

HI-TECH dsPICC Compiler

HI-TECH Software.

Copyright (c) 2005 HI-TECH Software.
All Rights Reserved. Printed in Australia.

Produced on: 22nd February 2005

HI-TECH Software Pty. Ltd.
ACN 002 724 549

PO Box 103
Alderley QLD 4051

Australia

email: hitech@.htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents iii

List of Tables xi

1 Introduction 1
1.1 Typographic conventions. 1

2 DSPICC Command-line Driver 3
2.1 Long Command Lines. 4
2.2 Default Libraries . 4
2.3 Standard Runtime Code. 4
2.4 DSPICC Compiler Options. 4

2.4.1 -Bmodel : Select memory model. 7
2.4.2 -C: Compile to Object File. 7
2.4.3 -Dmacro : Define Macro. 7
2.4.4 -Efile : Redirect Compiler Errors to a File. 8
2.4.5 -Gfile : Generate Source-level Symbol File. 9
2.4.6 -Ipath : Include Search Path. 9
2.4.7 -Llibrary : Scan Library . 9
2.4.8 -L-option : Adjust Linker Options Directly. 10
2.4.9 -Mfile : Generate Map File. .10
2.4.10 -Nsize : Identifier Length. .10
2.4.11 -Ofile : Specify Output File . 11
2.4.12 -P: Preprocess Assembly Files. 11
2.4.13 -Q: Quiet Mode. .11
2.4.14 -S: Compile to Assembler Code. 11
2.4.15 -Umacro : Undefine a Macro . 11
2.4.16 -V: Verbose Compile. .12

iii

CONTENTS CONTENTS

2.4.17 -X: Strip Local Symbols .12
2.4.18 --ASMLIST: Generate Assembler .LST Files. 12
2.4.19 --ASOPT: Control Assembler optimizations. 12
2.4.20 --CHAR=type : Make Char Type Signed or Unsigned. 12
2.4.21 --CHIP=processor : Define Processor. 12
2.4.22 --CHIPINFO: Display List of Supported Processors. 13
2.4.23 --COPT=level : Control C optimizations. 13
2.4.24 --CR=file : Generate Cross Reference Listing. 13
2.4.25 --DEBUGGER=type : Select Debugger Type. 13
2.4.26 --ERRFORMAT=format : Define Format for Compiler Messages. 13

2.4.26.1 Using the Format Options. 14
2.4.26.2 Modifying the Standard Format. 14

2.4.27 –ERRORS=number : Maximum Number of Errors. 15
2.4.28 --GETOPTION=app,file : Get Command-line Options. 15
2.4.29 --HELP<=option >: Display Help . 15
2.4.30 --IDE=type : Specify the IDE being used. 15
2.4.31 --LANG=language : Specify the Language for Messages. 16
2.4.32 --MEMMAP=file : Display Memory Map 16
2.4.33 --MSGFORMAT=format : Set Advisory Message Format. 16
2.4.34 --NOEXEC: Don’t Execute Compiler. 16
2.4.35 --OPT<=type> : Invoke Compiler Optimizations. 17
2.4.36 --OUTPUT=type : Specify Output File Type. 17
2.4.37 --PRE: Produce Preprocessed Source Code. 17
2.4.38 --PROTO: Generate Prototypes. 18
2.4.39 --RAM=lo-hi,<lo-hi,...> : Specify Additional RAM Ranges. 19
2.4.40 --ROM=lo-hi,<lo-hi,...>|tag : Specify Additional ROM Ranges. . 19
2.4.41 --RUNTIME=type : Specify Runtime Environment. 20
2.4.42 --SCANDEP: Scan for Dependencies. 21
2.4.43 --SETOPTION=app,file : Set The Command-line Options for Application21
2.4.44 --STRICT: Strict ANSI Conformance. 21
2.4.45 --SUMMARY=type : Select Memory Summary Output Type. 21
2.4.46 --VER: Display The Compiler’s Version Information. 21
2.4.47 --WARN=level : Set Warning Level. 21
2.4.48 --WARNFORMAT=format : Set Warning Message Format. 22

3 C Language Features 23
3.1 ANSI Standard Issues. .23

3.1.1 Implementation-defined behaviour. 23
3.2 Processor-related Features. .23

iv

CONTENTS CONTENTS

3.2.1 Stacks. .23
3.2.2 Configuration Fuses. .24

3.3 Files .24
3.3.1 Source Files. .24
3.3.2 Symbol Files. .24
3.3.3 Standard Libraries. .26
3.3.4 Runtime startup Modules. .26

3.3.4.1 Initialization of Data psects. 27
3.3.4.2 Clearing the Bss Psects. 27
3.3.4.3 Linking in the C Libraries. 28
3.3.4.4 The powerup Routine. 29

3.4 Supported Data Types and Variables. .29
3.4.1 Radix Specifiers and Constants. 29
3.4.2 Bit Data Types and Variables. .31
3.4.3 8-Bit Integer Data Types and Variables. 32
3.4.4 16-Bit Integer Data Types. .32
3.4.5 32-Bit Integer Data Types and Variables. 33
3.4.6 Floating Point Types and Variables. 33
3.4.7 Structures and Unions. .34

3.4.7.1 Bit-fields in Structures. 34
3.4.7.2 Structure and Union Qualifiers. 35

3.4.8 Standard Type Qualifiers. .36
3.4.8.1 Const and Volatile Type Qualifiers. 36

3.4.9 Special Type Qualifiers. .37
3.4.9.1 Persistent Type Qualifier. 37
3.4.9.2 YData Type Qualifier. 37

3.4.10 Pointer Types. .37
3.4.10.1 Data Pointers. .38
3.4.10.2 Function Pointers. .38
3.4.10.3 Qualifiers and Pointers. 38

3.5 Storage Class and Object Placement. .39
3.5.1 Local Variables. .39

3.5.1.1 Auto Variables. .39
3.5.1.2 Static Variables. .40

3.5.2 X and Y DATA Variables. .40
3.5.3 Absolute Variables. .40
3.5.4 Objects in the Program Space. 41

3.6 Functions .41
3.6.1 Function Argument Passing. .41

v

CONTENTS CONTENTS

3.6.2 Function Return Values. .42
3.6.2.1 Integral Return Values. 42
3.6.2.2 Structure Return Values. 42

3.7 Register Usage. .42
3.8 Operators .42

3.8.1 Integral Promotion. .42
3.8.2 Shifts applied to integral types. 44
3.8.3 Division and modulus with integral types. 44

3.9 Psects. .44
3.9.1 Compiler-generated Psects. .45

3.10 Interrupt Handling in C. .46
3.10.1 Interrupt Functions. .47

3.10.1.1 Context Saving on Interrupts. 49
3.10.1.2 Context Restoration. 49

3.10.2 Enabling Interrupts. .49
3.11 Mixing C and Assembler Code. .49

3.11.1 External Assembly Language Functions. 50
3.11.2 #asm, #endasm and asm(). .52
3.11.3 Accessing C objects from within Assembly Code. 53

3.11.3.1 Equivalent Assembly Symbols. 53
3.11.3.2 Accessing specifal function register names from assembler. . . . 53

3.12 Preprocessing. .54
3.12.1 Preprocessor Directives. .54
3.12.2 Predefined Macros. .54
3.12.3 Pragma Directives. .57

3.12.3.1 The #pragma inline Directive. 57
3.12.3.2 The #pragma jis and nojis Directives. 58
3.12.3.3 The #pragma pack Directive. 58
3.12.3.4 The #pragma printf_check Directive. 58
3.12.3.5 The #pragma psect Directive. 59
3.12.3.6 The #pragma regsused Directive. 60
3.12.3.7 The #pragma switch Directive. 61

3.13 Linking Programs. .61
3.13.1 Replacing Library Modules. .62
3.13.2 Signature Checking. .62
3.13.3 Linker-Defined Symbols. .64

3.14 Standard I/O Functions and Serial I/O. 64

vi

CONTENTS CONTENTS

4 Macro Assembler 65
4.1 Assembler Usage. .65
4.2 Assembler Options. .67
4.3 HI-TECH C Assembly Language. .68

4.3.1 Statement Formats. .68
4.3.2 Characters .69

4.3.2.1 Delimiters .69
4.3.2.2 Special Characters. .69

4.3.3 Comments .69
4.3.3.1 Special Comment Strings. 70

4.3.4 Constants. .70
4.3.4.1 Numeric Constants. 70
4.3.4.2 Character Constants and Strings. 70

4.3.5 Identifiers. .71
4.3.5.1 Significance of Identifiers. 71
4.3.5.2 Assembler-Generated Identifiers. 71
4.3.5.3 Location Counter. .71
4.3.5.4 Register Symbols. .72
4.3.5.5 Symbolic Labels. .72

4.3.6 Expressions. .73
4.3.7 Program Sections. .73
4.3.8 Assembler Directives. .75

4.3.8.1 GLOBAL .75
4.3.8.2 END .77
4.3.8.3 PSECT. .77
4.3.8.4 ORG. .79
4.3.8.5 EQU .80
4.3.8.6 SET .80
4.3.8.7 DB .80
4.3.8.8 DW. .80
4.3.8.9 DDW. .81
4.3.8.10 DS .81
4.3.8.11 IF, ELSIF, ELSE and ENDIF. 81
4.3.8.12 MACRO and ENDM . 81
4.3.8.13 LOCAL .83
4.3.8.14 ALIGN. .83
4.3.8.15 REPT .84
4.3.8.16 IRP and IRPC. .84
4.3.8.17 PROCESSOR. .85

vii

CONTENTS CONTENTS

4.3.8.18 SIGNAT .85
4.3.9 Assembler Controls. .85

4.3.9.1 COND .86
4.3.9.2 EXPAND .86
4.3.9.3 INCLUDE .86
4.3.9.4 LIST .87
4.3.9.5 NOCOND .87
4.3.9.6 NOEXPAND .87
4.3.9.7 NOLIST .87
4.3.9.8 NOXREF .88
4.3.9.9 PAGE .88
4.3.9.10 SPACE. .88
4.3.9.11 SUBTITLE .88
4.3.9.12 TITLE .88
4.3.9.13 XREF .88

5 Linker and Utilities 89
5.1 Introduction. .89
5.2 Relocation and Psects. .89
5.3 Program Sections. .90
5.4 Local Psects. .90
5.5 Global Symbols. .90
5.6 Link and load addresses. .91
5.7 Operation .91

5.7.1 Numbers in linker options. .92
5.7.2 -Aclass=low-high,... .93
5.7.3 -Cx .93
5.7.4 -Cpsect=class. .93
5.7.5 -Dclass=delta. .93
5.7.6 -Dsymfile .94
5.7.7 -Eerrfile .94
5.7.8 -F .94
5.7.9 -Gspec .94
5.7.10 -Hsymfile .95
5.7.11 -H+symfile .95
5.7.12 -Jerrcount .95
5.7.13 -K .95
5.7.14 -I .95
5.7.15 -L .96

viii

CONTENTS CONTENTS

5.7.16 -LM .96
5.7.17 -Mmapfile. .96
5.7.18 -N, -Ns and-Nc. .96
5.7.19 -Ooutfile .96
5.7.20 -Pspec. .96
5.7.21 -Qprocessor. .98
5.7.22 -S .98
5.7.23 -Sclass=limit[, bound] .98
5.7.24 -Usymbol .99
5.7.25 -Vavmap .99
5.7.26 -Wnum .99
5.7.27 -X .99
5.7.28 -Z .99

5.8 Invoking the Linker. .99
5.9 Map Files .100

5.9.1 Call Graph Information. .101
5.10 Librarian .103

5.10.1 The Library Format. .103
5.10.2 Using the Librarian. .104
5.10.3 Examples. .105
5.10.4 Supplying Arguments. .105
5.10.5 Listing Format .106
5.10.6 Ordering of Libraries. .106
5.10.7 Error Messages. .106

5.11 Objtohex .106
5.11.1 Checksum Specifications. .108

5.12 Cref .108
5.12.1 -Fprefix .109
5.12.2 -Hheading .109
5.12.3 -Llen .109
5.12.4 -Ooutfile .109
5.12.5 -Pwidth .110
5.12.6 -Sstoplist .110
5.12.7 -Xprefix .110

5.13 Cromwell .110
5.13.1 -Pname. .110
5.13.2 -D .112
5.13.3 -C .112
5.13.4 -F .112

ix

CONTENTS CONTENTS

5.13.5 -Okey. .112
5.13.6 -Ikey .112
5.13.7 -L .112
5.13.8 -E .112
5.13.9 -B .112
5.13.10 -M. .113
5.13.11 -V .113

A Library Functions 115

B Error and Warning Messages 227

C Chip Information 325

Index 327

x

List of Tables

2.1 DSPICC file types. 3
2.2 Command-line Options. 5
2.2 Command-line Options. 6
2.3 Error format specifiers. .14
2.4 Supported IDEs. .16
2.5 Supported languages. .16
2.6 Output file formats .17
2.7 Runtime environment suboptions. .20

3.1 Configuration Bit Settings for dsPIC devices. 25
3.2 Basic data types. .29
3.3 Radix formats. .30
3.4 Floating-point formats .34
3.5 Floating-point format example IEEE 754. 34
3.6 Integral division. .45
3.7 Interrupt Vector Address Macros. .47
3.7 Interrupt Vector Address Macros. .48
3.7 Interrupt Vector Address Macros. .49
3.8 Predefined SFR names. .54
3.9 Preprocessor directives. .55
3.10 Predefined macros. .56
3.11 Pragma directives. .57
3.12 switch types. .61
3.13 Supported standard I/O functions. .64

4.1 ASDSPIC command-line options. .66
4.2 ASDSPICstatement formats. .69
4.3 ASDSPIC numbers and bases. .70

xi

LIST OF TABLES LIST OF TABLES

4.4 ASDSPIC operators. .74
4.5 ASDSPIC assembler directives. .76
4.6 PSECT flags .77
4.7 ASDSPIC assembler controls. .86
4.8 LIST control options .87

5.1 Linker command-line options. .91
5.1 Linker command-line options. .92
5.2 Librarian command-line options. .104
5.3 Librarian key letter commands. .104
5.4 OBJTOHEX command-line options. .107
5.5 CREF command-line options .109
5.6 CROMWELL format types .111
5.7 CROMWELL command-line options. .111

C.1 Devices supported by HI-TECH dsPICC. .325

xii

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printed inconstant-spaced type. When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in theINCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in
aconstant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized usingitalicized type. When part of
a term requires substitution, that part should be printed in the appropriate font, but initalics. For
example:#include <filename.h >.

1

Typographic conventions Introduction

2

Chapter 2

DSPICC Command-line Driver

DSPICC is the driver invoked from the command line to compile and/or link C programs.DSPICC
has the following basic command format:

DSPICC [options] files [libraries]

It is conventional to supply the options (identified by a leadingdash“-” or double dash“–”) before
the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler)
and object files. The order of the files is not important, except that it will affect the order in which
code or data appears in memory.Libraries are a list of library names, or-L options, see Section
2.4.7. Source files, object files and library files are distinguished byDSPICC solely by thefile typeor
extension. Recognized file types are listed in Table2.1. This means, for example, that an assembler
file must always have a.as extension (alphabetic case is not important).

DSPICC will check each file argument and perform appropriate actions. C files will be compiled;
assembler files will be assembled. At the end, unless suppressed by one of the options discussed later,

Table 2.1: DSPICC file types

File Type Meaning
.c C source file
.as Assembler source file
.obj Relocatable object code file
.lib Relocatable object library file

3

Long Command Lines DSPICC Command-line Driver

all object files resulting from compilation or assembly, or those listed explicitly on the command line,
will be linked together with the standard runtime code and libraries and any user-specified libraries.
Functions in libraries will be linked into the resulting output file only if referenced in the source
code.

Invoking DSPICC with only object files specified as the file arguments (i.e. no source files) will
mean only the link stage is performed. It is typical in Makefiles to useDSPICC with a -C option
to compile several source files to object files, then to create the final program by invokingDSPICC
again with only the generated object files and appropriate libraries (and appropriate options).

2.1 Long Command Lines

The DSPICC driver is capable of processing command lines exceeding any operating system limita-
tion. To do this, the driver may be passed options via a command file. The command file is read by
using the@ symbol. For example:

DSPICC @xyz.cmd

2.2 Default Libraries

DSPICC will search the appropriate standard C library by default for symbol definitions. This will
always be done last, after any user-specified libraries. The particular library used will be dependent
on the processor selected.

2.3 Standard Runtime Code

DSPICC will also automatically generate standard runtime start-up code appropriate for the pro-
cessor and options selected unless you have specified the to disable this via the--RUNTIME option.
If you require any special powerup initialization, you should use thepoweruproutine feature (see
Section3.3.4.4).

2.4 DSPICC Compiler Options

Most aspects of the compilation can be controlled using the command-line driver, DSPICC. The
driver will configure and execute all required applications, such as the code generator, assembler
and linker.

DSPICC recognizes the compiler options listed in Table2.2. The case of the options is not
important, however UNIX shells are case sensitive when it comes to names of files.

4

DSPICC Command-line Driver DSPICC Compiler Options

Table 2.2: Command-line Options

Option Meaning
-Bmodel Select memory model
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify-option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--ASOPT Controls asembler optimziations
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--COPT Controls global C optimizations
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MEMMAP=file Display memory summary information for the map

file
continued. . .

5

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.2: Command-line Options

Option Meaning
--NODEL Do not remove temporary files generated by the com-

piler
--NOEXEC Go through the motions of compiling without actually

compiling
--OUTDIR Specify output files directory
--OPT<=type> Enable general compiler optimizations
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...>|tag Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

All single letter options are identified by a leadingdashcharacter, “-”, e.g. -C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g.-Ddebug.

Multi-letter, or word, options have two leadingdashcharacters, e.g.--ASMLIST. (Because of the
doubledash, you can determine that the option--ASMLIST, for example, is not a-A option followed
by the argumentSMLIST.) Some of these options define suboptions which typically appear as a
comma-separated list following anequalcharacter,=, e.g.--OUTPUT=hex,cof. The exact format of
the options varies and are described in detail in the following sections.

Some commonly used suboptions includedefault, which represent the default specification
that would be used if this option was absent altogether;all, which indicates that all the available
suboptions should be enabled as if they had each been listed; andnone, which indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus character,+, to indicate

6

DSPICC Command-line Driver DSPICC Compiler Options

that they are in addition to the other suboptions present, or a minus character “-”, to indicate that
they should be excluded. In the following sections,angle brackets,< >, are used to indicate optional
parts of the command.

2.4.1 -Bmodel : Select memory model

The compiler implements two memory models:smallandlarge. These are selected by either using
the-Bs or -Bl options for small or large memory model respectively. In most cases small model
will suffice, and is the compiler’s default setting. If the selected processor has accessible program
memory at addresses above0xFFFF and the program makes use of function pointers which may
point to functions located above this address, then selecting large model will cause the compiler
to generate code so that function pointers can reach these distant addresses. This is accomplished
automatically through the use of a jump table so that the need for larger pointer sizes is not required.

2.4.2 -C : Compile to Object File

The-C option is used to halt compilation after generating a relocatable object file. This option is
frequently used when compiling multiple source files using a “make” utility. If multiple source files
are specified to the compiler each will be compiled to a separate.obj file. The object files will be
placed in the directory in which DSPICC was invoked, to handle situations where source files are
located in read-only directories. To compile three source filesmain.c, module1.c andasmcode.as
to object files you could use a command similar to:

DSPICC --CHIP=30F6014 -C main.c module1.c asmcode.as

The compiler will produce three object filesmain.obj, module1.obj and asmcode.obj which
could then be linked to produce anIntel HEX file using the command:

DSPICC --CHIP=30F6014 main.obj module1.obj asmcode.obj

2.4.3 -D macro : Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using a#define directive in the source code. This option may take one of two forms,
-Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or-Dmacro=text which is equivalent
to:

7

DSPICC Compiler Options DSPICC Command-line Driver

#define macro text

wheretext is the textual substitution required. Thus, the command:

DSPICC --CHIP=30F6014 -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1
#define buffers 10

2.4.4 -E file : Redirect Compiler Errors to a File

Some editors do not allow the standard command line redirection facilities to be used when invoking
the compiler. To work with these editors,DSPICC allows an error listing filename to be specified
as part of the-E option. Error files generated using this option will always be in-E format. For
example, to compilex.c and redirect all errors tox.err, use the command:

DSPICC --CHIP=30F6014 -Ex.err x.c

The-E option also allows errors to be appended to an existing file by specifying anadditioncharac-
ter,+, at the start of the error filename, for example:

DSPICC --CHIP=30F6014 -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the-E option to create the file then use-E+ when compiling all the other source files. For example,
to compile a number of files with all errors combined into a file calledproject.err, you could use
the-E option as follows:

DSPICC --CHIP=30F6014 -Eproject.err -O -C main.c
DSPICC --CHIP=30F6014 -E+project.err -O -C part1.c
DSPICC --CHIP=30F6014 -E+project.err -C asmcode.as

The fileproject.err will contain any errors frommain.c, followed by the errors frompart1.c
and thenasmcode.as, for example:

main.c 11 22:) expected
main.c 63 0: ; expected
part1.c 5 0: type redeclared
part1.c 5 0: argument list conflicts with prototype
asmcode.as 14 0: Syntax error
asmcode.as 355 0: Undefined symbol _putint

8

DSPICC Command-line Driver DSPICC Compiler Options

2.4.5 -G file : Generate Source-level Symbol File

The-G option generates asource-level symbol file(i.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with supported debuggers and simula-
tors such asHI-TIDE andMPLABR©. If no filename is given, the symbol file will have the same base
name as the first source or object file specified on the command line, and an extension of.sym. For
example the option-GTEST.SYM generates a symbol file calledtest.sym. Symbol files generated
using the-G option include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

DSPICC --CHIP=30F6014 -G -C test.c
DSPICC --CHIP=30F6014 -C module1.c
DSPICC --CHIP=30F6014 -Gtest.sym test.obj module1.obj

will include source-level debugging information fortest.c only becausemodule1.c was not com-
piled with the-G option.

The--IDE option will typically enable the-G option.

2.4.6 -I path : Include Search Path

Use-I to specify an additional directory to use when searching for header files which have been
included using the#include directive. The-I option can be used more than once if multiple
directories are to be searched. The default include directory containing all standard header files
are always searched even if no-I option is present. The default search path is searched after any
user-specified directories have been searched. For example:

DSPICC --CHIP=30F6014 -C -Ic:\include -Id:\myapp\include test.c

will search the directoriesc:\include andd:\myapp\include for any header files included into
the source code, then search the default include directory which is typicallyc:\htsoft\dsPICC\include.

2.4.7 -L library : Scan Library

The-L option is used to specify additional libraries which are to be scanned by the linker. Libraries
specified using the-L option are scanned before the standard C library, allowing additional versions
of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefixdspicc- and the suffix.lib are
added. Thus the option-Lmylib will, for example, scan the librarydspicc-mylib.lib and the

9

DSPICC Compiler Options DSPICC Command-line Driver

option -Lxx will scan a library calleddspicc-xx.lib. All libraries must be located in the LIB
subdirectory of the compiler installation directory. As indicated, the argument to the-L option isnot
a complete library filename.

If you wish the linker to scan libraries whose names do not follow the above naming convention
or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the com-
mand line along with your source files. Alternatively, the linker may be invoked directly allowing
the user to manually specify all the libraries to be scanned.

2.4.8 -L -option : Adjust Linker Options Directly

The-L option can also be used to specify an extra “-” option which will be passed directly to the
linker by DSPICC. If -L is followed immediately by any text starting with adashcharacter “-”, the
text will be passed directly to the linker without being interpreted byDSPICC. For example, if the
option-L-FOO is specified, the-FOO option will be passed on to the linker when it is invoked.

The -L option is especially useful when linking code which contains extra program sections
(or psects), as may be the case if the program contains C code which makes use of the#pragma
psect directive or assembler code which contains user-defined psects. See Section3.12.3.5for
more information. If this-L option did not exist, it would be necessary to invoke the linker manually
to link code which uses the extra psects.

One commonly used linker option is-N, which sorts the symbol table in the map file by address,
rather than by name. This would be passed toDSPICC as the option-L-N.

The-L option can also be used to replace default linker options. If the string starting from the
first character after the -L up to the = character matches a default option, then the default option
is replaced by the option specified. For example,-L-pvectors=2000h will inform the linker to
replace the default option that places thevectors psect to be one that places the psect at the address
2000h. The default option that you are replacing must contain anequalcharacter.

2.4.9 -Mfile : Generate Map File

The-M option is used to request the generation of a map file. The map is generated by the linker an
includes information about where objects are located in memory. If no filename is specified, then
the name of the map file will have the same name as the first file listed on the command line, with
the extension.map.

2.4.10 -N size : Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes
for this option are from 32 to 255. The option has no effect for all other values.

10

DSPICC Command-line Driver DSPICC Compiler Options

2.4.11 -O file : Specify Output File

This option allows the name of the output file(s) to be specified. If no-O option is given, the output
file(s) will be named after the first source or object file on the command line. The files controlled are
any produced by the linker or applications run subsequent to that, e.g.CROMWELL. So for instance
the HEX file, map file and SYM file are all controlled by the-O option.

The -O option can also change the directory in which the output file is located by include the
required path before the filename, e.g.-Oc:\project\output\first.hex. This will then also
specify the output directory for any files produced by the linker or subsequently run applications.

2.4.12 -P : Preprocess Assembly Files

The-P option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, such as#include, with assembler code. By default, assembler
files are not preprocessed.

2.4.13 -Q : Quiet Mode

This option places the compiler in aquiet modewhich suppresses the HI-TECH Software copyright
notice from being displayed.

2.4.14 -S : Compile to Assembler Code

The-S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

DSPICC --CHIP=30F6014 -S test.c

will produce an assembler file calledtest.as which contains the code generated fromtest.c.
This option is particularly useful for checking function calling conventions and signature values
when attempting to write external assembly language routines. The file produced by this option
differs to that produced by the--ASMLIST option in that it does not contain op-codes or addresses
and it may be used as a source file and subsequently passed to the assembler to be assembled.

2.4.15 -U macro : Undefine a Macro

The-U option, the inverse of the-D option, is used toundefinepredefined macros. This option takes
the form-Umacro. The option,-Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

11

DSPICC Compiler Options DSPICC Command-line Driver

2.4.16 -V : Verbose Compile

The-V is theverboseoption. The compiler will display the full command lines used to invoke each
of the compiler applications or compiler passes. This option may be useful for determining the exact
linker options if you need to directly invoke theHLINK command.

2.4.17 -X : Strip Local Symbols

The option-X strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

2.4.18 --ASMLIST : Generate Assembler .LST Files

The --ASMLIST option tellsDSPICC to generate anassembler listing filefor each module being
compiled. The list file shows both the original C code, and the generated assembler code and the
corresponding binary op-codes. The listing file will have the same name as the source file, and a file
type (extension) of.lst. Provided the link stage has successfully concluded, the listing file will be
updated by the linker so that it contains absolute addresses and symbol values. Thus you may use the
assembler listing file to determine the position of, and exact op codes corresponding to, instructions.

2.4.19 --ASOPT : Control Assembler optimizations

This option provides an advanced level of control over assembler optimizations. The presence of
this option will turn on all assembler optimziations. Use this option only if the –opt option doesn’t
provide the optimization control that you require. Use of this option will override any setting made
via the –opt option.

2.4.20 --CHAR= type : Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all character values and
variables of typesigned char unless explicitly declared or cast tounsigned char. This option
will make the default char typeunsigned char. When using this option, any signed character
object will have to be explicitly declaredsigned char.

The range of asigned character type is -128 to +127 and the range of similarunsigned objects
is 0 to 255.

2.4.21 --CHIP= processor : Define Processor

This option defines the processor which is being used. To see a list of supported processors that can
be used with this option, use the--CHIPINFO option.

12

DSPICC Command-line Driver DSPICC Compiler Options

2.4.22 --CHIPINFO : Display List of Supported Processors

The--CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with the--chip option.

2.4.23 --COPT =level : Control C optimizations

This option provides an advanced level of control over global C optimizations. With this option the
global C optimization level may be selected (between 1 and 9). Use this option only if the –opt
option doesn’t provide the optimization control that you require. Use of this option will override any
setting made via the –opt option.

2.4.24 --CR= file : Generate Cross Reference Listing

The --CR option will produce across reference listing. If the file argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to run theCREF utility.
If a filename is supplied, for example--CR=test.crf, DSPICC will invoke CREF to process the
cross reference information into the listing file, in this casetest.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with the oneDSPICC
command. For example, to generate a cross reference listing which includes the source modules
main.c, module1.c andnvram.c, compile and link using the command:

DSPICC --CHIP=30F6014 --CR=main.crf main.c module1.c nvram.c

2.4.25 --DEBUGGER=type : Select Debugger Type

This option is intended for use for compatibility with debuggers. DSPICC supports the Microchip
ICD2 debugger and using this option will configure the compiler to conform to the requirements of
the ICD2 (reserving memory addresses, etc.). For example:

DSPICC --CHIP=30F6014 --DEBUGGER=icd2 main.c

2.4.26 --ERRFORMAT=format : Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any errors
in a “human readable” format line with acaret “^” and error message pointing out the offending
characters in the source line, for example:

x.c: main()
4: _PA = xFF;

^ (192) undefined identifier: xFF

13

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.3: Error format specifiers

Specifier Expands To
%f Filename
%l Line number
%c Column number
%s Error string
%a Application name
%n Message number

This standard format is perfectly acceptable to a person reading the error output, but is not usable
with environments which support compiler error handling. The following sections indicate how this
option may be used in such situations.

This section is also applicable to the--WARNFORMAT and--MSGFORMAT options which adjust the
format of warning and advisory messages, respectively.

2.4.26.1 Using the Format Options

Using the these option instructs the compiler to generate error, warning and advisory messages in a
format which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled using the--ERRFORMAT
option, the error output would be:

x.c 4: (192) undefined identifier: xFF

indicating that the error number 192 occurred in filex.c at line 4, offset 9 characters into the state-
ment. The second numeric value - the column number - is relative to the left-most non-space charac-
ter on the source line. If an extraspaceor tab character were inserted at the start of the source line,
the compiler would still report an error at line 4, column 9.

2.4.26.2 Modifying the Standard Format

If the message format does not meet your editor’s requirement, you can redefine its format by either
using the--ERRFORMAT, --WARNFORMAT or --MSGFORMAT option or by setting the environment vari-
ables:HTC_ERR_FORMAT, HTC_WARN_FORMAT or HTC_MSG_FORMAT. These options are in the form of
a printf-style string in which you can use the specifiers shown in Table2.3. For example:

--ERRFORMAT=”file %f; line %l; column %c; %s”

14

DSPICC Command-line Driver DSPICC Compiler Options

The column number is relative to the left-most non-space character on the source line.
The environment variables can be set in a similar way, for example setting the environment

variables from within DOS can be done with the following DOS commands:

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s
set HTC_ERR_FORMAT=ERROR: %a: file %f; line %l; column %c; %n %s

Using the previous source code, the output from the compiler when using the above environment
variables would be:

ERROR: parser: file x.c; line 4; column 6; (192) undefined identifier: xFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers
with an additionalpercentcharacter to stop the specifiers being interpreted immediately by DOS,
e.g. the filename specifier would become%%f.

2.4.27 –ERRORS=number : Maximum Number of Errors

This option sets the maximum number of errors each component of the compiler will display before
stopping. By default, up to 20 error messages will be displayed.

2.4.28 --GETOPTION=app,file : Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

2.4.29 --HELP<= option >: Display Help

The--HELP option displays information on theDSPICC compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

DSPICC --help=warn

This will display more detailed information about the--WARN option.

2.4.30 --IDE= type : Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Table2.4.

15

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.4: Supported IDEs

Suboption IDE
hitide HI-TECH Software’s HI-TIDE

Table 2.5: Supported languages

Suboption IDE
en, english English
fr, french,francais French
de, german, deutsch German

2.4.31 --LANG= language : Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-
sages in languages other than English. English is the default language and some messages are only
ever printed in English regardless of the language specified with this option.

Table2.5shows those langauges currently supported.

2.4.32 --MEMMAP=file : Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

2.4.33 --MSGFORMAT=format : Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section2.4.26for
full information.

2.4.34 --NOEXEC: Don’t Execute Compiler

The--NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This may be useful when used in con-

16

DSPICC Command-line Driver DSPICC Compiler Options

Table 2.6: Output file formats

Option name File format
intel Intel HEX
tek Tektronic
aahex American Automationsymbolic HEX file
mot MotorolaS19 HEX file
ubrof UBROF format
bin Binary file
cof Common Object File Format
cod Bytecraft COD file format
elf ELF/DWARF file format

junction with the-V (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

2.4.35 --OPT<= type> : Invoke Compiler Optimizations

The--OPT option allows control of all the compiler optimizers. By default, without this option, all
optimizations are enabled. The options--OPT or --OPT=all also enable all optimizations. Opti-
mizations may be disabled by using--OPT=none, or individual optimizers may be controlled, e.g.
--OPT=as_all will only enable the assembler optimizer.

2.4.36 --OUTPUT=type : Specify Output File Type

This option allows the type of the output file to be specified. If no--OUTPUT option is specified, the
output file’s name will be derived from the first source or object file specified on the command line.
The available output file format are shown in Table2.6.

2.4.37 --PRE : Produce Preprocessed Source Code

The--PRE option is used to generate preprocessed C source files with an extension.pre. This may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

17

DSPICC Compiler Options DSPICC Command-line Driver

2.4.38 --PROTO: Generate Prototypes

The--PROTO option is used to generate.pro files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each.pro file produced will have
the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each.pro file should be edited into a global header file which is
included in all the source files comprising a project. The.pro files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of the--PROTO option, enter the following
source code as filetest.c:

#include <stdio.h>
add(arg1, arg2)
int * arg1;
int * arg2;
{

return *arg1 + *arg2;
}

void printlist(int * list, int count)
{

while (count--)
printf("%d ", *list++);

putchar(’\n’);
}

If compiled with the command:

DSPICC --CHIP=30F6014 --PROTO test.c

DSPICC will producetest.pro containing the following declarations which may then be edited as
necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
#else /* PROTOTYPES */
extern int add();

18

DSPICC Command-line Driver DSPICC Compiler Options

extern void printlist();
#endif /* PROTOTYPES */

2.4.39 --RAM= lo-hi,<lo-hi,...> : Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default,+1000-2fff

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=1000-2fff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with aminuscharacter,-, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.

2.4.40 --ROM=lo-hi,<lo-hi,...>|tag : Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chipinfo file, which
should be treated as available ROM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by read-only (ROM-based) objects, and not necessarily those areas of memory
which contain physical ROM. The output that will be placed in the ranges specified by this option
are typically executable code and any data variables that are qualified asconst.

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed by some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+1000-2fff

19

DSPICC Compiler Options DSPICC Command-line Driver

Table 2.7: Runtime environment suboptions
Suboption Controls On (+) implies
init The code present in the startup module

that copies thedata psect’s ROM-image to
RAM.

The data psect’s ROM image is
copied into RAM.

clib The inclusion of library files into the output
code by the linker.

Library files are linked into the
output.

clear The code present in the startup module that
clears thebss psects.

Thebss psect is cleared.

stack The code present in the startup module that
initializes the stack pointer.

The stack pointer is initialized.

keep Whether the startup module source file is
deleted after compilation.

The startup module is not deleted.

no_startup Whether a startup module is produced and
linked into the output.

The startup module is not gener-
ated or linked into the output.

vec_init Initialization of unused interrupt vectors. Unused interrupt vectors will be
set to the reset vector.

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=1000-2fff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with aminuscharacter,-, for example:

--ROM=default,-1000-1fff

will use all the defined on-chip memory, but not use the addresses in the range from 1000h to 1fffh
for allocation of ROM objects.

2.4.41 --RUNTIME= type : Specify Runtime Environment

The--RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by
the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.
The usable suboptions include those shown in Table2.7.

20

DSPICC Command-line Driver DSPICC Compiler Options

2.4.42 --SCANDEP: Scan for Dependencies

When this option is used, a.dep (dependency) file is generated. The dependency file lists those files
on which the source file is dependant. Dependencies result when one file is#included into another.

2.4.43 --SETOPTION= app,file : Set The Command-line Options for Ap-
plication

This option is used to supply alternative command line options for the named application when
compiling. This option is not required for most projects.

2.4.44 --STRICT : Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-
TECH C supports various special keywords (for example thepersistent type qualifier). If the
--STRICT option is used, these keywords are changed to include twounderscorecharacters at
the beginning of the keyword (e.g.__persistent) so as to strictly conform to the ANSI stan-
dard. Be warned that use of this option may cause problems with some standard header files (e.g.
<intrpt.h>).

2.4.45 --SUMMARY=type : Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if themem suboption is selected, a memory summary is shown. This shows the memory usage for
all available linker classes.

A psect summary may be shown by enabling thepsect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover.

2.4.46 --VER : Display The Compiler’s Version Information

The--VER option will display what version of the compiler is running.

2.4.47 --WARN=level : Set Warning Level

The--WARN option is used to set the compiler warning level. Allowable warning levels range from
-9 to 9. The warning level determines how pedantic the compiler is about dubious type conver-
sions and constructs. The default warning level--WARN=lvl0 will allow all normal warning mes-
sages. Warning level--WARN=lvl1 will suppress the messageFunc() declared implicit int.
--WARN=lvl3 is recommended for compiling code originally written with other, less strict, com-
pilers. --WARN=lvl9 will suppress all warning messages. Negative warning levels--WARN=lvl-1,

21

DSPICC Compiler Options DSPICC Command-line Driver

--WARN=lvl-2 and--WARN=lvl-3 enable special warning messages including compile-time check-
ing of arguments toprintf() against the format string specified.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

2.4.48 --WARNFORMAT=format : Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See Section2.4.26for
full information.

22

Chapter 3

C Language Features

HI-TECH dsPICC supports a number of special features and extensions to the C language which
are designed to ease the task of producing ROM-based applications. This chapter documents the
compiler options and special language features which are specific to these devices.

3.1 ANSI Standard Issues

3.1.1 Implementation-defined behaviour

Certain sections of the ANSI standard have implementation-defined behaviour. This means that the
exact behaviour of some C code can vary from compiler to compiler. Throughout this manual are
sections describing how the HI-TECH C compiler behaves in such situations.

3.2 Processor-related Features

HI-TECH C has several features which relate directly to the dsPIC architecture and instruction set.
These detailed in the following sections.

3.2.1 Stacks

The stack on dsPIC processors is configured by the runtime startup code to start at the end of user
data. The stack limit register SPLIM is set to the maximum address within XDATA. Although the
processor has some support for frame pointers, the dsPICC compiler does not use it. The compiler
is able to calculate all accesses to the stack by referencing directly from the stack pointer (W15). By

23

Files C Language Features

doing this a special frame pointer register is not required and instead can be allocated to user code.
In addition, code, stack space and executation time which would ordinarily be used in manipulation
of the frame pointer is not needed.

3.2.2 Configuration Fuses

The dsPIC processors have several locations which contain theconfiguration bitsor fuses.These
bits may be set using the configuration macro. The macro has the form:

__CONFIG(n, x)

(there are two leadingunderscorecharacters) wheren is the configuration register identifier, andx
is the value that is to be in the configuration word. The macro is defined in<dspic.h>, so be sure
to include this into the module that uses this macro.

The configuration macro programs one register 24-bit register at a time, although only the lower
16-bits of each register are used for configuration data. Specially named quantities are defined in the
header file appropriate for the processor you are using, to help you set the required features. This
can be seen in Table3.1.

3.3 Files

3.3.1 Source Files

The extension used with source files is important as it is used by the compiler drivers to determine
their content. Source files containing C code should have the extension.c, assembler files should
have extensions of.as, relocatable object files require the.obj extension, and library files should
be named with a.lib extension.

3.3.2 Symbol Files

The DSPICC -G option tells the compiler to produce several symbol files which can be used by
debuggers and simulators to perform symbolic and source-level debugging. Using the--IDE option
may also enable symbol file generation as well.

The -G option produces an absolute symbol files which contain both assembler- and C-level
information. This file is produced by the linker after the linking process has ben completed. If
no symbol filename is specified, a default filename offile .sym will be used, wherefile is the
basename of the first source file specified on the command line. For example, to produce a symbol
file calledtest.sym which includes C source-level information:

DSPICC --CHIP=30F6014 -Gtest.sym test.c init.c

24

C Language Features Files

Table 3.1: Configuration Bit Settings for dsPIC devices

Description Config Register Symbols
Primary oscillator types FOSC ECPLL16, ECPLL8,

ECPLL4, ECIO, EC,
ERC, ERCIO,
XTPLL16, XTPLL8,
XTPLL4, XT, HS, XTL

Oscillator select FOSC POSC, LP, FRC, LPRC
Oscillator system clock switch FOSC CLKSWDIS,

CLKSWEN, FSCMDIS,
FCSMEN

Watchdog timer enable FWDT WDTEN, WDTDIS
Watchdog timer pre-scale selectFWDT WDTPSA512,

WDTPSA64,
WDTPSA8, WDTPSA1,
WDTPSB1-WDTPSB16

Powerup timer enable FBORPOR PWRT64, PWRT16,
PWRT4, PWRTDIS

Brown-out reset enable FBORPOR BOREN, BORDIS
Brown-out reset voltage FBORPOR BORV20, BORV27,

BORV42, BORV45
MCLR pin function FBORPOR MCLREN, MCLRDIS
Motor control PWM FBORPOR PWMBIN, HPOL,

LPOL 1

Code protection FGS GCPU, GCPP, GWRU,
GWRP

25

Files C Language Features

This option will also generate other symbol files for each module compiled. These files are produced
by the code generator and do not contain absolute address. These files have the extension.sdb.
The base name will be the same as the base name of the module being compiled. Thus the above
command line would also generate symbols files with the namestest.sdb andinit.sdb.

3.3.3 Standard Libraries

HI-TECH C includes a number of standard libraries, each with the range of functions described in
AppendixA. Library files have the extensions.lib. Some compiler options affect the name and
number of library files which are required, however the appropriate libraries are automatically linked
when using the command-line driver,DSPICC.

3.3.4 Runtime startup Modules

A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its functionmain(). It is the job of theruntime startupcode to
perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into
a user’s program. Even if a user’s program does not need all aspects of the runtime startup code,
redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For
example, if a program does not use any uninitialized variables, then no routine is required to clear
the bss psects.

HI-TECH dsPICC differs from other compilers by using a novel method to determine exactly
what runtime startup code is required and links this into the program automatically. It does this by
performing an additional link step which does not produce any usable output, but which can be used
to determine the requirements of the program. From this information DSPICC then “writes” the
assembler code which will perform the runtime startup. This code is stored into a file which can
then be assembled and linked into the remainder of the program in the usual way.

Since the runtime startup code is generated automatically on every compilation, the generated
files associated with this process are deleted after they have been used. If required, the assembler
file which contains the runtime startup code can be kept after compilation and linking by using the
driver option--RUNTIME=default,+keep. The residual file will be calledstartup.as and will be
located in the current working directory. If you are using an IDE to perform the compilation the
destination directory is dictated by the IDE itself, however you may use the--OUTDIR option to
specify an explicit output directory to the compiler.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using the--RUNTIME option. These are described
in the sections below.

26

C Language Features Files

3.3.4.1 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value
before the program begins execution. Initialized variables are those which are notauto objects and
which are assigned an initial value in their definition, for exampleinput in the following example.

int input = 88;
void main(void) { ...

•

Sinceauto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is also possible that
their initial value changes on each instance of the function. As a result, initializedauto
objects do not use the data psects.

Such initialized objects have two components and are placed within the data psects.
The actual initial values are placed in a psect calledidata. The other component is where the

variables will reside, and be accessed, at runtime. Space is reserved for the runtime location of
initialized variables in a psect calleddata. This psect does not contribute to the output file.

The runtime startup code performs a block copy of the values from theidata to thedata psect
so that the RAM variables will contain their initial values beforemain() is executed. Each location
in theidata psect is copied to appropriate placed in thedata psect.

The block copy of the data psects may be omitted by disabling theinit suboption of--RUNTIME.
For example:

--RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution. Code relying on variables containing their initial value
will fail.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent, see Section3.4.9.1. Such variables are linked at a different area of memory and are
not altered by the runtime startup code in any way.

3.3.4.2 Clearing the Bss Psects

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared
before execution of the program begins. The compiler does this by grouping all such uninitialized
objects into a bss psect. This psect is then cleared as a block by the runtime startup code.

27

Files C Language Features

•

The abbreviation "bss" stands for Block Started by Symbol and was an assembler pseudo-
op used in IBM systems back in the days when computers were coal-fired. The contin-
ued usage of this term is still appropriate.

The name of the bss psect isrbss.
The block clear of thebss psect may be omitted by disabling theclear suboption of--RUNTIME.

For example:

--RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent, see Section3.4.9.1. Such variables are linked at a different area of memory and are
not altered by the runtime startup code in anyway.

3.3.4.3 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.
The libraries can be omitted by disabling theclib suboption of--RUNTIME. For example:

--RUNTIME=default,-clib

With this part of the runtime startup code absent, the user must provide alternative library or source
files to allow calls to library routines. This suboption may be useful if alternative library or source
files are available and you wish to ensure that no HI-TECH C library routines are present in the final
output.

•

Some C statements produce assembler code that call library routines even though no
library function was called by the C code. These calls perform such operations as di-
vision or floating-point arithmetic. If the C libraries have been excluded from the code
output, these implicit library calls will also require substitutes.

28

C Language Features Supported Data Types and Variables

Table 3.2: Basic data types

Type Size (bits) Arithmetic Type
bit 1 unsigned integer
char 8 signed or unsigned integer2

unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 32 real
double 32 real

3.3.4.4 The powerup Routine

Some hardware configurations require special initialisation, often within the first few cycles of exe-
cution after reset. To achieve this there is a hook to the reset vector provided via thepoweruproutine.
This is a user-supplied assembler module that will be executed immediately on reset. Often this can
be embedded in a C module as embedded assembler code. A “dummy” powerup routine is included
in the filepowerup.as. The file can be copied, modified and included into your project to replace
the default powerup routine that is present in the standard libraries. If you use a powerup routine,
you will need to add a jump tostart after your initializations. Refer to comments in the powerup
source file for details about this.

3.4 Supported Data Types and Variables

The HI-TECH dsPICC compiler supports basic data types with 1, 2 and 4 byte sizes. Table3.2
shows the data types and their corresponding size and arithmetic type.

3.4.1 Radix Specifiers and Constants

The format of integral constants specifies their radix.HI-TECH C supports the ANSI standard radix
specifiers as well as ones which enables binary constants to specified in C code. The format used to
specify the radices are given in Table3.3. The letters used to specify binary or hexadecimal radices

29

Supported Data Types and Variables C Language Features

Table 3.3: Radix formats

Radix Format Example
binary 0bnumber or 0Bnumber 0b10011010
octal 0number 0763
decimal number 129
hexadecimal 0xnumber or 0Xnumber 0x2F

are case insensitive, as are the letters used to specify the hexadecimal digits.
Any integral constant will have a type which is the smallest type that can hold the value without

overflow. The suffixl or L may be used with the constant to indicate that it must be assigned either
a signed long or unsigned long type, and the suffixu or U may be used with the constant to
indicate that it must be assigned an unsigned type, and bothl or L andu or U may be used to indicate
unsigned long int type.

Floating-point constants havedouble type unless suffixed byf or F, in which case it is afloat
constant. The suffixesl or L specify along double type which is considered an identical type to
double by HI-TECH C.

Character constants are enclosed by single quote characters’, for example’a’. A character
constant haschar type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters", for example"hello
world". The type of string constants isconst char * and the strings are stored in the program
memory. Assigning a string constant to a non-const char pointer will generate a warning from the
compiler. For example:

char * cp= "one"; // "one" in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string"two" (copied from
program space), whereas a constant string used in other contexts represents an unnamedconst-
qualified array, accessed directly in program space.

HI-TECH C will use the same storage location and label for strings that have identical character
sequences, except where the strings are used to initialise an array residing in the data space as shown
in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separatedonly by white space) are concatenated
by the compiler. Thus:

30

C Language Features Supported Data Types and Variables

const char * cp = "hello " "world";

assigned the pointer with the string"hello world".

3.4.2 Bit Data Types and Variables

HI-TECH dsPICCsupportsbit integral types which can hold the values 0 or 1. Singlebit variables
may be declared using the keyword bit.bit objects declared within a function, for example:

static bit init_flag;

will be allocated in the bit-addressable psectbitbss, and will be visible only in that function. When
the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.
Bit variables cannot beauto or parameters to a function. A function may return abit object

by using thebit keyword in the functions prototype in the usual way. The bit return value will be
returning in the carry flag in the status register.

Bit variables behave in most respects like normalunsigned char variables, but they may only
contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean
flags without consuming large amounts of internal RAM. It is, however, not possible to declared
pointers tobit variables or statically initialisebit variables.

Operations onbit objects are performed using the single bit instructions (SET andCLR) wherever
possible, thus the generated code to accessbit objects is very efficient.

Note that when assigning a larger integral type to abit variable, only the least-significant bit is
used. For example, if thebit variablebitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the least significant bit ofdata is zero. If you want to set
a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero
(true), use the form:

bitvar = data != 0;

31

Supported Data Types and Variables C Language Features

The psects in whichbit objects are allocated storage are declared using thebit PSECT directive
flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale
value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.
All addresses specified for bit objects are also bit addresses.

Thebit psects are cleared on startup, but are not initialised. To create a bit object which has a
non-zero initial value, explicitly initialise it at the beginning of your code.

If the DSPICC flag--STRICT is used, thebit keyword becomes unavailable.

3.4.3 8-Bit Integer Data Types and Variables

HI-TECH dsPICC supports bothsigned char and unsigned char 8-bit integral types. If the
signed or unsigned keyword is absent from the variable’s definition, the default type isunsigned
char unless theDSPICC --CHAR=signed option is used, in which case the default type issigned
char. Thesigned char type is an 8-bit two’s complement signed integer type, representing integral
values from -128 to +127 inclusive. Theunsigned char is an 8-bit unsigned integer type, repre-
senting integral values from 0 to 255 inclusive. It is a common misconception that the Cchar types
are intended purely for ASCII character manipulation. This is not true, indeed the C language makes
no guarantee that the default character representation is even ASCII. Thechar types are simply the
smallest of up to four possible integer sizes, and behave in all respects like integers.

The reason for the name “char” is historical and does not mean thatchar can only be used to
represent characters. It is possible to freely mixchar values withshort, int andlong values in C
expressions. With HI-TECH C thechar types will commonly be used for a number of purposes, as
8-bit integers, as storage for ASCII characters, and for access to I/O locations.

Variables may be declared using thesigned char andunsigned char keywords, respectively,
to hold values of these types. Where onlychar is used in the declaration, the type will besigned
char unless the option, mentioned above, to specifyunsigned char as default is used.

Since the processor’s register are 16-bit wide, it can often be more efficient to use 16-bit integrer
variables over 8-bit variables.

3.4.4 16-Bit Integer Data Types

HI-TECH dsPICC supports four 16-bit integer types.short andint are 16-bit two’s complement
signed integer types, representing integral values from -32,768 to +32,767 inclusive.Unsigned
short andunsigned int are 16-bit unsigned integer types, representing integral values from 0
to 65,535 inclusive. All 16-bit integer values are represented inlittle endian format with the least
significant byte at the lower address.

Variables may be declared using thesigned short int andunsigned short int keyword
sequences, respectively, to hold values of these types. When specifying ashort int type, the

32

C Language Features Supported Data Types and Variables

keywordint may be omitted. Thus a variable declared asshort will contain asigned short int
and a variable declared asunsigned short will contain anunsigned short int.

Since the processor’s register are 16-bit wide, it can often be more efficient to use 16-bit integrer
variables over 8-bit variables.

3.4.5 32-Bit Integer Data Types and Variables

HI-TECH dsPICCsupports two 32-bit integer types.Long is a 32-bit two’s complement signed inte-
ger type, representing integral values from -2,147,483,648 to +2,147,483,647 inclusive.Unsigned
long is a 32-bit unsigned integer type, representing integral values from 0 to 4,294,967,295 inclu-
sive. All 32-bit integer values are represented inlittle endianformat with the least significant word
and least significant byte at the lowest address.Long andunsigned long occupy 32 bits as this is
the smallest long integer size allowed by the ANSI standard for C.

Variables may be declared using thesigned long int andunsigned long int keyword se-
quences, respectively, to hold values of these types. Where onlylong int is used in the declaration,
the type will besigned long. When specifying this type, the keywordint may be omitted. Thus
a variable declared aslong will contain asigned long int and a variable declared asunsigned
long will contain anunsigned long int.

3.4.6 Floating Point Types and Variables

Floating point is implemented using the IEEE 754 32-bit format.
The 32-bit format is used for allfloat anddouble values.
This format is described in Table3.4, where:

• sign is the sign bit

• The exponent is 8-bits which is stored asexcess 127(i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.
Here are some examples of the IEEE 754 32-bit formats:
Note that the most significant bit of the mantissa column in Table3.5 (that is the bit to the left

of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

The 32-bit example in Table3.5can be calculated manually as follows.
The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary

number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

33

Supported Data Types and Variables C Language Features

Table 3.4: Floating-point formats

Format Sign biased exponent mantissa
IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

Table 3.5: Floating-point format example IEEE 754

Number biased expo-
nent

1.mantissa decimal

7DA6B69Bh 11111011b 1.01001101011011010011011b2.77000e+37
(251) (1.302447676659)

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:
−10×2124×1.302447676659= 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37
Variables may be declared using thefloat anddouble keywords, respectively, to hold values

of these types. Floating point types are always signed and theunsigned keyword is illegal when
specifying a floating point type. Types declared aslong double will use the same format as types
declared asdouble.

3.4.7 Structures and Unions

HI-TECH dsPICC supportsstruct andunion types of any size from one byte upwards. Structures
and unions only differ in the memory offset applied for each member. The members of structures
and unions may not be objects of typebit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to
structures and unions are fully supported.

3.4.7.1 Bit-fields in Structures

HI-TECH dsPICC fully supportsbit-fieldsin structures.
Bit-fields are always allocated within 16-bit words. The first bit defined will be the least signifi-

cant bit of the word in which it will be stored. When a bit-field is declared, it is allocated within the
current 16-bit unit if it will fit, otherwise a new word is allocated within the structure. bit-fields can
never cross the boundary between 16-bit allocation units. For example, the declaration:

34

C Language Features Supported Data Types and Variables

struct {
unsigned lo : 1;
unsigned dummy : 14;
unsigned hi : 1;

} foo;

will produce a structure occupying 2 bytes. Iffoo was ultimately linked at address 10H, the fieldlo
will be bit 0 of address 10H,hi will be bit 7 of address 11H. The least significant bit ofdummy will
be bit 1 of address 10H and the most significant bit ofdummy will be bit 6 of address 11h.

Unnamed bit-fields may be declared to pad out unused space between active bits in control
registers. For example, ifdummy is never used the structure above could have been declared as:

struct {
unsigned lo : 1;
unsigned : 14;
unsigned hi : 1;

} foo;

If a bit-field is declared in a structure that is assigned an absolute address, no storage will be allocated
for the structure. Absolute structures would be used when mapping a structure over a register to allow
a portable method of accessing individual bits within the register.

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values
for each field. For example:

struct {
unsigned lo : 1;
unsigned mid : 14;
unsigned hi : 1;

} foo = {1, 8, 0};

3.4.7.2 Structure and Union Qualifiers

HI-TECH C supports the use of type qualifiers on structures. When a qualifier is applied to a struc-
ture, all of its members will inherit this qualification. In the following example the structure is
qualifiedconst.

const struct {
int number;
int *ptr;

} record = { 0x55, &i};

35

Supported Data Types and Variables C Language Features

In this case, the structure will be placed into the program space and each member will, obviously, be
read-only. Remember that all members must be initialized if a structure isconst as they cannot be
initialized at runtime.

If the members of the structure were individually qualifiedconst but the structure was not, then
the structure would be positioned into RAM, but each member would be read-only. Compare the
following structure with the above.

struct {
const int number;
int * const ptr;

} record = { 0x55, &i};

3.4.8 Standard Type Qualifiers

Type qualifiers provide information regarding how an object may be used, in addition to its type
which defines it storage size and format. HI-TECH C supports both ANSI qualifiers and additional
special qualifiers which are useful for embedded applications and which take advantage of the dsPIC
architecture.

3.4.8.1 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifiersconst andvolatile.
Theconst type qualifier is used to tell the compiler that an object is read only and will not be

modified. If any attempt is made to modify an object declaredconst, the compiler will issue a
warning. User-defined objects declaredconst are placed in a special psects in the program space.
Obviously, aconst object must be initialised when it is declared as it cannot be assigned a value at
any point at runtime. For example:

const int version = 3;

Thevolatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declaredvolatile because it may alter the behaviour of the program
to do so. All Input/Output ports and any variables which may be modified by interrupt routines
should be declaredvolatile, for example:

volatile static unsigned int TACTL @ 0x160;

Volatile objects may be accessed using different generated code to non-volatile objects.

36

C Language Features Supported Data Types and Variables

3.4.9 Special Type Qualifiers

HI-TECH dsPICCsupports the special type qualifiers to allow the user to control placement of
static andextern class variables into particular address spaces.

3.4.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets or even power cycles (on-off-on).

Thepersistent type qualifier is used to qualify variables that should not be cleared on startup.
In addition, anypersistent variables will be stored in a different area of memory to other variables.
persistent objects are placed within the psectnvram.

This type qualifier may not be used on variables of classauto; if used on variables local to a
function they must be combined with thestatic keyword. For example, you may not write:

void test(void)
{

persistent int intvar; /* WRONG! */
.. other code ..

}

becauseintvar is of classauto. To declareintvar as apersistent variable local to function
test(), write:

static persistent int intvar;

If the DSPICC option,--STRICT is used, this type qualifier is changed to__persistent.
There are some library routines provided to check and initialisepersistent data - seeA for

more information, and for an example of usingpersistent data.

3.4.9.2 YData Type Qualifier

The dsPIC memory map for RAM is divided into two parts: x-data and y-data. Some dsPIC instruc-
tion can only operate will addresses to object in the y-data range. Qualifying an object asydata
cause the object to be placed into the ranges of memory designated for ydata.

3.4.10 Pointer Types

There are two basic pointer types supported by HI-TECH C: data pointers and function pointers.
Data pointers hold the address of data objects which can be indirectly read and possibly written by

37

Supported Data Types and Variables C Language Features

the program using the pointer. Function pointers hold the address of an executable routine which
can be called indirectly via the pointer.

3.4.10.1 Data Pointers

A data pointer that is not a pointer toconst references objects in the data space, or RAM. Such
pointers are 16 bits wide and can access any object resident in the data space. A data pointer to a
const-qualified object is used when the object is read-only and will not be modified. If any attempt
is made to indirectly modify an object declared asconst, the compiler will issue a warning.

3.4.10.2 Function Pointers

Pointers to functions can be defined to indirectly call functions or routines in the program space.
The size of function pointers is always 16 bits. Although only being 16 bits, this will still work
correctly if the selected processor has more memory than can be addressed by a 16-bit pointer. This
is achieved though the use of a jump table which will automatically be generated by the compiler
when large model is selected.

3.4.10.3 Qualifiers and Pointers

Pointers can be qualified like any other C objects, but care must be taken when doing so as there
are two quantities associated with pointers. The first is the actual pointer itself, which is treated like
any ordinary C variable and has memory reserved for it. The second is the object that the pointer
references, or to which the pointer points. The general form of an initialized pointer definition looks
like the following.

object’s_type_&_qualifiers * pointer’s_qualifiers pointer’s_name = value ;

The rule is as follows: if the modifier is to the left of the* in the pointer declaration, it applies to
the object which the pointer references. If the modifier is to the right of the*(next to the pointer’s
name), it applies to the pointer variable itself. Any data variable qualifier may be applied to pointers
in the above manner.

TUT•RIAL

Here are three examples of pointers, initialized with the address of the variables:

const int ci = 0x55aa;
int i;

in which the definition fields are highlighted with spacing:

38

C Language Features Storage Class and Object Placement

const int * cip = &ci ;
int * const icp = &i ;
const int * const cicp = &ci ;

The first example is a pointer calledcip. It contains the address of anint object (in this
caseci) that is qualifiedconst, however the pointer itself is not qualified. The pointer
may be used to read, but not write, the object to which it references. The contents of the
pointer may be read and written by the program.

The second example is a pointer calledicp which contains the address of anint object
(in this casei). Since this object is not qualified, it is a data space object which is
referenced by the pointer and this object can be both read and written using the pointer.
However, the pointer is qualifedconst and so can only be read by the program —
it cannot be made to point to any other object other than the object whose address
initializes the pointer (in this casei).

The last example is of a pointer calledcicp which is itself qualifiedconst and which
also holds the address of an object that is also qualifiedconst. Thus the pointer can
only be used to read the object to which it references and the pointer itself cannot be
modified so it will always reference the same object during the program (in this case
ci).

3.5 Storage Class and Object Placement

Objects are positioned in different memory areas dependant on their storage class and declaration.
This is discussed in the following sections.

3.5.1 Local Variables

A local variableis one which only has scope within the block in which it was defined. That is, it may
only be referenced within that block. C supports two classes of local variables in functions:auto
variables which are normally allocated in the function’s stack frame, andstatic variables which
are always given a fixed memory location and have permanent duration.

3.5.1.1 Auto Variables

Auto (short forautomatic) variables are the default type of local variable. Unless explicitly declared
to bestatic a local variable will be madeauto, however theauto keyword may be used if de-
sired.auto variables are allocated either to spare registers, or onto the stack. The variables will not

39

Storage Class and Object Placement C Language Features

necessarily be allocated in the order declared - in contrast to parameters which are always in lexical
order.

Note that most type qualifiers cannot be used withauto variables, since there is no control over
the storage location. The exceptions areconst andvolatile.

3.5.1.2 Static Variables

Uninitializedstatic variables are by default allocated in thebss psect (located in XDATA memory)
unless they have also been qualified asydata which will instead use theybss psect (located in
YDATA memory). static variables are local in scope to the function in which they are declared,
but may be accessed by other functions via pointers since they have permanent duration.static
variables are guaranteed to retain their value between calls to a function, unless explicitly modified
via a pointer.

static variables which are initialised are only done so once during the program’s execution.
Thus, they may be preferable over initialisedauto objects which are assigned a value every time the
block in which the definition is placed is executed.

3.5.2 X and Y DATA Variables

The dsPIC memory map is divided into X and Y data areas. Some dsp instructions can only operate
on objects stored in ydata. For this reason theydata qualifier is provided to position an object into
ydata memory. Only static and global variables may use this qualifier. If no qualifier is given, a
location in xdata memory will be assumed.

3.5.3 Absolute Variables

A global orstatic variable can be located at an absolute address by following its declaration with
the construct@ address, for example:

volatile unsigned char Portvar @ 0x06;

will declare a variable calledPortvar located at 06h. Note that the compiler does not reserve
any storage, but merely equates the variable to that address, the compiler-generated assembler will
include a line of the form:

_Portvar EQU 06h

This construct is primarily intended for equating the address of a C identifier with a microprocessor
special funciton register. To place a user-defined variable at an absolute address, define it in a
separate psect and instruct the linker to place this psect at the required address as specified in Section
3.12.3.5.

40

C Language Features Functions

•

Absolute variables are accessed using the address specified with their definition, thus
there are no symbols associated with them. Because the linker never sees any symbols
for these objects it is not aware that they have been allocated space and it cannot make
any checks for overlap of absolute variables with other objects. It is entirely the pro-
grammer’s responsibility to ensure that absolute variables are allocated memory that is
not already in use.

3.5.4 Objects in the Program Space

const-qualified objects are placed in the program space along with code. The program space vis-
ibility (PSV) feature of the dsPIC is use to map theconst-qualified objects into the x-data space.
The PSV is configured automatically at startup by the runtime code.

3.6 Functions

3.6.1 Function Argument Passing

The first parameter, if it is no larger than 2 bytes in size, is loaded into W0. If it is three or four bytes
in size, the high order word is loaded into W1. If present, the second, third and fourth parameters
are loaded into W2/W3, W4/W5 and W6/W7, respectively. Additional arguments, or those larger
than 4 bytes in size are placed on the stack. Once one parameter has been loaded onto the stack, all
following parameters will also be placed on the stack.

In the case of a variable argument list, which is defined by the ellipsis symbol..., the calling
function places all but the last prototype parameter in registers, if possible. The last prototyped
parameter and all parameters matching the ellipsis are placed on the stack.

Take, for example, the following ANSI-style function:

void test(char a, int b, long c)
{

}

The functiontest() will receive the parametera in low order byte of register W0, parameterb in
register W2, and the low and high order words of parameterc in registers W4 and W5, respectively.

If you need to determine, for assembler code for example, the exact entry or exit code within a
function or the code used to call a function, it is often helpful to write a dummy C function with the

41

Register Usage C Language Features

same argument types as your assembler function, and compile to assembler code with theDSPICC
-S option, allowing you to examine the assembler code.

3.6.2 Function Return Values

Function return values are passed to the calling function as follows:

3.6.2.1 Integral Return Values

All integral return values no larger than 2 bytes in size are returned from a function in W0. Integral
return values of 4 bytes in size are returned in W0/W1, with the low order word in W0.

3.6.2.2 Structure Return Values

Composite return values (struct andunion) of size 4 bytes or smaller are returned in W0/W1 as
with integral return values. For larger types, the structure or union is copied into a space allocated
by the calling function, a pointer to which is passed in W14 when the function is called.

3.7 Register Usage

The dsPIC devices use register W15 for the system stack pointer. Registers W0 through W7 may be
used for function parameters, and function return values may be returned in W0/W1. The compiler
assumes that registers W8 through W13 will not be altered over function calls. Any assembler
routines that are called from C code should preserve these registers.

3.8 Operators

HI-TECH C supports all the ANSI operators. The exact results of some of these are implementation
defined. The following sections illustrate code produced by the compiler.

3.8.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly the same type.
The compiler will automatically convert the operands, if necessary, so they have the same type. The
conversion is to a “larger” type so there is no loss of information. Even if the operands have the same
type, in some situations they are converted to a different type before the operation. This conversion
is calledintegral promotion. HI-TECH C performs these integral promotions where required. If you

42

C Language Features Operators

are not aware that these changes of type have taken place, the results of some expressions are not
what would normally be expected.

Integral promotion is the implicit conversion of enumerated types,signed or unsigned varieties
of char, short int or bit-field types to eithersigned int or unsigned int. If the result of the
conversion can be represented by ansigned int, then that is the destination type, otherwise the
conversion is tounsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
count++;

Theunsigned char result ofa - b is 206 (which is not less than 10), but botha andb are con-
verted tosigned int via integral promotion before the subtraction takes place. The result of the
subtraction with these data types is -50 (which is less than 10) and hence the body of theif() state-
ment is executed. If the result of the subtraction is to be anunsigned quantity, then apply a cast.
For example:

if((unsigned int)(a - b) < 10)
count++;

The comparison is then done usingunsigned int, in this case, and the body of theif() would not
be executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
count++;

If c contains the value 55h, it often assumed that~c will produce AAh, however the result is FFAAh
and so the comparison in the above example would fail. The compiler may be able to issue a
mismatched comparison error to this effect in some circumstances. Again, a cast could be used to
change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed
with char-type operands, but withint-type operands. However there are circumstances when the
result of an operation is identical regardless of whether the operands are of typechar or int. In
these cases, HI-TECH C will not perform the integral promotion so as to increase the code efficiency.
Consider the following example.

43

Psects C Language Features

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values ofb andc should be promoted tounsigned
int, the addition performed, the result of the addition cast to the type ofa, and then the assignment
can take place. Even if the result of theunsigned int addition of the promoted values ofb andc
was different to the result of theunsigned char addition of these values without promotion, after
theunsigned int result was converted back tounsigned char, the final result would be the same.
If an 8-bit addition is more efficient than an a 32-bit addition, the compiler will encode the former.

If, in the above example, the type ofa wasunsigned int, then integral promotion would have
to be performed to comply with the ANSI standard.

3.8.2 Shifts applied to integral types

The ANSI standard states that the result of right shifting (> > operator) signed integral types is
implementation defined when the operand is negative. Typically, the possible actions that can be
taken are that when an object is shifted right by one bit, the bit value shifted into the most significant
bit of the result can either be zero, or a copy of the most significant bit before the shift took place.
The latter case amounts to a sign extension of the number.

HI-TECH dsPICC performs a sign extension of anysigned integral type (for examplesigned
char, signed int or signed long). Thus an object with thesigned int value 0x0124 shifted
right one bit will yield the value 0x0092 and the value 0x8024 shifted right one bit will yield the
value 0xC012.

Right shifts ofunsigned integral values always clear the most significant bit of the result.
Left shifts (< < operator),signed or unsigned, always clear the least significant bit of the result.

3.8.3 Division and modulus with integral types

The sign of the result of division with integers when either operand is negative is implementation
specific. Table3.6shows the expected sign of the result of the division of operand 1 with operand 2
when compiled with HI-TECH C.

In the case where the second operand is zero (division by zero), the result will always be zero.

3.9 Psects

The compiler splits code and data objects into a number of standard program sections referred to
aspsects. The HI-TECH assembler allows an arbitrary number of named psects to be included in
assembler code. The linker will group all data for a particular psect into a single segment.

44

C Language Features Psects

Table 3.6: Integral division

Operand 1 Operand 2 Quotient Remainder
+ + + +
- + - -
+ - - +
- - + -

•

If you are usingDSPICC to invoke the linker, you don’t need to worry about the informa-
tion documented here, except as background knowledge. If you want to run the linker
manually (this is not recommended), or write your own assembly language subroutines,
you should read this section carefully.

A psect can be created in assembler code by using thePSECT assembler directive (see Section
4.3.8.3). In C, user-defined psects can be created by using the#pragma psect preprocessor di-
rective, see Section3.12.3.5.

3.9.1 Compiler-generated Psects

The code generator places code and data into psects with standard names which are subsequent
positioned by the default linker options. These psects are described below.

The compiler-generated psects which are placed in the program space are:

powerup This contains executable code for the standard or user-supplied power-up routine.

init This contains executable code associated with the RAM clear and copy portion of the runtime
startup module.

end_init This contains executable code associated with the runtime startup module which transfer
control to the funcitonmain().

text This contains all executable code compiled from C source modules. It also contains all code
from library modules.

ctext This contains function entry code used when large model is selected.

const This psects holds objects that are declaredconst and string literals which are not modifiable.

45

Interrupt Handling in C C Language Features

vectors Is the psect which contains the interrupt code linked directly at the interrupt vectors.

altvectors Is the psect which contains the alternative interrupt code linked directly at the alternative
interrupt vectors.

reset_vec Is the psect which contains the reset interrupt vector code.

config This psects holds user-programmed processors configuration bits.

idata This psects initialization data for xdata objects that require initialization.

yidata This psects initialization data for ydata objects that require initialization.

The compiler-generated psects which are placed in the data space are:

bss These psects contain global orstatic local variables which are uninitialized.

ybss These psects contain global orstatic local ydata variables which are uninitialized.

mconst This is the RAM version of the const psect, when after mapping.

data These psects contain any initialised global orstatic local variables,

ydata These psects contain any initialised global orstatic local ydata variables,

nvram This psect is used to storepersistent qualified variables. It is not cleared or otherwise
modified by the runtime startup code.

ynvram This psect is used to store ydatapersistent qualified variables. It is not cleared or other-
wise modified by the runtime startup code.

bitbss This psect is used to store allbit variables, except those qualifiedpersistent.

ybitbss This psect is used to store all ydatabit variables, except those qualifiedpersistent.

nvbit This psect is used to store allbit variables qualifiedpersistent.

ynvbit This psect is used to store all ydatabit variables qualifiedpersistent.

temp This psect is used for temporary storage.

3.10 Interrupt Handling in C

The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-
tions are often calledinterrupt service routines(ISR). Interrupts are also known asexceptions.

46

C Language Features Interrupt Handling in C

3.10.1 Interrupt Functions

The function qualifierinterrupt may be applied to any number of C function definitions to allow
them to be called directly from the hardware interrupts. The compiler will process theinterrupt
function differently to any other functions, generating code to save and restore any registers used
and exit using the appropriate instruction.

If the DSPICC option--STRICT is used, theinterrupt keyword becomes__interrupt.
An interrupt function must be declared as typevoid interrupt and may not have parame-

ters. This is the only function prototype that makes sense for aninterrupt function. interrupt
functions may not be called directly from C code (due to the different return instruction that is used),
but they may call other functions itself.

As there is more than one vector location usable with dsPICs, an indicator is required with the
function definition to specify theinterrupt vector to which the function should associated. This
takes the form of a@ symbol followed by the vector address at the end of the function prototype.
The address can either be a literal, or a symbolic name defined after including<dspic.h>.

An example of aninterrupt function linked to the Timer 1 vector (0x0C) is shown here.

int tick_count;

void interrupt tc_int(void) @ T1_VCTR
{
++tick_count;

}

A table of all available vector address macros is shown in Table3.7, however not all these macros
are available on all devices.

Table 3.7: Interrupt Vector Address Macros

Macro name Vector address Description
INT0_VCTR 0x14 External Interrupt 0
IC1_VCTR 0x16 Input Capture 1
OC1_VCTR 0x18 Output Compare 1
T1_VCTR 0x1A Timer 1
IC2_VCTR 0x1C Input Capture 2
OC2_VCTR 0x1E Output Compare 2
T2_VCTR 0x20 Timer 2
T3_VCTR 0x22 Timer 3
SPI1_VCTR 0x24 Serial Comms 1
continued. . .

47

Interrupt Handling in C C Language Features

Table 3.7: Interrupt Vector Address Macros

Macro name Vector address Description
U1RX_VCTR 0x26 UART1 Receiver
U1TX_VCTR 0x28 UART1 Transmitter
ADC_VCTR 0x2A ADC Convert Done
NVM_VCTR 0x2C NVM Write Complete
SI2C_VCTR 0x2E I2C Slave Interrupt
MI2C_VCTR 0x30 I2C Master Interrupt
INCH_VCTR 0x32 Input Change Interrupt
INT1_VCTR 0x34 External Interrupt 1
IC7_VCTR 0x36 Input Capture 7
IC8_VCTR 0x38 Input Capture 8
OC3_VCTR 0x3A Output Compare 3
OC4_VCTR 0x3C Output Compate 4
T4_VCTR 0x3E Timer 4
T5_VCTR 0x40 Timer 5
INT2_VCTR 0x42 External Interrupt 2
U2RX_VCTR 0x44 UART2 Receiver
U2TX_VCTR 0x46 UART2 Transmitter
SPI2_VCTR 0x48 Serial Comms 2
C1_VCTR 0x4A Combined IRQ for CAN1
IC3_VCTR 0x4C Input Capture 3
IC4_VCTR 0x4E Input Capture 4
IC5_VCTR 0x50 Input Capture 5
IC6_VCTR 0x52 Input Capture 6
OC5_VCTR 0x54 Output Compare 5
OC6_VCTR 0x56 Output Compare 6
OC7_VCTR 0x58 Output Compare 7
OC8_VCTR 0x5A Output Compare 8
INT3_VCTR 0x5C External Interrupt 3
INT4_VCTR 0x5E External Interrupt 4
C2_VCTR 0x60 Combined IRQ for CAN2
PWM_VCTR 0x62 PWM Period Match
QEI_VCTR 0x64 QEI Interrupt
DCI_VCTR 0x66 Codec Transfer Done
LVD_VCTR 0x68 Low Voltage Detect

continued. . .

48

C Language Features Mixing C and Assembler Code

Table 3.7: Interrupt Vector Address Macros

Macro name Vector address Description
FLTA_VCTR 0x6A PWM Fault A
FLTB_VCTR 0x6C PWM Fault B

3.10.1.1 Context Saving on Interrupts

HI-TECH dsPICC automatically generates code to save context when an interrupt occurs. This code
will be executed before the code generated from the Cinterrupt function is entered.

Only those registers which are used by the interrupt function are saved.
If called functions have not been “seen” by the compiler, a worst case scenario is assumed and

all registers not preserved by function calls will be saved.
HI-TECH C does not scan assembly code which is placed in-line within the interrupt function

for register usage. Thus, if you include in-line assembly code into an interrupt function, you may
have to add extra assembly code to save and restore any registers or locations used if they are not
already saved by the interrupt entry routine.

3.10.1.2 Context Restoration

Any objects saved by the compiler are automatically restored before theinterrupt function returns.
A retfie instruction placed at the end of the interrupt code which will reload the program counter
and re-enable the master interrupt bit. The program will return to the location at which it was when
the interrupt occurred.

3.10.2 Enabling Interrupts

Hardware interrupt sources can be enabled and disabled using macros defined in<dspic.h>. The
macros are calledDI(), andEI() which enable and disable interrupts respectively. Also provided
is DISI(n)which will disable interrupts for the given number of cycles plus one. Its parameter must
be a literal constant.

3.11 Mixing C and Assembler Code

Assembly language code can be mixed with C code using two different techniques: writing assembly
coe and placing it into a separate assembler module, or including it as in-line assembler in a C
module. For the latter, there are two formats in which this can be done.

49

Mixing C and Assembler Code C Language Features

3.11.1 External Assembly Language Functions

Entire functions may be coded in assembly language as separate.as source files, assembled and
combined into the output image using the linker. This technique allows arguments and return values
to be passed between C and assembler code.

The following are guidelines that must be adhered to when writing a routine in assembly code
that is callable from C code.

• select, or define, a suitable psect for the executable assembly code

• select a name (label) for the routine so that its corresponding C identifier is valid

• ensure that the routine’s label is globally accessable from other modules

• select an appropriate equivalent C prototype for the routine on which argument passing can be
modelled

• ensure any symbol used to hold arguments to the routine is globally accessable

• ensure any symbol used to hold a return value is globally accessable

• optionally, use a signature value to enable type checking when the function is called

• write the routine ensuring arguments are read from the correct location, the return value is
loaded to the correct storage location before returning

• ensure any local variables required by the routine have space reserved by the appropriate
directive

A mapping is performed on the names of all C functions and non-static global variables. See
Section3.11.3.1for a complete description of mappings between C and assembly identifiers.

TUT•RIAL

A assembly routine is required which can add two 16-bit values together. The routine
must be callable from C code. Both the values are passed in as arguments when the
routine is called from the C code. The assembly routine should return the result of the
addition as a 16-bit quanity.

Most compiler-generated executable code is placed in a psect calledtext (see Section
3.9.1). As we do not need to have this assembly routine linked at any particular location,
we can use this psect so the code is bundled with other executbale code and stored
somewhere in the program space. This way we do not need to use any additional linker
options. So we use an ordinary looking psect that you would see in assembly code

50

C Language Features Mixing C and Assembler Code

produced by the compiler. The psect’s name is text, will be linked in the CODE class,
which will reside in a memory space that has 2 bytes per addressable location and must
start on a word boundary:

PSECT text,reloc=4,local,class=CODE,delta=2

Now we would like to call this routineadd. However in assembly we must choose the
name_add as this then maps to the C identifieradd since the compiler prepends an
underscore to all C identifiers when it creates assembly labels. If the nameadd was
chosen for the assembler routine the it could never be called from C code. The name of
the assembly routine is the label that we will assocaite with the assembly code:

_add:

We need to be able to call this from other modules, som make this label globally access-
able:

GLOBAL _add

Arguments, or parameters, to this routine will passed via W0 and W2 registers and the
result returned in W0.

By compiling a dummy C function with a similar prototype to how we will be call-
ing this assembly routine, we can determine the signature value. We add a assembler
directive to make this signature value known:

SIGNAT _add,8250

Now to actually writing the function, remembering that the first byte parameter is al-
ready in the accumulator and the second paramater is already in this routine’s paramters
area – placed there by the calling function elsewhere. The result is placed back in to the
paramater area ready to be returned

add w0,w2,w0 ;add W0 to W2 and put the result in W0
return

To call an assembly routine from C code, a declaration for the routine must be provided. This
ensures that the compiler knows how to encode the function call in terms of paramters and return
values, however no other code is necessary.

If a signature value is present in the assembly code routine, its value will be checked by the linker
when the calling and called routines’ signatures can be compared.

TUT•RIAL

To continue the previous example, here is a code snippet that declares the operation of
the assembler routine, then calls the routine.

51

Mixing C and Assembler Code C Language Features

extern unsigned int add(unsigned a, unsigned b);
void main(void)
{

int a, result;
a = read_port();
result = add(5, a);

}

3.11.2 #asm, #endasm and asm()

dsPIC instructions may also be directly embedded “in-line” into C code using the directives#asm,
#endasm or the statementasm().

The#asm and#endasm directives are used to start and end a block of assembly instructions which
are to be embedded into the assembly output of the code generator. The#asm and#endasm construct
is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,
however you can easily include multiple instructions with this form of in-line assembly.

Theasm() statement is used to embed a single assembler instruction. This form looks and be-
haves like a C statement, however each instruction must be encapsulated within anasm() statement.

•

You should not use a#asm block within any C constructs such asif, while, do etc.
In these cases, use only theasm("") form, which is a C statement and will correctly
interact with all C flow-of-control structures.

The following example shows both methods used:

unsigned int var;
void main(void)
{

var = 1;
#asm // like this...

mov.w _var,w0
sl.w w0,w0
mov.w w0,_var

#endasm
// or like this

52

C Language Features Mixing C and Assembler Code

asm("mov.w _var,w0");
asm("sl.w w0,w0");
asm("mov.w w0,_var");

}

When using in-line assembler code, great care must be taken to avoid interacting with compiler-
generated code. The code generator cannot scan the assembler code for register usage and so will
remain unaware if registers are clobberred or used by the code. If in doubt, compile your program
with theDSPICC -S option and examine the assembler code generated by the compiler.

3.11.3 Accessing C objects from within Assembly Code

The following applies regardless of whether the assembly is part of a separate assembly module, or
in-line with C code.

For any non-local assembly symbol, theGLOBAL directive must be used to link in with the symbol
if it was defined elsewhere. If it is a local symbol, then it may be used immediately.

3.11.3.1 Equivalent Assembly Symbols

The assembler equivalent identifier to an identifier in C code follows a form that is dependent on
the scope and type of the C identifier. The different forms are discussed below. Accessing the C
identifier in C code and its assembly equivalent in assembly code implies accessing the same object.
Here, “global” implies defined outside a function; “local” defined within a function.

C identifiers are assigned different symbols in the output assembly code so that an assembly
identifier cannot conflict with an identifier defined in C code. If assembly programmers choose
identifier names that do not begin with anunderscore, these identifiers will never conflict with C
identifiers. Importantly, this implies that the assembly identifier,i, and the C identifieri relate to
different objects at different memory locations.

3.11.3.2 Accessing specifal function register names from assembler

When the code generator compiles a C module, it includes a list ofEQU directives for some of the
more commonly used SFRs. These registers are listed in Table3.8. Any assembly code that is placed
in-line into a C module can use these register names. If writing separate assembly modules, these
SFR definitions will not be present since the code generator does not process assembler files in any
way.

Another way of using the SFRs in in-line assembly code is refer to the symbols defined by the
chip-specific C header files. Whenever you include<dspic.h> into a C module, all the available
SFRs are defined as absolute C variables. As the contents of this file is C code, it cannot be included
into an assembler module, but assembler code can uses these definitions. To use a SFR in in-line

53

Preprocessing C Language Features

Table 3.8: Predefined SFR names

Register Address
pcl 0x2E
pch 0x30
sr 0x42

assembler code from within the same C module that includes<dspic.h>, simply use the symbol
with anunderscorecharacter prepended to the name. For example:

#include <dspic.h>
void main(void)
{

PORTA = 0x55;
asm("mov #0xAA,w0");
asm("mov w0, _PORTA);

3.12 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if
the-P command-line option is issued.

3.12.1 Preprocessor Directives

HI-TECH dsPICC accepts several specialised preprocessor directives in addition to the standard
directives. All of these are listed in Table3.9.

Macro expansion using arguments can use the# character to convert an argument to a string, and
the## sequence to concatenate tokens.

3.12.2 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional compi-
lation based on chip type etc. The symbols listed in Table3.10show the more common symbols
defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

54

C Language Features Preprocessing

Table 3.9: Preprocessor directives
Directive Meaning Example
preprocessor null directive, do

nothing
#

#assert generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line

assembly
#asm
mov r0, r1h
#endasm

#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif short for#else #if see #ifdef
#else conditionally include source lines see #if
#endasm terminate in-line assembly see #asm
#endif terminate conditional source

inclusion
see #if

#error generate an error message #error Size too big
#if include source lines if constant

expression true
#if SIZE < 10
c = process(10)
#else
skip();
#endif

#ifdef include source lines if preprocessor
symbol defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

#ifndef include source lines if preprocessor
symbol not defined

#ifndef FLAG
jump();
#endif

#include include text file into source #include <stdio.h>
#include "project.h"

#line specify line number and filename
for listing

#line 3 final

#nn (wherenn is a number) short for
#line nn

#20

#pragma compiler specific options 3.12.3
#undef undefines preprocessor symbol #undef FLAG
#warning generate a warning message #warning Length not set

55

Preprocessing C Language Features

Table 3.10: Predefined macros
Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in use is HI-
TECH C.

_HTC_VER_MAJOR_ Always To indicate the integer component of the
compiler’s version number.

_HTC_VER_MINOR_ Always To indicate the decimal component of the
compiler’s version number.

_HTC_VER_PATCH_ Always To indicate the patch level of the com-
piler’s version number.

DSPICC Always To indicate the use of the Holtek MCU C
compiler.

_chipname When chip selected To indicate the specific chip type selected
__FILE__ Always To indicate this source file being prepro-

cessed.
__LINE__ Always To indicate this source line number.
__DATE__ Always To indicate the current date, e.g.May 21

2004
__TIME__ Always To indicate the current time, e.g.

08:06:31.

56

C Language Features Preprocessing

Table 3.11: Pragma directives

Directive Meaning Example
inline Specify function as inline #pragma inline(fabs)
jis Enable JIS character handling in

strings
#pragma jis

nojis Disable JIS character handling (de-
fault)

#pragma nojis

pack Specify structure packing #pragma pack 1
printf_check Enable printf-style format string

checking
#pragma
printf_check(printf) const

psect Rename compiler-defined psect #pragma psect text=mytext
regsused Specify registers which are used in

an interrupt
#pragma regsused r4

switch Specify code generation for switch
statements

#pragma switch direct

3.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a
pragma is:

#pragma keyword options

wherekeyword is one of a set of keywords, some of which are followed by certainoptions . A
list of the keywords is given in Table3.11. Those keywords not discussed elsewhere are detailed
below.

3.12.3.1 The #pragma inline Directive

Some of the standard C library functions only contain a small amount of code. Because the code is
small, often it would be more efficient to directly include (inline) the library function’s code rather
than calling it and linking in the function.

The#pragma inline directive provides a mechanism for doing this. The compiler can only do
this for library routines which it recognizes and currently HI-TECH dsPICC only supports inlining
of thefabs() library routine.

57

Preprocessing C Language Features

3.12.3.2 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-
tional characters, the#pragma jis directive will enable proper handling of these characters, specif-
ically not interpreting abackslash,\, character when it appears as the second half of a two byte
character. Thenojis directive disables this special handling. JIS character handling is disabled by
default.

3.12.3.3 The #pragma pack Directive

Some MCUs requires word accesses to be aligned on word boundaries. Consequently the compiler
will align all word or larger quantities onto a word boundary, including structure members. This can
lead to “holes” in structures, where a member has been aligned onto the next word boundary.

This behaviour can be altered with this directive. Use of the directive#pragma pack 1 will
prevent any padding or alignment within structures. Use this directive with caution - in general if
you must access data that is not aligned on a word boundary you should do so by extracting individual
bytes and re-assembling the data. This will result in portable code. Note that this directive mustnot
appear before any system header file, as these must be consistent with the libraries supplied.

•
dsPICs can only perform byte accesses to memory and so do not require any alignment
of memory objects. This pragma will have no effect when used.

3.12.3.4 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner ofprintf(). Although the format string is interpreted at runtime, it can be compile-time
checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file<stdio.h>
includes the directive#pragma printf_check(printf) const to enable this checking forprintf().
You may also use this for any user-defined function that acceptsprintf-style format strings. The
qualifier following the function name is to allow automatic conversion of pointers in variable argu-
ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type
(const char *)

•
Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section2.4.48.

58

C Language Features Preprocessing

3.12.3.5 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as described
in Section3.9.1. This is fine for most applications, but sometimes it is necessary to redirect variables
or code into different psects when a special memory configuration is desired. Code and data for any
of the standard C psects may be redirected using a#pragma psect directive.

The general form of this pragma looks like:

#pragma psect default_psect =new_psect

and instructs the code generator that anything that would normally appear in the compiler-generated
psectdefault_psect , will now appear in a new psect callednew_psect . This psect will be
identical todefault_psect in terms of its options, however will have a different name. Thus,
this new psect can be explicitly positioned by the linker without affect the original psect’s location.

If the name of the default psect that is being redirected contains a counter, e.g.text0, text1,
text2, then the placeholder%u should be used in the name of the psect at the position of the counter,
e.g.text%u. Any default psect, regadless of the counter value, will match such a psect name.

This pragma remains in force until the end of the module and any given psect should only be
redirected once in a particular module. All psect redirections for a particular module should be
placed at the top of the source file, below any#include statements and above any other declarations.

TUT•RIAL

A particular function, calledread_port(), needs to be located at the absolute address
0x400 in a program. Using the#pragma psect directive in the source code, and adding
a new linker option can do this. First write the function in the usual way. Place the
function definition in a separate module. There is obvioulsy something special about
this function so a module all to itself is probably a good idea anyway.

unsigned char read_port(void)
{

return PORTA;
}

Now, how do we know in which psect the code associated with the function will be
placed? Compile you program, inlcuding this new module and generate an assembly
list file, see Section2.4.18.

Look for the definition of the function. A function starts with an assembly label which
is the name of the function prepended with anunderscore. In this example, the label
appears on line 37.

59

Preprocessing C Language Features

36 psect text
37 0002 _read_port:

Look above this to see the firstPSECT directive you encounter. This will indicate the
name of the psect in which the code is located. In this case it is the psect calledtext.

So let us redirect this psect into one with a unique and more meaningful name. In the C
module that contains the definition forread_port() place the following pragma:

#pragma psect text=readport

at the top of the module, before the function definition. With this, theread_port()
function will be placed in the psect calledreadport. Confirm this in the new assembly
list file.

Now we can tell the linker where we would like this psect positioned. Issue an additional
option to the command-line driver to place this psect at address 0x400.

-L-preadport=0400h

The generate an check the map file, see Section2.4.9. You should see the additional
linker command (minus the leading-L part of the option) present in the section after
Linker command line:. You should also see the remapped psect name appear in the
source file list of psects, e.g.:

Name Link Load Length Selector Space Scale
/tmp/cgt9e31jr.obj
main.obj maintext 0 0 2 0 0

portread 400 400 2 800 0

Check the link address to ensure it is that requested, inthis case, 0x400.

3.12.3.6 The #pragma regsused Directive

HI-TECH C will automatically save context when an interrupt occurs. The compiler will determine
only those registers and objects which need to be saved for the particular interrupt function defined.
The #pragma regsused directive allows the programmer to indicate register usage for functions
that will not be “seen” by the code generator, for example if they were written in assembly code.

The general form of the pragma is:

#pragma regsused routine_name register_list

60

C Language Features Linking Programs

Table 3.12: switch types

switch type description
auto use smallest code size method (default)
direct table lookup (fixed delay)

whereroutine_name is the assembly name of the function or assembly routine which is to be
affected,register_list is a space-separated list of registers names (W0..W15). Those registers
not listed are assumed to be unused by the function or routine. The code generator may use the
unlisted registers to hold values across a function call. Hence, if the routine does in fact use these
registers, unreliable program execution may eventuate.

The register names are not case sensitive and a warning will be produced if the register name is
not recognised. A blank list indicates that the specified function or routine uses no registers.

3.12.3.7 The #pragma switch Directive

Normally the compiler decides the code generation method forswitch statements which results in
the smallest possible code size. The #pragma switch directive can be used to force the compiler to
use one particular method. The general form of the switch pragma is:

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table .
Specifying thedirect option to the#pragma switch directive forces the compiler to generate

the table look-up styleswitch method. This is mostly useful where timing is an issue forswitch
statements (i.e.: state machines).

This pragma affects all code generated onward. Theauto option may be used to revert to the
default behaviour.

3.13 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler
code (DSPICC -S option) or object code (DSPICC -C option).

HI-TECH C, by default, generates intel HEX. Use the--OUTPUT= option to specify a different
output format.

After linking, the compiler will automatically generate a memory usage map which shows the
address used by, and the total sizes of, all the psects which are used by the compiled code.

61

Linking Programs C Language Features

The program statistics shown after the summary provides more concise information based on
each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may
be obtained by using theDSPICC --SUMMARY=psect option. Generate a map file for the complete
memory specification of the program.

3.13.1 Replacing Library Modules

Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack a library files and
replace modules with your own modified versions, you can easily replace a library module that is
linked into your program without having to do this. If you add the source file which contains the
library routine you wish to replace on the command-line list of source files then the routine will
replace the routine in the library file with the same name.

•

This method works due to the way the linker scans source and library file. When trying
to resolve a symbol (in this instance a function name) the linker first scans all source
modules for the definition. Only if it cannot resolve the symbol in these files does it
then search the library files. Even though the symbol may be defined in a source file
and a library file, the linker will not search the libraries and no multiply defined symbol
error will result. This is not true if a symbol is defined twice in source files.

For example, if you wished to make changes to the library functionmax() which resides in the file
max.c in the SOURCES directory, you could make a copy of this source file, make the appropriate
changes and then compile and use it as follows.

DSPICC --chip=30F6014 main.c init.c max.c

The code formax() in max.c will be linked into the program rather than themax() function con-
tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

3.13.2 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16-bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

62

C Language Features Linking Programs

At link time the linker will report any mismatch of signatures. HI-TECH dsPICC is only likely
to issue a mismatch error from the linker when the routine is either a precompiled object file or an
assembly routine. Other function mismatches are reported by the code generator.

TUT•RIAL

It is sometimes necessary to write assembly language routines which are called from C
using anextern declaration. Such assembly language functions should include a signa-
ture which is compatible with the C prototype used to call them. The simplest method of
determining the correct signature for a function is to write a dummy C function with the
same prototype and compile it to assembly language using the DSPICC-S option. For
example, suppose you have an assembly language routine called_widget which takes
two int arguments and returns achar value. The prototype used to call this function
from C would be:

extern char widget(int, int);

Where a call to_widget is made in the C code, the signature for a function with twoint
arguments and achar return value would be generated. In order to match the correct
signature the source code for widget needs to contain an assembler SIGNAT pseudo-op
which defines the same signature value. To determine the correct value, you would write
the following code:

char widget(int arg1, int arg2)
{
}

and compile it to assembler code using

DSPICC -S x.c

The resultant assembler code includes the following line:

SIGNAT _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the.obj file which
associates the value 8249 with symbol_widget. The value 8249 is the correct signature
for a function with twoint arguments and achar return value. If this line is copied into
the .as file where_widget is defined, it will associate the correct signature with the
function and the linker will be able to check for correct argument passing. For example,
if another.c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-
match which will alert you to the possible existence of incompatible calling conventions.

63

Standard I/O Functions and Serial I/O C Language Features

Table 3.13: Supported standard I/O functions

Function name Purpose
printf(const char * s, ...) Formatted printing tostdout
sprintf(char * buf, const char * s, ...) Writes formatted text tobuf

3.13.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with name__Lname
wherename is the name of the psect. For example,__Lbss is the low bound of thebss psect. The
highest address of a psect (i.e. the link address plus the size) is symbol__Hname.

If the psect has different load and link addresses the load start address is specified as__Bname.

3.14 Standard I/O Functions and Serial I/O

A number of the standard I/O functions are provided in the C library with the compiler, specifically
those functions intended to read and write formatted text on standard output and input. A list of the
available functions is in Table3.13. More details of these functions can be found in AppendixA.

Before any characters can be written or read using these functions, theputch() andgetch()
functions must be written. Other routines which may be required includegetche() andkbhit().

64

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH dsPICC assembles source files for dsPIC MCUs.
This chapter describes the usage of the assembler and the directives (assembler pseudo-ops and
controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator
and an object code converter.

•

Athough the term “assembler” is almost universally used to decribe the tool which con-
verts human-readable mnemonics into machine code, both “assembler” and “assembly”
are used to describe the source code which such a tool reads. The latter is more com-
mon and is used in this manual to describe the language. Thus you will see the terms
assembly language, assembly listing and assembly instruction, but assembler options
and assembler directive.

4.1 Assembler Usage

The assembler is calledASDSPIC and is available to run onWindowsandUNIX machines. Note
that the assembler will not produce any messages unless there are errors or warnings — there are no
“assembly completed” messages.

Typically the command-line driver,HTKC, is used to envoke the assembler as it can be passed
assembler source files as input, however the optiona are supplied here for instances where the as-

65

Assembler Usage Macro Assembler

sembler is being called directly, or when they are specified using the command-line driver option
--SETOPTION, see Section2.4.43.

The usage of the assembler is similar under all of available operating systems. All command-line
options are recognised in either upper or lower case. The basic command format is shown:

ASDSPIC [options] files

files is a space-separated list of one or more assembler source files. Where more than one source
file is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with aminus sign- as
the first character. A full list of possible options is given in Table4.1, and a full description of each
option follows.

Table 4.1: ASDSPIC command-line options

Option Meaning Default
-A Produce assembler output Produce object code
-C Produce cross-reference file No cross reference
-Cchipinfo Define the chipinfo file dat\dspicc.ini
-E[file |digit] Set error destination/format
-Flength Specify listing form length 66
-H Output hex values for constantsDecimal values
-I List macro expansions Don’t list macros
-L[listfile] Produce listing No listing
-O Perform optimization No optimization
-Ooutfile Specify object name srcfile.obj
-Pprocessor Define the processor
-R Specify non-standard ROM
-Twidth Specify listing page width 80
-V Produce line number info No line numbers
-Wlevel Set warning level threshold 0
-X No local symbols in OBJ file

66

Macro Assembler Assembler Options

4.2 Assembler Options

The command line options recognised by ASDSPIC are as follows:

-A An assembler file with an extension.opt will be produced if this option is used. This is useful
when checking the optimized assembler produced using the-O option.

-C A cross reference file will be produced when this option is used. This file, calledsrcfile .crf,
wheresrcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utilityCREF must then be run to produce the formatted
cross reference listing. See Section4.7for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is calleddspicc.ini and can be found
in theDAT directory of the compiler distribution.

-E[file|digit] The default format for an error message is in the form:

filename: line: message

where the error of typemessage occurred on lineline of the file filename .
The -E option with no argument will make the assembler use an alternate format for
error and warning messages.
Specifying a digit as argument has a similar effect, only it allows selection of any of
the available message formats.
Specifying a filename as argument will force the assembler to direct error and warning
messages to a file with the name specified.

-Flength By default the listing format is pageless, i.e. the assembler listing output is continuous.
The output may be formatted into pages of varying lengths. Each page will begin with a
header and title, if specified. The-F option allows a page length to be specified. A zero value
of length implies pageless output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the-A or -L ASDSPIC options, this option specifies that
output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-
wise be suppressed by aNOLIST assembler control. The-L option is still necessary to produce
a listing.

-L listfile This option requests the generation of an assembly listing file. Iflistfile is specified
then the listing will be written to that file, otherwise it will be written to the standard output.

67

HI-TECH C Assembly Language Macro Assembler

-O This requests the assembler to perform optimization on the assembly code. Note that the use of
this option slows the assembly process down, as the assembler must make an additional pass
over the input code. Debug information for assembler code generated from C source code
may become unreliable.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source filename and
appending.obj. The-O option allows the user to override the default filename and specify a
new name for the object file.

-PprocessorThis option defines the processor which is being used. The processor type can also be
indicated by use of thePROCESSOR directive in the assembler source file, see Section4.3.8.17.
You can also add your own processors to the compiler via the compiler’s chipinfo file.

-V This option will include line number and filename information in the object file produced by
the assembler. Such information may be used by debuggers. Note that the line numbers will
correspond with assembler code lines in the assembler file. This option should not be used
when assembling an assembler file produced by the code generator from a C source file.

-Twidth This option allows specification of the listfile paper width, in characters.width should be
a decimal number greater than 41. The default width is 80 characters.

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. The-X option will prevent the local symbols
from being included in the object file, thereby reducing the file size.

4.3 HI-TECH C Assembly Language

The source language accepted by the macro assembler,ASDSPIC, is described below. All opcode
mnemonics and operand syntax are strictly dsPIC assembly language. Additional mnemonics and
assembler directives are documented in this section.

4.3.1 Statement Formats

Legal statement formats are shown in Table4.2.
The label field is optional and, if present, should contain one identifier. A label may appear

on a line of its own, or precede a mnemonic as shown in the second format.
The third format is only legal with certain assembler directives, such asMACRO, SET andEQU. The

name field is mandatory and should also contain one identifier.

68

Macro Assembler HI-TECH C Assembly Language

Table 4.2: ASDSPICstatement formats

Format 1 label:
Format 2 label: mnemonic operands ; comment
Format 3 name pseudo-op operands ; comment
Format 4 ; comment only
Format 5 <empty line>

If the assembly file is first processed by the C preprocessor, see Section2.4.12, then it may also
contain lines that form valid preprocessor directives. See Section3.12.1for more information on the
format for these directives.

There is no limitation on what column or part of the line in which any part of the statement
should appear.

4.3.2 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
mnemonics and reserved words.Tabsare treated as equivalent tospaces.

4.3.2.1 Delimiters

All numbers and identifiers must be delimited bywhite space, non-alphanumeric characters or the
end of a line.

4.3.2.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character& is
used for token concatenation. To use the bitwise& operator within a macro body, escape it by using
&& instead. In a macro argument list, theangle brackets< and> are used to quote macro arguments.

4.3.3 Comments

An assembly comment is initiated with asemicolonthat is not part of a string or character constant.
If the assembly file is first processed by the C preprocessor, see Section2.4.12, then it may also

contain C or C++ style comments using the standard/* ... */ and// syntax.

69

HI-TECH C Assembly Language Macro Assembler

Table 4.3: ASDSPIC numbers and bases

Radix Format
Binary digits 0 and 1 followed byB
Octal digits 0 to 7 followed byO, Q, o or q
Decimal digits 0 to 9 followed byD, d or nothing
Hexadecimal digits 0 to 9, A to F preceded byOx or followed byH or h

4.3.3.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are
typically used by the assembler optimizer.

The comment string;volatile is used to indicate that the memory location being accessed in
the commented instruction is associated with a variable that was declared asvolatile in the C
source code. Accesses to this location which appear to be redundant will not be removed by the
assembler optimizer if this string is present.

This comment string may also be used in assembler source to achive the same effect for locations
defined and accessed in assembly code.

4.3.4 Constants

4.3.4.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.
The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier

as given in Table4.3.
Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi-

fiers. Hexadecimal digits are accepted in either upper or lower case.
Note that a binary constant must have an upper caseB following it, as a lower caseb is used for

temporary (numeric) label backward references.
In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit

format.

4.3.4.2 Character Constants and Strings

A character constant is a single character enclosed insingle quotes’.
Multi-character constants, or strings, are a sequence of characters, not includingcarriage return

or newlinecharacters, enclosed within matching quotes. Eithersingle quotes’ or double quotes"

70

Macro Assembler HI-TECH C Assembly Language

maybe used, but the opening and closing quotes must be the same.

4.3.5 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-
bol may contain any number of characters drawn from the alphabetics, numerics and the special
charactersdollar, $, question mark,? andunderscore,_.

The first character of an identifier may not be numeric. The case of alphabetics is significant,
e.g.Fred is not the same symbol asfred. Some examples of identifiers are shown here:

An_identifier
an_identifier
an_identifier1
$
?$_12345

4.3.5.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note
that this assembler attaches no significance to any symbol, and places no restrictions or expectations
on the usage of a symbol.

The names ofpsects(program sections) and ordinary symbols occupy separate, overlapping
name spaces, but other than this, the assembler does not care whether a symbol is used to represent
bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits
or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for
the assembler to generate correct code.

4.3.5.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form??nnnn wherennnn is a 4 digit number. The user should avoid defining symbols with the
same form.

4.3.5.3 Location Counter

The current location within the active program section is accessible via the symbol$. This symbol
expands to the address of the currently executing instruction. Thus:

71

HI-TECH C Assembly Language Macro Assembler

goto $

will represent code that will jump to itself and form an endless loop. By using this symbol and an
offset, a relative jump destination to be specified.

The address represented by$ is a word address and thus any offset to this symbol represents a
number of instructions. For example:

goto $+1
mov #8, w8
mov w8, _foo

will skip one instruction.

4.3.5.4 Register Symbols

Code in assembly modules may gain access to the special function registers by including pre-defined
assembly header files. The appropriate file can be included by add the line:

#include <asdspicc.h>

to the assembler source file. Note that the file must be included using a C pre-processor directive and
hence the option to pre-process assembly files must be enabled when compiling, see Section2.4.12.
This header file contains appropriate commands to ensure that the header file specific for the target
device is included into the souce file.

These header files containEQU declarations for all byte or multi-byte sized registers and#define
macros for named bits within byte registers.

4.3.5.5 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.
A label definition consists of any valid assembly identifier followed by acolon, :. The defini-

tion may appear on a line by itself or be positioned before a statement. Here are two examples of
legitimate labels interspersed with assembly code.

frank:
mov #1, w0
goto fin

simon44: clrf _input

72

Macro Assembler HI-TECH C Assembly Language

Here, the labelfrank will ultimately be assigned the address of themov instruction, andsimon44 the
address of theclrf instruction. Regardless of how they are defined, the assembler list file produced
by the assembler will always show labels on a line by themselves.

Labels may be used (and are prefered) in assembly code rather than using an absolute address.
Thus they can be used as the target location for jump-type instructions or to load an address into a
register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which
they are defined. They may be used by code above their definition. To make a label accessable in
other modules, use the GLOBAL directive. See Section4.3.8.1for more information.

4.3.6 Expressions

The operands to instructions and directives are comprised of expressions. Expressions can be made
up of numbers, identifiers, strings and operators.

Operators can be unary (one operand, e.g.not) or binary (two operands, e.g.+). The operators
allowable in expressions are listed in Table4.4. The usual rules governing the syntax of expressions
apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The
HI-TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

4.3.7 Program Sections

Program sections, orpsects, are simply a section of code or data. They are a way of grouping together
parts of a program (via the psect’s name) even though the source code may not be physically adjacent
in the source file, or even where spread over several source files.

•

The concept of a program section is not a HI-TECH-only feature. Often referred to as
blocks or segments in other compilers, these grouping of code and data have long used
the namestext, bss anddata.

A psect is identified by a name and has several attributes. ThePSECT assembler directive is used
to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See
Section4.3.8.3for full information on psect definitions. Chapter5 has more information on the
operation of the linker and on optins that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware
of which are compiler-generated or user-defined psects. Unless defined asabs (absolute), psects are
relocatable.

73

HI-TECH C Assembly Language Macro Assembler

Table 4.4: ASDSPIC operators

Operator Purpose Example
* Multiplication mov #4*33,W0
+ Addition bra $+1
- Subtraction DB 5-2
/ Division mov #100/4,W5
= or eq Equality IF inp eq 66
> or gt Signed greater than IF inp > 40
>= or ge Signed greater than or equal toIF inp ge 66
< or lt Signed less than IF inp < 40
<= or le Signed less than or equal to IF inp le 66
<> or ne Signed not equal to IF inp <> 40
low Low byte of operand mov #low(inp),W2
high High byte of operand mov #high(1008h),W3
highword High 16 bits of operand DW highword(inp)
mod Modulus mov #77mod4,W10
& Bitwise AND clrf inp&0ffh
^ Bitwise XOR (exclusive or) mov #inp^80,W4
| Bitwise OR mov #inp!1,W1
not Bitwise complement mov #not 055h,W6
< < or shl Shift left DB inp> >8
> > or shr Shift right mov #inp shr 2,W3
rol Rotate left DB inp rol 1
ror Rotate right DB inp ror 1
float24 24-bit version of real operand DW float24(3.3)
nul Tests if macro argument is null

74

Macro Assembler HI-TECH C Assembly Language

The following is an example showing some executable instructions being placed in thetext
psect, and some data being placed in thebss psect.

PSECT text,class=CODE,delta=2
adjust:

goto clear_fred
increment:

inc _fred
PSECT bss,class=RAM,space=1
fred:

DS 2
PSECT text,class=CODE,delta=2
clear_fred:

clrf _fred
return

Note that even though the two blocks of code in thetext psect are separated by a block in thebss
psect, the twotext psect blocks will be contiguous when loaded by the linker. In other words,
theinc _fred instruction will be followed by theclrf instruction in the final ouptut. The actual
location in memory of thetext andbss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)
psect.

4.3.8 Assembler Directives

Assemblerdirectives, or pseudo-ops, are used in a similar way to instruction mnemonicss, but either
do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in
Table4.5, and are detailed below.

4.3.8.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If
the symbols are not defined in the current module, it is a reference to symbols in external modules.
Example:

GLOBAL lab1,lab2,lab3

75

HI-TECH C Assembly Language Macro Assembler

Table 4.5: ASDSPIC assembler directives

Directive Purpose
GLOBAL Make symbols accessible to other modules or allow reference to

other modules’ symbols
END End assembly
PSECT Declare or resume program section
ORG Set location counter
EQU Define symbol value
SET Define or re-define symbol value
DB Define constant byte(s)
DW Define constant word(s)
DDW Define constant double word(s)
DS Reserve storage
IF Conditional assembly
ELSIF Alternate conditional assembly
ELSE Alternate conditional assembly
ENDIF End conditional assembly
MACRO Macro definition
ENDM End macro definition
LOCAL Define local tabs
ALIGN Align output to the specified boundary
PAGESEL Generate set/reset instruction to setPCLATH for this page
PROCESSOR Define the particular chip for which this file is to be assembled.
REPT Repeat a block of code n times
IRP Repeat a block of code with a list
IRPC Repeat a block of code with a character list
SIGNAT Define function signature

76

Macro Assembler HI-TECH C Assembly Language

Table 4.6:PSECT flags

Flag Meaning
abs Psect is absolute
bit Psect holds bit objects
class=name Specify class name for psect
delta=size Size of an addressing unit
global Psect is global (default)
limit=address Upper address limit of psect
local Psect is not global
ovrld Psect will overlap same psect in other modules
pure Psect is to be read-only
pad=amount Zero pads psect up to specified alignment
reloc=boundary Start psect on specified boundary
size=max Maximum size of psect
space=area Represents area in which psect will reside
width=size Sets maximum number of bytes used per address
with=psect Place psect in the same page as specified psect

4.3.8.2 END

END is optional, but if present should be at the very end of the program. It will terminate the assembly
and not even blank lines should follow this directive. If an expression is supplied as an argument,
that expression will be used to define the start address of the program. Whether this is of any use
will depend on the linker. Example:

END start_label

4.3.8.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,
optionally, a comma-separated list of flags. The allowed flags are listed in Table4.6, below.

Once a psect has been declared it may be resumed later by anotherPSECT directive, however the
flags need not be repeated.

• abs defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

77

HI-TECH C Assembly Language Macro Assembler

• Thebit flag specifies that a psect hold objects that are 1 bit long. Such psects have ascale
value of 8 to indicate that there are 8 addressable units to each byte of storage.

• Theclass flag specifies a class name for this psect. Class names are used to allow local psects
to be referred to by a class name at link time, since they cannot be referred to by their own
name. Class names are also useful where psects need only be positioned anywhere within a
range of addresses rather than at one specific address.

• The delta flag defines the size of an addressing unit. In other words, the number of bytes
covered for an increment in the address.

• A psect defined asglobal will be combined with otherglobal psects of the same name from
other modules at link time. This is the default behaviour for psects, unless thelocal flag is
used.

• Thelimit flag specifies a limit on the highest address to which a psect may extend.

• A psect defined aslocal will not be combined with otherlocal psects at link time, even if
there are others with the same name. Where there are twolocal psects in the one module,
they reference the same psect. Alocal psect may not have the same name as anyglobal
psect, even one in another module.

• A psect defined asovrld will have the contribution from each module overlaid, rather than
concatenated at runtime.ovrld in combination withabs defines a truly absolute psect, i.e. a
psect within which any symbols defined are absolute.

• The pure flag instructs the linker that this psect will not be modified at runtime and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

• Thepad flag instructs the linker that at the end of this psect, it should zero pad it to the next
address which is a multiple of the given value. This is useful when mulitple psects are linked
one after each other as it ensures that the start of each psect will begin on the selected address
boundary.

• Thereloc flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g.reloc=100h would specify that this psect must start on an address that is a
multiple of 100h.

• Thesize flag allows a maximum size to be specified for the psect, e.g.size=100h. This will
be checked by the linker after psects have been combined from all modules.

78

Macro Assembler HI-TECH C Assembly Language

• The space flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in program memory and data memory may
have a differentspace value to indicate that the program space address zero, for example,
is a different location to the data memory address zero. Devices which use banked RAM
data memory typically have the samespace value as their full addresses (including bank
information) are unique.

• Thewith flag allows a psect to be placed in the same pagewith a specified psect. For example
with=text will specify that this psect should be placed in the same page as thetext psect.

• Thewidth flag is used to control the maximum number of bytes placed at each address. For
example, even if each address can take a four byte (32-bit) instruction, this flag could be used
to restrict this to a smaller value. On the dsPIC, this is used on data constants to limit only
two bytes of constants per address. This is needed because constants are mapped into data
memory where each addressable location is two bytes (16-bits) wide. This flag is useful only
when used in conjunction with theDB, DW andDDW assembler directives.

Some examples of the use of thePSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE,delta=2

4.3.8.4 ORG

TheORG directive changes the value of the location counter within the current psect. This means that
the addresses set with ORG are relative to the base address of the psect, which is not determined
until link time.

•

The much-abusedORG directive doesnot necessarily move the location counter to the
absolute address you specify as the operand. This directive is rarely needed in programs.

The argument toORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. It is not
possible to move the location counter backward. For example:

ORG 100h

79

HI-TECH C Assembly Language Macro Assembler

will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time.

In order to use theORG directive to set the location counter to an absolute value, the directive
must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld
ORG 50h

4.3.8.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifierthomas will be given the value 123h.EQU is legal only when the symbol has not
previously been defined. See also Section4.3.8.6.

4.3.8.6 SET

This pseudo-op is equivalent toEQU except that allows a symbol to be re-defined. For example

thomas SET 0h

4.3.8.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be
assembled into one byte. Each character of the string will be assembled into one memory location.
Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a
word with the upper byte set to zero.

4.3.8.8 DW

DW operates in a similar fashion toDB, except that it assembles expressions into words. Example:

DW -1, 3664h, ‘A’, 3777Q

80

Macro Assembler HI-TECH C Assembly Language

4.3.8.9 DDW

DDW operates in a similar fashion toDW, except that it assembles expressions into double (32-bit)
words. Example:

DDW 12345678h

4.3.8.10 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 2+3 ;Reserve 5 bytes of memory

4.3.8.11 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument toIF and ELSIF should be an
absolute expression. If it is non-zero, then the code following it up to the next matchingELSE,
ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching
ELSE or ENDIF will be skipped.

At anELSE the sense of the conditional compilation will be inverted, while anENDIF will termi-
nate the conditional assembly block. Example:

IF ABC
goto aardvark

ELSIF DEF
goto denver

ELSE
goto grapes

ENDIF

In this example, ifABC is non-zero, the firstjmp instruction will be assembled but not the second or
third. If ABC is zero andDEF is non-zero, the secondjmp will be assembled but the first and third
will not. If both ABC andDEF are zero, the thirdjmp will be assembled. Conditional assembly blocks
may be nested.

4.3.8.12 MACRO and ENDM

These directives provide for the definition of macros. TheMACRO directive should be preceded by
the macro name and optionally followed by a comma-separated list of formal parameters. When the

81

HI-TECH C Assembly Language Macro Assembler

macro is used, the macro name should be used in the same manner as a machine opcode, followed
by a list of arguments to be substituted for the formal parameters.

For example:

;macro: storem
;args: arg1 - the NAME of the source variable
; arg2 - the literal value to load
;descr: Loads two registers with the value in the variable:
ldtwo MACRO arg1,arg2

mov #&arg2, w0
mov w0,&arg1

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

storem tempvar,2

expands to:

mov #2,w0
mov w0,tempvar

A point to note in the above example: the& character is used to permit the concatenation of macro
parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro
storage) by opening the comment with a doublesemicolon, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a
comma(or other delimiter such as aspace) in an argument thenangle brackets< and> may be used
to quote the argument. In addition theexclamation mark, ! may be used to quote a single character.
The character immediately following theexclamation markwill be passed into the macro argument
even if it is normally a comment indicator.

If an argument is preceded by a percent sign%, that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

Thenul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.
...

ELSE ; argument was supplied
...

ENDIF

82

Macro Assembler HI-TECH C Assembly Language

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was
invoked. Expansion of the macro in the listing file can be shown by using theEXPAND assembler
control, see Section4.3.9.2,

4.3.8.13 LOCAL

TheLOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after theLOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

down MACRO count
LOCAL more
more: dec count
cp0 count
bra nz, more

ENDM

when expanded will include a unique assembler generated label in place ofmore. For example:

down foobar

expands to:

??0001 dec foobar
cp0 foobar
bra nz, ??0001

if invoked a second time, the labelmore would expand to??0002.

4.3.8.14 ALIGN

TheALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary
in the psect in which the directive is found. The boundary is specified by a number following the
directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address
within a psect, the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on
an even address. TheALIGN directive can also be used to ensure that a psect’s length is a multiple
of a certain number. For example, if the aboveALIGN directive was placed at the end of a psect, the
psect would have a length that was always an even number of bytes long.

83

HI-TECH C Assembly Language Macro Assembler

4.3.8.15 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as
determined by its argument. For example:

REPT 3
sl w0
ENDM

will expand to

sl w0
sl w0
sl w0

4.3.8.16 IRP and IRPC

The IRP andIRPC directives operate similarly toREPT, however instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case ofIRP
the list is a conventional macro argument list, in the case orIRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

PSECT romdata,class=CODE,reloc=4,delta=2
IRP number,4865h,6C6Ch,6F00h
DW number

ENDM
PSECT text

would expand to:

PSECT romdata,class=CODE,reloc=4,delta=2
DW 4865h
DW 6C6Ch
DW 6F00h

PSECT text

Note that you can use local labels andangle bracketsin the same manner as with conventional
macros.

TheIRPC directive is similar, except it substitutes one character at a time from a string of non-
space characters.

For example:

84

Macro Assembler HI-TECH C Assembly Language

PSECT romdata,class=CODE,reloc=4,delta=2
IRPC char,ABC
DB ’char’

ENDM
PSECT text

will expand to:

PSECT romdata,class=CODE,reloc=4,delta=2
DB ’A’
DB ’B’
DB ’C’

PSECT text

4.3.8.17 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically
set using the--CHIP option to the command-line driver DSPICC, see Section2.4.21, or using the
assembler-P option, see Table4.1, but can also be set with this directive, e.g.

PROCESSOR 30F6014

4.3.8.18 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function
prototypes and calling conventions.

Use theSIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred,8192

will associate the signature value 8192 with the symbol_fred. If a different signature value for
_fred is present in any object file, the linker will report an error.

4.3.9 Assembler Controls

Assembler controls may be included in the assembler source to control assembler operation such as
listing format. These keywords have no significance anywhere else in the program. The control is
invoked by the directiveOPT followed by the control name. Some keywords are followed by one or
more parameters. For example:

85

HI-TECH C Assembly Language Macro Assembler

Table 4.7: ASDSPIC assembler controls

Control1 Meaning Format
COND* Include conditional code in the listing COND
EXPAND Expand macros in the listing output EXPAND
INCLUDE Textually include another source file INCLUDE <pathname >
LIST* Define options for listing output LIST [<listopt >, ...,

<listopt >]
NOCOND Leave conditional code out of the listingNOCOND
NOEXPAND* Disable macro expansion NOEXPAND
NOLIST Disable listing output NOLIST
PAGE Start a new page in the listing output PAGE
SUBTITLE Specify the subtitle of the program SUBTITLE “<subtitle >”
TITLE Specify the title of the program TITLE “<title >”

OPT EXPAND

A list of keywords is given in Table4.7, and each is described further below.

4.3.9.1 COND

Any conditional code will be included in the listing output. See also theNOCOND control in Section
4.3.9.5.

4.3.9.2 EXPAND

WhenEXPAND is in effect, the code generated by macro expansions will appear in the listing output.
See also theNOEXPAND control in Section4.3.9.6.

4.3.9.3 INCLUDE

This control causes the file specified bypathname to be textually included at that point in the
assembly file. TheINCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the
working directory, the pathname must specify the exact location.

86

Macro Assembler HI-TECH C Assembly Language

Table 4.8:LIST control options

List Option Default Description
c=nnn 80 Set the page (i.e. column) width.
n=nnn 59 Set the page length.
t=ON|OFF OFF Truncate listing output lines. The default wraps lines.
p=<processor > n/a Set the processor type.
r=<radix > hex Set the default radix to hex, dec or oct.
x=ON|OFF OFF Turn macro expansion on or off.

See also the driver option -P in Section2.4.12which forces the C preprocessor to preprocess
assembly file, thus allowing use of preprocessor directives, such as#include (see Section3.12.1).

4.3.9.4 LIST

If the listing was previously turned off using theNOLIST control, theLIST control on its own will
turn the listing on.

Alternatively, theLIST control may includes options to control the assembly and the listing. The
options are listed in Table4.8.

See also theNOLIST control in Section4.3.9.7.

4.3.9.5 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also
theCOND control in Section4.3.9.1.

4.3.9.6 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See
also theEXPAND control in Section4.3.9.2. Assembly macro are discussed in Section4.3.8.12.

4.3.9.7 NOLIST

This control turns the listing output off from this point onward. See also theLIST control in Section
4.3.9.4.

87

HI-TECH C Assembly Language Macro Assembler

4.3.9.8 NOXREF

NOXREF will disable generation of theraw cross reference file. See also theXREF control in Section
4.3.9.13.

4.3.9.9 PAGE

PAGE causes a new page to be started in the listing output. AControl-L (form feed) character will
also cause a new page when encountered in the source.

4.3.9.10 SPACE

TheSPACE control will place a number of blank lines in the listing output as specified by its param-
eter.

4.3.9.11 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string
should be enclosed insingleor double quotes. See also theTITLE control in Section4.3.9.12.

4.3.9.12 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be
enclosed insingleor double quotes. See also theSUBTITLE control in Section4.3.9.11.

4.3.9.13 XREF

XREF is equivalent to the driver command line option--CR (see Section2.4.24). It causes the assem-
bler to produce a raw cross reference file. The utilityCREF should be used to actually generate the
formatted cross-reference listing.

88

Chapter 5

Linker and Utilities

5.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler drivers (HPD or command
line) will automatically invoke the linker with all necessary arguments. Using the linker directly is
not simple, and should be attempted only by those with a sound knowledge of the compiler and
linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to berelocatablesince the files have sufficient information in them so that any
references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus

89

Program Sections Linker and Utilities

the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.
relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

5.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to aspsects. These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

5.4 Local Psects

Most psects areglobal, i.e. they are referred to by the same name in all modules, and any reference
in any module to aglobal psect will refer to the same psect as any other reference. Some psects
arelocal, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another module.Local psects can only be referred
to at link time by a class name, which is a name associated with one or more psects via thePSECT
directiveclass= in assembler code. See Section4.3.8.3for more information onPSECT options.

5.5 Global Symbols

The linker handles only symbols which have been declared asGLOBAL to the assembler. The code
generator generates these assembler directives whenever it encounters global C objects. At the C

90

Linker and Utilities Link and load addresses

source level, this means all names which have storage class external and which are not declared
asstatic. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker’s job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

5.6 Link and load addresses

The linker deals with two kinds of addresses;link andload addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

5.7 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. Files is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Table5.1and discussed in the following paragraphs.

Table 5.1: Linker command-line options

Option Effect
-8 Use 8086 style segment:offset address form
-Aclass=low-high ,... Specify address ranges for a class
continued. . .

1In earlier versions of HI-TECH C the linker was calledLINK.EXE

91

Operation Linker and Utilities

Table 5.1: Linker command-line options

Option Effect
-Cx Call graph options
-Cpsect=class Specify a class name for a global psect
-Cbaseaddr Produce binary output file based atbaseaddr
-Dclass=delta Specify a class delta value
-Dsymfile Produce old-style symbol file
-Eerrfile Write error messages toerrfile
-F Produce.obj file with only symbol records
-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file
-H+symfile Generate enhanced symbol file
-I Ignore undefined symbols
-Jnum Set maximum number of errors before aborting
-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in.obj file
-LM Preserve segment relocation items in.obj file
-N Sort symbol table in map file by address order
-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file
-Ooutfile Specify name of output file
-Pspec Specify psect addresses and ordering
-Qprocessor Specify the processor type (for cosmetic reasons only)
-S Inhibit listing of symbols in symbol file
-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter symbol in table as undefined
-Vavmap Use fileavmap to generate anAvocetformat symbol file
-Wwarnlev Set warning level (-9 to 9)
-Wwidth Set map file width (>=10)
-X Remove any local symbols from the symbol file
-Z Remove trivial local symbols from the symbol file

5.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a

92

Linker and Utilities Operation

hex number, a trailingH should be added, e.g.765FH will be treated as a hex number.

5.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a-P option (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the classCODE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
characterx or * after a range, followed by a count.

5.7.3 -Cx

These options allow control over the call graph information which may be included in the map file
produced by the linker. The-CN option removes the call graph information from the map file. The
-CC option only include the critical paths of the call graph. A function call that is marked with a* in
a full call graph is on a critical path and only these calls are included when the-CC option is used.
A call graph is only produced for processors and memory models that use a compiled stack.

5.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

5.7.5 -Dclass=delta

This option allows thedeltavalue for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are defined with adeltavalue.

93

Operation Linker and Utilities

5.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where
each line has the link address of the symbol followed by the symbol name.

5.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

5.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values. The-F option will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

5.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addresses, orselectors, to each segment. Asegmentis defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with
the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based on thereloc= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instance the-G option is used to specify a method for
calculating the segment selector. The argument to-G is a string similar to:

A/10h-4h

whereA represents the load address of the segment and/ represents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

94

Linker and Utilities Operation

The tokenN is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where
these selectors would represent LDT entries.

5.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argumentsymfile
specifies a file to receive the symbol file. The default file name isl.sym.

5.7.11 -H+symfile

This option will instruct the linker to generate anenhancedsymbol file, which provides, in addition
to the standard symbol file, class names associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argumentsymfile specifies a file to
receive the symbol file. The default file name isl.sym.

5.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).
The default number is 10, but the-J option allows this to be altered.

5.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

5.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

95

Operation Linker and Utilities

5.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at
load time, e.g. when running a .exe file under DOS or a.prg file under TOS. This requires that some
information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

5.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating.exe files to run under DOS.

5.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Section5.9.

5.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The-N option will cause it to
be sorted numerically, based on the value of the symbol. The-Ns and-Nc options work similarly
except that the symbols are grouped by either theirspacevalue, or class.

5.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is
l.obj. Use of this option will override the default.

5.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via-P
options. The argument to the-P option consists basically ofcomma-separated sequences thus:

-Ppsect =lnkaddr +min /ldaddr +min ,psect =lnkaddr /ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-
dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

96

Linker and Utilities Operation

The minimum value,min , is preceded by a+ sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse
order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). Thedata
psect will be linked (and loaded) at an address which is 100 hex plus the length of thetext psect,
rounded up as necessary if the data psect has areloc= value associated with it. Similarly, thebss
psect will concatenate with thedata psect. Again:

-Ptext=-100h,data,bss

will link in ascending orderbss, data thentext with the top of text appearing at address 0ffh.
If the load address is omitted entirely, it defaults to the same as the link address. If theslash/

character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause bothtext anddata to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the end oftext. The bss psect will concatenate withdata
for both link and load addresses.

The load address may be replaced with adot . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example showstext at zero,data linked at 8000h but loaded aftertext, bss is linked and
loaded at 8000h plus the size ofdata, andnvram andheap are concatenated withbss. Note here
the use of two-P options. Multiple-P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

97

Operation Linker and Utilities

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated withCODE.
If no sufficiently large space is available, an error will result. Note that in this case thedata psect
will still be assembled into one contiguous block, whereas other psects in the classCODE will be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in classCODE, they may be intermixed in the address ranges.

Any psects allocated by a-P option will have their load address range subtracted from any
address ranges specified with the-A option. This allows a range to be specified with the-A option
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

5.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

5.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

5.7.23 -Sclass=limit[, bound]

A class of psects may have an upper addresslimit associated with it. The following example places
a limit on the maximum address of theCODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with alimit= flag on
aPSECT directive).

If the bound(boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places theFARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

-SFARCODE=6000h,1000h

98

Linker and Utilities Invoking the Linker

5.7.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.
This is useful for linking entirely from libraries, or for linking a module from a library where the
ordering has been arranged so that by default a later module will be linked.

5.7.25 -Vavmap

To produce anAvocetformat symbol file, the linker needs to be given a map file to allow it to
map psect names toAvocetmemory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

5.7.26 -Wnum

The-W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values ofnum>= 10.

-W9 will suppress all warning messages.-W0 is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

5.7.27 -X

Local symbols can be suppressed from a symbol file with this option.Global symbols will always
appear in the symbol file.

5.7.28 -Z

Somelocal symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".
The-Z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

5.8 Invoking the Linker

The linker is calledHLINK, and normally resides in theBIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of arguments toHLINK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leaving abackslash\ at the end of the

99

Map Files Linker and Utilities

preceding line. In this fashion,HLINK commands of almost unlimited length may be issued. For
example a link command file calledx.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

5.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned
to symbols within those psects. The sections in the map file are as follows; first is a copy of the
command line used to invoke the linker. This is followed by the version number of the object code
in the first file linked, and the machine type. This is optionally followed by call graph information,
depended on the processor and memory model selected. Then are listed all object files that were
linked, along with their psect information. Libraries are listed, with each module within the library.
The TOTALS section summarises the psects from the object files. The SEGMENTS section sum-
marises major memory groupings. This will typically show RAM and ROM usage. The segment
names are derived from the name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its
associated psect and link address.

Linker command line:
-z -Mmap -pvectors=00h,text,strings,const,im2vecs \
-pbaseram=00h -pramstart=08000h,data/im2vecs,bss/.,stack=09000h \
-pnvram=bss,heap \
-oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \
C:\HT-Z80\LIB\z80-sc.lib
Object code version is 2.4
Machine type is Z80

Name Link Load Length Selector
C:\HT-Z80\LIB\rtz80-s.obj

vectors 0 0 71
bss 8000 8000 24
const FB FB 1 0

100

Linker and Utilities Map Files

text 72 72 82
hello.obj text F4 F4 7
C:\HT-Z80\LIB\z80-sc.lib
powerup.obj vectors 71 71 1
TOTAL Name Link Load Length

CLASS CODE
vectors 0 0 72
const FB FB 1
text 72 72 89

CLASS DATA
bss 8000 8000 24

SEGMENTS Name Load Length Top Selector
vectors 000000 0000FC 0000FC 0
bss 008000 000024 008024 8000

5.9.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a
hardware stack, to facilitate parameter passing between functions and auto variables defined within
a function. When a compiled stack is used, functions are not re-entrant since the function will use a
fixed area of memory for its local objects (parameters/auto variables). A function calledfoo(), for
example, will use symbols like?_foo for parameters and?a_foo for auto variables. Compilers such
as the PIC, 6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and
medium memory models. The call graph shows information relating to the placement of function
parameters and auto variables by the linker. A typical call graph may look something like:

Call graph:
*_main size 0,0 offset 0

_init size 2,3 offset 0
_ports size 2,2 offset 5

* _sprintf size 5,10 offset 0
* _putch

INDIRECT 4194
INDIRECT 4194

_function_2 size 2,2 offset 0
_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own
local objects. In the example above, the symbol_main is associated with the functionmain(). It is

101

Map Files Linker and Utilities

shown at the far left of the call graph. This indicates that it is the root of a call tree. The run-time
code has theFNROOT assembler directive that specifies this. The size field after the name indicates
the number of parameters andauto variables, respectively. Here,main() takes no parameters and
defines noauto variables. The offset field is the offset at which the function’s parameters and auto
variables have been placed from the beginning of the area of memory used for this purpose. The
run-time code contains aFNCONF directive which tells the compiler in which psect parameters and
auto variables should reside. This memory will be shown in the map file under the name COMMON.

Main() calls a function calledinit(). This function uses a total of two bytes of parameters
(it may be two objects of typechar or oneint; that is not important) and has three bytes ofauto
variables. These figures are the total of bytes ofmemoryconsumed by the function. If the function
was passed a two-byteint, but that was done via a register, then the two bytes would not be included
in this total. Sincemain() did not use any of the local object memory, the offset ofinit()’s memory
is still at 0.

The functioninit() itself calls another function calledports(). This function uses two bytes
of parameters and another two bytes of auto variables. Sinceports() is called byinit(), its
local variables cannot be overlapped with those ofinit()’s, so the offset is 5, which means that
ports()’s local objects were placed immediately after those ofinit()’s.

The function main also callssprintf(). Since the functionsprintf() is not active at the same
time asinit() or ports(), their local objects can be overlapped and the offset is hence set to 0.
Sprintf() calls a functionputch(), but this function uses no memory for parameters (thechar
passed as argument is apparently done so via a register) or locals, so the size and offset are zero and
are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the
two INDIRECT entries in the graph. The number following is the signature value of functions that
could potentially be called by the indirect call. This number is calculated from the parameters and
return type of the functions the pointer can indirectly call. The names of any functions that have this
signature value are listed underneath theINDIRECT entries. Their inclusion does not mean that they
were called (there is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies
that this is the root of another call graph tree. This is an interrupt function which is not called by any
code, but which is automatically invoked when an enabled interrupt occurs. This interrupt routine
calls the functionincr(), which is shown shorthand in the graph by the-> symbol followed by the
called function’s name instead of having that function shown indented on the following line. This is
done whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred with* are those functions which are on a critical
path in terms of RAM usage. For example, in the above, (main() is a trivial example) consider
the functionsprintf(). This uses a large amount of local memory and if you could somehow
rewrite it so that it used less local memory, it would reduce the entire program’s RAM usage. The
functionsinit() andports() have had their local memory overlapped with that ofsprintf(), so

102

Linker and Utilities Librarian

reducing the size of these functions’ local memory will have no affect on the program’s RAM usage.
Their memory usage could be increased, as long as the total size of the memory used by these two
functions did not exceed that ofsprintf(), with no additional memory used by the program. So if
you have to reduce the amount of RAM used by the program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas have been
overlapped (i.e.?a_foo was placed at the same address as?_foo, for example), then check to
make sure that you have actually called the function in your program. If the linker has not seen a
function actually called, then it overlaps these areas of memory since that are not needed. This is
a consequence of the linker’s ability to overlap the local memory areas of functions which are not
active at the same time. Once the function is called, unique addresses will be assigned to both the
parameters and auto objects.

If you are writing a routine that calls C code from assembler, you will need to include the appro-
priate assembler directives to ensure that the linker sees the C function being called.

5.10 Librarian

The librarian program,LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

5.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than
the sum of the modules, the linker is speeded up when searching a library since it need read only
the directory and not all the modules on the first pass. On the second pass it need read only those
modules which are required, seeking over the others. This all minimises disk I/O when linking.

103

Librarian Linker and Utilities

Table 5.2: Librarian command-line options

Option Effect
-Pwidth specify page width
-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands

Key Meaning
r Replace modules
d Delete modules
x Extract modules
m List modules
s Listmodiules with symbols

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

5.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR options k file.lib file.obj ...

Interpreting this,LIBR is the name of the program,options is zero or more librarian options which
affect the output of the program.k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols),file.lib is the name of
the library file to be operated on, andfile.obj is zero or more object file names.

The librarian options are listed in Table5.2.
The key letters are listed in Table5.3.
When replacing or extracting modules, thefile.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

104

Linker and Utilities Librarian

Under thed key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

Them ands key letters will list the named modules and, in the case of thes keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with ther andx
key letters, an empty list of modules means all the modules in the library.

5.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the
modulesa.obj, b.obj andc.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modulesa.obj, b.obj andc.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

5.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments toLIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS,LIBR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the console,LIBR will
prompt for input. Multiple line input may be given by using abackslashas a continuation character
on the end of a line. If standard input is redirected from a file,LIBR will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed byLIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input fromlib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given toLIBR.

105

Objtohex Linker and Utilities

5.10.5 Listing Format

A request toLIBR to list module names will simply produce a list of names, one per line, on standard
output. Thes keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letterD or U, representing a definition or reference to the symbol
respectively. The-P option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib

will list all modules infile.lib with their global symbols, with the output formatted for an 80
column printer or display.

5.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

5.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the-W option was used. In this case
all warning messages will be suppressed.

5.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility programOBJTOHEX. This allows conversion
of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. Ifoutputfile is omitted it defaults tol.hex or l.bin depend-
ing on whether the-b option is used. Theinputfile defaults tol.obj.

The options forOBJTOHEX are listed in Table5.4. Where an address is required, the format is the
same as forHLINK.

106

Linker and Utilities Objtohex

Table 5.4:OBJTOHEX command-line options

Option Meaning
-8 Produce a CP/M-86 output file
-A Produce an ATDOS.atx output file
-Bbase Produce a binary file with offset ofbase . Default file name is

l.obj
-Cckfile Read a list of checksum specifications fromckfile or standard

input
-D Produce a COD file
-E Produce an MS-DOS.exe file
-Ffill Fill unused memory with words of valuefill - default value is

0FFh
-I Produce anIntel HEX file with linear addressed extended

records.
-L Pass relocation information into the output file (used with.exe

files)
-M Produce aMotorolaHEX file (S19, S28 or S37 format)
-N Produce an output file for Minix
-Pstk Produce an output file for anAtari ST, with optional stack size
-R Include relocation information in the output file
-Sfile Write a symbol file intofile
-T Produce aTektronixHEX file.
-TE Produce an extended TekHEX file.
-U Produce a COFF output file
-UB Produce a UBROF format file
-V Reverse the order of words and long words in the output file
-n,m Format either Motorola or Intel HEX file, wheren is the maxi-

mum number of bytes per record andmspecifies the record size
rounding. Non-rounded records are zero padded to a multiple of
m. mitself must be a multiple of 2.

107

Cref Linker and Utilities

5.11.1 Checksum Specifications

The checksum specification allows automated checksum calculation. The checksum specification
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

addr1-addr2 where1-where2 +offset

All of addr1 , addr2 , where1 , where2 andoffset are hex numbers, without the usualH suffix.
Such a specification says that the bytes ataddr1 through toaddr2 inclusive should be summed
and the sum placed in the locationswhere1 throughwhere2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, where1 should be less
than where2, and vice versa. The+offset is optional, but if supplied, the value offset will be used
to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

5.12 Cref

The cross reference list utilityCREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
--CR option to the compiler. The assembler will generate a raw cross-reference file with a-C option
(most assemblers) or by using anOPT CRE directive (6800 series assemblers) or aXREF control line
(PIC assembler). The general form of theCREF command is:

cref options files

whereoptions is zero or more options as described below andfiles is one or more raw cross-
reference files.CREF takes the options listed in Table5.5.

Each option is described in more detail in the following paragraphs.

108

Linker and Utilities Cref

Table 5.5:CREF command-line options

Option Meaning
-Fprefix Exclude symbols from files with a pathname or

filename starting withprefix
-Hheading Specify a heading for the listing file
-Llen Specify the page length for the listing file
-Ooutfile Specify the name of the listing file
-Pwidth Set the listing width
-Sstoplist Read file stoplist and ignore any symbols

listed.
-Xprefix Exclude and symbols starting withprefix

5.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The-F option allows specification of a path name prefix that will be used to
exclude any symbols defined in a file whose path name begins with that prefix. For example,-F\
will exclude any symbols from all files with a path name starting with\.

5.12.2 -Hheading

The-H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

5.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use a-L55 option. The default is 66 lines.

5.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternativelyoutfile may be specified as the
output file name.

109

Cromwell Linker and Utilities

5.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g.-P132
will format the listing for a 132 column printer. The default is 80 columns.

5.12.6 -Sstoplist

The-S option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiple-S options.

5.12.7 -Xprefix

The-X option allows the exclusion of symbols from the listing, based on a prefix given as argument
to -X. For example if it was desired to exclude all symbols starting with the character sequencexyz
then the option-Xxyz would be used. If a digit appears in the character sequence then this will match
any digit in the symbol, e.g.-XX0 would exclude any symbols starting with the letterX followed by
a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied
by invokingCREF with no arguments and typing the command line in response to thecref> prompt.
A backslashat the end of the line will be interpreted to mean that more command lines follow.

5.13 Cromwell

TheCROMWELL utility converts code and symbol files into different formats. The formats available
are shown in Table5.6.

The general form of theCROMWELL command is:

CROMWELL options input_files -okey output_file

whereoptions can be any of the options shown in Table5.7. Output_file (optional) is the
name of the output file. Theinput_files are typically the HEX and SYM file.CROMWELL
automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

5.13.1 -Pname

The-P options takes a string which is the name of the processor used.CROMWELL may use this in the
generation of the output format selected.

110

Linker and Utilities Cromwell

Table 5.6:CROMWELL format types

Key Format
cod BytecraftCOD file
coff COFF file format
elf ELF/DWARF file
eomf51 Extended OMF-51 format
hitech HI-TECH Software format
icoff ICOFF file format
ihex Intel HEX file format
omf51 OMF-51 file format
pe P&E file format
s19 MotorolaHEX file format

Table 5.7:CROMWELL command-line options

Option Description
-Pname Processor name
-D Dump input file
-C Identify input files only
-F Fake local symbols as global
-Okey Set the output format
-Ikey Set the input format
-L List the available formats
-E Strip file extensions
-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode

111

Cromwell Linker and Utilities

5.13.2 -D

The-D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in Table5.6.

5.13.3 -C

This option will attempt to identify if the specified input files are one of the formats as shown in
Table5.6. If the file is recognised, a confirmation of its type will be displayed.

5.13.4 -F

When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

5.13.5 -Okey

This option specifies the format of the output file. Thekey can be any of the types listed in Table
5.6.

5.13.6 -Ikey

This option can be used to specify the default input file format. Thekey can be any of the types
listed in Table5.6.

5.13.7 -L

Use this option to show what file format types are supported. A list similar to that given in Table5.6
will be shown.

5.13.8 -E

Use this option to tellCROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

5.13.9 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

112

Linker and Utilities Cromwell

5.13.10 -M

When generating COD files this option will remove the precedingunderscorecharacter from sym-
bols.

5.13.11 -V

Turns on verbose mode which will display information about operationsCROMWELL is performing.

113

Cromwell Linker and Utilities

114

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information analysed into the following headings.

Synopsis This is the C definition of the function, and the header file in which it is declared.

Description This is a narrative description of the function and its purpose.

Example This is an example of the use of the function. It is usually a complete small program that
illustrates the function.

Data types If any special data types (structures etc.) are defined for use with the function, they are
listed here with their C definition. These data types will be defined in the header file given
under heading — Synopsis.

See alsoThis refers you to any allied functions.

Return value The type and nature of the return value of the function, if any, is given. Information
on error returns is also included Only those headings which are relevant to each function are
used.

115

Library Functions

__CONFIG

Synopsis

#include <dspic.h>

__CONFIG(n, data)

Description

This macro is used to program the configuration fuses that set the device into various modes of
operation.

The macro accepts a number corresponding to the configuration register it is to program, then
the value it is to update it with.

Macros have been defined to give a more readble name to the configuration register, also masks
have been created to describe each programmable attribute available on each device. These attribute
masks can be found tabulated in this manual in the Features and Runtime Environment section.

Multiple attributes can be selected by ANDing them together.

Example

#include <dspic.h>

__CONFIG(FOSC, XTPLL4)
__CONFIG(FWDT, WDTDIS)
__CONFIG(FBORPOR, MCLREN & BORDIS)

void
main (void)
{
}

116

Library Functions

__EEPROM_DATA

Synopsis

#include <dspic.h>

__EEPROM_DATA(a,b,c,d,e,f,g,h)

Description

This macro is used to store initial values into the device’s EEPROM registers at the time of program-
ming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be called
repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will auto-increment the
address written to by 8, each time it is used.

Example

#include <dspic.h>

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)
__EEPROM_DATA(0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F)

void
main (void)
{
}

117

Library Functions

ABS

Synopsis

#include <stdlib.h>

int abs (int j)

Description

Theabs()function returns the absolute value ofj .

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));
}

Return Value

The absolute value ofj .

118

Library Functions

ACOS

Synopsis

#include <math.h>

double acos (double f)

Description

Theacos()function implements the converse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = acos(i)*180.0/3.141592;
printf("acos(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 toπ

119

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into thestruct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0
Note thenewlineat the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to astruct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

120

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler. See time() for more details.

121

Library Functions

ASIN

Synopsis

#include <math.h>

double asin (double f)

Description

Theasin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {
a = asin(i)*180.0/3.141592;
printf("asin(%f) = %f degrees\n", i, a);

}
}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range -π

122

Library Functions

ASSERT

Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally
throughout your code at points where correct operation of the code depends upon certain conditions
being true initially. Anassert()routine may be used to ensure at run time that an assumption holds
true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);
If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses ofassert()is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)
{

assert(tp != 0);
}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

123

Library Functions

ATAN

Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -π

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", atan(1.5));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

124

Library Functions

ATOF

Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

Theatof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
double i;

gets(buf);
i = atof(buf);
printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

125

Library Functions

ATOI

Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = atoi(buf);
printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

126

Library Functions

ATOL

Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

Theatol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
long i;

gets(buf);
i = atol(buf);
printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

127

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar)(const void *, const void *))

Description

Thebsearch()function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to bycompar to compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * p1, const void * p2)
{

return strcmp(((const struct value *)p1)->name,
((const struct value *)p2)->name);

}

void
main (void)
{

char inbuf[80];
int i;
struct value * vp;

128

Library Functions

i = 0;
while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);
i++;

}
qsort(values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if(!vp)

printf("Item ’fred’ was not found\n");
else

printf("Item ’fred’ has value %d\n", vp->value);
}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

129

Library Functions

CALLOC

Synopsis

#include <stdlib.h>

void * calloc (size_t cnt, size_t size)

Description

Thecalloc() function attempts to obtain a contiguous block of dynamic memory which will holdcnt
objects, each of lengthsize. The block is filled with zeros.

Example

#include <stdlib.h>
#include <stdio.h>

struct test {
int a[20];

} * ptr;

/* Allocate space for 20 structures. */

void
main (void)
{

ptr = calloc(20, sizeof(struct test));
if(!ptr)

printf("Failed\n");
else

free(ptr);
}

See Also

brk(), sbrk(), malloc(), free()

130

Library Functions

Return Value

A pointer to the block is returned, or zero if the memory could not be allocated.

131

Library Functions

CEIL

Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less thanf.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double j;

scanf("%lf", &j);
printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

132

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets()function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspacedeleting the previously typed character, andctrl-U deleting the entire line typed so far.
Other characters are placed in the buffer, with acarriage returnor line feed (newline)terminating
the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

getch(), getche(), putch(), cputs()

133

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

134

Library Functions

CLRWDT

Synopsis

#include <dspic.h>

CLRWDT();

Description

This macro is used to clear the device’s internal watchdog timer.

Example

#include <dspic.h>

void
kick_dog (void)
{

CLRWDT();
}

135

Library Functions

COS

Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

136

Library Functions

COSH, SINH, TANH

Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the hyperbolic implementations of the trigonometric functions; cos(), sin() and
tan().

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", cosh(1.5));
printf("%f\n", sinh(1.5));
printf("%f\n", tanh(1.5));

}

Return Value

The functioncosh()returns the hyperbolic cosine value.
The functionsinh() returns the hyperbolic sine value.
The functiontanh() returns the hyperbolic tangent value.

137

Library Functions

CPUTS

Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputtingcarriage returnsbefore
eachnewlinein the string. It calls putch() repeatedly. On a hosted systemcputs()differs from puts()
in that it reads the console directly, rather than using file I/O. In an embedded systemcputs() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{

for(;;) {
cgets(buffer);
if(strcmp(buffer, "exit") == 0)

break;
cputs("Type ’exit’ to finish\n");

}
}

See Also

cputs(), puts(), putch()

138

Library Functions

CTIME

Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

Thectime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

139

Library Functions

DI, EI

Synopsis

#include <dsPIC.h>

EI ()
DI ()

Description

TheDI() andEI() routines disable and re-enable interrupts respectively. These are implemented as
macros defined indsPIC.h. The example shows the use ofEI() andEI() around access to a long
variable that is modified during an interrupt. If this was not done, it would be possible to return an
incorrect value, if the interrupt occurred between accesses to successive words of the count value.

Example

#include <dsPIC.h>

long count;

void
interrupt void tick (void) @ T1_VCTR
{

count++;
}

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

DI();
val = count;
EI();
return val;

}

140

Library Functions

DIV

Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

Thediv() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;

x = div(12345, 66);
printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value

Returns the quotient and remainder into thediv_t structure.

141

Library Functions

EVAL_POLY

Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

Theeval_poly()function evaluates a polynomial, whose coefficients are contained in the arrayd, at
x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed inn.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

double x, y;
double d[3] = {1.1, 3.5, 2.7};

x = 2.2;
y = eval_poly(x, d, 2);
printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated atx.

142

Library Functions

EXP

Synopsis

#include <math.h>

double exp (double f)

Description

Theexp() routine returns the exponential function of its argument, i.e. e to the power off.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)
printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

143

Library Functions

FABS

Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f %f\n", fabs(1.5), fabs(-1.5));
}

See Also

abs()

144

Library Functions

FLOOR

Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater thanf.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{

printf("%f\n", floor(1.5));
printf("%f\n", floor(-1.5));

}

145

Library Functions

FREE

Synopsis

#include <stdlib.h>

void free (void * ptr)

Description

The free() function deallocates the block of memory atptr , which must have been obtained from a
call to malloc() or calloc().

Example

#include <stdlib.h>
#include <stdio.h>

struct test {
int a[20];

} * ptr;

/* Allocate space for 20 structures. */
void
main (void)
{

ptr = calloc(20, sizeof(struct test));
if(!ptr)

printf("Failed\n");
else

free(ptr);
}

See Also

malloc(), calloc()

146

Library Functions

FREXP

Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

Thefrexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into theint object pointed to byp. Its return value x is in the interval (0.5,
1.0) or zero, andf equals x times 2 raised to the power stored in*p . If f is zero, both parts of the
result are zero.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;
int i;

f = frexp(23456.34, &i);
printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

147

Library Functions

GETCH, GETCHE

Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

Thegetch()function reads a single character from the console keyboard and returns it without echo-
ing. Thegetche()function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version ofgetch() that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The modulegetch.cin the SOURCES directory contains model versions of all the console I/O
routines. Other modules may also be supplied, e.g.ser180.chas routines for the serial port in a
Z180.

Example

#include <conio.h>

void
main (void)
{

char c;

while((c = getche()) != ’\n’)
continue;

}

See Also

cgets(), cputs(), ungetch()

148

Library Functions

GETCHAR

Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined instdio.h. Note that under
normal circumstancesgetchar() will NOT return unless acarriage returnhas been typed on the
console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void
main (void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

149

Library Functions

GETS

Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer ats, deleting thenewline(cf.
fgets()). The buffer is null terminated. In an embedded system,gets() is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editing (withbackspace) is available.

Example

#include <stdio.h>

void
main (void)
{

char buf[80];

printf("Type a line: ");
if(gets(buf))

puts(buf);
}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

150

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to byt which is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defined intime.h. The structure is defined in the
’Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = gmtime(&clock);
printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

151

Library Functions

Return Value

Returns a structure of typetm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

152

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description

These macros, defined inctype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all exceptisascii()are defined forc, if isascii(c)is true or if
c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z
isalpha(c) c is in A-Z or a-z
isascii(c) c is a 7 bit ascii character
iscntrl(c) c is a control character
isdigit(c) c is a decimal digit
islower(c) c is in a-z
isprint(c) c is a printing char
isgraph(c) c is a non-space printable character
ispunct(c) c is not alphanumeric
isspace(c) c is a space, tab or newline
isupper(c) c is in A-Z
isxdigit(c) c is in 0-9 or a-f or A-F

153

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = 0;
while(isalnum(buf[i]))

i++;
buf[i] = 0;
printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

154

Library Functions

KBHIT

Synopsis

#include <conio.h>

int kbhit (void)

Description

This function returns 1 if a character has been pressed on the console keyboard, 0 otherwise. Nor-
mally the character would then be read via getch().

Example

#include <conio.h>

void
main (void)
{

int i;

while(!kbhit()) {
cputs("I’m waiting..");
for(i = 0 ; i != 1000 ; i++)

continue;
}

}

See Also

getch(), getche()

Return Value

Returns one if a character has been pressed on the console keyboard, zero otherwise.

155

Library Functions

LDEXP

Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

Theldexp() function performs the inverse of frexp() operation; the integeri is added to the exponent
of the floating pointf and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

f = ldexp(1.0, 10);
printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integeri added to the exponent of the floating point valuef.

156

Library Functions

LDIV

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

Theldiv() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of typelong int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

ldiv_t lt;

lt = ldiv(1234567, 12345);
printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div()

Return Value

Returns a structure of typeldiv_t

157

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

Thelocaltime() function converts the time pointed to byt which is in seconds since 00:00:00 on Jan
1, 1970, into a broken down time stored in a structure as defined intime.h. The routinelocaltime()
takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zone iswestwardof Greenwich. Since there is no way under MS-DOS of
actually predetermining this value, by defaultlocaltime() will return the same result asgmtime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

void
main (void)
{

time_t clock;
struct tm * tp;

time(&clock);
tp = localtime(&clock);
printf("Today is %s\n", wday[tp->tm_wday]);

}

158

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of typetm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

159

Library Functions

LOG, LOG10

Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description

The log() function returns the natural logarithm off. The functionlog10() returns the logarithm to
base 10 off.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

160

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjmp() should be called with ajmp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of execution,lonjmp() may be called with the samejmp_buf argument
from an inner level of execution.Notehowever that the function which called setjmp() must still be
active whenlongjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. Theval argument tolongjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

161

Library Functions

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");
inner();
printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active whenlongjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

162

Library Functions

MALLOC

Synopsis

#include <stdlib.h>

void * malloc (size_t cnt)

Description

Themalloc() function attempts to allocatecnt bytes of memory from the "heap", the dynamic mem-
ory allocation area. If successful, it returns a pointer to the block, otherwise zero is returned. The
memory so allocated may be freed with free(), or changed in size via realloc(). Themalloc() routine
calls sbrk() to obtain memory, and is in turn called by calloc(). Themalloc() function does not clear
the memory it obtains, unlike calloc().

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(80);
if(!cp)

printf("Malloc failed\n");
else {

strcpy(cp, "a string");
printf("block = ’%s’\n", cp);
free(cp);

}
}

163

Library Functions

See Also

calloc(), free(), realloc()

Return Value

A pointer to the memory if it succeeded; NULL otherwise.

164

Library Functions

MEMCHR

Synopsis

#include <string.h>

void * memchr (const void * block, int val, size_t length)

Description

Thememchr() function is similar to strchr() except that instead of searching null terminated strings,
it searches a block of memory specified by length for a particular byte. Its arguments are a pointer
to the memory to be searched, the value of the byte to be searched for, and the length of the block.
A pointer to the first occurrence of that byte in the block is returned.

Example

#include <string.h>
#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void
main (void)
{

char * cp;

cp = memchr(ary, 0x89, sizeof ary);
if(!cp)

printf("not found\n");
else

printf("Found at offset %u\n", cp - (char *)ary);
}

See Also

strchr()

165

Library Functions

Return Value

A pointer to the first byte matching the argument if one exists; NULL otherwise.

166

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

Thememcmp() function compares two blocks of memory, of lengthn, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character. The ASCII
collating sequence is used for the comparison, but the effect of including non-ASCII characters in
the memory blocks on the sense of the return value is indeterminate. Testing for equality is always
reliable.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int buf[10], cow[10], i;

buf[0] = 1;
buf[2] = 4;
cow[0] = 1;
cow[2] = 5;
buf[1] = 3;
cow[1] = 3;
i = memcmp(buf, cow, 3*sizeof(int));
if(i < 0)

printf("less than\n");
else if(i > 0)

printf("Greater than\n");
else

167

Library Functions

printf("Equal\n");
}

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whethers1points to string which is less than, equal
to or greater than the string pointed to bys2 in the collating sequence.

168

Library Functions

MEMCPY

Synopsis

#include <string.h>

void * memcpy (void * d, const void * s, size_t n)

Description

The memcpy() function copiesn bytes of memory starting from the location pointed to bys to
the block of memory pointed to byd. The result of copying overlapping blocks is undefined. The
memcpy()function differs from strcpy() in that it copies a specified number of bytes, rather than all
bytes up to a null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buf[80];

memset(buf, 0, sizeof buf);
memcpy(buf, "a partial string", 10);
printf("buf = ’%s’\n", buf);

}

See Also

strncpy(), strncmp(), strchr(), memset()

Return Value

Thememcpy()routine returns its first argument.

169

Library Functions

MEMMOVE

Synopsis

#include <string.h>

void * memmove (void * s1, const void * s2, size_t n)

Description

Thememmove()function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also

strncpy(), strncmp(), strchr(), memcpy()

Return Value

The functionmemmove()returns its first argument.

170

Library Functions

MEMSET

Synopsis

#include <string.h>

void * memset (void * s, int c, size_t n)

Description

Thememset()function fills n bytes of memory starting at the location pointed to bys with the byte
c.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char abuf[20];

strcpy(abuf, "This is a string");
memset(abuf, ’x’, 5);
printf("buf = ’%s’\n", abuf);

}

See Also

strncpy(), strncmp(), strchr(), memcpy(), memchr()

171

Library Functions

MODF

Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argumentvalue into integral and fractional parts, each having the
same sign asvalue. For example, -3.17 would be split into the intergral part (-3) and the fractional
part (-0.17).

The integral part is stored as a double in the object pointed to byiptr .

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);
}

Return Value

The signed fractional part ofvalue.

172

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)
void persist_validate (void)

Description

Thepersist_check()function is used with non-volatile RAM variables, declared with the persistent
qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call
to persist_validate()and a checksum also calculated bypersist_validate(). If the magic number and
checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it
will optionally zero out and re-validate the non-volatile RAM area (by callingpersist_validate()).
This is done if the flag argument is true.

Thepersist_validate()routine should be called after each change to a persistent variable. It will
set up the magic number and recalculate the checksum.

Example

#include <sys.h>
#include <stdio.h>

persistent long reset_count;

void
main (void)
{

if(!persist_check(1))
printf("Reset count invalid - zeroed\n");

else
printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */
persist_validate(); /* and checksum */
for(;;)

continue; /* sleep until next reset */

173

Library Functions

}

Return Value

FALSE (zero) if the NV-RAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

174

Library Functions

POW

Synopsis

#include <math.h>

double pow (double f, double p)

Description

Thepow() function raises its first argument,f, to the powerp.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)
printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power ofp.

175

Library Functions

PRINTF, VPRINTF

Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating on a given stream (fprintf()) or into a string buffer (sprintf()). Theprintf() routine
is passed a format string, followed by a list of zero or more arguments. In the format string are
conversion specifications, each of which is used to print out one of the argument list values.

Each conversion specification is of the form%m.nc where the percent symbol% introduces
a conversion, followed by an optional width specificationm. The n specification is an optional
precision specification (introduced by the dot) andc is a letter specifying the type of the conversion.

A minus sign (’-’) precedingm indicates left rather than right adjustment of the converted value
in the field. Where the field width is larger than required for the conversion, blank padding is per-
formed at the left or right as specified. Where right adjustment of a numeric conversion is specified,
and the first digit ofm is 0, then padding will be performed with zeroes rather than blanks. For
integer formats, the precision indicates a minimum number of digits to be output, with leading zeros
inserted to make up this number if required.

A hash character (#) preceding the width indicates that an alternate format is to be used. The
nature of the alternate format is discussed below. Not all formats have alternates. In those cases, the
presence of the hash character has no effect.

The floating point formats require that the appropriate floating point library is linked. From
within HPD this can be forced by selecting the "Float formats in printf" selection in the options
menu. From the command line driver, use the option-LF .

If the character* is used in place of a decimal constant, e.g. in the format%*d , then one integer
argument will be taken from the list to provide that value. The types of conversion are:

f
Floating point -m is the total width andn is the number of digits after the decimal point. Ifn is

176

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

e
Print the corresponding argument in scientific notation. Otherwise similar tof.

g
Usee or f format, whichever gives maximum precision in minimum width. Any trailing zeros after
the decimal point will be removed, and if no digits remain after the decimal point, it will also be
removed.

o x X u d
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the
case ofd, unsigned otherwise. The precision value is the total number of digits to print, and may be
used to force leading zeroes. E.g.%8.4x will print at least 4 hex digits in an 8 wide field. Preceding
the key letter with anl indicates that the value argument is a long integer. The letterX prints out
hexadecimal numbers using the upper case lettersA-F rather thana-f as would be printed when using
x. When the alternate format is specified, a leading zero will be supplied for the octal format, and a
leading 0x or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At mostn characters from
the string will be printed, in a fieldm characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus% will produce a
single percent sign.

Thevprintf() function is similar toprintf() but takes a variable argument list pointer rather than
a list of arguments. See the description of va_start() for more information on variable argument lists.
An example of usingvprintf() is given below.

Example

printf("Total = %4d%", 23)
yields ’Total = 23%’

printf("Size is %lx" , size)
where size is a long, prints size
as hexadecimal.

printf("Name = %.8s", "a1234567890")
yields ’Name = a1234567’

177

Library Functions

printf("xx%*d", 3, 4)
yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{

va_list ap;

va_start(ap, s);
printf("Error: ");
vprintf(s, ap);
putchar(’\n’);
va_end(ap);

}

void
main (void)
{

int i;

i = 3;
error("testing 1 2 %d", i);

}

See Also

fprintf(), sprintf()

Return Value

Theprintf() andvprintf() functions return the number of characters written to stdout.

178

Library Functions

PUTCH

Synopsis

#include <conio.h>

void putch (char c)

Description

Theputch() function outputs the characterc to the console screen, prepending acarriage returnif
the character is anewline. In a CP/M or MS-DOS system this will use one of the system I/O calls.
In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standardputch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putch(*x++);
putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

179

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

Theputchar() function is a putc() operation on stdout, defined instdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void
main (void)
{

char * cp;

cp = x;
while(*x)

putchar(*x++);
putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

180

Library Functions

Note

This routine is not usable in a ROM based system.

181

Library Functions

PUTS

Synopsis

#include <stdio.h>

int puts (const char * s)

Description

Theputs() function writes the strings to thestdout stream, appending anewline. The null character
terminating the string is not copied.

Example

#include <stdio.h>

void
main (void)
{

puts("Hello, world!");
}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

182

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,
int (*func)(const void *, const void *))

Description

Theqsort() function is an implementation of the quicksort algorithm. It sorts an array ofnel items,
each of lengthwidth bytes, located contiguously in memory atbase. The argumentfunc is a pointer
to a function used byqsort() to compare items. It callsfunc with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the second thenfunc
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int aray[] = {
567, 23, 456, 1024, 17, 567, 66

};

int
sortem (const void * p1, const void * p2)
{

return *(int *)p1 - *(int *)p2;
}

void
main (void)
{

register int i;

183

Library Functions

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);
for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);
putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:
int func (const void *, const void *)
i.e. it must accept two const void * parameters, and must be prototyped.

184

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using thesrand() call.
The example shows use of thetime() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

srand()

185

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

186

Library Functions

REALLOC

Synopsis

#include <stdlib.h>

void * realloc (void * ptr, size_t cnt)

Description

Therealloc() function frees the block of memory atptr , which should have been obtained by a pre-
vious call to malloc(), calloc() orrealloc(), then attempts to allocatecnt bytes of dynamic memory,
and if successful copies the contents of the block of memory located atptr into the new block.

At most, realloc() will copy the number of bytes which were in the old block, but if the new
block is smaller, will only copycnt bytes.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void
main (void)
{

char * cp;

cp = malloc(255);
if(gets(cp))

cp = realloc(cp, strlen(cp)+1);
printf("buffer now %d bytes long\n", strlen(cp)+1);

}

See Also

malloc(), calloc()

187

Library Functions

Return Value

A pointer to the new (or resized) block. NULL if the block could not be expanded. A request to
shrink a block will never fail.

188

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from thestdin stream. Similar func-
tions are available for streams in general, and for strings. The functionvscanf() is similar, but takes
a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to thefmt string; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space" characters in the input, i.e.spaces, tabs or newlines.

A conversion specification takes the form of the character% , optionally followed by an assign-
ment suppression character (’* ’), optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in thefmt string, there should be two additional
pointer arguments.

The conversion characters are as follows:
o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f
Skip white space, then convert a floating number in either conventional or scientific notation. The
field width applies as above.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

189

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a
field width is specified, then copy that many characters. This differs from thes format in that white
space does not terminate the character sequence.

The conversion characterso, x, u, d and f may be preceded by anl to indicate that the corre-
sponding pointer argument is a pointer to long or double as appropriate. A precedingh will indicate
that the pointer argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)
with input " abcd -3.5"
will assign " abc" to c, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

190

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

Thesetjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{

longjmp(jb, 5);
}

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf("setjmp returned %d\n", i);
exit(0);

}
printf("setjmp returned 0 - good\n");
printf("calling inner...\n");

191

Library Functions

inner();
printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

Thesetjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

192

Library Functions

SIN

Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale off.

193

Library Functions

SPRINTF, VSPRINTF

Synopsis

#include <stdio.h>

int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead of placing the
converted output on thestdout stream, the characters are placed in the buffer atbuf. The resultant
string will be null terminated, and the number of characters in the buffer will be returned.

The vsprintf() function is similar tosprintf() but takes a variable argument list pointer rather
than a list of arguments. See the description of va_start() for more information on variable argument
lists.

See Also

printf(), fprintf(), sscanf()

Return Value

Both these routines return the number of characters placed into the buffer.

194

Library Functions

SQRT

Synopsis

#include <math.h>

double sqrt (double f)

Description

The functionsqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)
printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

195

Library Functions

SRAND

Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t toc;
int i;

time(&toc);
srand((int)toc);
for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());
putchar(’\n’);

}

See Also

rand()

196

Library Functions

SSCANF, VSSCANF

Synopsis

#include <stdio.h>

int sscanf (const char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsscanf (const char * buf, const char * fmt, va_list ap)

Description

Thesscanf()function operates in a similar manner to scanf(), except that instead of the conversions
being taken from stdin, they are taken from the string atbuf.

The vsscanf()function takes an argument pointer rather than a list of arguments. See the de-
scription of va_start() for more information on variable argument lists.

See Also

scanf(), fscanf(), sprintf()

Return Value

Returns the value of EOF if an input failure occurs, else returns the number of input items.

197

Library Functions

STRCAT

Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (catenates) strings2to the end of strings1. The result will be null terminated.
The arguments1must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value ofs1 is returned.

198

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

Thestrchr() function searches the strings for an occurrence of the characterc. If one is found, a
pointer to that character is returned, otherwise NULL is returned.

Thestrichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)
{

static char temp[] = "Here it is...";
char c = ’s’;

if(strchr(temp, c))
printf("Character %c was found in string\n", c);

else
printf("No character was found in string");

}

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

199

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

200

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whethers1 is less than, equal to or greater thans2. The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int i;

if((i = strcmp("ABC", "ABc")) < 0)
printf("ABC is less than ABc\n");

else if(i > 0)
printf("ABC is greater than ABc\n");

else
printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

201

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

202

Library Functions

STRCPY

Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated strings2to a character array pointed to bys1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointers1 is returned.

203

Library Functions

STRCSPN

Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

Thestrcspn() function returns the length of the initial segment of the string pointed to bys1which
consists of characters NOT from the string pointed to bys2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));
printf("%d\n", strcspn("xxxbcadefs", set));
printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

204

Library Functions

STRDUP

Synopsis

#include <string.h>

char * strdup (const char * s1)

Description

Thestrdup() function returns a pointer to a new string which is a duplicate of the string pointed to
by s1. The space for the new string is obtained using malloc(). If the new string cannot be created, a
null pointer is returned.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;

ptr = strdup("This is a copy");
printf("%s\n", ptr);

}

Return Value

Pointer to the new string, or NULL if the new string cannot be created.

205

Library Functions

STRLEN

Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

Thestrlen() function returns the number of characters in the strings, not including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

206

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (catenates) strings2 to the end of strings1. At most n characters will be
copied, and the result will be null terminated.s1must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strcpy(buffer, "Start of line");
s1 = buffer;
s2 = " ... end of line";
strncat(s1, s2, 5);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strcat(), strlen()

207

Library Functions

Return Value

The value ofs1 is returned.

208

Library Functions

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description

Thestrcmp() function compares its two, null terminated, string arguments, up to a maximum ofn
characters, and returns a signed integer to indicate whethers1is less than, equal to or greater thans2.
The comparison is done with the standard collating sequence, which is that of the ASCII character
set.

Thestricmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strcmp("abcxyz", "abcxyz");
if(i == 0)

printf("Both strings are equal\n");
else if(i > 0)

printf("String 2 less than string 1\n");
else

printf("String 2 is greater than string 1\n");
}

See Also

strlen(), strcmp(), strcpy(), strcat()

209

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

210

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated strings2 to a character array pointed to bys1. At most
n characters are copied. If strings2 is longer thann then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null
terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

char buffer[256];
char * s1, * s2;

strncpy(buffer, "Start of line", 6);
s1 = buffer;
s2 = " ... end of line";
strcat(s1, s2);
printf("Length = %d\n", strlen(buffer));
printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcat(), strlen(), strcmp()

211

Library Functions

Return Value

The destination buffer pointers1 is returned.

212

Library Functions

STRPBRK

Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in strings1 of any character from
strings2, or a null pointer if no character froms2exists ins1.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strpbrk(str+1, "aeiou");

}
}

Return Value

Pointer to the first matching character, or NULL if no character found.

213

Library Functions

STRRCHR, STRRICHR

Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to thestrchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates thelast occurrence of the characterc in the null terminated
strings. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

Thestrrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * str = "This is a string.";

while(str != NULL) {
printf("%s\n", str);
str = strrchr(str+1, ’s’);

}
}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

214

Library Functions

STRSPN

Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

Thestrspn() function returns the length of the initial segment of the string pointed to bys1which
consists entirely of characters from the string pointed to bys2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strspn("This is a string", "This"));
printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

215

Library Functions

STRSTR, STRISTR

Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description

Thestrstr() function locates the first occurrence of the sequence of characters in the string pointed
to bys2 in the string pointed to bys1.

Thestristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf("%d\n", strstr("This is a string", "str"));
}

Return Value

Pointer to the located string or a null pointer if the string was not found.

216

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description

A number of calls tostrtok() breaks the strings1(which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator strings2) into its separate tokens.

The first call must have the strings1. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls tostrtok() , s1 should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);
while(ptr != NULL) {

printf("%s\n", ptr);
ptr = strtok(NULL, sep_tok);

}
}

217

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator strings2may be different from call to call.

218

Library Functions

TAN

Synopsis

#include <math.h>

double tan (double f)

Description

Thetan() function calculates the tangent off.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)
printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent off.

219

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argumentt is not equal to NULL, the same value is
stored into the object pointed to byt.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time(&clock);
printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

220

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

221

Library Functions

TOLOWER, TOUPPER, TOASCII

Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, thetolower()
routine performs the reverse conversion and thetoascii() macro returns a result that is guaranteed
in the range 0-0177. The functionstoupper() and tolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{

char * array1 = "aBcDE";
int i;

for(i=0;i < strlen(array1); ++i) {
printf("%c", tolower(array1[i]));

}
printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

222

Library Functions

UNGETCH

Synopsis

#include <conio.h>

void ungetch (char c)

Description

Theungetch() function will push back the characterc onto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

223

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shown asparmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of typeva_list should be declared, then the macrova_start() invoked
with that variable and the name ofparmN. This will initialize the variable to allow subsequent calls
of the macrova_arg() to access successive parameters.

Each call tova_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventions toint, unsigned intor double. For example if a
character argument has been passed, it should be accessed byva_arg(ap, int) since thechar will
have been widened toint.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{

224

Library Functions

va_list ap;

va_start(ap, a);
while(a--)

puts(va_arg(ap, char *));
va_end(ap);

}

void
main (void)
{

pf(3, "Line 1", "line 2", "line 3");
}

225

Library Functions

XTOI

Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

Thextoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

char buf[80];
int i;

gets(buf);
i = xtoi(buf);
printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

226

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with
an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching#endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
run();

} /* no #endif was found in this module */

227

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a#else. These can only follow a
#if, e.g.:

#ifdef FOO
result = foo;

#else
result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */
result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching#if line. If there is an
apparently corresponding#if line, check for things like extra#endif’s, or improperly terminated
comments, e.g.:

#ifdef FOO
result = foo;

#endif
result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */
result = next(0);

#endif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor assertion failure (Preprocessor)

The argument to a preprocessor#assert directive has evaluated to zero. This is a programmer
induced error.

#assert SIZE == 4 /* size should never be 4 */

228

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching#asm, e.g.:

void cleardog(void)
{
clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */
}

(106) nested #asm directive (Preprocessor)

It is not legal to nest#asm directives. Check for a missing or misspelt#endasm directive, e.g.:

#asm
move r0, #0aah

#asm ; the previous #asm must be closed before opening another
sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the# directive. It is probably a misspelling of a pre-processor#
directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if, #ifdef, or #ifndef without an argument (Preprocessor)

The preprocessor directives#if, #ifdef and#ifndef must have an argument. The argument to#if
should be an expression, while the argument to#ifdef or #ifndef should be a single name, e.g.:

#if /* woops -- no argument to check */
output = 10;

#else
output = 20;

#endif

229

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to#include is invalid. The argument to#include must be
a valid file name, either enclosed in double quotes"" or angle brackets< >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* woops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1
/* elsewhere: */
#define ONE one /* Is this correct? It will overwrite the first definition. */

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missingclosing parenthesis,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to#undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

230

Error and Warning Messages

(115) recursive macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+b)
FUNC(5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a#if expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) #if value stack overflow (Preprocessor)

The preprocessor filled up its expression evaluation stack in a#if expression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) illegal #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator * in incorrect context (Preprocessor)

An operator has been encountered in a#if expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */
#define BIG

#endif

231

Error and Warning Messages

(121) expression stack overflow at op "*" (Preprocessor)

Expressions in#if lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced paren’s, op is "*" (Preprocessor)

The evaluation of a#if expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */
#define ADDED

#endif

(123) misplaced "?" or ":", previous operator is * (Preprocessor)

A colon operator has been encountered in a#if expression that does not match up with a corre-
sponding? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a#if expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */
int m;

#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a#if expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */
int m;

#endif

232

Error and Warning Messages

(126) can’t use a string in an #if (Preprocessor)

The preprocessor does not allow the use of strings in#if expressions, e.g.:

#if MESSAGE > “hello” /* no string operations allowed by the preprocessor */
#define DEBUG
#endif

(127) bad #if ... defined() syntax (Preprocessor)

Thedefined() pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

#if defined(a&b) /* woops -- defined expects a name, not an expression */
input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

Thebackslashis incorrect in the#if statement, e.g.:

#if FOO == \34
#define BIG

#endif

(130) #if sizeof, unknown type "*" (Preprocessor)

An unknown type was used in a preprocessorsizeof(). The preprocessor can only evaluate
sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

233

Error and Warning Messages

(131) #if ... sizeof: illegal type combination (Preprocessor)

The preprocessor found an illegal type combination in the argument tosizeof() in a #if expres-
sion, e.g.

#if sizeof(short long int) == 2 /* short or long? make up your mind */
i = 0xFFFF;

#endif

(132) #if sizeof() error, no type specified (Preprocessor)

Sizeof() was used in a preprocessor#if expression, but no type was specified. The argument to
sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */
i = 0;

#endif

(133) #if ... sizeof: bug, unknown type code 0x* (Preprocessor)

The preprocessor has made an internal error in evaluating asizeof() expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) #if ... sizeof() syntax error (Preprocessor)

The preprocessor found a syntax error in the argument tosizeof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) /* woops -- should be: #if sizeof(int) == 2 */
i = 0xFFFF;

#endif

(135) #if bug, operand = * (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

234

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator## that is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

#define cc(a, b) a ## ’b /* the ’ character will not lead to a valid token */

(139) EOF in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I’m not sure where I end, though
}

(140) can’t open command file * (Driver, Preprocessor, Assembler, Linker)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open output file * (Preprocessor, Assembler)

An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

235

Error and Warning Messages

(142) can’t open input file * (Preprocessor, Assembler)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(144) too many nested #if statements (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(145) cannot open include file "*" (Preprocessor)

The named preprocessor include file could not be opened for reading by the preprocessor. Check
the spelling of the filename. If it is a standard header file, not in the current directory, then the name
should be enclosed in angle brackets<> not quotes. For files not in the current working directory or
the standard compiler include directory, you may need to specify an additional include file path to
the command-line driver, see Section2.4.6.

(146) filename work buffer overflow (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many include directories (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is
normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K
bytes.

(150) bug: illegal __ macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

236

Error and Warning Messages

(151) too many arguments in macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31.

(152) bad dp/nargs in openpar: c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in macro "*" arg expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

(155) work buffer overflow doing * ## (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer overflow: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) out of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable: * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too much pushback (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of
the later ones will probably go away.

237

Error and Warning Messages

(161) control line "*" within macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(163) unexpected text in #control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

#if defined(END)
#define NEXT

#endif END /* END would be better in a comment here */

(164) included file * was converted to lower case (Preprocessor)

The file specified to be included was not found, but a file with a lowercase version of the name of
the file specified was found and used instead, e.g.:

#include “STDIO.H” /* is this meant to be stdio.h ? */

(164) included file * was converted to lower case (Preprocessor)

The#include file name had to be converted to lowercase before it could be opened.

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(166) -S, too few values specified in * (Preprocessor)

The list of values to the preprocessor (CPP)-S option is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes ofchar, short, int, long, float anddouble types.

(167) -S, too many values, "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message-s, too
few values specified in * on page238.

(168) unknown option "*" (Preprocessor)

This option to the preprocessor is not recognized.

238

Error and Warning Messages

(169) strange character after # (*) (Preprocessor)

There is an unexpected character after#.

(170) symbol "*" not defined in #undef (Preprocessor)

The symbol supplied as argument to#undef was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM
#undef SYM /* only undefine if defined */

#endif

(171) wrong number of macro arguments for "*" - * instead of * (Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* woops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator# (not to be confused with the leading# used for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use__mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a#if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */
#define GOOD

#endif

239

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.:

#if CHAR == ’ab’
#define MULTI

#endif

(175) division by zero in #if, zero result assumed (Preprocessor)

Inside a#if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) macro "*" wasn’t defined (Preprocessor)

A macro name specified in a-U option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

240

Error and Warning Messages

(181) non-scalar types can’t be converted (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* woops -- did you mean: sp = &test; ? */

(182) illegal conversion (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains anint, for example, it cannot be assigned to anint
variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;
a = b(c+d); /* b is not a function -- did you mean a = b*(c+d) ? */

(184) can’t call an interrupt function (Parser)

A function qualifiedinterrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because aninterrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt. Aninterrupt function can call
other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);
void main(void)
{

241

Error and Warning Messages

int input;
input = get_value(6); /* woops -- the parameter should not be here */

}

(186) too many arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add(5, 7, input); /* this call has too many arguments */

(187) too few arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch(input) {

case a: /* woops -- you cannot use a variable as part of a case label */
input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* woops -- exactly which element do you mean? */

242

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the typevoid, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier: * (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier: * (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194)) expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dot., e.g.:

int a;
a.b = 9; /* woops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

243

Error and Warning Messages

(198) undefined struct/union: * (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand toif, while statements or to boolean operators like! and&&
must be a scalar integral type, e.g.:

struct FORMAT format;
if(format) /* this operand must be a scaler type */

format.a = 0;

(200) can’t take address of register variable (Parser)

A variable declaredregister may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying the& operator, e.g.:

int * proc(register int in)
{

int * ip = ∈ /* woops -- in may not have an address to take */
return ip;

}

(201) can’t take this address (Parser)

The expression which was the operand of the& operator is not one that denotes memory storage ("an
lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];
int * ip;
char c;
array = ip; /* array is not a variable, it cannot be written to */

244

Error and Warning Messages

A typecast does not yield an lvalue, e.g.:

(int)c = 1; /* the contents of c cast to int is only a intermediate value */

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on a bit variable (Parser)

Not all operations onbit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function cannot return value (Parser)

A void function cannot return a value. Anyreturn statement should not be followed by an expres-
sion, e.g.:

void run(void)
{
step();
return 1; /* either run should not be void, or remove the 1 */

}

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for * (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

245

Error and Warning Messages

(208) operands of * not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(212) missing number after pragma "pack" (Parser)

The pragmapack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragmainterrupt_level requires an argument from 0 to 7.

(215) missing argument to "pragma switch" (Parser)

The pragma switch requires an argument ofauto, direct or simple, e.g.:

#pragma switch /* woops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

246

Error and Warning Messages

(216) missing argument to "pragma psect" (Parser)

The pragmapsect requires an argument of the formoldname =newname whereoldname is an
existing psect name known to the compiler, andnewname is the desired new name, e.g.:

#pragma psect /* woops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

Theinline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in<stdio.h>.

(220) exponent expected (Parser)

A floating point constant must have at least one digit after thee or E., e.g.:

float f;
f = 1.234e; /* woops -- what is the exponent? */

247

Error and Warning Messages

(221) hex digit expected (Parser)

After 0x should follow at least one of the hex digits0-9 andA-F or a-f, e.g.:

a = 0xg6; /* woops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* woops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of theellipsissymbol, which
must have 3 dots. (Anellipsis is used in function prototypes to indicate a variable number of param-
eters.)

Either.. was meant to be anellipsissymbol which would require you to add an extra dot, or it
was meant to be astructure member operatorwhich would require you remove one dot.

248

Error and Warning Messages

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

c = ‘a‘; /* woops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing arg to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing arg to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (disk space?) (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator@, used to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

249

Error and Warning Messages

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{

return a*2;
}
long twice(long a) /* only one prototype & definition of rv can exist */
{

return a*2;
}

(238) illegal initialisation (Parser)

You can’t initialise atypedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

typedef unsigned int uint = 99; /* woops -- uint is a type, not a variable */

(239) identifier redefined: * (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

int ivals[3] = { 2, 4, 6, 8}; /* three elements, but four initializers */

250

Error and Warning Messages

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:

double d;
switch(d) { /* woops -- this must be integral */
case ’1.0’:
d = 0;

}

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-
ture. Acontinue can only be used inside awhile, for or do while loop, whilebreak can only be
used inside those loops or aswitch statement, e.g.:

switch(input) {
case 0:
if(output == 0)

input = 0xff;
} /* woops -- this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */

(244) default case redefined (Parser)

There is only allowed to be onedefault label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b = 9;
break;

default: /* then what is this? */
b = 10;
break;

251

Error and Warning Messages

(245) "default" not in switch (Parser)

A label has been encountered calleddefault but it is not enclosed by aswitch statement. A
default label is only legal inside the body of aswitch statement.

If there is aswitch statement before thisdefault label, there may be one too many closing
braces in theswitch code which would prematurely terminate theswitch statement. See example
for Error Message’case’ not in switch on page252.

(246) "case" not in switch (Parser)

A case label has been encountered, but there is no enclosingswitch statement. Acase label may
only appear inside the body of aswitch statement.

If there is aswitch statement before thiscase label, there may be one too many closing braces
in theswitch code which would prematurely terminate theswitch statement, e.g.:

switch(input) {
case ’0’:
count++;
break;

case ’1’:
if(count>MAX)

count= 0;
} /* woops -- this shouldn’t be here */
break;

case ’2’: /* error flagged here */

(247) duplicate label * (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)
goto end;

start: /* error flagged here */
if(a == 0)
goto start; /* which start label do I jump to? */

252

Error and Warning Messages

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with anif statement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...
if(a > b) {
c = 0; /* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */
c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

void set(char a)
{
PORTA = a;

/* the closing brace was left out here */
void clear(void) /* error flagged here */
{
PORTA = 0;

}

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array[5];
int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

253

Error and Warning Messages

extern int calc(int, int); /* this is supposedly calc’s prototype */
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */

return sin(b/a);
}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */

return a + b;
}

(254) undefined *: * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union * (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {
int a, b, c;

} data;
if(data.d) /* woops -- there is no member d in this structure */

return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only register storage class allowed (Parser)

The only storage class allowed for a function parameter isregister, e.g.:

void process(static int input)

254

Error and Warning Messages

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;
volatile vint very_vol; /* woops -- this results in two volatile qualifiers */

(259) can’t be both far and near (Parser)

It is illegal to qualify a type as bothfar andnear, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag: * (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) member * redefined (Parser)

This name of this member of the struct or union has already been used in thisstruct or union, e.g.:

struct {
int a;
int b;
int a; /* woops -- a different name is required here */

} input;

(262) struct/union redefined: * (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;

} ms;
struct {
int a;

} ms; /* was this meant to be the same name as above? */

255

Error and Warning Messages

(263) members cannot be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {
int a;
int get(int); /* this should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type ofint (signed or unsigned), e.g.:

struct FREG {
char b0:1; /* woops -- these must be part of an int, not char */
char :6;
char b7:1;

} freg;

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after thecolon to define the number of bits in the bitfield,
e.g.:

struct {
unsigned first: /* woops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

256

Error and Warning Messages

struct {
static int first; /* no additional qualifiers may be present with members */

} ;

(267) bad storage class (Code Generator)

The code generator has encounterd a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power(static int a) /* paramters may not be static */
{
return foo * a;

}

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) can’t be register (Parser)

Only function parameters orauto variables may be declared using theregister qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{
return input + gi;

}

257

Error and Warning Messages

(271) can’t be long (Parser)

Only int andfloat can be qualified withlong.

long char lc; /* what? */

(272) can’t be short (Parser)

Only int can be modified withshort, e.g.:

short float sf; /* what? */

(273) can’t have "signed" and "unsigned" together (Parser)

The type modifierssigned andunsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

(274) can’t be unsigned (Parser)

A floating point type cannot be madeunsigned, e.g.:

unsigned float uf; /* what? */

(275) ... illegal in non-prototype arg list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */
int a, b;

{

(276) type specifier required for proto arg (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

258

Error and Warning Messages

(277) can’t mix proto and non-proto args (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */
int b;
{
return a + b;

}

(278) argument redeclared: * (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

(279) can’t initialize arg (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,
e.g.:

extern int proc(int a = 9); /* woops -- a is initialized when proc is called */

(280) can’t have array of functions (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,
e.g.:

int * farray[](); /* woops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

259

Error and Warning Messages

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };
int get_element(int array[two][]) /* should be, e.g.: int array[][7] */
{

return array[1][6];
}

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */
{
}

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) can’t have an array of bits or a pointer to bit (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not bevoid. Only a function can bevoid, e.g.:

int a;
void b; /* this makes no sense */

260

Error and Warning Messages

(289) only functions may be qualified interrupt (Parser)

The qualifierinterrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have
forgotten out a star* indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* woops -- did you mean const * char ccrv(void) ? */
{ /* error flagged here */
return ccip;

}

(291) not an argument: * (Parser)

This identifier that has appeared in a K&R stype argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process(input)
int unput; /* woops -- that should be int input; */
{
}

(292) a parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) out of near memory (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

261

Error and Warning Messages

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(297) bad arg (*) to tysize (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) EOF in #asm (Preprocessor)

An end of file has been encountered inside a#asm block. This probably means the#endasm is
missing or misspelt, e.g.:

#asm
mov r0, #55
mov [r1], r0

} /* woops -- where is the #endasm */

(300) unexpected EOF (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)
{

init();
run(); /* is that it? What about the close brace */

(301) EOF on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) no memory for string buffer (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

262

Error and Warning Messages

(305) can’t open * (Code Generator, Assembler, Optimiser, Cromwell)

An input file could not be opened. Confirm the spelling and path of the file specified on the command
line.

(306) out of far memory (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many cases in switch (Code Generator)

There are too manycase labels in thisswitch statement. The maximum allowable number ofcase
labels in any oneswitch statement is 511.

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in
your program.

(310)] expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process(carray[idx); /* woops -- should be: process(carray[idx]); */

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

int get_value(a, b); /* the function block must follow, not a semicolon */

263

Error and Warning Messages

(314) ; expected (Parser)

A semicolonis missing from a statement. A close brace or keyword was found following a statement
with no terminatingsemicolon, e.g.:

while(a) {
b = a-- /* woops -- where is the semicolon? */

} /* error is flagged here */

Note: Omitting a semicolon from statements not preceeding a close brace or keyword typically
results in some other error being issed for the following code which the parser assums to be part of
the original statement.

(315) { expected (Parser)

An opening bracewas expected here. This error may be the result of a function definition missing
theopening brace, e.g.:

void process(char c) /* woops -- no opening brace after the prototype */
return max(c, 10) * 2; /* error flagged here */

}

(316) } expected (Parser)

A closing bracewas expected here. This error may be the result of a initialized array missing the
closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) (expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after awhile, for, if,
do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
b = 0;

(318) string expected (Parser)

The operand to anasm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

264

Error and Warning Messages

(319) while expected (Parser)

The keywordwhile is expected at the end of ado statement, e.g.:

do {
func(i++);

} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end();

(320) : expected (Parser)

A colon is missing after acase label, or after the keyworddefault. This often occurs when a
semicolonis accidentally typed instead of acolon, e.g.:

switch(input) {
case 0; /* woops -- that should have been: case 0: */
state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear aftergoto, e.g.:

if(a)
goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or { expected (Parser)

After the keywordenum must come either an identifier that is or will be defined as anenum tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow astruct or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

265

Error and Warning Messages

struct {
int a;

} my_struct;

(324) too many arguments for format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

printf(“%d - %d”, low, high, median); /* woops -- missed a placeholder? */

(325) error in format string (Parser)

There is an error in the format string here. The string has been interpreted as aprintf() style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf(“%l”, lll); /* woops -- maybe: printf(“%ld”, lll); */

(326) long argument required (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); /* woops -- maybe you meant: printf(“%lx”, 2L);

(328) integral argument required (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* woops -- either wrong number or wrong placeholder */

(329) double float argument required (Parser)

The printf format specifier corresponding to this argument is%f or similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

266

Error and Warning Messages

(330) pointer to * argument required (Parser)

A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time, e.g.:

printf(“%d - %d”, low); /* woops -- where is the other value to print? */

(332) interrupt_level should be 0 to 7 (Parser)

The pragmainterrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */
void interrupt isr(void)
{
/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

Thepragma strings was passed a qualifier that was not identified, e.g.:

#pragma strings cinst /* woops -- should that be #pragma strings const ? */

(335) unknown pragma * (Parser)

An unknownpragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay, but is it what you had intended? */

267

Error and Warning Messages

(337) line does not have a newline on the end (Parser)

The last line in the file is missing thenewline(operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Code Generator, Assembler, Linker, Optimiser)

The application tried to create the named file, but it could not be created. Check that all file path-
names are correct.

(338) can’t create * file "*" (Linker, Code Generator Driver)

The compiler was unable to create a temporary file. Check the DOS Environment variable TEMP
(and TMP) and verify it points to a directory that exists, and that there is space available on that
drive. For example,AUTOEXEC.BAT should have something like:

SET TEMP=C:\TEMP

where the directoryC:\TEMP exists.

(339) initializer in "extern" declaration (Parser)

A declaration containing the keywordextern has an initialiser. This overrides theextern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,
how can it be initialized? */

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert areturn statement with a
value, or if the function is not to return a value, declare itvoid, e.g.:

int mydiv(double a, int b)
{

if(b != 0)
return a/b; /* what about when b is 0? */

} /* warning flagged here */

268

Error and Warning Messages

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has areturn statement that does not specify a return
value, e.g.:

int get_value(void)
{
if(flag)
return val++;

return; /* what is the return value in this instance? */
}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while(1) /* how does this loop finish? */
process();

flag = FINISHED; /* how do we get here? */

(346) declaration of * hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.g.:

int input; /* input has filescope */
void process(int a)
{
int input; /* local blockscope input */
a = input; /* this will use the local variable. Is this right? */

(347) external declaration inside function (Parser)

A function contains anextern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declareextern variables and functions outside any other functions. For example:

269

Error and Warning Messages

int process(int a)
{

extern int away; /* this would be better outside the function */
return away + a;

}

(348) auto variable * should not be qualified (Parser)

An auto variable should not have qualifiers such asnear or far associated with it. Its storage class
is implicitly defined by the stack organization. Anauto variable may be qualified withstatic, but
it is then no longerauto.

(349) non-prototyped function declaration: * (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.g.:

int process(input)
int input; /* warning flagged here */
{
}

This would be better written:

int process(int input)
{
}

(350) unused *: * (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbolsrcsid andsccsid are never reported as being unused.

(352) float param coerced to double (Parser)

Where a non-prototyped function has a parameter declared asfloat, the compiler converts this into
a double float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be converted todouble. It is
important that the function declaration be consistent with this convention, e.g.:

270

Error and Warning Messages

double inc_flt(f) /* the parameter f will be converted to double type */
float f; /* warning flagged here */
{
return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a largerunsigned type. Under the
ANSI "value preserving" rules, this will result in thesigned value being first sign-extended to a
signed number the size of the target type, then converted tounsigned (which involves no change
in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;
ui = sc; /* if sc contains 0xff, ui will contain 0xffff for example */

will perform a sign extension of thechar variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

271

Error and Warning Messages

double dd;
int i;
i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the& address operator, e.g.:

int * ip;
int i;
ip = i; /* woops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the* dereference operator, e.g.:

int * ip;
int i;
i = ip; /* woops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

272

Error and Warning Messages

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.g.:

char * cp;
cp = “I am a string of characters”; /* yes, but what sort of characters? */

If the default type for string literals isconst char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];
i = input[-2]; /* woops -- this element doesn’t exist */
ip = &input[5];
i = ip[-2]; /* this is okay */

273

Error and Warning Messages

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of typeint, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywordsextern or static as appropriate. For example:

void set(long a, int b); /* I may prevent an error arising from calls below */
void main(void)
{

set(10L, 6); /* by here a prototype for set should have seen */
}

(362) redundant & applied to array (Parser)

The address operator& has been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];
int * ip;
ip = &array; /* array is a constant, not a variable; the & is redundant. */

(364) attempt to modify * object (Parser)

Objects declaredconst or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* woops -- writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,
e.g.:

274

Error and Warning Messages

char * get_addr(void)
{
char c;
return &c; /* returning this is dangerous; the pointer could be dereferenced */

}

(366) operands of * not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used
the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

(367) function is already "extern"; can’t be "static" (Parser)

This function was already declaredextern, possibly through an implicit declaration. It has now
been redeclaredstatic, but this redeclaration is invalid.

void main(void)
{
set(10L, 6); /* at this point the compiler assumes set is extern... */

}
static void set(long a, int b) /* now it finds out otherwise */
{
PORTA = a + b;

}

(368) array dimension on *[] ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

int get_first(int array[10]) /* param should be: “int array[]” or “int *” */
{ /* warning flagged here */
return array[0];

}

275

Error and Warning Messages

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be typeint, the compiler still
treats it asunsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

} ;

(371) missing basic type: int assumed (Parser)

This declaration does not include a basic type, soint has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int i */
func(); /* ditto, use: extern int func(int); */

(372) , expected (Parser)

A commawas expected here. This could mean you have left out thecommabetween two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
unsigned chat b; /* thinks: chat & b are unsigned, but where is the comma? */

(375) unknown FNREC type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(379) bad record type * (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

276

Error and Warning Messages

(380) unknown record type: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record too long (*): * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length too small: * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expr * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(386) can’t open error file * (Linker)

The error file specified using the-e linker option could not be opened.

(387) illegal or too many -g flags (Linker)

There has been more than one linker-g option, or the-g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

(388) duplicate -m flag (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Section5.7.9for information on the correct syntax for
this option.

(389) illegal or too many -o flags (Linker)

This linker-o flag is illegal, or another-o option has been encountered. A-o option to the linker
must be immediately followed by a filename with no intervening space.

277

Error and Warning Messages

(390) illegal or too many -p flags (Linker)

There have been too many-p options passed to the linker, or a-p option was not followed by any
arguments. The arguments of separate-p options may be combined and separated bycommas.

(391) missing arg to -Q (Linker)

The-Q linker option requires the machine type for an argument.

(392) missing arg to -u (Linker)

The-U (undefine) option needs an argument.

(393) missing arg to -w (Linker)

The-W option (listing width) needs a numeric argument.

(394) duplicate -d or -h flag (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing arg to -j (Linker)

The maximum number of errors before aborting must be specified following the-j linker option.

(396) illegal flag -* (Linker)

This linker option is unrecognized.

(398) output file cannot be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

278

Error and Warning Messages

(401) cannot get memory (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX-n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX-n,m hex length/rounding option is invalid.

(410) bad combination of flags (Objtohex)

The combination of options supplied toOBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on * (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on * (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character in extended Tekhex line (*) (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(417) seek error (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

279

Error and Warning Messages

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed toOBJTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

(426) can’t open checksum file * (Linker)

The checksum file specified toOBJTOHEXcould not be opened. Confirm the spelling and path of
the file specified on the command line.

280

Error and Warning Messages

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from
standard input in response to an option.

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied toOBJTOHEX is syntatically incorrect.

(433) out of memory allocating * blocks of * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segspec * (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section5.7.9for more infomation.

281

Error and Warning Messages

(438) bad size in -S option (Linker)

The address given in a-S specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailingO, for octal, orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

(441) bad -A spec: "*" (Linker)

The format of a-A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address in -A spec - * (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

(444) expected "-" in -A spec (Linker)

There should be a minus sign,-, between the high and low addresses in a-A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

282

Error and Warning Messages

(445) bad high address in -A spec - * (Linker)

The high address given in a-A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailingO, for octal, orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,
e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section5.7.20for more infomation.

(446) bad overrun address in -A spec - * (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

(447) bad load address in -A spec - * (Linker)

The load address given in a-A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailingO (for octal) orH for hex. A leading0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,
e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

283

Error and Warning Messages

(448) bad repeat count in -A spec - * (Linker)

The repeat count given in a-A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The-A spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

(450) unknown psect: * (Linker, Optimiser)

This psect has been listed in a-P option, but is not defined in any module within the program.

(451) bad origin format in spec (Linker)

The origin format in a-p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

(452) bad min (+) format in spec (Linker)

The minimum address specification in the linker’s-p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after % in -p option (Linker)

The% operator in a-p option (for rounding boundaries) must have a number after it.

284

Error and Warning Messages

(455) psect * not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the-p option. if necessary.

(458) cannot open (Objtohex)

OBJTOHEX cannot open the specified input file. Confirm the spelling and path of the file specified on
the command line.

(462) can’t open avmap file * (Linker)

A file required for producing Avocet format symbol files is missing. Confirm the spelling and path
of the file specified on the command line.

(463) missing memory key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol in FNBREAK record: * (Linker)

The linker has found an undefined symbol in theFNBREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(466) undefined symbol in FNINDIR record: * (Linker)

The linker has found an undefined symbol in theFNINDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol in FNADDR record: * (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol in FNCALL record: * (Linker)

The linker has found an undefined symbol in theFNCALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

285

Error and Warning Messages

(469) undefined symbol in FNROOT record: * (Linker)

The linker has found an undefined symbol in theFNROOT record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol in FNSIZE record: * (Linker)

The linker has found an undefined symbol in theFNSIZE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either use thereentrant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

int test(int a)
{

if(a == 5)
return test(a++); /* recursion may not be supported by some compilers */

return 0;
}

(472) function * appears in multiple call graphs: rooted at * and * (Linker)

This function can be called from both main-line code and interrupt code. Use thereentrant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr(void)
{

scan(6); /* scan is called from an interrupt function */
}
void process(int a)
{

scan(a); /* scan is also called from main-line code */
}

286

Error and Warning Messages

(474) no psect specified for function variable/argument allocation (Linker)

TheFNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startoff module was not linked. Ensure you have used theFNCONF
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflictingFNCONF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (loc 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

(477) fixup overflow in expression (loc 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1), size 1, value 0x7FC)

This indicates that the file causing the problem wasmain.obj. This would be typically be the output
of compilingmain.c or main.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use theDUMP utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location (loc) of the instruction (0x1FD), thesize (in bytes) of the field in the instruction
for the value (1) , and thevalue which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of

287

Error and Warning Messages

8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 07FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.
If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

(479) circular indirect definition of symbol * (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
int get_value(int in, char type) /* this is different to the declaration */
{

288

Error and Warning Messages

(481) common symbol psect conflict: * (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in file "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have anunderscoreprepended to their name after compilation.

(483) symbol * cannot be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(484) psect * cannot be in classes * and * (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of the-C option to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY

(485) unknown "with" psect referenced by psect * (Linker)

The specified psect has been placed with a psect using the psectwith flag. The psect it has been
placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

289

Error and Warning Messages

(486) psect * selector value redefined (Linker)

The selector associated with this psect has been defined differently in two or more places.

(486) psect * selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect * type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect * memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,
if they are the same psect, place them in the same memory space using thespace psect flag, e.g.:

psect spdata,class=RAM,space=0
ds 6

; elsewhere:
psect spdata,class=RAM,space=1

(489) psect * memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:
; elsewhere:
psect final,class=CODE,delta=1

(490) class * memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

290

Error and Warning Messages

(492) can’t find * words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that is
generated from the program into the memory available for the target device. This error indicates that
the linker was unable to find an area of free memory large enough to accomodate one of the psects.
The error message indicates the name of the psect that the linker was attempting to position and the
segment name which is typically the name of a class which is defined with a linker-A option.

Section3.9.1 lists each compiler-generated psect and what it contains. Typically psect names
which are, or include,text relate to program code. Names such asbss or data refer to variable
blocks. This error can be due to two reasons.

First, the size of the program or the progam’s data has exceeded the total amount of space on the
selected device. In other words, some part of your device’s memory has completely filled. If this is
the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accomodate the psect. The linker is unable to split psects in this situation. That
is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the linker
must be able to find a contiguous block of memory large enough for every psect. If this is the cause
of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section2.4.9for
information on how to generate a map file. Search for the stringUNUSED ADDRESS RANGES. Under
this heading, look for the name of the segment specified in the error message. If the name is not
present, then all the memory available for this psect has been allocated. If it is present, there will be
one address range specified under this segment for each free block of memory. Determine the size
of each block and compare this with the number of words specified in the error message.

Psects containing code can be reduced by using all the compiler’s optimizations, or restructring
the program. If a code psect must be split into two or more small psects, this requies splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
5.9.1has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the stringCall grpah: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation forauto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

291

Error and Warning Messages

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES
CODE 00000244-0000025F

00001000-0000102f
RAM 00300014-00301FFB

In theCODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accomodate the psecttext which
is 0x34 bytes long. Notice, however, that the total amout of memory available is larger than 0x34
bytes.

(492) psect is absolute: * (Linker)

This psect is absolute and should not have an address specified in a-P option. Either remove the
abs psect flag, or remove the-P linker option.

(493) psect origin multiply defined: * (Linker)

The origin of this psect is defined more than once. There is most likely more than one-p linker
option specifying this psect.

(494) bad -P format "*"/"*" (Linker)

The-P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(497) psect exceeds max size: *: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using thesize psect flag.

(498) psect exceeds address limit: *: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using thelimit psect flag. Either
the psect needs to be linked at a different location or there is too much code/data in the psect.

292

Error and Warning Messages

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(501) entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after theEND directive. The runtime startup code defines the entry point, e.g.:

powerup:
goto start
END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for
different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

293

Error and Warning Messages

(506) record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset * out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -r or -l options (Linker)

The linker was given a-R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

294

Error and Warning Messages

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(517) write error (out of disk space?) * (Linker)

A write error occurred on the named file. This probably means you have run out of disk space.

(519) can’t seek in * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function * is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by * (Linker)

The call graph shows that functions are nested to a depth greater than specified.

(522) library * is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument -W* ignored (Linker)

The argument to the linker option-w is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

295

Error and Warning Messages

(525) too many address spaces - space * ignored (Linker)

The limit to the number of address spaces (specified with thePSECT assembler directive) is currently
16.

(526) psect * not specified in -p option (first appears in *) (Linker)

This psect was not specified in a-P or -A option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record: entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using theEND directive.

(593) can’t find 0x* words (0x* withtotal) for psect * in segment * (Linker)

See error (492) in AppendixB.

(596) segment *(*-*) overlaps segment *(*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the-P
linker option.

(597) can’t open (Linker)

An object file could not be opened. Confirm the spelling and path of the file specified on the com-
mand line.

(602) null format name (Cromwell)

The-I or -O option to Cromwell must specify a file format.

(603) ambiguous format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the-ikey and-okey options respectively.

296

Error and Warning Messages

(604) unknown format name "*" (Cromwell)

The output format specified toCROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type ofcot, did you meancof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The-p option to cromwell must specify a processor name.

(611) too many input files (Cromwell)

To many input files have been specified to be converted byCROMWELL.

(612) too many output files (Cromwell)

To many output file formats have been specified toCROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

297

Error and Warning Messages

(619) I/O error reading symbol table

Cromwell could not read the symbol table. This could be because the file was truncated or there was
some other problem reading the file. Contact HI-TECH Support with details.

(620) file name index out of range in line number record (Cromwell)

The COD file has an invalid format in the specified record.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in coff:get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(634) error dumping * (Cromwell)

Either the input file toCROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid hex file: *, line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

(636) checksum error in Intel hex file *, line * (Cromwell)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(674) too many references to * (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(675) can’t open * for input (Cref)

CREFcannot open the specified input file. Confirm the spelling and path of the file specified on the
command line.

298

Error and Warning Messages

(676) can’t open * for output (Cref)

CREFcannot open the specified output file. Confirm the spelling and path of the file specified on the
command line.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(695) duplicate case label * (Code Generator)

There are two case labels with the same value in thisswitch statement, e.g.:

switch(in) {
case ’0’: /* if this is case ’0’... */
b++;
break;

case ’0’: /* then what is this case? */
b--;
break;

}

(696) out-of-range case label * (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in thisswitch statement has a value which is not a constant.

(699) no case labels (Code Generator)

There are nocase labels in thisswitch statement, e.g.:

switch(input) {
} /* there is nothing to match the value of input */

299

Error and Warning Messages

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused - bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section5.7.2for more infomation.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) expand - bad which (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.See
Section5.7.20for more infomation.

(708) bad mod "+" for how = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister * can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

300

Error and Warning Messages

(711) expand - bad how (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma * (Code Generator)

The code generator has been passed apragma directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

(716) bad -M option: -M* (Code Generator)

The code generator has been passed a-M option that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

301

Error and Warning Messages

(721) bad element count expr (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) functions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op * to revlog (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad uconval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad bconfloat - * (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad confloat - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad conval - * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op: "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

302

Error and Warning Messages

(732) can’t initialize bit type (Code Generator)

Variables of typebit cannot be initialised, e.g.:

bit b1 = 1; /* woops -- b1 must be assigned a value after its definition */

(733) bad string "*" in psect pragma (Code Generator)

The code generator has been passed apragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many psect pragmas (Code Generator)

Too many#pragma psect directives have been used.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) bad dimensions (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bit field too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in anint, e.g. assuming
anint is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;
unsigned cont : 6; /* woops -- that makes a total of 19 bits */

} object;

303

Error and Warning Messages

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fn1(void)
{

fn3(7, fn2(3), fn2(9)); /* Offending call */
}
char fn2(char fred)
{

return fred + fn3(5,1,0);
}
char fn3(char one, char two, char three)
{

return one+two+three;
}

wherefn1 is callingfn3, and two arguments are evaluated by callingfn2, which in turn callsfn3.
The program structure should be modified to prevent this type of call sequence.

(744) static object has zero size: * (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized option to -Z: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable may be used before set: * (Code Generator)

This variable may be used before it has been assigned a value. Since it is anauto variable, this will
result in it having a random value, e.g.:

void main(void)
{

int a;

304

Error and Warning Messages

if(a) /* woops -- a has never been assigned a value */
process();

}

(749) unknown register name * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operators|| or && is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is anauto orstatic local variable whose value has been tracked by the code generator,
e.g.:

{
int a;
a = 6;
if(a || b) /* a is 6, therefore this is always true */

b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As asigned 8-bit quantity,c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

305

Error and Warning Messages

A quick check with your calculator reveils that 240 * 137 is 32880 which can easily be stored in
anunsigned int, but a warning is produced. Why? Because 240 and 137 and bothsigned int
values. Therefore the result of the multiplication must also be asigned int value, but asigned
int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed with anunsigned result:

i = 240u * 137; /* force at least one operand to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;
int b, c;
a = b + c; /* conversion of int to char may result in truncation */

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.g.:

int input;
input < <= 33; /* woops -- that shifts the entire value out of input */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
from 0 to 3, e.g.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;
int compare(void)
{

return (value.mask == 6); /* test can
}

306

Error and Warning Messages

(755) division by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by anif, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scope (eitherauto or static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

{
int a, b;
a = 5;
if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

will produce code that setsa to 5, then immediately setsb to 6. No code will be produced for the
comparisonif(a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written something likewhile(1). To produce
an infinite loop, usefor(;;).

A similar situation arises with for loops, e.g.:

{
int a, b;
for(a=0; a!=10; a++) /* this loop must iterate at least once */
b = func(a);

In this case the code generator can again pick up thata is assigned the value 0, then immediately
checked to see if it is equal to 10. Becausea is modified during thefor loop, the comparison
code cannot be removed, but the code generator will adjust the code so that the comparison is not

307

Error and Warning Messages

performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of = instead of == (Code Generator)

There is an expression inside anif or other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assignment= instead of a compare==,
e.g.:

int a, b;
if(a = 4) /* this can never be false; always perform the true statement */

b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignment tob always made. Did you mean:

if(a == 4) /* this can never be false; always perform the true statement */
b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code generatordoesproduce code for a statement which
only consists of a variable ID. This may happen for variables which are qualified asvolatile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a = b,c; /* “b” has no effect, was that meant to be a comma? */

308

Error and Warning Messages

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

(763) constant left operand to ? (Code Generator)

The left operand to a conditional operator? is constant, thus the result of the tertiary operator?:
will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;
if(c > 300) /* woops -- how can this be true? */
close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of anunsigned value with zero, which will always be true or false, e.g.:

unsigned char c;
if(c >= 0)

will always be true, because anunsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of asigned value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

309

Error and Warning Messages

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing anunsigned number with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */

b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

(770) insufficient memory for macro definition (Assembler)

There is not sufficient memory to store a macro definition.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(778) write error on object file (Assembler)

An error was reported when the assembler was attempting to write an object file. This probably
means there is not enough disk space.

(780) too many psects (Assembler)

There are too many psects defined! Boy, what a program!

310

Error and Warning Messages

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) "with=" flags are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. Thewith flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove awith flag from one of the psect declarations. Such an assembler declaration may look
like:

psect my_text,local,class=CODE,with=basecode

which will define a psect calledmy_text and place this in the same page as the psectbasecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) copyexpr: can’t handle v_rtype = * (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character ("*") in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) EOF inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

311

Error and Warning Messages

(793) unterminated macro arg (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) local illegal outside macros (Assembler)

TheLOCAL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directiveLOCAL may not include any of the formal parameters to the
macro, e.g.:

mmm macro a1
move r0, #a1
LOCAL a1 ; woops -- the macro parameter cannot be used with local

ENDM

(799) rept argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [r1]++

endm

(800) undefined symbol * (Assembler)

The named symbol is not defined in this module, and has not been specifiedGLOBAL.

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

312

Error and Warning Messages

(802) invalid address after "end" directive (Assembler)

The start address of the program which is specified after the assemblerEND directive must be a label
in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(808) add_reloc - bad size (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode * (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

(832) empty chip info file * (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

313

Error and Warning Messages

(835) form length must be >= 15 (Assembler)

The form length specified using the-Flength option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

(845) multiply defined symbol * (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have anunderscoreprepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

314

Error and Warning Messages

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
move r0, r1

; elsewhere:
psect text,local,class=CODE
move r2, r4

Theglobal flag is the default for a psect if its scope is not explicitly stated.

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(864) SIZE= must specify a positive constant (Assembler)

The parameter to thePSECT assembler directive’ssize option must be a positive constant number,
e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect size redefined (Assembler)

Thesize flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,size=400
; elsewhere:
psect spdata,class=RAM,size=500

(867) psect reloc redefined (Assembler)

Thereloc flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8

315

Error and Warning Messages

(868) DELTA= must specify a positive constant (Assembler)

The parameter to thePSECT assembler directive’sDELTA option must be a positive constant number,
e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(871) SPACE= must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’sspace option must be a positive constant number,
e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

(872) psect space redefined (Assembler)

Thespace flag to thePSECT assembler directive is different from a previousPSECT directive, e.g.:

psect spdata,class=RAM,space=0
; elsewhere:
psect spdata,class=RAM,space=1

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(916) can’t allocate memory for arguments(Preprocessor, Parser, Code generator, Assembler)

The compiler could not allocate any more memory when trying to read in command-line arguments.

316

Error and Warning Messages

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(921) can’t open chipinfo file * (Driver, Assembler)

The chipinfo file could not be opened. This file normally resides in theLIB directory of the compiler
distribution. If driving the assembler directly (without the command line driver) ensure that the
option to location this file correctly specifies the path, otherwise contact HI-TECH Support with
details.

(967) unused function definition: * (from line *) (Parser)

The indicatedstatic function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning imples the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers h and l valid with this format (Parser)

Only modifiersh (short) andl (long) are legal with thisprintf format specifier.

317

Error and Warning Messages

(973) only modifier l valid with this format (Parser)

The only modifier that is legal with this format isl (for long).

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this is an enum (Parser)

This identifier following astruct or union keyword is already the tag for an enumerated type, and
thus should only follow the keywordenum, e.g.:

enum IN {ONE=1, TWO};
struct IN { /* woops -- IN is already defined */

int a, b;
};

(979) this is a struct (Parser)

This identifier following aunion or enum keyword is already the tag for a structure, and thus should
only follow the keywordstruct, e.g.:

struct IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(980) this is a union (Parser)

This identifier following astruct or enum keyword is already the tag for aunion, and thus should
only follow the keywordunion, e.g.:

318

Error and Warning Messages

union IN {
int a, b;

};
enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure, not a pointer to a structure */

(982) nxtuse(): unknown op: * (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;
char a; /* woops -- what is the correct type? */

(985) qualifiers redeclared (Parser)

This function has different qualifiers in different declarations.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the-C option has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

319

Error and Warning Messages

(990) modulus by zero in #if, zero result assumed (Preprocessor)

A modulus operation in a#if expression has a zero divisor. The result has been assumed to be zero,
e.g.:

#define ZERO 0
#if FOO%ZERO /* this will have an assumed result of 0 */

#define INTERESTING
#endif

(991) integer expression required (Parser)

In anenum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of typeint, e.g.:

enum { one = 1, two, about_three = 3.12 }; /* no non-int values allowed */

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

couldn’t create error file: * (Driver)

The error file specified after the-Efile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

duplicate arch for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate lib for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multipleLIB values. Only oneLIB value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

320

Error and Warning Messages

duplicate romsize for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate sparebit for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

duplicate * for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple values for a field. Only one value is allowed
per chip. If you have not manually edited the chip info file, contact HI-TECH Support with details.

duplicate zeroreg for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

psect * not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a-p option.
For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

bit range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. This error relates to checks carried on a bit addresses. If there is no hand-written assembler
code in this program, then this may be an internal compiler error and you should contact HI-TECH
support with details of the code that generated this error. Other causes are numerous.

can’t open include file * (Assembler)

The named assembler include file could not be opened. Confirm the spelling and path of the file
specified in theINCLUDE directive, e.g.:

INCLUDE “misspilt.h” ; is the filename correct?

321

Error and Warning Messages

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using thed key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

direct range check failed * (Linker)

The assembler can place checks associated with an instruction in the output object file that will
confirm that the value ultimately assigned to a symbol used within the instruction is within some
range. This error indicates that the range check failed, i.e. the value was either too large or too
small. If there is no hand-written assembler code in this program, then this may be an internal
compiler error and you should contact HI-TECH support with details of the code that generated this
error. Other causes are numerous.

duplicate banks for * in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

identifier expected (Parser)

Inside the braces of anenum declaration should be a comma-separated list of identifiers, e.g.:

enum { 1, 2}; /* woops -- maybe you mean enum { one = 1, two }; */

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

library file names should have .lib extension: * (Libr)

Use the.lib extension when specifying a library filename.

322

Error and Warning Messages

line too long (Optimiser)

This line is too long. It will not fit into the compiler’s internal buffers. It would require a line over
1000 characters long to do this, so it would normally only occur as a result of macro expansion.

module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

RAM area * low bound greater than high bound (Driver)

An additional memory bank has been defined which has a lower address bound greater than the high
address bound.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using ther key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

too many object files (Driver)

A maximum of 128 object files may be passed to the linker. The driver exceeded this amount when
generating the command line for the linker.

323

Error and Warning Messages

324

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH dsPICC.

Table C.1: Devices supported by HI-TECH dsPICC

DEVICE FLASH XDATA YDATA
30F2010 0-1FFF 800-9FF 900-9FF
30F2011 0-1FFF 800-BFF A00-BFF
30F2012 0-1FFF 800-BFF A00-BFF
30F3010 0-3FFF 800-BFF A00-BFF
30F3011 0-3FFF 800-BFF A00-BFF
30F3012 0-3FFF 800-FFF C00-FFF
30F3013 0-3FFF 800-FFF C00-FFF
30F3014 0-3FFF 800-FFF C00-FFF
30F4011 0-7FFF 800-FFF C00-FFF
30F4012 0-7FFF 800-FFF C00-FFF
30F4013 0-7FFF 800-FFF C00-FFF
30F5011 0-AFFF 800-17FF 1000-17FF
30F5013 0-AFFF 800-17FF 1000-17FF
30F5015 0-AFFF 800-FFF C00-FFF
30F6010 0-BFFF 800-27FF 1800-27FF
30F6011 0-15FFF 800-1FFF 1800-1FFF
30F6012 0-BFFF 800-27FF 1800-27FF
30F6013 0-15FFF 800-1FFF 1800-1FFF
30F6014 0-17FFF 800-27FF 1800-27FF

325

Chip Information

326

Index

! macro quote character,82
. psect address symbol,96
... symbol,41
.as files,24
.c files,24
.cmd files,105
.crf files,13, 67
.lib files,24, 26, 103, 105
.lnk files,100
.lst files,12
.obj files,24, 96, 105
.opt files,67
.pro files,18
.sdb files,26
.sym files,24, 95, 98
/ psect address symbol,96
;; comment suppression characters,82
<> macro quote characters,82
? character

in assembler labels,71
??nnnn type symbols,71, 83
?_xxxx type symbols,101
?a_xxxx type symbols,101
#asm directive,52
#define,7
#endasm directive,52
#pragma directives,57
#undef,11
$ character

in assembler labels,71

$ location counter symbol,71
% macro argument prefix,82
& assembly macro concatenation character,

82
_ character

in assembler labels,71
__Bxxxx type symbols,64
__CONFIG,24, 116
__EEPROM_DATA,117
__Hxxxx type symbols,64
__Lxxxx type symbols,64
ASDSPIC

expressions,73
special characters,69

ASDSPIC controls,85
COND,86
EXPAND, 86
INCLUDE, 86
LIST, 87
NOCOND,87
NOEXPAND,87
NOLIST, 87
NOXREF,88
PAGE,88
SPACE,88
SUBTITLE, 88
TITLE, 88
XREF,88

ASDSPIC directives
ALIGN, 83

327

INDEX INDEX

DB, 80
DDW, 81
DS,81
DW, 80
ELSE,81
ELSIF,81
END, 77
ENDIF, 81
ENDM, 81
EQU,53, 80
GLOBAL, 75
IF, 81
IRP,84
IRPC,84
LOCAL, 71, 83
MACRO, 81
PROCESSOR,85
PSECT,73, 77
REPT,84
SET,80
SIGNAT, 85
SIGNAT directive,62

ASDSPIC operators,73
DSPICC

predefined macros,54
supported data types,29

DSPICC options
–SUMMARY=type,62
-C, 61
-G, 24
-S,61

ABS, 118
abs PSECT flag,77
absolute object files,96
absolute psects,77, 78
absolute variables,40, 59
ACOS,119
addresses

link, 91, 96
load,91, 96

addressing unit,78
ALIGN directive,83
alignment

within psects,83
ANSI standard

conformance,21
implementation-defined behaviour,23

argument passing,41
ASCII characters,32
ASCTIME, 120
ASDSPIC

directives,75
ASDSPIC directives

org,79
ASDSPIC options,67

-A, 67
-C, 67
-Cchipinfo,67
-E, 67
-Flength,67
-H, 67
-I, 67
-O, 68
-Ooutfile,68
-Twidth, 68
-V, 68
-X, 68
-processor,68

ASIN, 122
asm() C directive,52
asname directives

GLOBAL, 73
asname options

-Llistfile, 67
assembler,65

accessing C objects,53
comments,68

328

INDEX INDEX

controls,85
directives,75
generating from C,11
label field,68
line numbers,68
mixing with C,49
pseudo-ops,75

assembler code
called by C,50

assembler files
preprocessing,17

assembler listings,12
expanding macros,67
generating,67
hexadecimal constants,67
page length,67
page width,68

assembler optimizer
enabling,68

assembler options,seeADSPIC options67
assembler-generated symbols,71
assembly

character constants,70
character set,69
conditional,81
constants,70
default radix,70
delimiters,69
expressions,73
identifiers,71

data typing,71
include files,86
initializing

bytes,80
double words,81
words,80

location counter,71
multi-character constants,70
radix specifiers,70

relative jumps,72
relocatable expression,73
repeating macros,84
reserving

locations,81
special characters,69
special comment strings,70
strings,70
volatile locations,70

assembly labels,72
scope,73, 75

assembly listings
blank lines,88
disabling macro expansion,87
enabling,87
excluding conditional code,87
expanding macros,86
including conditional code,86
new page,88
subtitles,88
titles,88

assembly macros,81
! character,82
% character,82
& symbol,82
concatenation of arguments,82
quoting characters,82
suppressing comments,82

assembly statements
format of,68

ASSERT,123
ATAN, 124
ATOF, 125
ATOI, 126
ATOL, 127
auto variables,39
Avocet symbol file,99

base specifier,seerdix specifier70

329

INDEX INDEX

bases
C source,29

batch files,15
biased exponent,33
binary constants

assembly,70
C, 29

bit
PSECT flag,78

bit types
in assembly,78

bit-fields,34
initializing, 35
unamed,35

bitbss psect,46
bitwise complement operator,43
blocks,seepects73
bootloader,19
BSEARCH,128
bss psect,20, 27, 40, 46, 90

clearing,90

call graph,101
CALLOC, 130
CEIL, 132
CGETS,133
char types,12, 32
char variables,12
character constants,30

assembly,70
checksum specifications,108
chipinfo files,67
class PSECT flag,78
classes,93

address ranges,93
boundary argument,98
upper address limit,98

CLRWDT, 135
command line driver,3

command lines
HLINK, long command lines,100
long,4, 105
verbose option,12

compiled stack,101
compiler

options,4
compiler errors

format,14
compiler generated psects,45
compiling

to assembler file,11
to object file,7

COND assembler control,86
conditional assembly,81
Configuration Fuses,24
Configuration Words,24
console I/O functions,64
const psect,45, 46
const qualifier,36
constants

assembly,70
C specifiers,29
character,30
string,seesring literals30

context retrieval,49
context saving,49

in-line assembly,60
copyright notice,11
COS,136
COSH,137
CPUTS,138
creating

libraries,104
creating new,44
CREF,67, 108

command line arguments,108
options

-Fprefix,109

330

INDEX INDEX

-Hheading,109
-Llen, 109
-Ooutfile,109
-Pwidth,110
-Sstoplist,110
-Xprefix, 110

cromwell,110
cromwell options,110

-B, 112
-C, 112
-D, 112
-E, 112
-F, 112
-Ikey, 112
-L, 112
-M, 113
-Okey,112
-Pname,110
-V, 113

cross reference
disabling,88
generating,108
list utility, 108

cross reference file,67
generation,67

cross reference listings,13
excluding header symbols,109
excluding symbols,110
headers,109
output name,109
page length,109
page width,110

cross referencing
enabling,88

ctext psect,45
CTIME, 139

data psect,20, 46, 90
copying,91

data psects,27
data types,29

16-bit integer,32
8-bit integer,32
assembly,71
char,32
floating point,33
int, 32
short,32

DB directive,80
DDW directive,81
debug information,9, 24

assembler,68
optimizers and,68

default libraries,4
default psect,75
default radix

assembly,70
delta PSECT flag,78
delta psect flag,93
dependencies,21
device selection,12, 13
DI, 140
directives

asm, C,52
assembler,75
EQU,72

DIV, 141
divide by zero

result of,44
DS directive,81
DSPICC options

–CHAR=type,32
–RUNTIME=type,26

dsPIC assembly language
functions,50

dsPIC MCU assembly language,68
DW directive,80

331

INDEX INDEX

EI, 140
ellipsis symbol,41
ELSE directive,81
ELSIF directive,81
END directive,77
ENDIF directive,81
ENDM directive,81
enhanced symbol files,95
environment variable

HTC_ERR_FORMAT,14
HTC_WARN_FORMAT,14

EQU directive,53, 72, 80
equ directive,68
equating assembly symbols,80
error files

creating,94
error messages,8

formatting,14
LIBR, 106

EVAL_POLY, 142
exceptions,46
EXP,143
EXPAND assembler control,86
exponent,33
expressions

assembly,73
relocatable,73

extern keyword,50

FABS,144
file formats

assembler listing,12
Avocet symbol,99
command,105
creating with cromwell,110
cross reference,67, 108
cross reference listings,13
dependency,21
DOS executable,96

enhanced symbol,95
library, 26, 103, 105
link, 100
object,7, 96, 105
preprocessor,17
prototype,18
specifying,17
symbol,95
symbol files,24
TOS executable,96

files
source,24

floating point data types,33
biased exponent,33
exponent,33
format,33
mantissa,33

floating suffix,30
FLOOR,145
fnconf directive,102
fnroot directive,102
FREE,146
FREXP,147
function

return values,42
function prototypes,63, 85

ellipsis,41
function return values,42
function signatures,85
functions

argument passing,41
getch,64
interrupt,46
interrupt qualifier,46
kbhit, 64
putch,64
return values,42
signatures,62
written in assembler,49

332

INDEX INDEX

GETCH,148
getch function,64
GETCHAR,149
GETCHE,148
GETS,150
GLOBAL directive,73, 75
global PSECT flag,78
global symbols,90
GMTIME, 151

hardware
initialization,29

header files
problems in,21

hex files
multiple,94

hexadecimal constants
assembly,70

HLINK options,91
-Aclass=low-high,93
-Cpsect=class,93
-Dsymfile,94
-Eerrfile,94
-F, 94
-Gspec,94
-H+symfile,95
-Hsymfile,95
-Jerrcount,95
-K, 95
-L, 96
-LM, 96
-Mmapfile,96
-N, 96
-Nc, 96
-Ns,96
-Ooutfile,96
-Pspec,96
-Qprocessor,98
-Sclass=limit[,bound],98

-Usymbol,99
-Vavmap,99
-Wnum,99
-X, 99
-Z, 99

HTC_ERR_FORMAT,14
HTC_WARN_FORMAT,14
HTKC

command format,3
file types,3
long command lines,4
options,4
version number,21

HTKC options
–ASMLIST, 12
–CHAR=type,12
–CHIP=processor,12
–CHIPINFO,13
–CR=file,13
–ERRFORMAT=format,14
–GETOPTION=app,file,15
–HELP,15
–IDE=type,15
–LANG=language,16
–MEMMAP, 16
–NOEXEC,16
–OPT=type,17
–OUTPUT=type,17
–PRE,17
–PROTO,18
–RAM=lo-hi, 19
–ROM=lo-hi,19
–RUNTIME=type,20
–SCANDEP,21
–SETOPTION=app,file,21
–STRICT,21
–SUMMARY=type,21
–VER,21
–WARN=level,21

333

INDEX INDEX

–WARNFORMAT=format,14
-C, 7
-D, 7
-Efile, 8
-G, 9
-I, 9
-L, 9, 10
-M, 10
-Nsize,10
-P,11
-S,11
-U, 11
-V, 12
-X, 12
-q, 11

I/O
console I/O functions,64
serial,64
STDIO,64

identifier length,10
identifiers

assembly,71
IEEE floating point format,33
IF directive,81
Implementation-defined behaviour

division and modulus,44
shifts,44

implementation-defined behaviour,23
in-line assembly,49
INCLUDE assembler control,86
include files

assembly,86
init psect,45
inline pragma directive,57
int data types,32
integer suffix

long,30
unsigned,30

integral constants,30
integral promotion,43
interrupt functions,46

context retrieval,49
context saving,49, 60

interrupt keyword,46
interrupt qualifier,47
interrupt service routines,46
interrupts

handling in C,46
IRP directive,84
IRPC directive,84
ISALNUM, 153
ISALPHA, 153
ISDIGIT, 153
ISLOWER,153

Japanese character handling,58
JIS character handling,58
jis pragma directive,58

KBHIT, 155
kbhit function,64
keyword

auto,39
interrupt,46, 47
persistent,37
ydata,37

keywords
disabling non-ANSI,21

label field,68
labels

assembly,72
local,83

LDEXP, 156
LDIV, 157
LIBR, 103, 104

command line arguments,104
error messages,106

334

INDEX INDEX

listing format,106
long command lines,105
module order,106

librarian,103
command files,105
command line arguments,104, 105
error messages,106
listing format,106
long command lines,105
module order,106

Libraries,28
libraries

adding files to,104
creating,104
default,4
deleting files from,105
excluding,20
format of,103
linking, 99
listing modules in,105
module order,106
scanning additional,9
standard,26
used in executable,96

library
difference between object file,103
manager,103

Library functions
__CONFIG,116
__EEPROM_DATA,117
ABS, 118
ACOS,119
ASCTIME, 120
ASIN, 122
ASSERT,123
ATAN, 124
ATOF, 125
ATOI, 126
ATOL, 127

BSEARCH,128
CALLOC, 130
CEIL, 132
CGETS,133
CLRWDT, 135
COS,136
COSH,137
CPUTS,138
CTIME, 139
DI, 140
DIV, 141
EI, 140
EVAL_POLY, 142
EXP,143
FABS,144
FLOOR,145
FREE,146
FREXP,147
GETCH,148
GETCHAR,149
GETCHE,148
GETS,150
GMTIME, 151
ISALNUM, 153
ISALPHA, 153
ISDIGIT, 153
ISLOWER,153
KBHIT, 155
LDEXP, 156
LDIV, 157
LOCALTIME, 158
LOG, 160
LOG10,160
LONGJMP,161
MALLOC, 163
MEMCHR, 165
MEMCMP, 167
MEMCPY, 169
MEMMOVE, 170

335

INDEX INDEX

MEMSET,171
MODF, 172
PERSIST_CHECK,173
PERSIST_VALIDATE,173
POW,175
PRINTF,176
PUTCH,179
PUTCHAR,180
PUTS,182
QSORT,183
RAND, 185
REALLOC, 187
SCANF,189
SETJMP,191
SIN, 193
SINH, 137
SPRINTF,194
SQRT,195
SRAND,196
SSCANF,197
STRCAT,198
STRCHR,199
STRCMP,201
STRCPY,203
STRCSPN,204
STRDUP,205
STRICHR,199
STRICMP,201
STRISTR,216
STRLEN,206
STRNCAT,207
STRNCMP,209
STRNCPY,211
STRNICMP,209
STRPBRK,213
STRRCHR,214
STRRICHR,214
STRSPN,215
STRSTR,216

STRTOK,217
TAN, 219
TANH, 137
TIME, 220
TOASCII, 222
TOLOWER,222
TOUPPER,222
UNGETCH,223
VA_ARG, 224
VA_END, 224
VA_START, 224
VPRINTF,176
VSCANF,189
VSPRINTF,194
VSSCANF,197
XTOI, 226

limit PSECT flag,78
link addresses,91, 96
linker, 89

command files,99
command line arguments,91, 99
invoking,99
long command lines,99
options from HTKC,10
passes,103
symbols handled,90

linker defined symbols,64
linker errors

aborting,95
undefined symbols,95

linker options,91
-Aclass=low-high,93, 97
-Cpsect=class,93
-Dsymfile,94
-Eerrfile,94
-F, 94
-Gspec,94
-H+symfile,95
-Hsymfile,95

336

INDEX INDEX

-I, 95
-Jerrcount,95
-K, 95
-L, 96
-LM, 96
-Mmapfile,96
-N, 96
-Nc, 96
-Ns,96
-Ooutfile,96
-Pspec,96
-Qprocessor,98
-Sclass=limit[, bound],98
-Usymbol,99
-Vavmap,99
-Wnum,99
-X, 99
-Z, 99
numbers in,92

linking programs,61
LIST assembler control,87
list files,seeasembler listings67

assembler,12
little endian format,32, 33
load addresses,91, 96
LOCAL directive,71, 83
local PSECT flag,78
local psects,90
local symbols,12

suppressing,68, 99
local variables,39

auto,39
static,40

LOCALTIME, 158
location counter,71, 79
LOG, 160
LOG10,160
long data types,33
long integer suffix,30

LONGJMP,161

MACRO directive,81
macro directive,68
macros

disabling in listing,87
expanding in listings,67, 86
nul operator,82
predefined,54
repeat with argument,84
undefining,11
unnamed,84

MALLOC, 163
mantissa,33
map files,96

call graphs,101
generating,10
processor selection,98
segments,100
symbol tables in,96
width of, 99

mconst psect,46
MEMCHR, 165
MEMCMP, 167
MEMCPY, 169
MEMMOVE, 170
memory

reserving,19
specifying,19
specifying ranges,93
unused,96

memory pages,79
memory summary,21
MEMSET,171
MODF, 172
modules

in library, 103
list format,106
order in library,106

337

INDEX INDEX

used in executable,96
multi-character constants

assembly,70
multiple hex files,94

NOCOND assembler control,87
NOEXPAND assembler control,87
nojis pragma directive,58
NOLIST assembler control,87
non-volatile memory,46
non-volatile RAM,36
NOXREF assembler control,88
numbers

C source,29
in linker options,92

nvbit psect,46
nvram psect,37, 46

object code, version number,96
object files,7

absolute,96
relocatable,89
specifying name of,68
suppressing local symbols,68
symbol only,94

OBJTOHEX,106
command line arguments,106

optimizations
assembler,seeasembler optimizer68

options
ASDSPIC,seeADSPIC options67

ORG directive,79
output file formats,96

specifying,17, 106
overlaid memory areas,95
overlaid psects,78
ovrld PSECT flag,78

pack pragma directive,58
pad PSECT flag,78

PAGE assembler control,88
parameter passing,41, 50
PERSIST_CHECK,173
PERSIST_VALIDATE,173
persistent keyword,37
persistent qualifier,37
persistent variables,46
pointer

qualifiers,37
pointers,37

16bit,37
32 bit,37
to functions,37

POW,175
powerup psect,45
powerup routine,4, 29
pragma directives,57
predefined symbols

preprocessor,54
preprocessing,11

assembler files,11
preprocessor

macros,7
path,9

preprocessor directives,54
#asm,52
#endasm,52
in assembly files,69

preprocessor symbols
predefined,54

PRINTF,176
printf

format checking,58
printf_check pragma directive,58
processor selection,12, 13, 85, 98
program sections,73
psect

bitbss,46
bss,20, 27, 46, 90

338

INDEX INDEX

const,45, 46
ctext,45
data,20, 46, 90
init, 45
mconst,46
nvbit, 46
nvram,37, 46
powerup,45
ramdata,27
romdata,27
temp,46
text,45
vectors,46

PSECT directive,73, 77
PSECT flags

abs,77
bit, 78
class,78
delta,78
global,78
limit, 78
local,78
ovrld, 78
pad,78
pure,78
reloc,78
size,78
space,79
width, 79
with, 79

psect flags,77, 98
psect pragma directive,59
psects,44, 73, 90

absolute,77, 78
aligning within,83
alignment of,78
basic kinds,90
class,93, 98
compiler generated,45

default,75
delta value of,93
differentiating ROM and RAM,79
linking, 89
listing, 21
local,90
maximum size of,78
page boundaries and,79
renaming,59
specifying address ranges,97
specifying addresses,93, 96
user defined,59

pseudo-ops
assembler,75

pure PSECT flag,78
PUTCH,179
putch function,64
PUTCHAR,180
PUTS,182

QSORT,183
qualifier

interrupt,47
persistent,37
volatile,70
ydata,37

qualifiers,36
and auto variables,39
auto,39
const,36
pointer,37
special,37
volatile,36

quiet mode,11

radix specifiers
assembly,70
C source,29

ramdata psect,27

339

INDEX INDEX

RAND, 185
read-only variables,36
REALLOC, 187
redirecting errors,8
Reference,92, 100
registers

special function,seesecial function reg-
isters72

regsused pragma directive,60
relative jump,72
RELOC,94, 96
reloc PSECT flag,78
relocatable

object files,89
relocation,89
relocation information

preserving,96
renaming psects,59
REPT directive,84
reserving memory,19
reset,29

code executed after,29
return values,42
romdata psect,27
runtime environment,20
runtime module,4
runtime startup

variable initialization,27
runtime startup code,26
runtime startup module,20

scale value,78
SCANF,189
search path

header files,9
segment selector,94
segments,seeaso psects73,94, 100
serial I/O,64
SET directive,80

set directive,68
SETJMP,191
SFRs

using in assembler code,53
shift operations

result of,44
sign extension when shifting,44
SIGNAT directive,85
signat directive,63
signature checking,62
signatures,85
SIN, 193
SINH, 137
size PSECT flag,78
source file

extensions,24
source files,24
SPACE assembler control,88
space PSECT flag,79
special characters,69
special function registers

in assembly code,72
predefined,53

special type qualifiers,37
sports cars,71
SPRINTF,194
SQRT,195
SRAND,196
SSCANF,197
stack,23
stack pointer,20, 23
standard libraries,26
standard type qualifiers,36
startup module,4, 20

clearing bss,90
data copying,91

static variables,40
STDIO,64
storage class,39

340

INDEX INDEX

STRCAT,198
STRCHR,199
STRCMP,201
STRCPY,203
STRCSPN,204
STRDUP,205
STRICHR,199
STRICMP,201
string literals,30

concatenation,30
strings

assembly,70
storage location,30
type of,30

STRISTR,216
STRLEN,206
STRNCAT,207
STRNCMP,209
STRNCPY,211
STRNICMP,209
STRPBRK,213
STRRCHR,214
STRRICHR,214
STRSPN,215
STRSTR,216
STRTOK,217
structures

alignment,padding,58
bit-fields,34
qualifiers,35

SUBTITLE assembler control,88
switch pragma directive,61
Symbol files

Avocet format,99
symbol files,9, 24

enhanced,95
generating,95
local symbols in,99
old style,94

removing local symbols from,12
removing symbols from,98
source level,9

symbol tables,96, 99
sorting,96

symbols
assembler-generated,71
global,90, 105
linker defined,64
undefined,99

TAN, 219
TANH, 137
temp psect,46
text psect,45
TIME, 220
TITLE assembler control,88
TOASCII, 222
TOLOWER,222
TOUPPER,222
type qualifiers,36
typographic conventions,1

unamed structure members,35
UNGETCH,223
unnamed psect,75
unsigned integer suffix,30
utilities, 89

VA_ARG, 224
VA_END, 224
VA_START, 224
variable argument list,41
variable initialization,27
variables

absolute,40
accessing from assembler,53
auto,39
char types,32
floating point types,33

341

INDEX INDEX

int types,32
local,39
persistent,46
static,40
unique length of,10

vectors psect,46
verbose,12
version number,21
volatile qualifier,36, 70
VPRINTF,176
VSCANF,189
VSPRINTF,194
VSSCANF,197

warning level,21
setting,99

warnings
level displayed,21
suppressing,99

width PSECT flag,79
with PSECT flag,79
word boundaries,78

XREF assembler control,88
XTOI, 226

ydata keyword,37
ydata qualifier,37

342

DSPICC Options
Option Meaning

--NODEL Do not remove temporary files generated by the com-
piler

--NOEXEC Go through the motions of compiling without actually
compiling

--OUTDIR Specify output files directory
--OPT<=type> Enable general compiler optimizations
--OUTPUT=type Generate output file type
--PRE Produce preprocessed source files
--PROTO Generate function prototype information
--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges
--ROM=lo-hi<,lo-hi,...>|tag Specify and/or reserve ROM ranges
--RUNTIME=type Configure the C runtime libraries to the specified type
--SCANDEP Generate file dependency “.DEP files”
--SETOPTION=app,file Set the command line options for the named applica-

tion
--SETUP=argument Setup the product
--STRICT Enable strict ANSI keyword conformance
--SUMMARY=type Selects the type of memory summary output
--VER Display the compiler’s version number
--WARN=level Set the compiler’s warning level
--WARNFORMAT=format Format warning message strings to given style

DSPICC Options
Option Meaning

-Bmodel Select memory model
-C Compile to object files only
-Dmacro Define preprocessor macro
-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify-option to be passed directly to the linker
-Mfile Request generation of a MAP file
-Nsize Specify identifier length
-Ofile Output file name
-P Preprocess assembler files
-Q Specify quiet mode
-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol
-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
--ASMLIST Generate assembler .LST file for each compilation
--ASOPT Controls asembler optimziations
--CHAR=type Make the default char signed or unsigned
--CHIP=processor Selects which processor to compile for
--CHIPINFO Displays a list of supported processors
--COPT Controls global C optimizations
--CR=file Generate cross-reference listing
--DEBUGGER=type Select the debugger that will be used
--ERRFORMAT<=format> Format error message strings to the given style
--ERRORS=number Sets the maximun number of errors displayed
--GETOPTION=app,file Get the command line options for the named applica-

tion
--HELP<=option> Display the compiler’s command line options
--IDE=ide Configure the compiler for use by the named IDE
--LANG=language Specify language for compiler messages
--MEMMAP=file Display memory summary information for the map

file
continued. . .

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	DSPICC Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	DSPICC Compiler Options
	-Bmodel: Select memory model
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--ASOPT: Control Assembler optimizations
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--COPT=level: Control C optimizations
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--ERRFORMAT=format: Define Format for Compiler Messages
	Using the Format Options
	Modifying the Standard Format

	--ERRORS=number: Maximum Number of Errors
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE being used
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MSGFORMAT=format: Set Advisory Message Format
	--NOEXEC: Don't Execute Compiler
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SETOPTION=app,file: Set The Command-line Options for Application
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	C Language Features
	ANSI Standard Issues
	Implementation-defined behaviour

	Processor-related Features
	Stacks
	Configuration Fuses

	Files
	Source Files
	Symbol Files
	Standard Libraries
	Runtime startup Modules
	Initialization of Data psects
	Clearing the Bss Psects
	Linking in the C Libraries
	The powerup Routine

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	YData Type Qualifier

	Pointer Types
	Data Pointers
	Function Pointers
	Qualifiers and Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	X and Y DATA Variables
	Absolute Variables
	Objects in the Program Space

	Functions
	Function Argument Passing
	Function Return Values
	Integral Return Values
	Structure Return Values

	Register Usage
	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Psects
	Compiler-generated Psects

	Interrupt Handling in C
	Interrupt Functions
	Context Saving on Interrupts
	Context Restoration

	Enabling Interrupts

	Mixing C and Assembler Code
	External Assembly Language Functions
	#asm, #endasm and asm()
	Accessing C objects from within Assembly Code
	Equivalent Assembly Symbols
	Accessing specifal function register names from assembler

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma inline Directive
	The #pragma jis and nojis Directives
	The #pragma pack Directive
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma switch Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Location Counter
	Register Symbols
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DW
	DDW
	DS
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	PROCESSOR
	SIGNAT

	Assembler Controls
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	SPACE
	SUBTITLE
	TITLE
	XREF

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Call Graph Information

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Library Functions
	Error and Warning Messages
	Chip Information
	Index

