler
License when you received PSoC Designer (by download, mail, or
through a distributor).

If, for some reason, you have not received a key code or are uncertain of how to
proceed, contact a Cypress MicroSystems Support Technician at 877.751.6100.

2.2. Accessing the Compiler

All features of the compiler are available and accessible in the Application Editor
subsystem of PSoC Designer.

Application

Editor

Subsystem

Toolbar

To access the Application Editor subsystem, click the Application
Editor icon. This icon can be found in the subsystem toolbar.

Such features include adding and modifying .c project files, both of which are
described ahead in brief, and in the PSoC Designer: Integrated Development
Environment User Guide in detail.

PSoC Designer: C Language Compiler User Guide�

Page 10 of 37

2.3. Menu Options

The PSoC Designer Application Editor toolbar is shown below:

Following, is a description of the menu options available for use with the
compiler:

Icon Option Menu Shortcut Feature

 Compile/Assemble Build >>
Compile/Assemble

[Ctrl] [F7] Compiles/assembles the
most prominent open, active
file (.c or .asm)

Build

Build >> Build [F7] Builds entire project and
links applicable files

 New File File >> New [Ctrl] [N] Adds a new file to the project

 Open File File >> Open [Ctrl] [O] Opens an existing file in the
project

 Indent Indents specified text

 Outdent Outdents specified text

 Comment Comments selected text

 Uncomment Uncomments selected text

 Toggle Bookmark Toggles the bookmark:
Sets/removes user-defined
bookmarks used to navigate
source files

 Clear Bookmark Clears all user-defined
bookmarks

 Next Bookmark Goes to next bookmark

 Previous Bookmark Goes to previous bookmark

 Find Text Edit >> Find [Ctrl] [F] Find specified text

 Replace Text Edit >> Replace [Ctrl] [H] Replace specified text

 Repeat Replace Repeats last replace

 Set Editor Options Set options for editor

 Undo Edit >> Undo [Ctrl] [Z] Undo last action

 Redo Edit >> Redo [Ctrl] [Y] Redo last action

PSoC Designer: C Language Compiler User Guide

Page 11 of 37

Section 3. Compiler Files

In this section you will learn startup file procedures and can reference
supported library files.

3.1. Startup File

PSoC Designer creates a startup file called boot.asm. Its primary functions within
the parameters of PSoC Designer include initializing C variables, organizing
interrupt tables, and calling _main. The underscore (_main) allows boot.asm to
call a “main” in either C or assembly.

Many functions within PSoC Designer are built upon specifications in this file.
Therefore, it is highly recommended that you do not modify the startup file. If you
have a need, first consult your Cypress MicroSystems Technical Support
Representative.

The boot.asm startup file also defines the reset vector. You do not need to
modify the startup file to use other interrupts because PSoC Designer manages
interrupts and vectors.

3.2. Library Descriptions

There are two primary code libraries used by PSoC Designer. The runtime library
(named libcm8c.a) in the PSoC Designer application …\tools directory (e.g.,
…\Program Files\Cypress Microsystems\PSoC Designer\tools)
contains many functions typically used in ’C’ programming.

The second library contains an archive of the library source code added to a
PSoC Designer project. Device Editor automatically adds the library source code
to your project during the device configuration generation process (based on
selected User Modules). However, other library objects can be added to this
library. To add existing object files, copy your source file to the project …\lib
directory, then “officially” add it to the project in PSoC Designer. For details on
adding existing files to your project, see section 6 in PSoC Designer: Integrated
Development Environment User Guide.

PSoC Designer: C Language Compiler User Guide

Page 12 of 37

Section 4. Compiler Basics

In this section you can reference PSoC Designer C Compiler basics, which
include types, operators, expressions, statements, and pointers.

With few exceptions, PSoC Designer C Compiler implements the ANSI C
language. The one notable exception is that the standard requires that double
floating point be at least 64 bits, but implementing full 64 bits is prohibitive on 8-
bit microcontrollers. Therefore, PSoC Designer C Compiler treats the “double”
data type the same as the “float” data type.

4.1. Types

PSoC Designer C Compiler supports the following standard data types:

All types support the signed and unsigned type modifiers.

Type Bytes Description Range
char 1 A single byte of memory that

defines characters
unsigned 0…255

signed -128…127
Int 2 Used to define integer numbers unsigned 0…65535

signed -32768…32767

short 2 Standard type specifying 2-byte
integers

unsigned 0…65535
signed -32768…32767

long 4 Standard type specifying the
largest integer entity

unsigned 0…4294967295
signed -2147483648…2147483647

float 4 Single precision floating point
number in IEEE format

1.175e-38…3.40e+38

double 4 Single precision floating point
number in IEEE format

1.175e-38…3.40e+38

enum 2 Used to define a list of aliases that
represent integers.

0…65535

All floating-point operations are supported in the PSoC Designer C Compiler.

floats and doubles are in IEEE standard 32-bit format with 7-bit exponent and 23-
bit mantissa.

PSoC Designer: C Language Compiler User Guide�

Page 13 of 37

4.2. Operators

Following is a list of the most common operators supported within the PSoC
Designer C Compiler. Operators with a higher precedence are applied first.
Operators of the same precedence are applied right to left. Use parenthesis
where appropriate to prevent ambiguity.

P. Op. Function Group Form Description
1 ++ Postincrement a ++
1 -- Postdecrement a --
1 [] Subscript a[b]
1 () Function Call a(b)
1 . Select Member a.b
1 -> Point at Member a->b
2 sizeof Sizeof sizeof a
2 ++ Preincrement ++ a
2 -- Predecrement -- a
2 & Address of &a
2 * Indirection *a
2 + Plus +a
2 - Minus -a
2 ~ Bitwise NOT Unary ~ a 1’s complement of a
2 ! Logical NOT !a
2 (declaration) Type Cast (declaration)a
3 * Multiplication Binary a * b a multiplied by b
3 / Division Binary a / b a divided by b
3 % Modulus Binary a % b Remainder of a divided by b
4 + Addition Binary a + b a plus b
4 - Subtraction Binary a - b a minus b
5 << Left Shift Binary a << b Value of a shifted b bits left
5 >> Right Shift Binary a >> b Value of a shifted b bits right
6 < Less a < b a less than b
6 <= Less or Equal a <= b a less than or equal to b
6 > Greater a > b a greater than b
6 >= Greater or Equal a >= b a greater than or equal to b
7 == Equals a == b
7 != Not Equals a != b
8 & Bitwise AND Bitwise a & b Bitwise AND of a and b
9 ^ Bitwise Exclusive OR Bitwise a ^ b Bitwise Exclusive OR of a and b

10 | Bitwise Inclusive OR Bitwise a | b Bitwise OR of a and b
11 && Logical AND a && b
12 || Logical OR a || b
13 ? : Conditional c?a:b
14 = Assignment a = b
14 *= Multiply Assign a *= b
14 /= Divide Assign a /= b
14 %= Remainder Assign a %= b
14 += Add Assign a += b
14 -= Subtract Assign a -= b
14 <<= Left Shift Assign a <<= b
14 >>= Right Shift Assign a >>= b
14 &= Bitwise AND Assign a &= b
14 ^= Bitwise Exclusive OR Assign a ^= b
14 |= Bitwise Inclusive OR Assign a |= b
15 , Comma a , b

PSoC Designer: C Language Compiler User Guide�

Page 14 of 37

4.3. Expressions

PSoC Designer supports standard C language expressions.

4.4. Statements

PSoC Designer compiler supports the following standard statements:

��if else: Decides on an action based on if being true.

��switch: Compares a single variable to several possible constants. If the
variable matches one of the constants, a jump is made.

��while: Repeats (iterative loop) a statement until the expression proves
false.

��do: Same as while, only the test runs after execution of statement, not
before.

��for: Executes a controlled loop.

��goto: Transfers execution to a label.

��continue: Used in a loop to skip the rest of the statement.

��break: Used with a switch or in a loop to terminate the switch or loop.

��return: Terminates the current function.

��struct: Used to group common variables together.

��typedef: Declares a type.

PSoC Designer: C Language Compiler User Guide�

Page 15 of 37

4.5. Pointers

A pointer is a variable that contains an address that points to data. It can point to
any data type (i.e., int, float, char, etc.). A generic (or unknown) pointer type is
declared as “void” and can be freely cast between other pointer types. Function
pointers are also supported.

Due to the nature of the Harvard architecture of the M8C, a data pointer may
point to data located in either data or program memory. To discern which data is
to be accessed, the const qualifier is used to signify that a data item is located in
program memory. See Program Memory as Related to Constant Data in
section 6.

Pointers require 2 bytes of memory storage to account for the size of both the
data and program memory.

4.6. Re-entrancy

Currently, there are no pure re-entrant library functions. It is possible, however, to
create a re-entrant condition that will compile and build successfully. Due to the
constraints that a small stack presents, re-entrant code is not recommended.

4.7. Processing Directives (#’s)

PSoC Designer C Compiler supports the following preprocessors and pragmas:

4.7.1. Preprocessor Directives

Preprocessor Description
#define Define a preprocessor constant or macro
#else Executed if #if, #ifdef, or #ifndef fails
#endif Close #if, #ifdef, or #ifndef
#if Branch based on an expression
#ifdef Branch if preprocessor constant has been defined
#ifndef Branch if a preprocessor constant has not been defined
#include Insert a source file
#line Specify the number of the next source line
#undef Remove a preprocessor constant

4.7.2. pragma Directives

#pragma Description
#pragma ioport LED:0x04;
char LED;

Defines a variable that occupies a region in I/O space. This
variable can then be used in I/O reads and writes. The #pragma
ioport must precede a variable declaration defining the variable
type used in the pragma

#pragma fastcall GetChar Provides an optimized mechanism for argument passing. This
#pragma is used only for assembly functions called from “C.”

PSoC Designer: C Language Compiler User Guide�

Page 16 of 37

Section 5. Functions

In this section you can reference compiler functions supported within PSoC
Designer.

PSoC Designer C Compiler functions use arguments and always return a value.
All C programs must have a function called main().

Each function must be self-contained in that you may not define a function within
another function or extend the definition or a function across more than one file.

It is important to note that the compiler generates inline code whenever possible.
However, for some C constructs, the compiler generates calls to low level
routines. These routines are prefixed with two underscores and should not be
called directly by the user.

5.1. Library Functions

Use #include <associated-header.h> for each function described below. Note that
two versions of these functions are provided. The ‘c’ prefix indicates that the
source string s2 is located in Flash, as designated by the const qualifier. PSoC
Designer supports the following library functions:

All strings are null terminated strings.

Function Prototype Description Header
itoa void itoa(char *string, int value, int radix) Converts the integer

value into a string
representation of the
specified radix.

stdlib.h

strcpy char *strcpy(char *s1, char *s2)
char *cstrcpy(char *s1, const char *s2)

Copies “s2” into “s1.”
Returns s1.

string.h

strcmp int strcmp(char *s1, char *s2)
int cstrcmp(char *s1, const char *s2)

Compares two strings.
Returns:
0 = Strings are equal
>0 = First different
element in “s1” is greater
than the corresponding
element in “s2,” else <0.

string.h

strlen size_t strlen(char *s)
size_t cstrlen(const char *s)

Returns the length of “s.”
The terminating null is
not counted.

string.h

strcat char *strcat(char *s1, const char *s2)
char *cstrcat(char *s1, const char *s2)

Concatenates “s2” onto
“s1.” Returns s1.

string.h

You can also view these functions at a command prompt window by typing:

…:\Program Files\Cypress MicroSystems\PSoC Designer\tools>
ilibw –t libcm8c.a

PSoC Designer: C Language Compiler User Guide�

Page 17 of 37

5.2. Interfacing C and Assembly

To optimize argument passing and return value activities between the PSoC
Designer C Compiler and Assembler, employ the #pragma fastcall.

The fastcall convention was devised to create an efficient argument/return value
mechanism between ‘C’ and assembly language functions.

Fastcall is only used by ‘C’ functions calling assembly written functions.
Functions written in ‘C’ cannot utilize the fastcall convention.

The following table reflects the set of #pragma fastcall conventions used for
argument passing register assignments:

Argument Type Argument Register Comment
char A
char, char A, X First char in A and second in X
int X, A MSB in X and LSB in A
Pointer A, X MSB in A and LSB in X
char, … A, X First argument passed in A. Successive arguments

are pointed to by X, where X is set up as a pointer
to the remaining arguments. Typically, these
arguments are stored on the stack

Int,… X X is set up as a pointer that points to the contiguous
block of memory that stores the arguments.
Typically, the arguments are stored on the stack.

All the others X Same as above

Arguments that are pushed on the stack are pushed from right to left.

The reference of returned structures reside in the A and X registers. If passed by
value, a structure is always passed through the stack, and not in registers.
Passing a structure by reference (i.e., passing the address of a structure) is the
same as passing the address of any data item, that is, a pointer (which is 2
bytes).

The following table reflects the set of #pragma fastcall conventions used for
return value register assignments:

Return Type Return Register Comment

char A
int X, A
long __r0..__r3 Delivered in the virtual registers
pointer A, X

PSoC Designer: C Language Compiler User Guide

Page 18 of 37

Section 6. Additional Considerations

In this section you will learn additional compiler options to leverage the
functionality of your code/program.

6.1. Accessing M8C Features

The strength of the compiler is that while it is a high-level language, it allows you
to access low-level features of the target device. Even in cases where the target
features are not available in the compiler, usually inline assembly and
preprocessor macros can be used to access these features transparently.

The PSoC Designer C Compiler accepts the extension: inline assembly: asm
("mov A,5"); see section 6.5 Inline Assembly.

6.2. Addressing Absolute Memory Locations

Your program may need to address absolute memory locations. Use inline
assembly or a separate assembler file to declare data that are located in specific
memory addresses, and then follow the Assembly Interface and Calling
Conventions as described ahead.

Optionally, an absolute memory address in data memory can be declared using
the #define directive as follows:

#define MyData (*(char*) 0x200)

…where MyData references memory location 0x200.

6.3. Assembly Interface and Calling Conventions

Standard to PSoC Designer C Compiler and Assembler, an underscore is
implicitly added to ‘C’ function and variable names. This should be applied when
declaring and referencing functions and variables between ‘C’ and assembly
source. For example, the ‘C’ function defined with a prototype such as “void
foo();” would be referenced as “_foo” in M8C assembly. In ‘C’ however, the
function would still be referenced as “foo()”. The underscore is also applied to
variable names.

PSoC Designer: C Language Compiler User Guide�

Page 19 of 37

6.4. Bit Twiddling

A common task in programming a microcontroller is to turn on or off some bits in
the registers. Fortunately, standard C is well suited to bit twiddling without
resorting to assembly instructions or other non-standard C constructs. PSoC
Designer supports the following bitwise operators that are particularly useful:

a | b bitwise or The expression is denoted by "a" is bitwise or’ed with the

expression denoted by "b." This is used to turn on certain bits,
especially when used in the assignment form |=. For example:

 PORTA |= 0x80; // turn on bit 7 (msb)

a & b bitwise and This operator is useful for checking if certain bits are set.

For example:

 if ((PORTA & 0x81) == 0) // check bit 7 and bit 1

Note that the parenthesis is needed around the expression of an & operator
because it has lower precedence than the == operator. This is a source of many
programming bugs in compiler programs. See Section 4. Complier Basics for the
table of supported operators and precedence.

a ^ b bitwise
exclusive or

This operator is useful for complementing a bit. For
example, in the following case, bit 7 is flipped:

 PORTA ^= 0x80; // flip bit 7

~a bitwise
complement

This operator performs a ones-complement on the
expression. It is especially useful when combined with the
bitwise and operator to turn off certain bits. For example:

 PORTA &= ~0x80; // turn off bit 7

PSoC Designer: C Language Compiler User Guide�

Page 20 of 37

6.5. Inline Assembly

Besides writing assembly functions in assembly files, inline assembly allows you
to write assembly code within your C file. (Of course, you may use assembly
source files as part of your project as well.) An example for inline assembly is:

asm ("mov A,5");

Multiple assembly statements can be separated by the newline character \n.
String concatenations can be used to specify multiple statements without using
additional asm keywords.

‘C’ variables can be referenced within the assembly string. See the following
example as valid:

 asm (“mov A,cCounter”);

Inline assembly may be used inside or outside a C function. The compiler indents
each line of the inline assembly for readability. The PSoC Designer Assembler
allows labels to be placed anywhere (not just at the first character of the lines in
your file) so you may create assembly labels in your inline assembly code. You
may get a warning on asm statements that are outside of a function. You may
ignore these warnings.

6.6. IO Registers

IO registers are specified using the following #pragma:

#pragma ioport LED:0x04;
 char LED;….
 LED = 1;

// ioport is at I/O space 0x04
LED must be declared in global scope

6.7. Interrupts

All interrupt-level functions must be written in assembly language. Interrupt ‘C’
functions are not supported.

6.8. Long Jump/Call

The assembler/linker will turn a JMP or CALL instruction into the long form LJMP
and LCALL if needed. This applies if the target is in a different linker area or if it
is defined in another file.

PSoC Designer: C Language Compiler User Guide�

Page 21 of 37

6.9. Memory Areas

The compiler generates code and data into different "areas." (See the complete
list of Assembler Directives in the PSoC Designer: Assembly Language User
Guide). The areas used by the compiler, ordered here by increasing memory
address, are:

��interrupt vectors: This area contains the interrupt vectors.
��func_lit: Function table area. Each word in this area contains the address

of a function entry.
��lit: This area contains integer and floating-point constants.
��idata: The initial values for the global data are stored in this area.
��text: This area contains program code.

6.9.1. Data Memory

��data: This is the data area containing global and static variables, and
strings. The initial values of the global variables are stored in the "idata"
area and copied to the data area at startup time.

��bss: This is the data area containing "uninitialized" C global variables. Per
ANSI C definition, these variables will get initialized to zero at startup time.

The job of the linker is to collect areas of the same types from all the input object
files and concatenate them together in the output file. For further information, see
Section 7. Linker.

6.10. Program and Data Memory Usage

6.10.1. Program Memory

The program memory, which is read only, is used for storing program code,
constant tables, initial values, and strings for global variables. The compiler
generates a memory image in the form of an output file of hexadecimal values in
ASCII text (a .rom file).

PSoC Designer: C Language Compiler User Guide�

Page 22 of 37

6.10.2. Data Memory

The Data Memory is used for storing variables and the stack frames. In general,
they do not appear in the output file but are used when the program is running. A
program uses data memory as follows:

[high memory]
[stack frames]
[global variables]
…
[virtual registers]

[low memory]

It is up to you, the programmer, to ensure that the stack does not leak into the
variable section. Otherwise, unexpected results will occur.

6.11. Program Memory as Related to Constant Data

The M8C is a Harvard architecture machine, separating program memory from
data memory. There are several advantages to such a design. For example, the
separate address space allows a M8C device to access more total memory than
a conventional architecture.

Due to the nature of the Harvard architecture of the M8C, a data pointer may
point to data located in either data or program memory. To discern which data is
to be accessed, the const qualifier is used to signify that a data item is located in
program memory. Note that for a pointer declaration, the const qualifier may
appear in different places, depending on whether it is qualifying the pointer
variable itself or the items that it points to. For example:

const int table[] = { 1, 2, 3 };

const char *ptr1;

char * const ptr2;

const char * const ptr3;

table is a table allocated in the program memory. ptr1 is an item in the data
memory that points to data in the program memory. ptr2 is an item in the program
memory that points to data in the data memory. Finally, ptr3 is an item in the
program memory that points to data in the program memory. In most cases,
items such as table and ptr1 are probably the most typical. The compiler
generates the INDEX instruction to access the program memory for read-only
data.

PSoC Designer: C Language Compiler User Guide�

Page 23 of 37

Note that the C compiler does not require const data to be put in the read-only
memory, and in a conventional architecture, this would not matter except for
access rights. So, this use of the const qualifier is unconventional, but within the
allowable parameters of the compiler. However, this does introduce conflicts with
some of the standard C function definitions.

For example, the standard prototype for strcpy is strcpy(char *dst, const char *src),
with the const qualifier of the second argument signifying that the function does
not modify the argument. However, under the M8C, the const qualifier would
indicate that the second argument points to the program memory. For example,
variables defined outside of a function body or variables that have the static
storage class, have file storage class. If you declare local variables with the
const qualifier, they will not be put into FLASH and undefined behaviors
may result.

6.12. Stack Architecture and Frame Layout

The stack must reside in page 0 and grows towards high memory. Most local
variables and function parameters are allocated on the stack. A typical function
stack frame looks as follows:

[high address]
[returned values]
[local variables and other compiler generated temporaries]

X: [old X]
[return address]
[incoming arguments]
…

[low address]

Register X is used as the “frame pointer” and for accessing all stacked items.
Note that because the M8C limits the stack access to the first page only, no more
than 256 bytes can be allocated on the stack even if the device supports more
than 256 bytes of RAM. Less RAM is available to the stack due to a total RAM
space of 256 bytes.

6.13. Strings

The compiler allocates all literal strings into program memory. Effectively, the
type for a literal string is const char * and you must ensure that function
parameters take the appropriate argument type.

PSoC Designer: C Language Compiler User Guide�

Page 24 of 37

6.14. Virtual Registers

Virtual registers _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7, _r8, _r9, _r10, _r11, _rX,
_rY occupy 14 bytes of RAM and are used because the M8C only has a single 8-
bit accumulator. These locations are for temporary data storage when using the
compiler. The virtual registers are allocated on the bottom of data memory.
Currently, the virtual memory register locations are allocated even if the source
for the M8C is written in assembly language.

PSoC Designer: C Language Compiler User Guide

Page 25 of 37

Section 7. Linker

In this section you will learn how the linker operates within PSoC Designer.

7.1. Linker Operations

The main purpose of the linker is to combine multiple object files into a single
output file suitable to be downloaded to the In-Circuit Emulator for debugging the
code and programming the device. Linking takes place in PSoC Designer when a
project “build” is executed. The linker can also take input from a "library" which is
basically a file containing multiple object files. In producing the output file, the
linker resolves any references between the input files. In some detail, the linking
steps involve:

1. Making the startup file (boot.asm) the first file to be linked. The startup file
initializes the execution environment for the C program to run.

2. Appending any libraries that you explicitly request (or in most cases, as
are requested by the IDE) to the list of files to be linked. Library modules
that are directly or indirectly referenced will be linked. All user-specified
object files (e.g., your program files) are linked.

3. Scanning the object files to find unresolved references. The linker marks
the object file (possibly in the library) that satisfies the references and
adds it to its list of unresolved references. It repeats the process until there
are no outstanding unresolved references.

4. Combining all marked object files into an output file and generating map
and listing files as needed.

PSoC Designer: C Language Compiler User Guide

Page 26 of 37

Section 8. Librarian

In this section you will learn the librarian functions of PSoC Designer.

8.1. Librarian

A library is a collection of object files in a special form that the linker understands.
When your program references a library’s component object file directly or
indirectly, the linker pulls out the library code and links it to your program. The
library that contains supported C functions is located in the PSoC Designer
working directory of c:\Program Files\Cypress MicroSystems\PSoC
Designer\tools\libcm8c.a.

There are times when you need to modify or create libraries. A command line
tool called ilibw.exe is provided for this purpose. Note that a library file must have
the .a extension. For further reference, see Section 7. Linker.

8.1.1. Compiling a File into a Library Module

Each library module is simply an object file. Therefore, to create a library module,
you need to compile a source file into an object file. To do this, open the file in
the IDE and invoke the File >> Compile File To Object command.

8.1.2. Listing the Contents of a Library

On a command prompt window, change the directory to where the library is, and
give the command ilibw -t <library>. For example:

ilibw -t libcm8c.a

8.1.3. Adding or Replacing a Module

1. Compile the source file into an object module.
2. Copy the library into the work directory.
3. Use the command ilibw -a <library> <module> to add or replace a module.

ilibw creates the library file if it does not exist, so to create a new library, just give
ilibw a new library file name.

8.1.4. Deleting a Module

The command switch -d deletes a module from the library. For example, the
following deletes crtm8c.o from the libcm8c.a library:

ilibw -d libcm8c.a crtm8c.o ; delete

PSoC Designer: C Language Compiler User Guide�

Page 27 of 37

Section 9. Command Line Compiler Overview

In this section you will learn supported compiler command line options. This
section covers the uses of the C compiler outside of PSoC Designer and
contains information that is not required when using the compiler within PSoC
Designer.

9.1. Compilation Process

Underneath the user friendly IDE is a set of command line compiler programs.
While you do not need to understand this section to use the compiler, it is good
for those who want to find out "what’s under the hood."

Given a list of files in a project, the compiler’s job is to transform the source files
into an executable file in some output format. Normally, the compilation process
is hidden from you within the IDE. However, it can be important to have an
understanding of what happens "under the hood." Examine the following:

1. The compiler compiles each C source file to a M8C assembly file.
2. The assembler translates each assembly file (either from the compiler or

assembly files) into a relocatable object file.
3. Once all files have been translated into object files, the linker combines

them to form an executable file. In addition, a map file, a listing file, and
debug information files are also output.

9.2. Driver

The compiler driver handles all the details previously mentioned. It takes the list
of files and compiles them into an executable file (which is the default) or to some
intermediate stage (e.g., into object files). It is the compiler driver that invokes the
compiler, assembler, and linker as needed.

The compiler driver examines each input file and acts on it based on its
extension and the command-line arguments given.

.c files are C compiler source files and .asm files are assembly source files,
respectively. The design philosophy for the IDE is to make it as easy to use as
possible. The command line compiler, though, is extremely flexible. You control
its behavior by passing command-line arguments to it. If you want to interface the
compiler with PSoC Designer, note the following:

��Error messages referring to the source files begin with "!E file(line):.."
��To bypass the command line length limit on Windows 95/98/NT…, you

may put command-line arguments in a file, and pass it to the compiler as
@file or @-file. If you pass it as @-file, the compiler will delete file after it
is run.

PSoC Designer: C Language Compiler User Guide�

Page 28 of 37

9.3. Compiler Arguments

This section documents the options as used by the IDE in case you want to drive
the compiler using your own editor/IDE such as Codewright. All arguments are
passed to the driver and the driver in turn applies the appropriate arguments to
different compilation passes.

The general format of a command is

iccm8c [command line arguments] <file1> <file2> ... [
<lib1> ...]

where iccm8c is the name of the compiler driver. As you can see, you can invoke
the driver with multiple files and the driver will perform the operations on all of the
files. By default, the driver then links all the object files together to create the
output file.

For most of the common options, the driver knows which arguments are destined
for which compiler pass. You can also specify which pass an argument applies to
by using a -W<c> prefix. For example:

Prefix Description
-Wp Preprocessor, e.g., -Wp-e
-Wf Compiler proper, e.g., -Wf-atmega
-Wa Assembler

-Wl (Letter el.) Linker

9.3.1. Arguments Affecting the Driver

Argument Action
-c Compile the file to the object file level only (does not invoke the linker).
-o <name> Name the output file. By default, the output file name is the same as the input

file name, or the same as the first input file if you supply a list of files.
-v Verbose mode. Print out each compiler pass as it is being executed.

9.3.2. Preprocessor Arguments

Argument Action
-D<name>[=value] Define a macro.
-U<name> Undefine a macro.
-e Accept C++ comments.
-I<dir> (Capital i.) Specify the location(s) to look for header files. Multiple -I flags can be

supplied.

PSoC Designer: C Language Compiler User Guide�

Page 29 of 37

9.3.3. Compiler Arguments

Argument Action
-l (Letter el.) Generate a listing file.
-A -A (Two A’s.) Turn on strict ANSI checking. Single -A turns on some ANSI checking.
-g Generate debug information.

9.3.4. Linker Arguments

Argument Action
-L<dir> Specify the library directory. Only one library directory (the last

specified) will be used.
-O Not currently implemented, no effect.
-m Generate a map file.
-g Generate debug information.
-u<crt> Use <crt> instead of the default startup file. If the file is just a name

without path information, then it must be located in the library directory.
-W Turn on relocation wrapping. Note that you need to use the -Wl prefix

because the driver does not know of this option directly (i.e., -Wl-W).
-fihx_coff Output format is both COFF and Intel HEX.
-fcoff Output format is COFF.
-fintelhex Output format is Intel HEX.
-fmots19 Output format is Motorola S19.
-bfunc_lit:<address
ranges>

Assign the address ranges for the area named "func_lit." The format is
<start address>[.<end address>] where addresses are word address.
Memory that is not used by this area will be consumed by the areas to
follow.

-bdata:<address
ranges>

Assign the address ranges for the area or section named "data," which
is the data memory.

-dram_end:<address> Define the end of the data area. The startup file uses this argument to
initialize the value of the hardware stack.

-l<lib name> Link in the specific library files in addition to the default libcm8c.a. This
can be used to change the behavior of a function in libcm8c.a since
libcm8c.a is always linked in last. The "libname" is the library file name
without the "lib" prefix and without the ".a" suffix. For example:
-llpm8c "liblpm8c.a" using full printf
-lfm8c "libfpm8c.a" using floating point printf

PSoC Designer: C Language Compiler User Guide

Page 30 of 37

Appendix A: Status Window Messages

Following is a complete list of preprocessor, preprocessor command line,
compiler, compiler command line, assembler, assembler command line, and
linker errors and warnings.

Preprocessor

Note that these errors and warnings are associated with C Compiler errors and
warnings.

Error/Warning
not followed by macro parameter
occurs at border of replacement
#defined token can’t be redefined
#defined token is not a name
#elif after #else
#elif with no #if
#else after #else
#else with no #if
#endif with no #if
#if too deeply nested
#line specifies number out of range
Bad ?: in #if/endif
Bad syntax for control line
Bad token r produced by ## operator
Character constant taken as not signed
Could not find include file
Disagreement in number of macro arguments
Duplicate macro argument
EOF in macro arglist
EOF in string or char constant
EOF inside comment
Empty character constant
Illegal operator * or & in #if/#elsif
Incorrect syntax for ‘defined’
Macro redefinition
Multibyte character constant undefined
Sorry, too many macro arguments
String in #if/#elsif
Stringified macro arg is too long
Syntax error in #else
Syntax error in #endif
Syntax error in #if/#elsif
Syntax error in #if/#endif
Syntax error in #ifdef/#ifndef
Syntax error in #include
Syntax error in #line
Syntax error in #undef
Syntax error in macro parameters
Undefined expression value

PSoC Designer: C Language Compiler User Guide�

Page 31 of 37

(Preprocessor cont.)
Unknown preprocessor control line
Unterminated #if/#ifdef/#ifndef
Unterminated string or char const

Preprocessor Command Line Errors

Error/Warning
Can’t open input file
Can’t open output file
Illegal -D or -U argument
Too many -I directives

C Compiler

Error/Warning
expecting <character>
literal too long
IO port <name> cannot be redeclared as local variable
IO port <name> cannot be redeclared as parameter
IO port variable <name> cannot have initializer
<n> is a preprocessing number but an invalid %s constant
<n> is an illegal array size
<n> is an illegal bit-field size
<type> is an illegal bit-field type
<type> is an illegal field type
‘sizeof’ applied to a bit field
addressable object required
asm string too long
assignment to const identifier
assignment to const location
cannot initialize undefined
case label must be a constant integer expression
cast from <type> to <type> is illegal in constant expressions
cast from <type> to <type> is illegal
conflicting argument declarations for function <name>
declared parameter <name> is missing
duplicate case label <n>
duplicate declaration for <name> previously declared at <line>
duplicate field name <name> in <structure>
empty declaration
expecting an enumerator identifier
expecting an identifier
extra default label
extraneous identifier <id>
extraneous old-style parameter list
extraneous return value

PSoC Designer: C Language Compiler User Guide�

Page 32 of 37

(C Compiler cont.)
field name expected
field name missing
found <id> expected a function
ill-formed hexadecimal escape sequence
illegal break statement
illegal case label
illegal character <c>
illegal continue statement
illegal default label
illegal expression
illegal formal parameter types
illegal initialization for <id>
illegal initialization for parameter <id>
illegal initialization of ‘extern <name>’
illegal return type <type>
illegal statement termination
illegal type <type> in switch expression
illegal type ‘array of <name>’
illegal use of incomplete type
illegal use of type name <name>
Initializer must be constant
insufficient number of arguments to <function>
integer expression must be constant
Interrupt handler <name> cannot have arguments
invalid field declarations
invalid floating constant
invalid hexadecimal constant
invalid initialization type; found <type> expected <type>
invalid octal constant
invalid operand of unary &; <id> is declared register
invalid storage class <storage class> for <id>
invalid type argument <type> to ‘sizeof’
invalid type specification
invalid use of ‘ typedef’
left operand of -> has incompatible type
left operand of . has incompatible type
lvalue required
missing <c>
missing tag
missing array size
missing identifier
missing label in goto
missing name for parameter to function <name>
missing parameter type
missing string constant in asm
missing { in initialization of <name>
Operand of unary <operator> has illegal type
operands of <operator> have illegal types <type> and <type>
Overflow in value for enumeration constant

PSoC Designer: C Language Compiler User Guide�

Page 33 of 37

(C Compiler cont.)
redeclaration of <name> previously declared at <line>
redeclaration of <name>
redefinition of <name> previously defined at <line>
redefinition of label <name> previously defined at <line>
size of <type> exceeds <n> bytes
size of ‘array of <type>’ exceeds <n> bytes
syntax error; found
too many arguments to <function>
too many errors
too many initializers
too many variable references in asm string
type error in argument <name> to <function>; <type> is illegal
type error in argument <name> to <function>; found <type> expected <type>
type error
Unclosed comment
undeclared identifier <name>
undefined label
undefined size for <name>
undefined size for field <name>
undefined size for parameter <name>
undefined static <name>
Unknown #pragma
Unknown size for type <type>
unrecognized declaration
unrecognized statement

PSoC Designer: C Language Compiler User Guide�

Page 34 of 37

Assembler

Error/Warning
’[’ addressing mode must end with ’]’
) expected
.if/.else/.endif mismatched
<character> expected
EOF encountered before end of macro definition
No preceding global symbol
absolute expression expected
badly formed argument, (without a matching)
branch out of range
cannot add two relocatable items
cannot perform subtract relocation
cannot subtract two relocatable items
cannot use .org in relocatable area
character expected
comma expected
equ statement must have a label
identifier expected, but got character <c>
illegal addressing mode
illegal operand
input expected
label must start with an alphabet, ’.’ or ’_’
letter expected but got <c>
macro <name> already entered
macro definition cannot be nested
maximum <#> macro arguments exceeded
missing macro argument number
multiple definitions <name>
no such mnemonic <name>
relocation error
target too far for instruction
too many include files
too many nested .if
undefined mnemonic <word>
undefined symbol
unknown operator
unmatched .else
unmatched .endif

Assembler Command Line Errors

Error/Warning
cannot create output file %s\n
Too many include paths

PSoC Designer: C Language Compiler User Guide�

Page 35 of 37

Linker

Error/Warning
Address <address> already contains a value
can’t find address for symbol <symbol>
can’t open file <file>
can’t open temporary file <file>
cannot open library file <file>
cannot write to <file>
definition of builtin symbol <symbol> ignored
ill-formed line <%s> in the listing file
multiple define <name>
no space left in section <area>
redefinition of symbol <symbol>
undefined symbol <name>
unknown output format <format>

PSoC Designer: C Language Compiler User Guide

Page 36 of 37

Index

Accessing M8C Features 18
Accessing the Compiler............................... 9
Addressing Absolute Memory Locations... 18
Appendix A .. 30
Assembly Interface and Calling Conventions

.. 18
Bit Twiddling .. 19
Character Type Functions 16
Compilation Process 27
Compiler Arguments.................................. 28
Documentation Conventions 3
Driver ... 27
Enabling the Compiler 9
Expressions... 14
Inline Assembly ... 20
Interfacing C and Assembly 17
IO Registers .. 20
Librarian... 26
Library Descriptions................................... 11
Library Functions....................................... 16
Linker Operations 25
Long Jump/Call ... 20
Memory Areas ... 21
Menu Options .. 10
Notation Standards...................................... 4
Operators .. 13
Pointers ... 15

Processing Directives (#’s)15
Product Upgrades..8
Program and Data Memory Usage............21
Program Memory as Related to Constant

Data...22
Purpose ...7
Re-entrancy ...15
Section 1. Introduction..............................7
Section 2. Accessing the Compiler9
Section 3. Compiler Files........................11
Section 4. Compiler Basics12
Section 5. Compiler Functions...............16
Section 6. Additional Considerations....18
Section 7. Linker......................................25
Section 8. Librarian26
Section 9. Command Line Compiler

Overview ..27
Section Overview...7
Stack Architecture and Frame Layout23
Startup File ..11
Statements ..14
Strings..23
Support ..8
Two Minute Overview2
Types ...12
Virtual Registers ..24

	Two Minute Overview	2
	Documentation Conventions	3
	Notation Standards	4
	Section 1. Introduction	7
	Section 2. Accessing the Compiler	9
	Section 3. Compiler Files	11
	Section 4. Compiler Basics	12
	Index	36
	Purpose
	Section Overview
	Product Upgrades
	Support
	Enabling the Compiler
	Accessing the Compiler
	Menu Options
	Startup File
	Library Descriptions
	Types
	Operators
	Function

	Expressions
	Statements
	Pointers
	Re-entrancy
	Processing Directives (#’s)
	Library Functions
	Interfacing C and Assembly
	Accessing M8C Features
	Addressing Absolute Memory Locations
	Assembly Interface and Calling Conventions
	Bit Twiddling
	Inline Assembly
	IO Registers
	Interrupts
	Long Jump/Call
	Memory Areas
	Program and Data Memory Usage
	Program Memory as Related to Constant Data
	Stack Architecture and Frame Layout
	Strings
	Virtual Registers
	Linker Operations
	Librarian
	Compilation Process
	Driver
	Compiler Arguments
	A
	Error/Warning

