
© 2005 Microchip Technology Inc. DS70030F

dsPIC30F Programmer’s
Reference Manual

High Performance
Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
DS70030F-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance and WiperLock are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2005 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

PAGE

Table of Contents
SECTION 1. INTRODUCTION 1-1

Introduction .. 1-2
Manual Objective ... 1-2
Development Support .. 1-2
Style and Symbol Conventions .. 1-3
Instruction Set Symbols ... 1-4
Related Documents .. 1-5

SECTION 2. PROGRAMMER’S MODEL 2-1

dsPIC30F Overview ... 2-2
Programmer’s Model .. 2-3

SECTION 3. INSTRUCTION SET OVERVIEW 3-1

Introduction .. 3-2
Instruction Set Overview .. 3-2
Instruction Set Summary Tables ... 3-3

SECTION 4. INSTRUCTION SET DETAILS 4-1

Data Addressing Modes ... 4-2
Program Addressing Modes ... 4-11
Instruction Stalls ... 4-12
Byte Operations ... 4-13
Word Move Operations .. 4-16
Using 10-bit Literal Operands .. 4-19
Software Stack Pointer and Frame Pointer .. 4-20
Conditional Branch Instructions ... 4-25
Z Status Bit ... 4-26
Assigned Working Register Usage ... 4-27
DSP Data Formats ... 4-30
Accumulator Usage .. 4-32
Accumulator Access ... 4-33
DSP MAC Instructions ... 4-33
DSP Accumulator Instructions ... 4-37
Scaling Data with the FBCL Instruction .. 4-37
Normalizing the Accumulator with the FBCL Instruction .. 4-39

SECTION 5. INSTRUCTION DESCRIPTIONS 5-1

Instruction Symbols .. 5-2
Instruction Encoding Field Descriptors Introduction ... 5-2
Instruction Description Example ... 5-6
Instruction Descriptions .. 5-7

SECTION 6. REFERENCE 6-1

Data Memory Map .. 6-2
Core Special Function Register Map .. 6-3
Program Memory Map ... 6-6
Instruction Bit Map ... 6-7
Instruction Set Summary Table .. 6-9
© 2005 Microchip Technology Inc. DS70030F-page iii

dsPIC30F Programmer’s Reference Manual
NOTES:
DS70030F - page iv © 2005 Microchip Technology Inc.

In
tro

d
u

ctio
n

1

Section 1. Introduction
HIGHLIGHTS

This section of the manual contains the following topics:

1.1 Introduction .. 1-2

1.2 Manual Objective ... 1-2

1.3 Development Support .. 1-2

1.4 Style and Symbol Conventions .. 1-3

1.5 Instruction Set Symbols ... 1-4
1.6 Related Documents ... 1-5
© 2005 Microchip Technology Inc. DS70030F-page 1-1

dsPIC30F Programmer’s Reference Manual
1.1 Introduction

Microchip Technology’s focus is on products that meet the needs of the embedded control
market. We are a leading supplier of:

• 8-bit general purpose microcontrollers (PICmicro® MCUs)
• dsPIC30F 16-bit microcontrollers
• Speciality and standard non-volatile memory devices
• Security devices (KEELOQ®)
• Application specific standard products

Please request a Microchip Product Line Card for a listing of all the interesting products that we
have to offer. This literature can be obtained from your local sales office, or downloaded from the
Microchip web site (www.microchip.com).

1.2 Manual Objective

PICmicro and dsPIC30F devices are grouped by the size of their Instruction Word and Data Path.
The current device families are:

1. Base-Line: 12-bit Instruction Word length, 8-bit Data Path

2. Mid-Range: 14-bit Instruction Word length, 8-bit Data Path

3. High-End: 16-bit Instruction Word length, 8-bit Data Path

4. Enhanced: 16-bit Instruction Word length, 8-bit Data Path
5. dsPIC30F: 24-bit Instruction Word length, 16-bit Data Path

This manual is a software developer’s reference for the dsPIC30F 16-bit MCU family of devices.
This manual describes the Instruction Set in detail and also provides general information to assist
the user in developing software for the dsPIC30F MCU family.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the dsPIC30F Family Reference Manual
for information about the core, peripherals and system integration. For device specific informa-
tion, the user should refer to the data sheet. The information that can be found in the data sheet
includes:

• Device memory map
• Device pinout and packaging details

• Device electrical specifications

• List of peripherals included on the device.

Code examples are given throughout this manual. These examples are valid for any device in
the dsPIC30F MCU family.

1.3 Development Support

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:

1. Code generation

2. Hardware/Software debug

3. Device programmer

4. Product evaluation boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed the development cycle. These include:

• Application Notes

• Reference Designs
• Microchip web site

• Local Sales Offices with Field Application Support

• Corporate Support Line

The Microchip web site lists other sites that may be useful references.
DS70030F-page 1-2 © 2005 Microchip Technology Inc.

http://www.microchip.com

Section 1. Introduction
In

tro
d

u
ctio

n

1

1.4 Style and Symbol Conventions

Throughout this document, certain style and font format conventions are used. Most format
conventions imply a distinction should be made for the emphasized text. The MCU industry has
many symbols and non-conventional word definitions/abbreviations. Table 1-1 provides a
description for many of the conventions contained in this document.

Table 1-1: Document Conventions

Symbol or Term Description

set To force a bit/register to a value of logic ‘1’.

clear To force a bit/register to a value of logic ‘0’.

RESET 1) To force a register/bit to its default state.
2) A condition in which the device places itself after a device RESET

occurs. Some bits will be forced to ‘0’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the I/O data direction bits).

0xnnnn Designates the number ‘nnnn’ in the hexadecimal number system.
These conventions are used in the code examples. For example,
0x013F or 0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.
One example is ACCAU:ACCAH:ACCAL, which is the concatenation of
three registers to form the 40-bit accumulator.
Concatenation order (left-right) usually specifies a positional relationship
(MSb to LSb, higher to lower).

< > Specifies bit(s) locations in a particular register.
One example is SR<IPL2:IPL0> (or IPL<2:0>), which specifies the
register and associated bits or bit positions.

MSb, MSbit, LSb,
LSbit

Indicates the Least Significant or Most Significant bit in a field.

MSByte, MSWord,
LSByte, LSWord

Indicates the Least/Most Significant Byte or Word in a field of bits.

Courier Font Used for code examples, binary numbers and for Instruction Mnemonics
in the text.

Times Font Used for equations and variables.

Times, Bold Font,
Italics

Used in explanatory text for items called out from a
graphic/equation/example.

Note: A Note presents information that we wish to re-emphasize, either to help
you avoid a common pitfall, or make you aware of operating differences
between some device family members. In most instances, a Note is used
in a shaded box (as illustrated below), however when referenced to a
table, a Note will stand-alone and immediately follow the associated table
(as illustrated below Table 1-2).

Note: This is a Note in a shaded note box.
© 2005 Microchip Technology Inc. DS70030F-page 1-3

dsPIC30F Programmer’s Reference Manual
1.5 Instruction Set Symbols

The Summary Tables in Section 3-2 and Section 6.5, and the instruction descriptions in
Section 5.4 utilize the symbols shown in Table 1-2.

Table 1-2:Symbols Used in Instruction Summary Tables and Descriptions

Symbol Description

{ } Optional field or operation

[text] The location addressed by text

(text) The contents of text

#text The literal defined by text

a ∈ [b, c, d] “a” must be in the set of [b, c, d]

<n:m> Register bit field

{label:} Optional label name

Acc Accumulator A or Accumulator B

AWB Accumulator Write Back

bit4 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)

Expr Absolute address, label or expression (resolved by the linker)

f File register address

lit1 1-bit literal (0:1)

lit4 4-bit literal (0:15)

lit5 5-bit literal (0:31)

lit8 8-bit literal (0:255)

lit10 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)

lit14 14-bit literal (0:16383)

lit16 16-bit literal (0:65535)

lit23 23-bit literal (0:8388607)

Slit4 Signed 4-bit literal (-8:7)

Slit6 Signed 6-bit literal (-32:31) (range is limited to -16:16)

Slit10 Signed 10-bit literal (-512:511)

Slit16 Signed 16-bit literal (-32768:32767)

TOS Top-of-Stack

Wb Base working register

Wd Destination working register (direct and indirect addressing)

Wm, Wn Working register divide pair (dividend, divisor)

Wm*Wm Working register multiplier pair (same source register)

Wm*Wn Working register multiplier pair (different source registers)

Wn Both source and destination working register (direct addressing)

Wnd Destination working register (direct addressing)

Wns Source working register (direct addressing)

WREG Default working register (assigned to W0)

Ws Source working register (direct and indirect addressing)

Wx Source Addressing mode and working register for X data bus pre-fetch

Wxd Destination working register for X data bus pre-fetch

Wy Source Addressing mode and working register for Y data bus pre-fetch

Wyd Destination working register for Y data bus pre-fetch

Note: The range of each symbol is instruction dependent. Refer to Section 5. “Instruction
Descriptions” for the specific instruction range.
DS70030F-page 1-4 © 2005 Microchip Technology Inc.

Section 1. Introduction
In

tro
d

u
ctio

n

1

1.6 Related Documents

Microchip, as well as other sources, offer additional documentation which can aid in your devel-
opment with dsPIC30F MCUs. These lists contain the most common documentation, but other
documents may also be available. Please check the Microchip web site (www.microchip.com) for
the latest published technical documentation.

1.6.1 Microchip Documentation

The following dsPIC30F documentation is available from Microchip at the time of this writing.
Many of these documents provide application specific information that gives actual examples of
using, programming and designing with dsPIC30F MCUs.

1. dsPIC30F Family Reference Manual (DS70046)
The dsPIC30F Family Reference Manual provides information about the dsPIC30F
architecture, peripherals and system integration features. The details of device operation
are provided in this document, along with numerous code examples.

2. dsPIC30F Family Overview (DS70043)
This document provides a summary of the available dsPIC30F family variants, including
device pinouts, memory sizes and available peripherals.

3. dsPIC30F Data Sheets
The data sheets contain device specific information, such as pinout and packaging details,
electrical specifications, and memory maps. Please check the Microchip web site
(www.microchip.com) for a list of available device data sheets.

1.6.2 Third Party Documentation

There are several documents available from third party sources around the world. Microchip
does not review these documents for technical accuracy. However, they may be a helpful source
for understanding the operation of Microchip dsPIC30F devices. Please refer to the Microchip
web site (www.microchip.com) for third party documentation related to the dsPIC30F.
© 2005 Microchip Technology Inc. DS70030F-page 1-5

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC30F Programmer’s Reference Manual
NOTES:
DS70030F-page 1-6 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P
ro

g
ram

m
er’s

M
o

d
el

2

HIGHLIGHTS

This section of the manual contains overview information about the dsPIC30F devices. It
contains the following major topics:

2.1 dsPIC30F Overview ... 2-2
2.2 Programmer’s Model.. 2-3
© 2005 Microchip Technology Inc. DS70030F-page 2-1

dsPIC30F Programmer’s Reference Manual
2.1 dsPIC30F Overview

The dsPIC30F core is a 16-bit (data) modified Harvard architecture with an enhanced instruction
set, including support for DSP. The core has a 24-bit instruction word, with a variable length
opcode field. The program counter (PC) is 23-bits wide and addresses up to 4M x 24 bits of user
program memory space. A single cycle instruction pre-fetch mechanism is used to help maintain
throughput and provides predictable execution. The majority of instructions execute in a single
cycle, and overhead free program loop constructs are supported using the DO and REPEAT
instructions, both of which are interruptible.

The dsPIC30F has sixteen, 16-bit working registers. Each of the working registers can act as a
data, address or offset register. The 16th working register (W15) operates as a software stack
pointer for interrupts and calls.

The dsPIC30F instruction set has two classes of instructions: the MCU class of instructions and
the DSP class of instructions. These two instruction classes are seamlessly integrated into the
architecture and execute from a single execution unit. The instruction set includes many
Addressing modes and was designed for optimum C compiler efficiency.

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred
to as X and Y data memory. Each memory block has its own independent Address Generation
Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which
accesses the entire memory map as one linear data space. The DSP dual source class of instruc-
tions operates through the X and Y AGUs, which splits the data address space into two parts.
The X and Y data space boundary is arbitrary and device specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. The program to data space mapping feature lets any instruction access
program space as if it were data space, which is useful for storing data coefficients.

Overhead free circular buffers (modulo addressing) are supported in both X and Y address
spaces. The modulo addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class
of instructions. The X AGU also supports bit-reverse addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect and Register Offset Addressing modes. Each instruction is associated with a
predefined Addressing mode group, depending upon its functional requirements. As many as 7
Addressing modes are supported for each instruction.

For most instructions, the dsPIC30F is capable of executing a data (or program data) memory
read, a working register (data) read, a data memory write and a program (instruction) memory
read per instruction cycle. As a result, 3-operand instructions can be supported, allowing A+B=C
operations to be executed in a single cycle.

The DSP engine features a high speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bi-directional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16-bits right, or up to 16-bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two working registers. This requires that
the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain working registers to each address
space.

The dsPIC30F has a vectored exception scheme with up to 8 sources of non-maskable traps and
54 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.
DS70030F-page 2-2 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.2 Programmer’s Model

The programmer’s model diagram for the dsPIC30F is shown in Figure 2-1.

All registers in the programmer’s model are memory mapped and can be manipulated directly by
the instruction set. A description of each register is provided in Table 2-1.

2.2.1 Working Register Array

The 16 working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the working register array, only affect the Least Significant Byte of
the target register. Since the working registers are memory mapped, the Least and Most
Significant Bytes can be manipulated through byte wide data memory space accesses.

2.2.2 Default Working Register (WREG)

The dsPIC30F instruction set can be divided into two instruction types: working register
instructions and file register instructions. The working register instructions use the working
register array as data values, or as addresses that point to a memory location. In contrast, file
register instructions operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a working register do not specify the working register that
is to be used for the instruction. Instead, a default working register (WREG) is used for these file
register instructions. Working register W0 is assigned to be the WREG. The WREG assignment
is not programmable.

2.2.3 Software Stack Frame Pointer

A frame is a user defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a stack frame pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a stack frame pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. See Section 4.7.3 “Software Stack Frame Pointer” for detailed information about
the Frame Pointer.

Table 2-1: Programmer’s Model Register Descriptions

Register Description

ACCA, ACCB 40-bit DSP Accumulators

CORCON CPU Core Configuration register

DCOUNT DO Loop Count register

DOEND DO Loop End Address register

DOSTART DO Loop Start Address register

PC 23-bit Program Counter

PSVPAG Program Space Visibility Page Address register

RCOUNT Repeat Loop Count register

SPLIM Stack Pointer Limit Value register

SR ALU and DSP Engine Status register

TBLPAG Table Memory Page Address register

W0 - W15 Working register array
© 2005 Microchip Technology Inc. DS70030F-page 2-3

dsPIC30F Programmer’s Reference Manual
Figure 2-1: Programmer’s Model Diagram

TABPAG

22 0

7 0

015

Program Counter

Data Table Page Address

Status Register

Working Registers

MAC Operand
Registers

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12/MAC Offset

W13/MAC Write Back

W14/Frame Pointer

W15*/Stack Pointer

MAC Address
Registers

39 031

DSP
Accumulators

ACCA

ACCB

PSVPAG
7 0

Program Space Visibility Page Address

ZOA OB SA SB

RCOUNT
15 0

REPEAT Loop Counter

DCOUNT
15 0

DO Loop Counter

DOSTART

22 0

DO Loop Start Address

IPL2 IPL1

SPLIM* Stack Pointer Limit Register

15

SRL

* W15 & SPLIM not shadowed

PUSH.S Shadow

DO Shadow

OAB SAB

15 0
 CPU Core Control Register

Legend

CORCON

DA DC RA N C

TBLPAG

PSVPAG

IPL0 OV

W0 / WREG

SRH

DO Loop End AddressDOEND

22 0

DIV and MUL
Result Registers
DS70030F-page 2-4 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.2.4 Software Stack Pointer

W15 serves as a dedicated software stack pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
stack pointer. Refer to Section 4.7.1 “Software Stack Pointer” for detailed information about
the stack pointer.

2.2.5 Stack Pointer Limit Register (SPLIM)

The SPLIM is a 16-bit register associated with the stack pointer. It is used to prevent the stack
pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.7.5 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.2.6 Accumulator A, Accumulator B

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
3 memory mapped registers:

• AccxU (bits 39 - 32)

• AccxH (bits 31 - 16)

• AccxL (bits 15 - 0)

Refer to Section 4.12 “Accumulator Usage” for details on using ACCA and ACCB.

2.2.7 Program Counter

The Program Counter (PC) is 23-bits wide. Instructions are addressed in the 4M x 24-bit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with data space addressing. This means that during
normal instruction execution, the PC increments by 2.

Program memory located at 0x80000000 and above is utilized for device configuration data,
Unit ID and Device ID. This region is not available for user code execution and the PC can not
access this area. However, one may access this region of memory using Table instructions. Refer
to the dsPIC30F Family Reference Manual for details on accessing the configuration data, Unit
ID and Device ID.

2.2.8 TBLPAG Register

The TBLPAG register is used to hold the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program memory
space and data memory space. Refer to the dsPIC30F Family Reference Manual for details on
accessing program memory with the Table instructions.

2.2.9 PSVPAG Register

Program space visibility allows the user to map a 32 Kbyte section of the program memory space
into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through dsPIC30F instructions that operate on data memory. The PSVPAG
register selects the 32 Kbyte region of program memory space that is mapped to the data
address space. Refer to the dsPIC30F Family Reference Manual for details on program space
visibility.
© 2005 Microchip Technology Inc. DS70030F-page 2-5

dsPIC30F Programmer’s Reference Manual
2.2.10 RCOUNT Register

The 14-bit RCOUNT register contains the loop counter for the REPEAT instruction. When a
REPEAT instruction is executed, RCOUNT is loaded with the repeat count of the instruction,
either “lit14” for the ”REPEAT #lit14“ instruction, or the contents of Wn for the ”REPEAT Wn”
instruction. The REPEAT loop will be executed RCOUNT+1 times.

2.2.11 DCOUNT Register

The 14-bit DCOUNT register contains the loop counter for hardware DO loops. When a DO
instruction is executed, DCOUNT is loaded with the loop count of the instruction, either “lit14” for
the “DO #lit14,Expr” instruction, or the 14 Least Significant bits of Ws for the “DO Ws,Expr”
instruction. The DO loop will be executed DCOUNT+1 times.

2.2.12 DOSTART Register

The DOSTART register contains the starting address for a hardware DO loop. When a DO
instruction is executed, DOSTART is loaded with the address of the instruction following the DO
instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DO loop is executed. This mechanism allows for zero overhead looping.

2.2.13 DOEND Register

The DOEND register contains the ending address for a hardware DO loop. When a DO
instruction is executed, DOEND is loaded with the address specified by the expression in the DO
instruction. This location in memory specifies the last instruction in the DO loop. When looping is
activated and the instruction stored at the DOEND address is executed, program execution will
continue from the DO loop start address (stored in the DOSTART register).

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine to break out of the REPEAT loop when the foreground
code is re-entered.

2: Refer to the dsPIC30F Family Reference Manual for complete details about
REPEAT loops.

Note 1: DCOUNT contains a shadow register. See Section 2.2.16 “Shadow Registers”
for information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.

Note 1: DOSTART has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.

Note 1: DOEND has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.
DS70030F-page 2-6 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.2.14 Status Register

The 16-bit Status register, shown in Register 2-1, maintains status information for instructions
which have most recently been executed. Operation status bits exist for MCU operations, loop
operations and DSP operations. Additionally, the Status register contains the CPU Interrupt
Priority Level bits, IPL<2:0>, which are used for interrupt processing.

2.2.14.1 MCU ALU Status Bits

The MCU operation status bits are either affected or used by the majority of instructions in the
instruction set. Most of the Logic, Math, Rotate/Shift and Bit instructions modify the MCU status
bits after execution, and the conditional Branch instructions use the state of individual status bits
to determine the flow of program execution. All conditional Branch instructions are listed in
Section 4.8 “Conditional Branch Instructions”.

The Carry, Zero, Overflow, Negative and Digit Carry (C, Z, OV, N and DC) bits are used to show
the immediate status of the MCU ALU. They indicate when an operation has resulted in a carry,
zero, overflow, negative result and digit carry, respectively. When a subtract operation is
performed, the C flag is used as a Borrow flag.

The Z status bit is a special zero status bit that is useful for extended precision arithmetic. The Z
bit functions like a normal Z flag for all instructions except those that use a carry or borrow input
(ADDC, CPB, SUBB and SUBBR). See Section 4.9 “Z Status Bit” for usage of the Z status bit.

2.2.14.2 Loop Status Bits

The DO Active and REPEAT Active (DA, RA) bits are used to indicate when looping is active.
The DO instructions affect the DA flag, which indicates that a DO loop is active. The DA flag is
set to ‘1’ when the first instruction of the DO loop is executed, and it is cleared when the last
instruction of the loop completes final execution. Likewise, the RA flag indicates that a REPEAT
instruction is being executed, and it is only affected by the REPEAT instructions. The RA flag is
set to ‘1’ when the instruction being repeated begins execution, and it is cleared when the
instruction being repeated completes execution for the last time.

The DA flag is read only. This means that looping may not be initiated by writing a ‘1’ to DA, nor
may looping be terminated by writing a ‘0’ to DA. If a DO loop must be terminated prematurely,
the EDT bit, CORCON<11>, should be used.

Since the RA flag is also read only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0’.

Note 1: All MCU bits are shadowed during execution of the PUSH.S instruction and they are
restored on execution of the POP.S instruction.

2: All MCU bits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.7.1 “Software Stack Pointer”).
© 2005 Microchip Technology Inc. DS70030F-page 2-7

dsPIC30F Programmer’s Reference Manual
2.2.14.3 DSP ALU Status Bits

The high byte of the Status Register (SRH) is used by the DSP class of instructions, and it is
modified when data passes through one of the adders. The SRH provides status information
about overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and
Overflow B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB
and Overflow AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits
provide the software developer efficiency in checking the register for saturation or overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode, or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
Most Significant bit of the respective accumulator. The SA and SB bits are active, regardless of
the Saturation mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once
the SA or SB is set to ‘1’, it can only be cleared manually by software, regardless of subsequent
DSP operations. When required, it is recommended that the bits be cleared with the BCLR
instruction.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative status bits provide
efficient overflow and saturation checking when an algorithm is implemented, which utilizes both
accumulators. Instead of interrogating the OA and the OB bits independently for arithmetic
overflows, a single check of OAB may be performed. Likewise, when checking for saturation,
SAB may be examined instead of checking both the SA and SB bits. Note that clearing the SAB
flag will clear both the SA and SB bits.

2.2.14.4 Interrupt Priority Level Status Bits

The three IPL bits of the SRL, SR<7:5>, and the IPL3 bit, CORCON<3>, set the CPU’s Interrupt
Priority Level (IPL) which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is ‘0’, all exceptions at priority Level 1 and
above may interrupt the processor. If the IPL is ‘7’, only hardware traps may interrupt the
processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt
ServiceRoutine to control which exceptions may preempt the exception processing. Since the
SRL is stacked during exception processing, the original IPL is always restored after the
exception is serviced. If required, one may also prevent exceptions from nesting by setting the
NSTDIS bit, INTCON1<15>.

Note: Refer to the dsPIC30F Family Reference Manual for complete details on exception
processing.
DS70030F-page 2-8 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.2.15 Core Control Register

The 16-bit CPU Core Control Register (CORCON), shown in Register 2-2, is used to set the
configuration of the dsPIC30F CPU. This register provides the ability to:

• map program space into data space

• set the ACCA and ACCB saturation enable

• set the Data Space Write Saturation mode
• set the Accumulator Saturation and Rounding modes

• set the Multiplier mode for DSP operations

• terminate DO loops prematurely

On device RESET, the CORCON is set to 0x0020, which sets the following mode:

• Program Space not Mapped to Data Space (PSV = 0)

• ACCA and ACCB Saturation Disabled (SATA = 0, SATB = 0)

• Data Space Write Saturation Enabled (SATDW = 1)
• Accumulator Saturation mode set to normal (ACCSAT = 0)

• Accumulator Rounding mode set to unbiased (RND = 0)

• DSP Multiplier mode set to signed fractional (US = 0, IF = 0)

In addition to setting CPU modes, the CORCON contains status information about the DO loop
nesting level (DL<2:0>) and the IPL<3> status bit, which indicates if a trap exception is being
processed.

2.2.16 Shadow Registers

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register upon some event. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP.S or PUSH.S
instruction. Shadow register usage is shown in Table 2-2.

Since the DCOUNT, DOSTART and DOEND registers are shadowed, the ability to nest DO loops
without additional overhead is provided. Since all shadow registers are one register deep, up to
one level of DO loop nesting is possible. Further nesting of DO loops is possible in software, with
support provided by the DO Loop Nesting Level Status bits in the CORCON, CORCON<10:8>.

Table 2-2: Automatic Shadow Register Usage

Location DO POP.S/PUSH.S

DCOUNT Yes —

DOSTART Yes —

DOEND Yes —

Status Register -
DC, N, OV, Z and C bits

— Yes

W0 - W3 — Yes

Note: All shadow registers are one register deep and are not directly accessible.
Additional shadowing may be performed in software using the software stack.
© 2005 Microchip Technology Inc. DS70030F-page 2-9

dsPIC30F Programmer’s Reference Manual
Register 2-1: SR, Status Register

High Byte (SRH):
R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0

OA OB SA SB OAB SAB DA DC

bit 15 bit 8

Low Byte (SRL):
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

IPL<2:0> RA N OV Z C

bit 7 bit 0

bit 15 OA: Accumulator A Overflow bit
1 = Accumulator A overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow bit
1 = Accumulator B overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation bit
1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.

bit 12 SB: Accumulator B Saturation bit
1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.

bit 11 OAB: OA || OB Combined Accumulator Overflow bit
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator bit
1 = Accumulators A or B are saturated or have been saturated at some time in the past
0 = Neither Accumulators A or B are saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.
3: Clearing this bit will clear SA and SB.

bit 9 DA: DO Loop Active bit
1 = DO loop in progress
0 = DO loop not in progress

Note: This bit is read only.

bit 8 DC: MCU ALU Half Carry bit
1 = A carry-out from the Most Significant bit of the lower nibble occurred
0 = No carry-out from the Most Significant bit of the lower nibble occurred

bit 7-5 IPL<2:0>: Interrupt Priority Level bits
111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled.
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

Note: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU
Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
DS70030F-page 2-10 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

Register 2-1: SR, Status Register (Continued)

bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress

bit 3 N: MCU ALU Negative bit
1 = The result of the operation was negative
0 = The result of the operation was not negative

bit 2 OV: MCU ALU Overflow bit
1 = Overflow occurred
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = The result of the operation was zero
0 = The result of the operation was not zero

Note: Refer to Section 4.9 “Z Status Bit” for operation with ADDC, CPB, SUBB and SUBBR
instructions.

bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit occurred
0 = No carry-out from the Most Significant bit occurred

Legend:

R = Readable bit W = Writable bit C = Clearable bit

-n = Value at POR 1 = bit is set 0 = bit is cleared
© 2005 Microchip Technology Inc. DS70030F-page 2-11

dsPIC30F Programmer’s Reference Manual
Register 2-2: CORCON, Core Control Register

High Byte:
U U U R/W-0 R(0)/W-0 R-0 R-0 R/W-0

— — — US EDT DL<2:0>

bit 15 bit 8

Low Byte:
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0

SATA SATB SATDW ACCSAT IPL3 PSV RND IF

bit 7 bit 0

bit 15-13 Unused

bit 12 US: Unsigned or Signed Multiplier Mode Select bit
1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

bit 11 EDT: Early DO Loop Termination Control bit
1 = Terminate executing DO loop at end of current iteration
0 = No effect

Note: This bit will always read ‘0’.

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = DO looping is nested at 7 levels
110 = DO looping is nested at 6 levels
110 = DO looping is nested at 5 levels
110 = DO looping is nested at 4 levels
011 = DO looping is nested at 3 levels
010 = DO looping is nested at 2 levels
001 = DO looping is active, but not nested (just 1 level)
000 = DO looping is not active

Note 1: DL<2:1> are read only.
2: The first two levels of DO loop nesting are handled by hardware.

bit 7 SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled

bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (Super Saturation)
0 = 1.31 saturation (Normal Saturation)

bit 3 IPL3: Interrupt Priority Level 3 Status bit
1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

Note 1: This bit may be read or cleared, but not set.
2: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

Register 2-2: CORCON, Core Control Register (Continued)
DS70030F-page 2-12 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Legend:

R = Readable bit W = Writable bit C = Clearable bit x = bit is unknown

-n = Value at POR 1 = bit is set 0 = bit is cleared U = Unimplemented bit,
read as ‘0’
© 2005 Microchip Technology Inc. DS70030F-page 2-13

dsPIC30F Programmer’s Reference Manual
NOTES:
DS70030F-page 2-14 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview
In
stru

ctio
n

 S
et

O
verview

3

HIGHLIGHTS

This section of the manual contains the following major topics:

3.1 Introduction .. 3-2

3.2 Instruction Set Overview .. 3-2

3.3 Instruction Set Summary Tables .. 3-3
© 2005 Microchip Technology Inc. DS70030F-page 3-1

dsPIC30F Programmer’s Reference Manual
3.1 Introduction

The dsPIC30F instruction set provides a broad suite of instructions, which supports traditional
microcontroller applications and a class of instructions, which supports math intensive
applications. Since almost all of the functionality of the PICmicro® MCU instruction set has been
maintained, this hybrid instruction set allows a friendly DSP migration path for users already
familiar with the PICmicro microcontroller.

3.2 Instruction Set Overview

The dsPIC30F instruction set contains 84 instructions, which can be grouped into the ten
functional categories shown in Table 3-1. Table 1-2 defines the symbols used in the instruction
summary tables, Table 3-2 through Table 3-11. These tables define the syntax, description,
storage and execution requirements for each instruction. Storage requirements are represented
in 24-bit instruction words and execution requirements are represented in instruction cycles.

Table 3-1: dsPIC30F Instruction Groups

Most instructions have several different Addressing modes and execution flows, which require
different instruction variants. For instance, there are six unique ADD instructions and each
instruction variant has its own instruction encoding. Instruction format descriptions and specific
instruction operation are provided in Section 3. “Instruction Set Overview”. Additionally, a
composite alphabetized instruction set table is provided in Section 6. “Reference”.

3.2.1 Multi-Cycle Instructions

As the instruction summary tables show, most instructions execute in a single cycle, with the
following exceptions:

• Instructions DO, MOV.D, POP.D, PUSH.D, TBLRDH, TBLRDL, TBLWTH and
TBLWTL require 2 cycles to execute.

• Instructions DIV.S, DIV.U and DIVF are single cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction.

• Instructions that change the program counter also require 2 cycles to execute, with the
extra cycle executed as a NOP. SKIP instructions, which skip over a 2-word instruction,
require 3 instruction cycles to execute, with 2 cycles executed as a NOP.

• The RETFIE, RETLW and RETURN are a special case of an instruction that changes the
program counter. These execute in 3 cycles, unless an exception is pending and then they
execute in 2 cycles.

Functional Group Summary Table Page #

Move Instructions Table 3-2 3-3

Math Instructions Table 3-3 3-4

Logic Instructions Table 3-4 3-5

Rotate/Shift Instructions Table 3-5 3-6

Bit Instructions Table 3-6 3-7

Compare/Skip Instructions Table 3-7 3-8

Program Flow Instructions Table 3-8 3-9

Shadow/Stack Instructions Table 3-9 3-10

Control Instructions Table 3-10 3-10

DSP Instructions Table 3-11 3-10

Note: Instructions which access program memory as data, using Program Space Visibility,
will incur a one or two cycle delay. However, when the target instruction of a
REPEAT loop accesses program memory as data, only the first execution of the
target instruction is subject to the delay. See the dsPIC30F Family Reference
Manual for details.
DS70030F-page 3-2 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

et
O

verview

3

3.2.2 Multi-Word Instructions

As defined by Subsection Table 3-2: “Move Instructions” , almost all instructions consume
one instruction word (24-bits), with the exception of the CALL, DO and GOTO instructions, which
are Program Flow Instructions, listed in Table 3-8. These instructions require two words of mem-
ory because their opcodes embed large literal operands.

3.3 Instruction Set Summary Tables

Table 3-2: Move Instructions

Assembly Syntax Description Words Cycles Page #

EXCH Wns,Wnd Swap Wns and Wnd 1 1 5-115

MOV f {,WREG}(see Note) Move f to destination 1 1 5-145

MOV WREG,f Move WREG to f 1 1 5-146

MOV f,Wnd Move f to Wnd 1 1 5-147

MOV Wns,f Move Wns to f 1 1 5-148

MOV.B #lit8,Wnd Move 8-bit literal to Wnd 1 1 5-149

MOV #lit16,Wnd Move 16-bit literal to Wnd 1 1 5-150

MOV [Ws+Slit10],Wnd Move [Ws + signed 10-bit offset] to Wnd 1 1 5-151

MOV Wns,[Wd+Slit10] Move Wns to [Wd + signed 10-bit offset] 1 1 5-152

MOV Ws,Wd Move Ws to Wd 1 1 5-153

MOV.D Ws,Wnd Move double Ws to Wnd:Wnd+1 1 2 5-155

MOV.D Wns,Wd Move double Wns:Wns+1 to Wd 1 2 5-157

SWAP Wn Wn = byte or nibble swap Wn 1 1 5-249

TBLRDH Ws,Wd Read high program word to Wd 1 2 5-250

TBLRDL Ws,Wd Read low program word to Wd 1 2 5-252

TBLWTH Ws,Wd Write Ws to high program word 1 2 5-254

TBLWTL Ws,Wd Write Ws to low program word 1 2 5-256

Note: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.
© 2005 Microchip Technology Inc. DS70030F-page 3-3

dsPIC30F Programmer’s Reference Manual
Table 3-3: Math Instructions

Assembly Syntax Description Words Cycles Page #

ADD f {,WREG}(1) Destination = f + WREG 1 1 5-7

ADD #lit10,Wn Wn = lit10 + Wn 1 1 5-8

ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 5-9

ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 5-10

ADDC f {,WREG}(1) Destination = f + WREG + (C) 1 1 5-14

ADDC #lit10,Wn Wn = lit10 + Wn + (C) 1 1 5-15

ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 5-16

ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 5-17

DAW.B Wn Wn = decimal adjust Wn 1 1 5-95

DEC f {,WREG}(1) Destination = f – 1 1 1 5-96

DEC Ws,Wd Wd = Ws – 1 1 1 5-97

DEC2 f {,WREG}(1) Destination = f – 2 1 1 5-98

DEC2 Ws,Wd Wd = Ws – 2 1 1 5-99

DIV.S Wm, Wn Signed 16/16-bit integer divide 1 18(2) 5-101

DIV.SD Wm, Wn Signed 32/16-bit integer divide 1 18(2) 5-101

DIV.U Wm, Wn Unsigned 16/16-bit integer divide 1 18(2) 5-103

DIV.UD Wm, Wn Unsigned 32/16-bit integer divide 1 18(2) 5-103

DIVF Wm, Wn Signed 16/16-bit fractional divide 1 18(2) 5-105

INC f {,WREG}(1) Destination = f + 1 1 1 5-124

INC Ws,Wd Wd = Ws + 1 1 1 5-125

INC2 f {,WREG}(1) Destination = f + 2 1 1 5-126

INC2 Ws,Wd Wd = Ws + 2 1 1 5-127

MUL f W3:W2 = f * WREG 1 1 5-169

MUL.SS Wb,Ws,Wnd {Wnd+1,Wnd} = sign(Wb) * sign(Ws) 1 1 5-170

MUL.SU Wb,#lit5,Wnd {Wnd+1,Wnd} = sign(Wb) * unsign(lit5) 1 1 5-172

MUL.SU Wb,Ws,Wnd {Wnd+1,Wnd} = sign(Wb) * unsign(Ws) 1 1 5-174

MUL.US Wb,Ws,Wnd {Wnd+1,Wnd} = unsign(Wb) * sign(Ws) 1 1 5-176

MUL.UU Wb,#lit5,Wnd {Wnd+1,Wnd} = unsign(Wb) * unsign(lit5) 1 1 5-178

MUL.UU Wb,Ws,Wnd {Wnd+1,Wnd} = unsign(Wb) * unsign(Ws) 1 1 5-179

SE Ws,Wnd Wnd = sign-extended Ws 1 1 5-220

SUB f {,WREG}(1) Destination = f – WREG 1 1 5-230

SUB #lit10,Wn Wn = Wn – lit10 1 1 5-231

SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 5-232

SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 5-233

SUBB f {,WREG}(1) Destination = f – WREG – (C) 1 1 5-236

SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 5-237

SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 5-238

SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 5-239

SUBBR f {,WREG}(1) Destination = WREG – f – (C) 1 1 5-241

SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 5-242

SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 5-243

SUBR f {,WREG}(1) Destination = WREG – f 1 1 5-245

SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 5-246

SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 5-247

ZE Ws,Wnd Wnd = zero-extended Ws 1 1 5-264

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.

2: The divide instructions must be preceded with a "REPEAT #17" instruction, such that
they are executed 18 consecutive times.
DS70030F-page 3-4 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

et
O

verview

3

Table 3-4: Logic Instructions

Assembly Syntax Description Words Cycles Page #

AND f {,WREG}(see Note) Destination = f .AND. WREG 1 1 5-19

AND #lit10,Wn Wn = lit10 .AND. Wn 1 1 5-20

AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 5-21

AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 5-22

CLR f f = 0x0000 1 1 5-75

CLR WREG WREG = 0x0000 1 1 5-75

CLR Wd Wd = 0x0000 1 1 5-76

COM f {,WREG}(see Note) Destination = f 1 1 5-80

COM Ws,Wd Wd = Ws 1 1 5-81

IOR f {,WREG}(see Note) Destination = f .IOR. WREG 1 1 5-128

IOR #lit10,Wn Wn = lit10 .IOR. Wn 1 1 5-129

IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 5-130

IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 5-131

NEG f {,WREG}(see Note) Destination = f + 1 1 1 5-181

NEG Ws,Wd Wd = Ws + 1 1 1 5-182

SETM f f = 0xFFFF 1 1 5-221

SETM WREG WREG = 0xFFFF 1 1 5-221

SETM Wd Wd = 0xFFFF 1 1 5-222

XOR f {,WREG}(see Note) Destination = f .XOR. WREG 1 1 5-259

XOR #lit10,Wn Wn = lit10 .XOR. Wn 1 1 5-260

XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 5-261

XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 5-262

Note: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.
© 2005 Microchip Technology Inc. DS70030F-page 3-5

dsPIC30F Programmer’s Reference Manual
Table 3-5: Rotate/Shift Instructions

Assembly Syntax Description Words Cycles Page #

ASR f {,WREG}(see Note) Destination = arithmetic right shift f 1 1 5-24

ASR Ws,Wd Wd = arithmetic right shift Ws 1 1 5-25

ASR Wb,#lit4,Wnd Wnd = arithmetic right shift Wb by lit4 1 1 5-27

ASR Wb,Wns,Wnd Wnd = arithmetic right shift Wb by Wns 1 1 5-28

LSR f {,WREG}(see Note) Destination = logical right shift f 1 1 5-136

LSR Ws,Wd Wd = logical right shift Ws 1 1 5-137

LSR Wb,#lit4,Wnd Wnd = logical right shift Wb by lit4 1 1 5-139

LSR Wb,Wns,Wnd Wnd = logical right shift Wb by Wns 1 1 5-140

RLC f {,WREG}(see Note) Destination = rotate left through Carry f 1 1 5-204

RLC Ws,Wd Wd = rotate left through Carry Ws 1 1 5-205

RLNC f {,WREG}(see Note) Destination = rotate left (no Carry) f 1 1 5-207

RLNC Ws,Wd Wd = rotate left (no Carry) Ws 1 1 5-208

RRC f {,WREG}(see Note) Destination = rotate right through Carry f 1 1 5-210

RRC Ws,Wd Wd = rotate right through Carry Ws 1 1 5-211

RRNC f {,WREG}(see Note) Destination = rotate right (no Carry) f 1 1 5-213

RRNC Ws,Wd Wd = rotate right (no Carry) Ws 1 1 5-214

SL f {,WREG}(see Note) Destination = left shift f 1 1 5-225

SL Ws,Wd Wd = left shift Ws 1 1 5-226

SL Wb,#lit4,Wnd Wnd = left shift Wb by lit4 1 1 5-228

SL Wb,Wns,Wnd Wnd = left shift Wb by Wns 1 1 5-229

Note: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.
DS70030F-page 3-6 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

et
O

verview

3

Table 3-6: Bit Instructions

Assembly Syntax Description Words Cycles Page #

BCLR f,#bit4 Bit clear f 1 1 5-29

BCLR Ws,#bit4 Bit clear Ws 1 1 5-30

BSET f,#bit4 Bit set f 1 1 5-54

BSET Ws,#bit4 Bit set Ws 1 1 5-55

BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 5-56

BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 5-56

BTG f,#bit4 Bit toggle f 1 1 5-58

BTG Ws,#bit4 Bit toggle Ws 1 1 5-59

BTST f,#bit4 Bit test f 1 1 5-67

BTST.C Ws,#bit4 Bit test Ws to C 1 1 5-68

BTST.Z Ws,#bit4 Bit test Ws to Z 1 1 5-68

BTST.C Ws,Wb Bit test Ws<Wb> to C 1 1 5-69

BTST.Z Ws,Wb Bit test Ws<Wb> to Z 1 1 5-69

BTSTS f,#bit4 Bit test f then set f 1 1 5-71

BTSTS.C Ws,#bit4 Bit test Ws to C then set Ws 1 1 5-72

BTSTS.Z Ws,#bit4 Bit test Ws to Z then set Ws 1 1 5-72

FBCL Ws,Wnd Find bit change from left (MSb) side 1 1 5-116

FF1L Ws,Wnd Find first one from left (MSb) side 1 1 5-118

FF1R Ws,Wnd Find first one from right (LSb) side 1 1 5-120
© 2005 Microchip Technology Inc. DS70030F-page 3-7

dsPIC30F Programmer’s Reference Manual
Table 3-7: Compare/Skip Instructions

Assembly Syntax Description Words Cycles(see Note) Page #

BTSC f,#bit4 Bit test f, skip if clear 1 1 (2 or 3) 5-60

BTSC Ws,#bit4 Bit test Ws, skip if clear 1 1 (2 or 3) 5-62

BTSS f,#bit4 Bit test f, skip if set 1 1 (2 or 3) 5-64

BTSS Ws,#bit4 Bit test Ws, skip if set 1 1 (2 or 3) 5-65

CP f Compare (f – WREG) 1 1 5-82

CP Wb,#lit5 Compare (Wb – lit5) 1 1 5-83

CP Wb,Ws Compare (Wb – Ws) 1 1 5-84

CP0 f Compare (f – 0x0000) 1 1 5-85

CP0 Ws Compare (Ws – 0x0000) 1 1 5-86

CPB f Compare with Borrow (f – WREG – C) 1 1 5-87

CPB Wb,#lit5 Compare with Borrow (Wb – lit5 – C) 1 1 5-88

CPB Wb,Ws Compare with Borrow (Wb – Ws – C) 1 1 5-89

CPSEQ Wb, Wn Compare (Wb – Wn), skip if = 1 1 (2 or 3) 5-91

CPSGT Wb, Wn Compare (Wb – Wn), skip if > 1 1 (2 or 3) 5-92

CPSLT Wb, Wn Compare (Wb – Wn), skip if < 1 1 (2 or 3) 5-93

CPSNE Wb, Wn Compare (Wb – Wn), skip if ≠ 1 1 (2 or 3) 5-94

Note: Conditional skip instructions execute in 1 cycle if the skip is not taken, 2 cycles if the skip
is taken over a one-word instruction and 3 cycles if the skip is taken over a two-word
instruction.
DS70030F-page 3-8 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

et
O

verview

3

Table 3-8: Program Flow Instructions

Assembly Syntax Description Words Cycles Page #

BRA Expr Branch unconditionally 1 2 5-31

BRA Wn Computed branch 1 2 5-32

BRA C,Expr Branch if Carry (no Borrow) 1 1 (2)(1) 5-33

BRA GE,Expr Branch if greater than or equal 1 1 (2)(1) 5-35

BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2)(1) 5-33

BRA GT,Expr Branch if greater than 1 1 (2)(1) 5-37

BRA GTU,Expr Branch if unsigned greater than 1 1 (2)(1) 5-38

BRA LE,Expr Branch if less than or equal 1 1 (2)(1) 5-39

BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2)(1) 5-40

BRA LT,Expr Branch if less than 1 1 (2)(1) 5-41

BRA LTU,Expr Branch if unsigned less than 1 1 (2)(1) 5-44

BRA N,Expr Branch if Negative 1 1 (2)(1) 5-43

BRA NC,Expr Branch if not Carry (Borrow) 1 1 (2)(1) 5-44

BRA NN,Expr Branch if not Negative 1 1 (2)(1) 5-45

BRA NOV,Expr Branch if not Overflow 1 1 (2)(1) 5-46

BRA NZ,Expr Branch if not Zero 1 1 (2)(1) 5-47

BRA OA,Expr Branch if Accumulator A Overflow 1 1 (2)(1) 5-48

BRA OB,Expr Branch if Accumulator B Overflow 1 1 (2)(1) 5-49

BRA OV,Expr Branch if Overflow 1 1 (2)(1) 5-50

BRA SA,Expr Branch if Accumulator A Saturate 1 1 (2)(1) 5-51

BRA SB,Expr Branch if Accumulator B Saturate 1 1 (2)(1) 5-52

BRA Z,Expr Branch if Zero 1 1 (2)(1) 5-53

CALL Expr Call subroutine 2 2 5-73

CALL Wn Call indirect subroutine 1 2 5-74

DO #lit14,Expr Do code through PC+Expr, (lit14+1) times 2 2 5-107

DO Wn,Expr Do code through PC+Expr, (Wn+1) times 2 2 5-109

GOTO Expr Go to address 2 2 5-122

GOTO Wn Go to address indirectly 1 2 5-123

RCALL Expr Relative call 1 2 5-196

RCALL Wn Computed call 1 2 5-196

REPEAT #lit14 Repeat next instruction (lit14+1) times 1 1 5-197

REPEAT Wn Repeat next instruction (Wn+1) times 1 1 5-198

RETFIE Return from interrupt enable 1 3 (2)(2) 5-201

RETLW #lit10,Wn Return with lit10 in Wn 1 3 (2)(2) 5-202

RETURN Return from subroutine 1 3 (2)(2) 5-203

Note 1: Conditional branch instructions execute in 1 cycle if the branch is not taken, or 2 cycles
if the branch is taken.

2: RETURN instructions execute in 3 cycles, but if an exception is pending, they execute in
2 cycles.
© 2005 Microchip Technology Inc. DS70030F-page 3-9

dsPIC30F Programmer’s Reference Manual
Table 3-9: Shadow/Stack Instructions

Table 3-10: Control Instructions

Table 3-11: DSP Instructions

Assembly Syntax Description Words Cycles Page #

LNK #lit14 Link frame pointer 1 1 5-135

POP f Pop TOS to f 1 1 5-186

POP Wd Pop TOS to Wd 1 1 5-187

POP.D Wnd Double pop from TOS to Wnd:Wnd+1 1 2 5-188

POP.S Pop shadow registers 1 1 5-189

PUSH f Push f to TOS 1 1 5-190

PUSH Ws Push Ws to TOS 1 1 5-191

PUSH.D Wns Push double Wns:Wns+1 to TOS 1 2 5-192

PUSH.S Push shadow registers 1 1 5-193

ULNK Unlink frame pointer 1 1 5-258

Assembly Syntax Description Words Cycles Page #

CLRWDT Clear Watchdog Timer 1 1 5-79

DISI #lit14 Disable interrupts for (lit14+1) instruction cycles 1 1 5-100

NOP No operation 1 1 5-184

NOPR No operation 1 1 5-185

PWRSAV #lit1 Enter Power Saving mode lit1 1 1 5-194

RESET Software device RESET 1 1 5-200

Assembly Syntax Description Words Cycles Page #

ADD Acc Add accumulators 1 1 5-11

ADD Ws,#Slit4,Acc 16-bit signed add to Acc 1 1 5-12

CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Acc 1 1 5-77

ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean distance
(no accumulate)

1 1 5-111

EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean distance 1 1 5-113

LAC Ws,#Slit4,Acc Load Acc 1 1 5-133

MAC Wm*Wn,Acc,Wx,Wxd,Wy,
Wyd,AWB

Multiply and accumulate 1 1 5-141

MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and accumulate 1 1 5-143

MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Move Wx to Wxd and Wy to Wyd 1 1 5-159

MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wn by Wm to Acc 1 1 5-161

MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square to Acc 1 1 5-163

MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wn by Wm) to Acc 1 1 5-165

MSC Wm*Wn,Acc,Wx,Wxd,Wy,
Wyd,AWB

Multiply and subtract from Acc 1 1 5-167

NEG Acc Negate Acc 1 1 5-183

SAC Acc,#Slit4,Wd Store Acc 1 1 5-216

SAC.R Acc,#Slit4,Wd Store rounded Acc 1 1 5-218

SFTAC Acc,#Slit6 Arithmetic shift Acc by Slit6 1 1 5-223

SFTAC Acc,Wn Arithmetic shift Acc by (Wn) 1 1 5-224

SUB Acc Subtract accumulators 1 1 5-235
DS70030F-page 3-10 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In
stru

ctio
n

 S
et

D
etails

4

HIGHLIGHTS

This section of the manual contains the following major topics:

4.1 Data Addressing Modes... 4-2

4.2 Program Addressing Modes .. 4-11

4.3 Instruction Stalls... 4-12

4.4 Byte Operations ... 4-13

4.5 Word Move Operations .. 4-16
4.6 Using 10-bit Literal Operands .. 4-19

4.7 Software Stack Pointer and Frame Pointer .. 4-20

4.8 Conditional Branch Instructions ... 4-25

4.9 Z Status Bit... 4-26
4.10 Assigned Working Register Usage .. 4-27

4.11 DSP Data Formats... 4-30

4.12 Accumulator Usage.. 4-32

4.13 Accumulator Access .. 4-33

4.14 DSP MAC Instructions ... 4-33
4.15 DSP Accumulator Instructions ... 4-37

4.16 Scaling Data with the FBCL Instruction ... 4-37

4.17 Normalizing the Accumulator with the FBCL Instruction.. 4-39
© 2005 Microchip Technology Inc. DS70030F-page 4-1

dsPIC30F Programmer’s Reference Manual
4.1 Data Addressing Modes

The dsPIC30F supports three native Addressing modes for accessing data memory, along with
several forms of immediate addressing. Data accesses may be performed using file register,
register direct or register indirect addressing, and immediate addressing allows a fixed value to
be used by the instruction.

File register addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the working registers and the entire 64K data
space. Register direct addressing is used to access the 16 memory mapped working registers,
W0:W15. Register indirect addressing is used to efficiently operate on data stored in the entire
64K data space, using the contents of the working registers as an effective address. Immediate
addressing does not access data memory, but provides the ability to use a constant value as an
instruction operand. The address range of each mode is summarized in Table 4-1.

Table 4-1: dsPIC30F Addressing Modes

4.1.1 File Register Addressing

File register addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support file register addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using file register addressing.
This allows one to load data from any location in data memory to any working register, and store
the contents of any working register to any location in data memory. It should be noted that file
register addressing supports both byte and word accesses of data memory, with the exception
of the MOV instruction, which accesses all 64K of memory as words. Examples of file register
addressing are shown in Example 4-1.

Most instructions, which support file register addressing, perform an operation on the specified file
register and the default working register WREG (see Section 2.2.2 “Default Working Register
(WREG)”). If only one operand is supplied in the instruction, WREG is an implied operand and the
operation results are stored back to the file register. In these cases, the instruction is effectively a
read-modify-write instruction. However, when both the file register and WREG are specified in the
instruction, the operation results are stored in WREG and the contents of the file register are
unchanged. Sample instructions which show the interaction between the file register and WREG
are shown in Example 4-2.

Addressing Mode Address Range

File Register 0x0000 - 0x1FFF(see Note)

Register Direct 0x0000 - 0x001F (working register array W0:W15)

Register Indirect 0x0000 - 0xFFFF

Immediate N/A (constant value)

Note: The address range for the File Register MOV is 0x0000 - 0xFFFE.

Note: Instructions which support file register addressing use ‘f’ as an operand in the
instruction summary tables of Section 3. “Instruction Set Overview”.
DS70030F-page 4-2 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-1: File Register Addressing

Example 4-2: File Register Addressing and WREG

DEC 0x1000 ; decrement data stored at 0x1000

Before Instruction:
 Data Memory 0x1000 = 0x5555

After Instruction:
 Data Memory 0x1000 = 0x5554

MOV 0x27FE, W0 ; move data stored at 0x27FE to W0

Before Instruction:
 W0 = 0x5555
 Data Memory 0x27FE = 0x1234

After Instruction:
 W0 = 0x1234
 Data Memory 0x27FE = 0x1234

AND 0x1000 ; AND 0x1000 with WREG, store to 0x1000

Before Instruction:
 W0 (WREG) = 0x332C
 Data Memory 0x1000 = 0x5555

After Instruction:
 W0 (WREG) = 0x332C
 Data Memory 0x1000 = 0x1104

AND 0x1000, WREG ; AND 0x1000 with WREG, store to WREG

Before Instruction:
 W0 (WREG) = 0x332C
 Data Memory 0x1000 = 0x5555

After Instruction:
 W0 (WREG) = 0x1104
 Data Memory 0x1000 = 0x5555
© 2005 Microchip Technology Inc. DS70030F-page 4-3

dsPIC30F Programmer’s Reference Manual
4.1.2 Register Direct Addressing

Register direct addressing is used to access the contents of the 16 working registers (W0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any working register to be
specified for any instruction which uses register direct addressing, and it supports both byte and
word accesses. Instructions which employ register direct addressing use the contents of the
specified working register as data to execute the instruction, so this Addressing mode is useful
only when data already resides in the working register core. Sample instructions which utilize
register direct addressing are shown in Example 4-3.

Another feature of register direct addressing is that it provides the ability for dynamic flow control.
Since variants of the DO and REPEAT instruction support register direct addressing, one may
generate flexible looping constructs using these instructions.

Example 4-3: Register Direct Addressing

Note: Instructions which must use register direct addressing, use the symbols Wb, Wn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, register direct addressing may also be used when register indirect
addressing may be used. Instructions which use register indirect addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.

EXCH W2, W3 ; Exchange W2 and W3

Before Instruction:
 W2 = 0x3499
 W3 = 0x003D

After Instruction:
 W2 = 0x003D
 W3 = 0x3499

IOR #0x44, W0 ; Inclusive-OR 0x44 and W0

Before Instruction:
 W0 = 0x9C2E

After Instruction:
 W0 = 0x9C6E

SL W6, W7, W8 ; Shift left W6 by W7, and store to W8

Before Instruction:
 W6 = 0x000C
 W7 = 0x0008
 W8 = 0x1234

After Instruction:
 W6 = 0x000C
 W7 = 0x0008
 W8 = 0x0C00
DS70030F-page 4-4 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.1.3 Register Indirect Addressing

Register indirect addressing is used to access any location in data memory by treating the
contents of a working register as an effective address (EA) to data memory. Essentially, the
contents of the working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This Addressing mode is powerful, because it also allows one to modify the contents of the
working register, either before or after the data access is made, by incrementing or decrementing
the EA. By modifying the EA in the same cycle that an operation is being performed, register
indirect addressing allows for the efficient processing of data that is stored sequentially in
memory. The modes of indirect addressing supported by the dsPIC30F are shown in Table 4-2.

Table 4-2: Indirect Addressing Modes

Table 4-2 shows that four Addressing modes modify the EA used in the instruction, and this
allows the following updates to be made to the working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by 2. Namely, in Word mode,
pre/post-decrements subtract 2 from the EA stored in the working register, and
pre/post-increments add 2 to the EA. This feature ensures that after an EA modification is made,
that the EA will point to the next adjacent word in memory. Example 4-4 shows how indirect
addressing may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a working register. This mode uses the contents of a second working register to form
the EA by adding the two specified working registers. This mode does not scale for Word mode
instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the working
registers used to form the EA are modified. Example 4-5 shows how register offset indirect
addressing may be used to access data memory.

Indirect Mode Syntax
Function

(Byte
Instruction)

Function
(Word

Instruction)
Description

No Modification [Wn] EA = [Wn] EA = [Wn] The contents of Wn forms the
EA.

Pre-Increment [++Wn] EA = [Wn+=1] EA = [Wn+=2] Wn is pre-incremented to form
the EA.

Pre-Decrement [--Wn] EA = [Wn-=1] EA = [Wn-=2] Wn is pre-decremented to form
the EA.

Post-Increment [Wn++] EA = [Wn]+= 1 EA = [Wn]+= 2 The contents of Wn forms
he EA, then Wn is
post-incremented.

Post-Decrement [Wn--] EA = [Wn]-= 1 EA = [Wn]-= 2 The contents of Wn forms
the EA, then Wn is
post-decremented.

Register Offset [Wn+Wb] EA = [Wn+Wb] EA = [Wn+Wb] The sum of Wn and Wb forms
the EA. Wn and Wb are not
modified.

Note: The MOV with offset instructions (pages page 151 and page 152) provides a literal
addressing offset ability to be used with indirect addressing. In these instructions,
the EA is formed by adding the contents of a working register to a signed 10-bit
literal. Example 4-6 shows how these instructions may be used to move data to and
from the working register array.
© 2005 Microchip Technology Inc. DS70030F-page 4-5

dsPIC30F Programmer’s Reference Manual
Example 4-4: Indirect Addressing with Effective Address Update

MOV.B [W0++], [W13--] ; byte move [W0] to [W13]
; post-inc W0, post-dec W13

Before Instruction:
W0 = 0x2300
W13 = 0x2708
Data Memory 0x2300 = 0x7783
Data Memory 0x2708 = 0x904E

After Instruction:
W0 = 0x2301
W13 = 0x2707
Data Memory 0x2300 = 0x7783
Data Memory 0x2708 = 0x9083

ADD W1, [--W5], [++W8] ; pre-dec W5, pre-inc W8
 ; add W1 to [W5], store in [W8]

Before Instruction:
W1 = 0x0800
W5 = 0x2200
W8 = 0x2400
Data Memory 0x21FE = 0x7783
Data Memory 0x2402 = 0xAACC

After Instruction:
W1 = 0x0800
W5 = 0x21FE
W8 = 0x2402
Data Memory 0x21FE = 0x7783
Data Memory 0x2402 = 0x7F83
DS70030F-page 4-6 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-5: Indirect Addressing with Register Offset

Example 4-6: Move with Literal Offset Instructions

MOV.B [W0+W1], [W7++] ; byte move [W0+W1] to W7, post-inc W7

Before Instruction:
W0 = 0x2300
W1 = 0x01FE
W7 = 0x1000
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x11DC

After Instruction:
W0 = 0x2300
W1 = 0x01FE
W7 = 0x1001
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x1183

LAC [W0+W8], A ; load ACCA with [W0+W8]
; (sign-extend and zero-backfill)

Before Instruction:
W0 = 0x2344
W8 = 0x0008
ACCA = 0x00 7877 9321
Data Memory 0x234C = 0xE290

After Instruction:
W0 = 0x2344
W8 = 0x0008
ACCA = 0xFF E290 0000
Data Memory 0x234C = 0xE290

MOV [W0+0x20], W1 ; move [W0+0x20] to W1

Before Instruction:
W0 = 0x1200
W1 = 0x01FE
Data Memory 0x1220 = 0xFD27

After Instruction:
W0 = 0x1200
W1 = 0xFD27
Data Memory 0x1220 = 0xFD27

MOV W4, [W8-0x300] ; move W4 to [W8-0x300]

Before Instruction:
W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0xCB98

After Instruction:
W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0x3411
© 2005 Microchip Technology Inc. DS70030F-page 4-7

dsPIC30F Programmer’s Reference Manual
4.1.3.1 Register Indirect Addressing and the Instruction Set

The Addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the dsPIC30F. Due to operation encoding and functional considerations, not every
instruction which supports indirect addressing supports all modes shown in Table 4-2. The major-
ity of instructions which use indirect addressing support the No Modify, Pre-Increment,
Pre-Decrement, Post-Increment and Post-Decrement Addressing modes. The MOV instructions,
and several accumulator based DSP instructions, are also capable of using the Register Offset
Addressing mode.

4.1.3.2 DSP MAC Indirect Addressing Modes

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.14 “DSP MAC Instructions”, the DSP MAC class of instructions are
capable of performing two fetches from memory using effective addressing. Since DSP
algorithms frequently demand a broader range of address updates, the Addressing modes
offered by the DSP MAC instructions provide greater range in the size of the effective address
update which may be made. Table 4-3 shows that both X and Y pre-fetches support Post-
Increment and Post-Decrement Addressing modes, with updates of 2, 4 and 6 bytes. Since DSP
instructions only execute in Word mode, no provisions are made for odd sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

4.1.3.3 Modulo and Bit-Reversed Addressing Modes

The dsPIC30F provides support for two special Register Indirect Addressing modes, which are
commonly used to implement DSP algorithms. Modulo (or circular) addressing provides an
automated means to support circular data buffers in X and/or Y memory. Modulo buffers remove
the need for software to perform address boundary checks, which can improve the performance
of certain algorithms. Similarly, Bit-Reversed addressing allows one to access the elements of a
buffer in a non-linear fashion. This Addressing mode simplifies data re-ordering for radix-2 FFT
algorithms and provides a significant reduction in FFT processing time.

Both of these Addressing modes are powerful features of the dsPIC30F architecture, which can
be exploited by any instruction that uses indirect addressing. Refer to the dsPIC30F Family
Reference Manual for details on using Modulo and Bit-Reversed addressing.

Note: Instructions which use register indirect addressing use the operand symbols Wd
and Ws in the summary tables of Section 3. “Instruction Set Overview”.

Addressing Mode X Memory Y Memory

Indirect with no modification EA = [Wx] EA = [Wy]

Indirect with Post-Increment by 2 EA = [Wx]+= 2 EA = [Wy]+= 2

Indirect with Post-Increment by 4 EA = [Wx]+= 4 EA = [Wy]+= 4

Indirect with Post-Increment by 6 EA = [Wx]+= 6 EA = [Wy]+= 6

Indirect with Post-Decrement by 2 EA = [Wx]-= 2 EA = [Wy]-= 2

Indirect with Post-Decrement by 4 EA = [Wx]-= 4 EA = [Wy]-= 4

Indirect with Post-Decrement by 6 EA = [Wx]-= 6 EA = [Wy]-= 6

Indirect with Register Offset EA = [W9 + W12] EA = [W11 + W12]

Note: As described in Section 4.14 “DSP MAC Instructions”, only W8 and W9 may be
used to access X Memory, and only W10 and W11 may be used to access Y
Memory.
DS70030F-page 4-8 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.1.4 Immediate Addressing

In immediate addressing, the instruction encoding contains a predefined constant operand,
which is used by the instruction. This Addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of
the immediate operand which may be used varies with the instruction type. Constants of size
1-bit (#lit1), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#lit5), 6-bit (#Slit6), 8-bit (#lit8), 10-bit (#lit10 and
#Slit10), 14-bit (#lit14) and 16-bit (#lit16) may be used. Constants may be signed or unsigned
and the symbols #Slit4, #Slit6 and #Slit10 designate a signed constant. All other immediate
constants are unsigned. Table 4-4 shows the usage of each immediate operand in the instruction
set.

Table 4-4: Immediate Operands in the Instruction Set

Operand Instruction Usage

#lit1 PWRSAV

#bit4 BCLR, BSET, BTG, BTSC, BTSS, BTST, BTST.C, BTST.Z, BTSTS, BTSTS.C,
BTSTS.Z

#lit4 ASR, LSR, SL

#Slit4 ADD, LAC, SAC, SAC.R

#lit5 ADD, ADDC, AND, CP, CPB, IOR, MUL.SU, MUL.UU, SUB, SUBB, SUBBR, SUBR,
XOR

#Slit6 SFTAC

#lit8 MOV.B

#lit10 ADD, ADDC, AND, CP, CPB, IOR, RETLW, SUB, SUBB, XOR

#Slit10 MOV

#lit14 DISI, DO, LNK, REPEAT

#lit16 MOV
© 2005 Microchip Technology Inc. DS70030F-page 4-9

dsPIC30F Programmer’s Reference Manual
The syntax for immediate addressing requires that the number sign (#) must immediately
precede the constant operand value. The "#" symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of immediate addressing are shown in Example 4-7.

Example 4-7: Immediate Addressing

4.1.5 Data Addressing Mode Tree

The Data Addressing modes of the dsPIC30F are summarized in Figure 4-1.

Figure 4-1: Data Addressing Mode Tree

PWRSAV #1 ; Enter IDLE mode

ADD.B #0x10, W0 ; Add 0x10 to W0 (byte mode)

Before Instruction:
W0 = 0x12A9

After Instruction:
W0 = 0x12B9

XOR W0, #1, [W1++] ; Exclusive-OR W0 and 0x1
; Store the result to [W1]
; Post-increment W1

Before Instruction:
W0 = 0xFFFF
W1 = 0x0890
Data Memory 0x0890 = 0x0032

After Instruction:
W0 = 0xFFFF
W1 = 0x0892
Data Memory 0x0890 = 0xFFFE

Data Addressing Modes

Immediate

Basic
File Register

Pre-Increment

Pre-Decrement

Post-Increment

Post-Decrement

Register Offset

Literal Offset

No Modification

No Modification

Post-Decrement (2, 4 and 6)

Register Offset

Post-Increment (2, 4 and 6)

DSP MAC

Direct

Indirect

Direct

Indirect
DS70030F-page 4-10 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.2 Program Addressing Modes

The dsPIC30F has a 23-bit Program Counter (PC). The PC addresses the 24-bit wide program
memory to fetch instructions for execution, and it may be loaded in several ways. For byte
compatibility with the Table Read and Table Write instructions, each instruction word consumes
two locations in program memory. This means that during serial execution, the PC is loaded with
PC+2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction, or a dynamic value contained in a working register. When DO
looping is active, the PC is loaded with the address stored in the DOSTART register, after the
instruction at the DOEND address is executed. For exception handling, the PC is loaded with the
address of the exception handler, which is stored in the interrupt vector table. When required, the
software stack is used to return scope to the foreground process from where the change in
program flow occurred.

Table 4-5 summarizes the instructions which modify the PC of the dsPIC30F. When performing
function calls, it is recommended that RCALL be used instead of CALL, since RCALL only
consumes 1 word of program memory.

Table 4-5: Methods of Modifying Program Flow

Condition/Instruction PC Modification Software Stack Usage

Sequential Execution PC = PC + 2 None

BRA Expr(1)

(Branch Unconditionally)
PC = PC + 2*Slit16 None

BRA Condition, Expr(1)

(Branch Conditionally)

PC = PC + 2 (condition false)
PC = PC + 2*Slit16 (condition true)

None

CALL Expr(1)

(Call Subroutine)

PC = lit23 PC+4 is pushed on the

stack(2)

CALL Wn
(Call Subroutine Indirect)

PC = Wn PC+2 is pushed on the

stack(2)

GOTO Expr(1)

(Unconditional Jump)

PC = lit23 None

GOTO Wn
(Unconditional Indirect Jump)

PC = Wn None

RCALL Expr(1)

(Relative Call)

PC = PC + 2*Slit16 PC+2 is pushed on the

stack(2)

RCALL Wn
(Computed Relative Call)

PC = PC + 2*Wn PC+2 is pushed on the

stack(2)

Exception Handling PC = address of the exception handler
(read from vector table)

PC+2 is pushed on the

stack(3)

PC = Target REPEAT instruction
(REPEAT Looping)

PC not modified (if REPEAT active) None

PC = DOEND address
(DO Looping)

PC = DOSTART (if DO active) None

Note 1: For BRA, CALL and GOTO, the Expr may be a label, absolute address, or expression,
which is resolved by the linker to a 16-bit or 23-bit value (Slit16 or lit23). See Section
5. “Instruction Descriptions” for details.

2: After CALL or RCALL is executed, RETURN or RETLW will pop the top-of-stack back into
the PC.

3: After an exception is processed, RETFIE will pop the top-of-stack back into the PC.
© 2005 Microchip Technology Inc. DS70030F-page 4-11

dsPIC30F Programmer’s Reference Manual
4.3 Instruction Stalls

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

’Read After Write’ (RAW) dependencies occur across instruction boundaries and are detected by
the hardware. An example of a RAW dependency would be a write operation that modifies W5,
followed by a read operation that uses W5 as an address pointer. The contents of W5 will not be
valid for the read operation until the earlier write completes. This problem is resolved by stalling
the instruction execution for one instruction cycle, which allows the write to complete before the
next read is started.

4.3.1 RAW Dependency Detection

During the instruction pre-decode, the core determines if any address register dependency is
imminent across an instruction boundary. The stall detection logic compares the W register (if
any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the pre-fetched instruction. When a match between the
destination and source registers is identified, a set of rules are applied to decide whether or not
to stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution stall.

Table 4-6: Raw Dependency Rules (Detection By Hardware)

Destination
Address Mode Using Wn

Source Address Mode
Using Wn

Stall
Required

?

Examples
(Wn = W2)

Direct Direct No Stall ADD.W W0, W1, W2
MOV.W W2, W3

Indirect Direct No Stall ADD.W W0, W1, [W2]
MOV.W W2, W3

Indirect Indirect No Stall ADD.W W0, W1, [W2]
MOV.W [W2], W3

Indirect Indirect with
pre/post-modification

No Stall ADD.W W0, W1, [W2]
MOV.W [W2++], W3

Indirect with
pre/post-modification

Direct No Stall ADD.W W0, W1, [W2++]
MOV.W W2, W3

Direct Indirect Stall(1) ADD.W W0, W1, W2
MOV.W [W2], W3

Direct Indirect with
pre/post-modification

Stall(1) ADD.W W0, W1, W2
MOV.W [W2++], W3

Indirect Indirect Stall(1) ADD.W W0, W1, [W2](2)

MOV.W [W2], W3(2)

Indirect Indirect with
pre/post-modification

Stall(1) ADD.W W0, W1, [W2](2)
MOV.W [W2++], W3(2)

Indirect with
pre/post-modification

Indirect Stall(1) ADD.W W0, W1, [W2++]
MOV.W [W2], W3

Indirect with
pre/post-modification

Indirect with
pre/post-modification

Stall(1) ADD.W W0, W1, [W2++]
MOV.W [W2++], W3

Note 1: When stalls are detected, one cycle is added to the instruction execution time.
2: For these examples, the contents of W2 = the mapped address of W2 (0x0004).
DS70030F-page 4-12 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow

CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
stall if the source read of the subsequent instruction uses W15.

GOTO, RETFIE and RETURN instructions are never subject to an instruction stall because they
do not perform write operations to the working registers.

4.3.4 Instruction Stalls and DO/REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a stall.

4.4 Byte Operations

Since the dsPIC30F data memory is byte addressable, most of the base instructions may operate
in either Byte mode or Word mode. When these instructions operate in Byte mode, the following
rules apply:

• all direct working register references use the Least Significant Byte of the 16-bit working
register and leave the Most Significant Byte unchanged

• all indirect working register references use the data byte specified by the 16-bit address
stored in the working register

• all file register references use the data byte specified by the byte address

• the Status Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,
the native data format is little-endian, which means that words are stored with the Least
Significant Byte at the lower address, and the Most Significant Byte at the adjacent, higher
address (as shown in Figure 4-2). Example 4-8 shows sample byte move operations and
Example 4-9 shows sample byte math operations.

Note: Refer to the dsPIC30F Family Reference Manual for more detailed information
about RAW instruction stalls.

Note: Instructions which operate in Byte mode must use the “.b” or “.B” instruction
extension to specify a byte instruction. For example, the following two instructions
are valid forms of a byte clear operation:

 CLR.b W0
 CLR.B W0
© 2005 Microchip Technology Inc. DS70030F-page 4-13

dsPIC30F Programmer’s Reference Manual
Example 4-8: Sample Byte Move Operations

MOV.B #0x30, W0 ; move the literal byte 0x30 to W0

Before Instruction:
 W0 = 0x5555

After Instruction:
 W0 = 0x5530

MOV.B 0x1000, W0 ; move the byte at 0x1000 to W0

Before Instruction:
 W0 = 0x5555
 Data Memory 0x1000 = 0x1234

After Instruction:
 W0 = 0x5534
 Data Memory 0x1000 = 0x1234

MOV.B W0, 0x1001 ; byte move W0 to address 0x1001

Before Instruction:
 W0 = 0x1234
 Data Memory 0x1000 = 0x5555

After Instruction:
 W0 = 0x1234
 Data Memory 0x1000 = 0x3455

MOV.B W0, [W1++] ; byte move W0 to [W1], then post-inc W1

Before Instruction:
 W0 = 0x1234
 W1 = 0x1001
 Data Memory 0x1000 = 0x5555

After Instruction:
 W0 = 0x1234
 W1 = 0x1002
 Data Memory 0x1000 = 0x3455
DS70030F-page 4-14 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-9: Sample Byte Math Operations

CLR.B [W6--] ; byte clear [W6], then post-dec W6

Before Instruction:
 W6 = 0x1001
 Data Memory 0x1000 = 0x5555

After Instruction:
 W6 = 0x1000
 Data Memory 0x1000 = 0x0055

SUB.B W0, #0x10, W1 ; byte subtract literal 0x10 from W0
; and store to W1

Before Instruction:
 W0 = 0x1234
 W1 = 0xFFFF

After Instruction:
 W0 = 0x1234
 W1 = 0xFF24

ADD.B W0, W1, [W2++] ; byte add W0 and W1, store to [W2]
; and post-inc W2

Before Instruction:
 W0 = 0x1234
 W1 = 0x5678
 W2 = 0x1000
 Data Memory 0x1000 = 0x5555

After Instruction:
 W0 = 0x1234
 W1 = 0x5678
 W2 = 0x1001
 Data Memory 0x1000 = 0x55AC
© 2005 Microchip Technology Inc. DS70030F-page 4-15

dsPIC30F Programmer’s Reference Manual
4.5 Word Move Operations

Even though the dsPIC30F data space is byte addressable, all move operations made in Word
mode must be word aligned. This means that for all source and destination operands, the Least
Significant address bit must be ‘0’. If a word move is made to or from an odd address, an address
error exception is generated. Likewise, all double-words must be word aligned. Figure 4-2 shows
how bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word align-
ment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-2: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 b1 0x1002

0x1005 b3 b2 0x1004

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0x100A

Legend:
 b0 - byte stored at 0x1000
 b1 - byte stored at 0x1003
 b3:b2 - word stored at 0x1005:1004 (b2 is LSB)
 b7:b4 - double-word stored at 0x1009:0x1006 (b4 is LSB)
 b8 - byte stored at 0x100A

Note: Instructions which operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “.w” or “.W” extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

 CLR W0
 CLR.w W0
 CLR.W W0
DS70030F-page 4-16 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-10: Legal Word Move Operations

MOV #0x30, W0 ; move the literal word 0x30 to W0

Before Instruction:
 W0 = 0x5555

After Instruction:
 W0 = 0x0030

MOV 0x1000, W0 ; move the word at 0x1000 to W0

Before Instruction:
 W0 = 0x5555
 Data Memory 0x1000 = 0x1234

After Instruction:
 W0 = 0x1234
 Data Memory 0x1000 = 0x1234

MOV [W0], [W1++] ; word move [W0] to [W1],
; then post-inc W1

Before Instruction:
 W0 = 0x1234
 W1 = 0x1000
 Data Memory 0x1000 = 0x5555
 Data Memory 0x1234 = 0xAAAA

After Instruction:
 W0 = 0x1234
 W1 = 0x1002
 Data Memory 0x1000 = 0xAAAA
 Data Memory 0x1234 = 0xAAAA
© 2005 Microchip Technology Inc. DS70030F-page 4-17

dsPIC30F Programmer’s Reference Manual
Example 4-11: Illegal Word Move Operations

MOV 0x1001, W0 ; move the word at 0x1001 to W0

Before Instruction:
W0 = 0x5555
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

After Instruction:
W0 = 0x1234
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

ADDRESS ERROR TRAP GENERATED

(source address is misaligned, so MOV is performed)

MOV W0, 0x1001 ; move W0 to the word at 0x1001

Before Instruction:
W0 = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

After Instruction:
W0 = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED

(destination address is misaligned, so MOV is not performed)

MOV [W0], [W1++] ; word move [W0] to [W1],
; then post-inc W1

Before Instruction:
W0 = 0x1235
W1 = 0x1000
Data Memory 0x1000 = 0x1234
Data Memory 0x1234 = 0xAAAA
Data Memory 0x1236 = 0xBBBB

After Instruction:
W0 = 0x1235
W1 = 0x1002
Data Memory 0x1000 = 0xAAAA
Data Memory 0x1234 = 0xAAAA
Data Memory 0x1236 = 0xBBBB

ADDRESS ERROR TRAP GENERATED

(source address is misaligned, so MOV is performed)
DS70030F-page 4-18 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.6 Using 10-bit Literal Operands

Several instructions which support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to 8-bits or the assembler will generate an error. Table 4-7
shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, IOR,
RETLW, SUB, SUBB and XOR. Example 4-12 shows how positive and negative literals are used
in Byte mode for the ADD instruction.

Table 4-7: 10-bit Literal Coding

Example 4-12: Using 10-bit Literals For Byte Operands

Literal Value
Word Mode

kk kkkk kkkk
Byte Mode
kkkk kkkk

0 00 0000 0000 0000 0000

1 00 0000 0001 0000 0001

2 00 0000 0010 0000 0010

127 00 0111 1111 0111 1111

128 00 1000 0000 1000 0000

255 00 1111 1111 1111 1111

256 01 0000 0000 N/A

512 10 0000 0000 N/A

1023 11 1111 1111 N/A

ADD.B #0x80, W0 ; add 128 (or -128) to W0
ADD.B #0x380, W0 ; ERROR... Illegal syntax for byte mode
ADD.B #0xFF, W0 ; add 255 (or -1) to W0
ADD.B #0x3FF, W0 ; ERROR... Illegal syntax for byte mode
ADD.B #0xF, W0 ; add 15 to W0
ADD.B #0x7F, W0 ; add 127 to W0
ADD.B #0x100, W0 ; ERROR... Illegal syntax for byte mode

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’s complement value, since the Most Significant bit of the
byte is set. When operating in Byte mode, the Assembler will accept either a positive
or negative literal value (i.e., #-10).
© 2005 Microchip Technology Inc. DS70030F-page 4-19

dsPIC30F Programmer’s Reference Manual
4.7 Software Stack Pointer and Frame Pointer

4.7.1 Software Stack Pointer

The dsPIC30F features a software stack which facilitates function calls and exception handling.
W15 is the default Stack Pointer (SP) and after any RESET, it is initialized to 0x0800. This
ensures that the SP will point to valid RAM in all dsPIC30F devices and permits stack availability
for exceptions, which may occur before the SP is set by the user software. The user may
reprogram the SP during initialization to any location within data space.

The SP always points to the first available free word (top-of-stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack pop
(read) and post-increments for a stack push (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction, with W15 used as the destination pointer. For
example, the contents of W0 can be pushed onto the top-of-stack (TOS) by

PUSH W0

This syntax is equivalent to

MOV W0,[W15++]

The contents of the TOS can be returned to W0 by

POP W0

This syntax is equivalent to

MOV [--W15],W0

During any CALL instruction, the PC is pushed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
pushed onto the stack, PC<15:0> is pushed onto the first available stack word, then PC<22:16>
is pushed. When PC<22:16> is pushed, the Most Significant 7 bits of the PC are zero-extended
before the push is made, as shown in Figure 4-3. During exception processing, the Most
Significant 7 bits of the PC are concatenated with the lower byte of the Status Register (SRL) and
IPL<3>, CORCON<3>. This allows the primary Status Register contents and CPU Interrupt
Priority Level to be automatically preserved during interrupts.

Figure 4-3: Stack Operation for CALL Instruction

Note: In order to protect against misaligned stack accesses, W15<0> is always clear.

015

W15 (before CALL)

W15 (after CALL)

S
ta

ck
 G

ro
w

s
To

w
ar

ds
H

ig
he

r
A

dd
re

ss

0x0000

PC<15:0>

 0x0 PC<22:16>

Top-of-Stack

0xFFFE

Note: For exceptions, the upper nine bits of the second pushed word contains
the SRL and IPL<3>.
DS70030F-page 4-20 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.7.2 Stack Pointer Example

Figure 4-4 through Figure 4-7 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-4 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads 0x5A5A
and 0x3636 to W0 and W1, respectively. The stack is pushed for the first time in Figure 4-5 and
the value contained in W0 is copied to TOS. W15 is automatically updated to point to the next
available stack location, and the new TOS is 0x0802. In Figure 4-6, the contents of W1 are
pushed onto the stack, and the new TOS becomes 0x0804. In Figure 4-7, the stack is popped,
which copies the last pushed value (W1) to W3. The SP is decremented during the POP
operation, and at the end of the example, the final TOS is 0x0802.

Example 4-13: Stack Pointer Usage

Figure 4-4: Stack Pointer Before The First PUSH

Figure 4-5: Stack Pointer After "PUSH W0" Instruction

MOV #0x5A5A, W0 ; Load W0 with 0x5A5A
MOV #0x3636, W1 ; Load W1 with 0x3636
PUSH W0 ; Push W0 to TOS (see Figure 4-5)
PUSH W1 ; Push W1 to TOS (see Figure 4-6)
POP W3 ; Pop TOS to W3 (see Figure 4-7)

0x0000

0xFFFE

0x0800 W15 (SP)

W15 = 0x0800

W0 = 0x5A5A
W1 = 0x3636

<TOS>

0x0000

0xFFFE

0x0800
W15 (SP)

W15 = 0x0802

W0 = 0x5A5A
W1 = 0x3636

5A5A
<TOS>0x0802
© 2005 Microchip Technology Inc. DS70030F-page 4-21

dsPIC30F Programmer’s Reference Manual
Figure 4-6: Stack Pointer After "PUSH W1" Instruction

Figure 4-7: Stack Pointer After "POP W3" Instruction

4.7.3 Software Stack Frame Pointer

A stack frame is a user defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables which a function uses and one stack frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any RESET. If the stack frame pointer is not used, W14 may be used like any other
working register.

The link (LNK) and unlink (ULNK) instructions provide stack frame functionality. The LNK
instruction is used to create a stack frame. It is used during a call sequence to adjust the SP, such
that the stack may be used to store temporary variables utilized by the called function. After the
function completes execution, the ULNK instruction is used to remove the stack frame created by
the LNK instruction. The LNK and ULNK instructions must always be used together to avoid stack
overflow.

0x0000

0xFFFE

0x0800

W15 (SP)

W15 = 0x0804

W0 = 0x5A5A
W1 = 0x3636

5A5A

<TOS>
0x0802 3636
0x0804

0x0000

0xFFFE

0x0800
W15 (SP)

W15 = 0x0802

W0 = 0x5A5A
W1 = 0x3636

5A5A
0x0802 <TOS>
0x0804

W3 = 0x3636

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).
DS70030F-page 4-22 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.7.4 Stack Frame Pointer Example

Figure 4-8 through Figure 4-10 show how a stack frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a stack frame operates and is
not indicative of the code generated by the dsPIC30F compiler. Figure 4-8 shows the stack con-
dition at the beginning of the example, before any registers are pushed to the stack. Here, W15
points to the first free stack location (TOS) and W14 points to a portion of stack memory allocated
for the routine that is currently executing.

Before calling the function "COMPUTE", the parameters of the function (W0, W1 and W2) are
pushed on the stack. After the "CALL COMPUTE" instruction is executed, the PC changes to the
address of "COMPUTE" and the return address of the function "TASKA" is placed on the stack
(Figure 4-9). Function "COMPUTE" then uses the "LNK #4" instruction to push the calling
routine’s frame pointer value onto the stack and the new frame pointer will be set to point to the
current stack pointer. Then, the literal 4 is added to the stack pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-10).

Inside the function "COMPUTE", the FP is used to access the function parameters and temporary
(local) variables. [W14+n] will access the temporary variables used by the routine and [W14-n]
is used to access the parameters. At the end of the function, the ULNK instruction is used to copy
the frame pointer address to the stack pointer and then pop the calling subroutine’s frame pointer
back to the W14 register. The ULNK instruction returns the stack back to the state shown in
Figure 4-9.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-8.

Example 4-14: Frame Pointer Usage

Figure 4-8: Stack at the Beginning of Example 4-14

TASKA:
...
PUSH W0 ; Push parameter 1
PUSH W1 ; Push parameter 2
PUSH W2 ; Push parameter 3
CALL COMPUTE ; Call COMPUTE function
POP W2 ; Pop parameter 3
POP W1 ; Pop parameter 2
POP W0 ; Pop parameter 1

 ...

COMPUTE:
LNK #4 ; Stack FP, allocate 4 bytes for local variables
...
ULNK ; Free allocated memory, restore original FP
RETURN ; Return to TASKA

0x0000

0xFFFE

0x0800

W14 (FP)

<TOS> W15 (SP)

TASKA

Frame
of
© 2005 Microchip Technology Inc. DS70030F-page 4-23

dsPIC30F Programmer’s Reference Manual
Figure 4-9: Stack After "CALL COMPUTE" Executes

Figure 4-10: Stack After "LNK #4" Executes

4.7.5 Stack Pointer Overflow

There is a stack limit register (SPLIM) associated with the stack pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’, because all stack operations must be
word aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs, after which time
it can only be disabled by a device RESET. All effective addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the effective address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 effective
address calculation wraps over the end of data space (0xFFFF).

Refer to the dsPIC30F Family Reference Manual for more information on the stack error trap.

4.7.6 Stack Pointer Underflow

The stack is initialized to 0x0800 during RESET. A stack error trap will be initiated should the
stack pointer address ever be less than 0x0800.

0x0000

0xFFFE

0x0800

W14 (FP)

Parameter 1

W15 (SP)

TASKA

Frame
of

Parameter 2
Parameter 3
PC<15:0>

0:PC<22:16>
<TOS>

0x0000

0xFFFE

0x0800

W14 (FP)

Parameter 1

W15 (SP)

TASKA

Frame
 of

Parameter 2
Parameter 3
PC<15:0>

0:PC<22:16>

<TOS>

FP of TASKA
Temp Word 1
Temp Word 2

Note: Locations in data space between 0x0000 and 0x07FF are, in general, reserved for
core and peripheral special function registers.
DS70030F-page 4-24 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.8 Conditional Branch Instructions

Conditional branch instructions are used to direct program flow, based on the contents of the
Status Register. These instructions are generally used in conjunction with a Compare class
instruction, but they may be employed effectively after any operation that modifies the Status
Register.

The compare instructions CP, CP0 and CPB, perform a subtract operation (minuend -
subtrahend), but do not actually store the result of the subtraction. Instead, compare instructions
just update the flags in the Status Register, such that an ensuing conditional branch instruction
may change program flow by testing the contents of the updated Status Register. If the result of
the Status Register test is true, the branch is taken. If the result of the Status Register test is false,
the branch is not taken.

The conditional branch instructions supported by the dsPIC30F devices are shown in Table 4-8.
This table identifies the condition in the Status Register which must be true for the branch to be
taken. In some cases, just a single bit is tested (as in BRA C), while in other cases, a complex
logic operation is performed (as in BRA GT). It is worth noting that both signed and unsigned
conditional tests are supported, and that support is provided for DSP algorithms with the OA, OB,
SA and SB condition mnemonics.

Table 4-8: Conditional Branch Instructions

Note 1: Instructions are of the form: BRA mnemonic, Expr.
2: GEU is identical to C and will reverse assemble to BRA C, Expr.
3: LTU is identical to NC and will reverse assemble to BRA NC, Expr.

Condition
Mnemonic(1) Description Status Test

C Carry (not Borrow) C

GE Signed greater than or equal (N&&OV) || (N&&OV)

GEU(2) Unsigned greater than or equal C

GT Signed greater than (Z&&N&&OV) || (Z&&N&&OV)

GTU Unsigned greater than C&&Z

LE Signed less than or equal Z || (N&&OV) || (N&&OV)

LEU Unsigned less than or equal C || Z

LT Signed less than (N&&OV) || (N&&OV)

LTU(3) Unsigned less than C

N Negative N

NC Not Carry (Borrow) C

NN Not Negative N

NOV Not Overflow OV

NZ Not Zero Z

OA Accumulator A overflow OA

OB Accumulator B overflow OB

OV Overflow OV

SA Accumulator A saturate SA

SB Accumulator B saturate SB

Z Zero Z

Note: The “Compare and Skip” instructions (CPSEQ, CPSGT, CPSLT, CPSNE) do not
modify the Status Register.
© 2005 Microchip Technology Inc. DS70030F-page 4-25

dsPIC30F Programmer’s Reference Manual
4.9 Z Status Bit

The Z status bit is a special zero status bit that is useful for extended precision arithmetic. The Z
bit functions like a normal Z flag for all instructions, except those that use the carry/borrow input
(ADDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the Z bit
can only be cleared and never set. If the result of one of these instructions is non-zero, the Z bit
will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB, SUBB
or SUBBR operations. This allows the Z bit to be used for performing a simple zero check on the
result of a series of extended precision operations.

A sequence of instructions working on multi-precision data (starting with an instruction with no
carry/borrow input) will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB or SUBBR instructions. Example 4-15
shows how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit
addition implemented with an ADD/ADDC instruction sequence. The first example generates a
zero result for only the MSWord, and the second example generates a zero result for both the
LSWord and MSWord.

Example 4-15: ’Z’ Status bit Operation for 32-bit Addition

; Add two doubles (W0:W1 and W2:W3)
; Store the result in W5:W4
ADD W0, W2, W4 ; Add LSWord and store to W4
ADDC W1, W3, W5 ; Add MSWord and store to W5

Before 32-bit Addition (zero result for MSWord):
 W0 = 0x2342
 W1 = 0xFFF0
 W2 = 0x39AA
 W3 = 0x0010
 W4 = 0x0000
 W5 = 0x0000
 SR = 0x0000

After 32-bit Addition:
 W0 = 0x2342
 W1 = 0xFFF0
 W2 = 0x39AA
 W3 = 0x0010
 W4 = 0x5CEC
 W5 = 0x0000
 SR = 0x0201 (DC,C=1)

Before 32-bit Addition (zero result for LSWord and MSWord):
 W0 = 0xB76E
 W1 = 0xFB7B
 W2 = 0x4892
 W3 = 0x0484
 W4 = 0x0000
 W5 = 0x0000
 SR = 0x0000

After 32-bit Addition:
 W0 = 0xB76E
 W1 = 0xFB7B
 W2 = 0x4892
 W3 = 0x0485
 W4 = 0x0000
 W5 = 0x0000
 SR = 0x0103 (DC,Z,C=1)
DS70030F-page 4-26 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.10 Assigned Working Register Usage

The 16 working registers of the dsPIC30F provide a large register set for efficient code generation
and algorithm implementation. In an effort to maintain an instruction set that provides advanced
capability, a stable run-time environment and backwards compatibility with earlier Microchip
processor cores, some working registers have a pre-assigned usage. Table 4-9 summarizes these
working register assignments, with details provided in subsections Section 4.10.1 “Implied DSP
Operands” through Section 4.10.3 “PICmicro® Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments

4.10.1 Implied DSP Operands

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some working registers have pre-assigned functionality. For all DSP instructions which have
pre-fetch ability, the following 10 register assignments must be adhered to:

• W4-W7 are used for arithmetic operands

• W8-W11 are used for pre-fetch addresses (pointers)
• W12 is used for the pre-fetch register offset index

• W13 is used for the accumulator write back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize working regis-
ters and have pre-fetch ability (described in Section 4.15 “DSP Accumulator Instructions”).
The affected instructions are CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC.

The DSP Accumulator class of instructions (described in Section 4.15 “DSP Accumulator
Instructions”) are not required to follow the working register assignments in Table 4-9 and may
freely use any working register when required.

4.10.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied frame pointer (used by the LNK and
ULNK instructions) and W15 is the implied stack pointer (used by the CALL, LNK, POP, PUSH,
RCALL, RETFIE, RETLW, RETURN, TRAP and ULNK instructions). Even though W14 and
W15 have this implied usage, they may still be used as generic operands in any instruction, with
the exceptions outlined in Section 4.10.1 “Implied DSP Operands”. If W14 and W15 must be
used for other purposes (it is strongly advised that they remain reserved for the Frame and Stack
pointer), extreme care must be taken such that the run-time environment is not corrupted.

Register Special Assignment

W0 Default WREG, Divide Quotient

W1 Divide Remainder

W2 “MUL f” Product Least Significant Word

W3 “MUL f” Product Most Significant Word

W4 MAC Operand

W5 MAC Operand

W6 MAC Operand

W7 MAC Operand

W8 MAC Pre-fetch Address (X Memory)

W9 MAC Pre-fetch Address (X Memory)

W10 MAC Pre-fetch Address (Y Memory)

W11 MAC Pre-fetch Address (Y Memory)

W12 MAC Pre-fetch Offset

W13 MAC Write Back Destination

W14 Frame Pointer

W15 Stack Pointer
© 2005 Microchip Technology Inc. DS70030F-page 4-27

dsPIC30F Programmer’s Reference Manual
4.10.3 PICmicro® Microcontroller Compatibility

4.10.3.1 Default Working Register WREG

To ease the migration path for users of the Microchip PICmicro families, the dsPIC30F has
matched the functionality of the PICmicro instruction sets as closely as possible. One major
difference between the dsPIC30F and the PICmicro processors is the number of working
registers provided. The PICmicro families only provide one 8-bit working register, while the
dsPIC30F provides sixteen, 16-bit working registers. To accommodate for the one working
register of the PICmicro MCU, the dsPIC30F instruction set has designated one working register
to be the default working register for all legacy file register instructions. The default working
register is set to W0, and it is used by all instructions which use file register addressing.

Additionally, the syntax used by the dsPIC30F assembler to specify the default working register
is similar to that used by the PICmicro assembler. As shown in the detailed instruction
descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to specify the
default working register. Example 4-16 shows several instructions which use WREG.

Example 4-16: Using the Default Working Register WREG

4.10.3.2 PRODH:PRODL Register Pair

Another significant difference between the Microchip PICmicro and dsPIC30F architectures is
the multiplier. Some PICmicro families support an 8-bit x 8-bit multiplier, which places the multiply
product in the PRODH:PRODL register pair. The dsPIC30F has a 17-bit x 17-bit multiplier, which
may place the result into any two successive working registers (starting with an even register),
or an accumulator.

Despite this architectural difference, the dsPIC30F still supports the legacy file register multiply
instruction (MULWF) with the “MUL{.B} f” instruction (described on page 5-169). Supporting the
legacy MULWF instruction has been accomplished by mapping the PRODH:PRODL registers to
the working register pair W3:W2. This means that when “MUL{.B} f” is executed in Word mode,
the multiply generates a 32-bit product which is stored in W3:W2, where W3 has the Most
Significant Word of the product and W2 has the Least Significant Word of the product. When
“MUL{.B} f” is executed in Byte mode, the 16-bit product is stored in W2, and W3 is unaffected.
Examples of this instruction are shown in Example 4-17.

ADD RAM100 ; add RAM100 and WREG, store in RAM100
ASR RAM100, WREG ; shift RAM100 right, store in WREG
CLR.B WREG ; clear the WREG LS Byte
DEC RAM100, WREG ; decrement RAM100, store in WREG
MOV WREG, RAM100 ; move WREG to RAM100
SETM WREG ; set all bits in the WREG
XOR RAM100 ; XOR RAM100 and WREG, store in RAM100
DS70030F-page 4-28 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

4.10.3.3 Moving Data with WREG

The “MOV{.B} f {,WREG}” instruction (described on page 5-145) and “MOV{.B} WREG, f”
instruction (described on page 5-146) allow for byte or word data to be moved between file
register memory and the WREG (working register W0). These instructions provide equivalent
functionality to the legacy Microchip PICmicro MOVF and MOVWF instructions.

The “MOV{.B} f {,WREG}” and “MOV{.B} WREG, f” instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Example 4-18: Moving Data with WREG

MUL.B 0x100 ; (0x100)*WREG (byte mode), store to W2

Before Instruction:
 W0 (WREG) = 0x7705
 W2 = 0x1235
 W3 = 0x1000
 Data Memory 0x0100 = 0x1255

After Instruction:
 W0 (WREG) = 0x7705
 W2 = 0x01A9
 W3 = 0x1000
 Data Memory 0x0100 = 0x1255

MUL 0x100 ; (0x100)*WREG (word mode), store to W3:W2

Before Instruction:
 W0 (WREG) = 0x7705
 W2 = 0x1235
 W3 = 0x1000
 Data Memory 0x0100 = 0x1255

After Instruction:
 W0 (WREG) = 0x7705
 W2 = 0xDEA9
 W3 = 0x0885
 Data Memory 0x0100 = 0x1255

Note: When moving word data between file register memory and the working register
array, the “MOV Wns, f” and “MOV f, Wnd” instructions allow any working register
(W0:W15) to be used as the source or destination register, not just WREG.

MOV.B 0x1001, WREG ; move the byte stored at location 0x1001 to W0
MOV 0x1000, WREG ; move the word stored at location 0x1000 to W0
MOV.B WREG, TBLPAG ; move the byte stored at W0 to the TBLPAG register
MOV WREG, 0x804 ; move the word stored at W0 to location 0x804
© 2005 Microchip Technology Inc. DS70030F-page 4-29

dsPIC30F Programmer’s Reference Manual
4.11 DSP Data Formats

4.11.1 Integer and Fractional Data

The dsPIC30F devices support both integer and fractional data types. Integer data is inherently
represented as a signed two’s complement value, where the Most Significant bit is defined as a
sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2N-1 to 2N-1 – 1.
For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0. For a
32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF
FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit, and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number, and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to
(1 – 21-N). For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF),
including 0.0 and it has a precision of 3.05176x10-5. In Normal Saturation mode, the 32-bit
accumulators use a 1.31 format, which enhances the precision to 4.6566x10-10.

Super Saturation mode expands the dynamic range of the accumulators by using the 8 bits of
the Upper Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored
in the accumulator overflows beyond the 32nd bit, and they are useful for implementing DSP
algorithms. This mode is enabled when the ACCSAT bit (CORCON<4>), is set to ‘1’ and it
expands the accumulators to 40-bits. The accumulators then support an integer range of
-5.498x1011 (0x80 0000 0000) to 5.498x1011 (0x7F FFFF FFFF). In Fractional mode, the
guard bits of the accumulator do not modify the location of the radix point and the 40-bit
accumulators use a 9.31 fractional format. Note that all fractional operation results are stored in
the 40-bit accumulator, justified with a 1.31 radix point. As in Integer mode, the guard bits merely
increase the dynamic range of the accumulator. 9.31 fractions have a range of -256.0 (0x80
0000 0000) to (256.0 – 4.65661x10-10) (0x7F FFFF FFFF). Table 4-10 identifies the range and
precision of integers and fractions on the dsPIC30F devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the dsPIC30F ALU operates
identically on integer and fractional data. Namely, an addition of two integers will yield the same
result (binary number) as the addition of two fractional numbers. The only difference is how the
result is interpreted by the user. However, multiplies performed by DSP operations are different.
In these instructions, data format selection is made by the IF bit, CORCON<0>, and it must be
set accordingly (‘0’ for Fractional mode, ‘1’ for Integer mode). This is required because of the
implied radix point used by dsPIC30F fractions. In Integer mode, multiplying two 16-bit integers
produces a 32-bit integer result. However, multiplying two 1.15 values generates a 2.30 result.
Since the dsPIC30F devices use 1.31 format for the accumulators, a DSP multiply in Fractional
mode also includes a left shift of one bit to keep the radix point properly aligned. This feature
reduces the resolution of the DSP multiplier to 2-30, but has no other effect on the computation
(e.g., 0.5 x 0.5 = 0.25).

Table 4-10: dsPIC30F Data Ranges

Register Size Integer Range Fraction Range Fraction Resolution

16-bit -32768 to
 32767

-1.0 to (1.0 – 2-15) 3.052 x 10-5

32-bit -2,147,483,648 to
 2,147,483,647

-1.0 to (1.0 – 2-31) 4.657 x 10-10

40-bit -549,755,813,888 to
 549,755,813,887

-256.0 to (256.0 – 2-31) 4.657 x 10-10
DS70030F-page 4-30 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.11.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data are represented on the dsPIC30F
is fundamental to working with the device. Both integer and fractional data treat the Most
Significant bit as a sign bit, and the binary exponent decreases by one as the bit position
advances towards the Least Significant bit. The binary exponent for an N-bit integer starts at
(N-1) for the Most Significant bit, and ends at 0 for the Least Significant bit. For an N-bit fraction,
the binary exponent starts at 0 for the Most Significant bit, and ends at (1-N) for the Least
Significant bit. This is shown in Figure 4-11 for a positive value and in Figure 4-12 for a negative
value.

Converting between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N-1. Likewise, to convert an N-bit fraction to an integer, multiply the fractional value by 2N-1.

Figure 4-11: Different Representations of 0x4001

Figure 4-12: Different Representations of 0xC002

Integer:

1.15 Fractional:

0x4001 = 214 + 20 = 16384 + 1 = 16385

0x4001 = 2-1 + 2-15 = 0.5 + .000030518 = 0.500030518

Implied Radix Point

0 1 0 0 0000 00 0 00 0 0 1

10 0 0 0000 00 0 00 0 0 1

 -215 214 213 212 20

 2-15 -20 . 2-1 2-2 2-3

Integer:

1.15 Fractional:

0xC002 = -215 + 214 + 21= -32768 + 16384 + 2 = -16382

0xC002 = -20 + 2-1 + 2-14 = -1.0 + 0.5 + 0.000061035 = -0.499938965

Implied Radix Point

1 1 0 0 0000 10 0 00 0 0 0

11 0 0 0000 10 0 00 0 0 0

 -215 214 213 212 20

 2-15 -20 . 2-1 2-2 2-3

© 2005 Microchip Technology Inc. DS70030F-page 4-31

dsPIC30F Programmer’s Reference Manual
4.12 Accumulator Usage

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40-bits wide and the X and Y data paths are only 16-bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-13 shows that each 40-bit accumulator (ACCA and ACCB) consists of an 8-bit
Upper register (ACCxU), a 16-bit High register (ACCxH) and a 16-bit Low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LAC instruction), and also as a source
register for storing the accumulator (with the SAC.R instruction). This is represented by Item B,
Figure 4-13, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

When Normal (31-bit) Saturation is enabled, DSP operations (such as ADD, MAC, MSC, etc.)
utilize solely ACCxH:ACCxL (Item C in Figure 4-13) and ACCxU is only used to maintain the sign
of the value stored in ACCxH:ACCxL. For instance, when a MPY instruction is executed, the
result is stored in ACCxH:ACCxL, and the sign of the result is extended through ACCxU.

When Super Saturation is enabled, all registers of the accumulator may be used (Item D in
Figure 4-13) and the results of DSP operations are stored in ACCxU:ACCxH:ACCxL. The benefit
of ACCxU is that it increases the dynamic range of the accumulator, as described in
Section 4.11.1 “Integer and Fractional Data”. Refer to Table 4-10 to see the range of values
which may be stored in the accumulator when in Normal and Super Saturation modes.

Figure 4-13: Accumulator Alignment and Usage

A)

D)

C)

B)

ACCxU ACCxH ACCxL

A) 40-bit Accumulator consists of ACCxU:ACCxH:ACCxL
B) Load and Store operations
C) Operations in Normal Saturation mode
D) Operations in Super Saturation mode

31.30

Implied Radix Point (between bits 31 and 30)

015163239
DS70030F-page 4-32 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.13 Accumulator Access

The six registers of Accumulator A and Accumulator B are memory mapped like any other special
function register. This feature allows them to be accessed with file register or indirect addressing,
using any instruction which supports such addressing. However, it is recommended that the DSP
instructions LAC, SAC and SAC.R be used to load and store the accumulators, since they
provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC.R instruction
details are provided in Section 5. “Instruction Descriptions”.

4.14 DSP MAC Instructions

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F architecture. The DSP MAC instructions, shown in
Table 4.14, utilize both the X and Y data paths of the CPU core, which enables these instructions
to perform the following operations all in one cycle:

• two reads from data memory using pre-fetch working registers (MAC Pre-fetches)

• two updates to pre-fetch working registers (MAC Pre-fetch Register Updates)

• one mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called Accumulator Write Back (WB) and it provides flexibility for the software
developer. For instance, the Accumulator WB may be used to run two algorithms concurrently,
or efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions

4.14.1 MAC Pre-Fetches

Pre-Fetches (or data reads) are made using the effective address stored in the working register.
The two pre-fetches from data memory must be specified using the working registers assign-
ments shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one
read must occur from the Y data bus using W10 or W11. Allowable destination registers for both
pre-fetches are W4-W7.

As shown in Table 4-3, one special Addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the pre-fetch is
made using the effective address of the specified working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9, and in the
Y-space with W11.

Note: For convenience, ACCAU and ACCBU are sign-extended to 16-bits. This provides
the flexibility to access these registers using either Byte or Word mode (when file
register or indirect addressing is used).

Instruction Description Accumulator WB?

CLR Clear accumulator Yes

ED Euclidean distance (no accumulate) No

EDAC Euclidean distance No

MAC Multiply and accumulate Yes

MAC Square and accumulate No

MOVSAC Move from X and Y bus Yes

MPY Multiply to accumulator No

MPY Square to accumulator No

MPY.N Negative multiply to accumulator No

MSC Multiply and subtract Yes
© 2005 Microchip Technology Inc. DS70030F-page 4-33

dsPIC30F Programmer’s Reference Manual
4.14.2 MAC Pre-Fetch Register Updates

After the MAC pre-fetches are made, the effective address stored in each pre-fetch working
register may be modified. This feature enables efficient single cycle processing for data stored
sequentially in X and Y memory. Since all DSP instructions execute in Word mode, only even
numbered updates may be made to the effective address stored in the working register.
Allowable address modifications to each pre-fetch register are -6, -4, -2, 0 (no update), +2, +4
and +6. This means that effective address updates may be made up to 3 words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base pre-fetch
register (W9 or W11), or the offset register (W12).

4.14.3 MAC Operations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY.N and MSC instruc-
tions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC class of
instructions. W4-W7 may be combined in any fashion, and when the same working register is
specified for both operands, a square or square and accumulate operation is performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the Euclidean Distance operation. Another unique
feature about this instruction is that the values pre-fetched from X and Y memory are not actually
stored in W4-W7. Instead, only the difference of the pre-fetched data words is stored in W4-W7.

The two remaining MAC class instructions, CLR and MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, pre-fetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to pre-fetch two values from data memory and
store the contents of either accumulator.

4.14.4 MAC Write Back

The write back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator, and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the write back, and two
Addressing modes are supported: Direct and Indirect with Post-increment.

The CLR, MOVSAC and MSC instructions support accumulator write back, while the ED, EDAC,
MPY and MPY.N instructions do not support accumulator write back. The MAC instruction, which
multiplies two working registers which are not the same, also supports accumulator write back.
However, the square and accumulate MAC instruction does not support accumulator write back
(see Table 4.14).

4.14.5 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to pre-fetches and accumulator
write back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.
DS70030F-page 4-34 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

Example 4-19: Base MAC Syntax

If a pre-fetch is used in the instruction, the assembler is capable of discriminating the X or Y data
pre-fetch based on the register used for the effective address. [W8] or [W9] specifies the X
pre-fetch and [W10] or [W11] specifies the Y pre-fetch. Brackets around the working register are
required in the syntax, and they designate that indirect addressing is used to perform the
pre-fetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C”- like syntax (i.e., “[W8]-=2” or “[W8]+=6”). When Register Offset Addressing is
used for the pre-fetch, W12 is placed inside the brackets ([W9+W12] for X pre-fetches and
[W11+W12] for Y pre-fetches). Each pre-fetch operation must also specify a pre-fetch destination
register (W4-W7). In the instruction syntax, the destination register appears before the pre-fetch
register. Legal forms of pre-fetch are shown in Example 4-20.

Example 4-20: MAC Pre-Fetch Syntax

Multiply W7*W7, Accumulate to ACCB

; MAC with no prefetch

MAC W4*W5, A

; MAC with no prefetch

MAC W7*W7, B

X([W8]+=2)→ W5

ACCA=ACCA+W5*W6

; MAC with X only prefetch

MAC W5*W6, A, [W8]+=2, W5

Y([W11+W12])→ W5

ACCB=ACCB+W5*W5

; MAC with Y only prefetch

MAC W5*W5, B, [W11+W12], W5

X([W9])→ W6

ACCB=ACCB+W6*W7

Y([W10]+=4)→ W7

; MAC with X/Y prefetch

MAC W6*W7, B, [W9], W6, [W10]+=4, W7

Multiply W4*W5, Accumulate to ACCA
© 2005 Microchip Technology Inc. DS70030F-page 4-35

dsPIC30F Programmer’s Reference Manual
If an accumulator write back is used in the instruction, it is specified last. The write back must use
the W13 register, and allowable forms for the write back are “W13” for direct addressing and
“[W13]+=2” for indirect addressing with post-increment. By definition, the accumulator not used
in the mathematical operation is stored, so the write back accumulator is not specified in the
instruction. Legal forms of accumulator write back (WB) are shown in Example 4-21.

Example 4-21: MAC Accumulator WB Syntax

Putting it all together, an MSC instruction which performs two pre-fetches and a write back is
shown in Example 4-22.

Example 4-22: MSC Instruction with Two Pre-Fetches and Accumulator Write Back

ACCB → W13

0 → ACCA

; CLR with direct WB of ACCB

CLR A, W13

ACCB → [W13]+=2

ACCA=ACCA+W4*W5

; MAC with indirect WB of ACCB

MAC W4*W5, A [W13]+=2

Y([W10]+=2)→ W4

ACCB=ACCB+W4*W5

ACCA → W13

; MAC with Y prefetch, direct WB of ACCA

MAC W4*W5, B, [W10]+=2, W4, W13

ACCB=ACCB-W6*W7

X([W8]+=2)→W6

Y([W10]-=6)→W7

ACCA→[W13]+=2

; MSC with X/Y prefetch, indirect WB of ACCA

MSC W6*W7, B, [W8]+=2, W6, [W10]-=6, W7 [W13]+=2
DS70030F-page 4-36 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.15 DSP Accumulator Instructions

The DSP Accumulator instructions do not have pre-fetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP Accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions

4.16 Scaling Data with the FBCL Instruction

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC), or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on, and the required dynamic range of the output data. At times, these conditions
may be known beforehand and fixed scaling may be employed. In other cases, scaling conditions
may not be fixed or known, and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that it’s numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change starting
from the value’s sign bit and working towards the LSB. Since the dsPICTM device’s barrel shifter
uses negative values to specify a left shift, the FBCL instruction returns the negated exponent of
a value. If the value is being scaled up, this allows the ensuing shift to be performed immediately
with the value returned by FBCL. Additionally, since the FBCL instruction only operates on signed
quantities, FBCL produces results in the range of -15:0. When the FBCL instruction returns ‘0’, it
indicates that the value is already at full scale. When the instruction returns -15, it indicates that
the value cannot be scaled (as is the case with 0x0 and 0xFFFF). Table 4-13 shows word data
with various dynamic ranges, their exponents, and the value after scaling each data to maximize
the dynamic range. Example 4-23 shows how the FBCL instruction may be used for block
processing.

Instruction Description Accumulator WB?

ADD Add accumulators No

ADD 16-bit signed accumulator add No

LAC Load accumulator No

NEG Negate accumulator No

SAC Store accumulator No

SAC.R Store rounded accumulator No

SFTAC Arithmetic shift accumulator by Literal No

SFTAC Arithmetic shift accumulator by (Wn) No

SUB Subtract accumulators No
© 2005 Microchip Technology Inc. DS70030F-page 4-37

dsPIC30F Programmer’s Reference Manual
Table 4-13: Scaling Examples

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting
the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

Word Value Exponent
Full Scale Value

(Word Value << Exponent)

0x0001 14 0x4000

0x0002 13 0x4000

0x0004 12 0x4000

0x0100 6 0x4000

0x01FF 6 0x7FC0

0x0806 3 0x4030

0x2007 1 0x400E

0x4800 0 0x4800

0x7000 0 0x7000

0x8000 0 0x8000

0x900A 0 0x900A

0xE001 2 0x8004

0xFF07 7 0x8380

Note: For the word values 0x0000 and 0xFFFF, the FBCL instruction returns -15.

; assume W0 contains the largest absolute value of the data block
; assume W4 points to the beginning of the data block
; assume the block of data contains BLOCK_SIZE words

; determine the exponent to use for scaling
FBCL W0, W2 ; store exponent in W2

; scale the entire data block before processing
DO #(BLOCK_SIZE-1), SCALE
LAC [W4], A ; move the next data sample to ACCA
SFTAC A, W2 ; shift ACCA by W2 bits

SCALE:
SAC A, [W4++] ; store scaled input (overwrite original)

; now process the data
; (processing block goes here)
DS70030F-page 4-38 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

et
D

etails

4

4.17 Normalizing the Accumulator with the FBCL Instruction

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator, and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have 8 guard bits from the AccU register, which expands the
dynamic range of the accumulators from 1.31 to 9.31, when operating in Super Saturation mode
(see Section 4.11.1 “Integer and Fractional Data”). However, even in Super Saturation mode,
the Store Rounded Accumulator (SAC.R) instruction only stores 16-bit data (in 1.15 format) from
AccH, as described in Section 4.12 “Accumulator Usage”. Under certain conditions, this may
pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if AccU is in use, or scaling the accumulator up if all of the AccH bits are
not being used. To perform such scaling, the FBCL instruction must operate on the AccU byte
and it must operate on the AccH word. If a shift is required, the ALU’s 40-bit shifter is employed,
using the SFTAC instruction to perform the scaling. Example 4-24 contains a code snippet for
accumulator normalization.

Example 4-24: Normalizing with FBCL

; assume an operation in ACCA has just completed (SR intact)
; assume the processor is in super saturation mode
; assume ACCAH is defined to be the address of ACCAH (0x24)

MOV #ACCAH, W5 ; W5 points to ACCAH
BRA OA, FBCL_GUARD ; if overflow we right shift

FBCL_HI:
FBCL [W5], W0 ; extract exponent for left shift
BRA SHIFT_ACC ; branch to the shift

FBCL_GUARD:
FBCL [++W5], W0 ; extract exponent for right shift
ADD.B W0, #15, W0 ; adjust the sign for right shift

SHIFT_ACC:
SFTAC A, W0 ; shift ACCA to normalize
© 2005 Microchip Technology Inc. DS70030F-page 4-39

dsPIC30F Programmer’s Reference Manual
NOTES:
DS70030F-page 4-40 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In
stru

ctio
n

D
escrip

tio
n

s

5

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 Instruction Symbols.. 5-2

5.2 Instruction Encoding Field Descriptors Introduction... 5-2

5.3 Instruction Description Example .. 5-6

5.4 Instruction Descriptions.. 5-7
© 2005 Microchip Technology Inc. DS70030F-page 5-1

dsPIC30F Programmer’s Reference Manual
5.1 Instruction Symbols

All symbols used in Section 5.4 “Instruction Descriptions” are shown in Table 1-2.

5.2 Instruction Encoding Field Descriptors Introduction

All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions” are
shown in Table 5.2 through Table 5-12.

Table 5-1: Instruction Encoding Field Descriptors

Field Description

A Accumulator selection bit: 0=ACCA; 1=ACCB

aa Accumulator Write Back mode (see Table 5-12)

B Byte mode selection bit: 0=word operation; 1=byte operation

bbbb 4-bit bit position select: 0000=LSB; 1111=MSB

D Destination address bit: 0=result stored in WREG;
1=result stored in file register

dddd Wd destination register select: 0000=W0; 1111=W15

f ffff ffff ffff 13-bit register file address (0x0000 to 0x1FFF)

fff ffff ffff ffff 15-bit register file word address (implied 0 LSB)
(0x0000 to 0xFFFE)

ffff ffff ffff ffff 16-bit register file byte address (0x0000 to 0xFFFF)

ggg Register Offset Addressing mode for Ws source register
(see Table 5-4)

hhh Register Offset Addressing mode for Wd destination register
(see Table 5-5)

iiii Pre-Fetch X Operation (see Table 5-6)

jjjj Pre-Fetch Y Operation (see Table 5-8)

k 1-bit literal field, constant data or expression

kkkk 4-bit literal field, constant data or expression

kk kkkk 6-bit literal field, constant data or expression

kkkk kkkk 8-bit literal field, constant data or expression

kk kkkk kkkk 10-bit literal field, constant data or expression

kk kkkk kkkk kkkk 14-bit literal field, constant data or expression

kkkk kkkk kkkk kkkk 16-bit literal field, constant data or expression

mm Multiplier source select with same working registers
(see Table 5-10)

mmm Multiplier source select with different working registers
(see Table 5-11)

nnnn nnnn nnnn nnn0
 nnn nnnn

23-bit program address for CALL and GOTO instructions

nnnn nnnn nnnn nnnn 16-bit program offset field for relative branch/call instructions

ppp Addressing mode for Ws source register (see Table 5-2)

qqq Addressing mode for Wd destination register (see Table 5-3)

rrrr Barrel shift count

ssss Ws source register select: 0000=W0; 1111=W15

tttt Dividend select, Most Significant Word

vvvv Dividend select, Least Significant Word

W Double-Word mode selection bit: 0=word operation;
1=double-word operation

wwww Wb base register select: 0000=W0; 1111=W15

xx Pre-Fetch X Destination (see Table 5-7)

xxxx xxxx xxxx xxxx 16-bit unused field (don’t care)

yy Pre-Fetch Y Destination (see Table 5-9)

z Bit test destination: 0=C flag bit; 1=Z flag bit
DS70030F-page 5-2 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Table 5-2: Addressing Modes for Ws Source Register

Table 5-3: Addressing Modes for Wd Destination Register

Table 5-4: Offset Addressing Modes for Ws Source Register (with Register Offset)

Table 5-5: Offset Addressing Modes for Wd Destination Register
(with Register Offset)

ppp Addressing Mode Source Operand

000 Register Direct Ws

001 Indirect [Ws]

010 Indirect with Post-Decrement [Ws--]

011 Indirect with Post-Increment [Ws++]

100 Indirect with Pre-Decrement [--Ws]

101 Indirect with Pre-Increment [++Ws]

11x Unused

qqq Addressing Mode Destination Operand

000 Register Direct Wd

001 Indirect [Wd]

010 Indirect with Post-Decrement [Wd--]

011 Indirect with Post-Increment [Wd++]

100 Indirect with Pre-Decrement [--Wd]

101 Indirect with Pre-Increment [++Wd]

11x Unused (an attempt to use this Addressing mode will force a RESET instruction)

ggg Addressing Mode Source Operand

000 Register Direct Ws

001 Indirect [Ws]

010 Indirect with Post-Decrement [Ws--]

011 Indirect with Post-Increment [Ws++]

100 Indirect with Pre-Decrement [--Ws]

101 Indirect with Pre-Increment [++Ws]

11x Indirect with Register Offset [Ws+Wb]

hhh Addressing Mode Source Operand

000 Register Direct Wd

001 Indirect [Wd]

010 Indirect with Post-Decrement [Wd--]

011 Indirect with Post-Increment [Wd++]

100 Indirect with Pre-Decrement [--Wd]

101 Indirect with Pre-Increment [++Wd]

11x Indirect with Register Offset [Wd+Wb]
© 2005 Microchip Technology Inc. DS70030F-page 5-3

dsPIC30F Programmer’s Reference Manual
Table 5-6: X Data Space Pre-Fetch Operation

Table 5-7: X Data Space Pre-Fetch Destination

Table 5-8: Y Data Space Pre-Fetch Operation

iiii Operation

0000 Wxd=[W8]

0001 Wxd=[W8], W8 = W8 + 2

0010 Wxd=[W8], W8 = W8 + 4

0011 Wxd=[W8], W8 = W8 + 6

0100 No Pre-fetch for X Data Space

0101 Wxd=[W8], W8 = W8 – 6

0110 Wxd=[W8], W8 = W8 – 4

0111 Wxd=[W8], W8 = W8 – 2

1000 Wxd=[W9]

1001 Wxd=[W9], W9 = W9 + 2

1010 Wxd=[W9], W9 = W9 + 4

1011 Wxd=[W9], W9 = W9 + 6

1100 Wxd=[W9+W12]

1101 Wxd=[W9], W9 = W9 – 6

1110 Wxd=[W9], W9 = W9 – 4

1111 Wxd=[W9], W9 = W9 – 2

xx Wxd

00 W4

01 W5

10 W6

11 W7

jjjj Operation

0000 Wyd=[W10]

0001 Wyd=[W10], W10 = W10 + 2

0010 Wyd=[W10], W10 = W10 + 4

0011 Wyd=[W10], W10 = W10 + 6

0100 No Pre-fetch for Y Data Space

0101 Wyd=[W10], W10 = W10 – 6

0110 Wyd=[W10], W10 = W10 – 4

0111 Wyd=[W10], W10 = W10 – 2

1000 Wyd=[W11]

1001 Wyd=[W11], W11 = W11 + 2

1010 Wyd=[W11], W11 = W11 + 4

1011 Wyd=[W11], W11 = W11 + 6

1100 Wyd=[W11+W12]

1101 Wyd=[W11], W11 = W11 – 6

1110 Wyd=[W11], W11 = W11 – 4

1111 Wyd=[W11], W11 = W11 – 2
DS70030F-page 5-4 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Table 5-9: Y Data Space Pre-Fetch Destination

Table 5-10: MAC or MPY Source Operands (Same Working Register)

Table 5-11: MAC or MPY Source Operands (Different Working Register)

Table 5-12: MAC Accumulator Write Back Selection

yy Wyd

00 W4

01 W5

10 W6

11 W7

mm Multiplicands

00 W4 * W4

01 W5 * W5

10 W6 * W6

11 W7 * W7

mmm Multiplicands

000 W4 * W5

001 W4 * W6

010 W4 * W7

011 Invalid

100 W5 * W6

101 W5 * W7

110 W6 * W7

111 Invalid

aa Write Back Selection

00 W13 = Other Accumulator (Direct Addressing)

01 [W13]+=2 = Other Accumulator (Indirect Addressing with Post-Increment)

10 No Write Back

11 Invalid
© 2005 Microchip Technology Inc. DS70030F-page 5-5

dsPIC30F Programmer’s Reference Manual
5.3 Instruction Description Example

The example description below is for the fictitious instruction FOO. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions”.

FOO The Header field summarizes what the instruction does

Syntax: The Syntax field consists of an optional label, the instruction mnemonic, any
optional extensions which exist for the instruction, and the operands for the
instruction. Most instructions support more than one operand variant to
support the various dsPIC30F Addressing modes. In these circumstances,
all possible instruction operands are listed beneath each other (as in the
case of op2a, op2b and op2c above). Optional operands are enclosed in
braces.

Operands: The Operands field describes the set of values which each of the operands
may take. Operands may be accumulator registers, file registers, literal
constants (signed or unsigned), or working registers.

Operation: The Operation field summarizes the operation performed by the instruction.

Status Affected: The Status Affected field describes which bits of the Status Register are
affected by the instruction. Status bits are listed by bit position in
descending order.

Encoding: The Encoding field shows how the instruction is bit encoded. Individual bit
fields are explained in the Description field, and complete encoding details
are provided in Table 5.2.

Description: The Description field describes in detail the operation performed by the
instruction. A key for the encoding bits is also provided.

Words: The Words field contains the number of program words that are used to
store the instruction in memory.

Cycles: The Cycles field contains the number of instruction cycles that are required
to execute the instruction.

Examples: The Examples field contains examples which demonstrate how the
instruction operates. “Before” and “After” register snapshots are provided,
which allow the user to clearly understand what operation the instruction
performs.
DS70030F-page 5-6 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

5.4 Instruction Descriptions

ADD Add f to WREG

Syntax: {label:} ADD{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) + (WREG) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0100 0BDf ffff ffff ffff

Description: Add the contents of the default working register WREG to the contents of
the file register and place the result in the destination register. The
optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 ADD.B RAM100 ; Add WREG to RAM100 (Byte mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC80

 RAM100 FFC0 RAM100 FF40

SR 0000 SR 0005 (OV, C=1)

Example 2 ADD RAM200, WREG ; Add RAM200 to WREG (Word mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC40

 RAM200 FFC0 RAM200 FFC0

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-7

dsPIC30F Programmer’s Reference Manual

ADD Add Literal to Wn

Syntax: {label:} ADD{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: lit10 + (Wn) → Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0000 0Bkk kkkk kkkk dddd

Description: Add the 10-bit unsigned literal operand to the contents of the working
register Wn and place the result back into the working register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Operands”
for information on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1 ADD.B #0xFF, W7 ; Add -1 to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 12BF

SR 0000 SR 0009 (N,C=1)

Example 2 ADD #0xFF, W1 ; Add 255 to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12C0 W1 13BF

SR 0000 SR 0000
DS70030F-page 5-8 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ADD Add Wb to Short Literal

Syntax: {label:} ADD{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb) + lit5 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 0www wBqq qddd d11k kkkk

Description: Add the contents of the base register Wb to the 5-bit unsigned short literal
operand and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 ADD.B W0, #0x1F, W7 ; Add W0 and 31 (Byte mode)
; Store the result in W7

Before
Instruction

After
Instruction

W0 2290 W0 2290

W7 12C0 W7 12AF

SR 0000 SR 0008 (N=1)

Example 2 ADD W3, #0x6, [--W4] ; Add W3 and 6 (Word mode)
; Store the result in [--W4]

Before
Instruction

After
Instruction

W3 6006 W3 6006

W4 1000 W4 0FFE

Data 0FFE DDEE Data 0FFE 600C

Data 1000 DDEE Data 1000 DDEE

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-9

dsPIC30F Programmer’s Reference Manual
ADD Add Wb to Ws

Syntax: {label:} ADD{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb) + (Ws) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 0www wBqq qddd dppp ssss

Description: Add the contents of the source register Ws and the contents of the base
register Wb and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 ADD.B W5, W6, W7 ; Add W5 to W6, store result in W7
; (Byte mode)

Before
Instruction

After
Instruction

W5 AB00 W5 AB00

W6 0030 W6 0030

W7 FFFF W7 FF30
SR 0000 SR 0000

Example 2 ADD W5, W6, W7 ; Add W5 to W6, store result in W7
; (Word mode)

Before
Instruction

After
Instruction

W5 AB00 W5 AB00

W6 0030 W6 0030

W7 FFFF W7 AB30

SR 0000 SR 0008 (N=1)
DS70030F-page 5-10 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ADD Add Accumulators

Syntax: {label:} ADD Acc

Operands: Acc ∈ [A,B]

Operation: If (Acc = A):
 (ACCA) + (ACCB) → ACCA
Else:
 (ACCA) + (ACCB) → ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A000 0000 0000 0000

Description: Add the contents of Accumulator A to the contents of Accumulator B and
place the result in the selected accumulator. This instruction performs a
40-bit addition.

The ‘A’ bit specifies the destination accumulator.

Words: 1

Cycles: 1

Example 1 ADD A ; Add ACCB to ACCA

Before
Instruction

After
Instruction

ACCA 00 0022 3300 ACCA 00 1855 7858

ACCB 00 1833 4558 ACCB 00 1833 4558

SR 0000 SR 0000

Example 2 ADD B ; Add ACCA to ACCB
; Assume Super Saturation mode enabled
; (ACCSAT=1, SATA=1, SATB=1)

Before
Instruction

After
Instruction

ACCA 00 E111 2222 ACCA 00 E111 2222

ACCB 00 7654 3210 ACCB 01 5765 5432

SR 0000 SR 4800 (OB, OAB=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-11

dsPIC30F Programmer’s Reference Manual
ADD 16-Bit Signed Add to Accumulator

Syntax: {label:} ADD Ws, {#Slit4,} Acc

[Ws],

[Ws++],

[Ws--],

[--Ws],

[++Ws],

[Ws+Wb],

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]
Slit4 ∈ [-8 ... +7]
Acc ∈ [A,B]

Operation: ShiftSlit4(Extend(Ws)) + (Acc) → Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1001 Awww wrrr rggg ssss

Description: Add a 16-bit value specified by the source working register to the Most
Significant word of the selected accumulator. The source operand may
specify the direct contents of a working register or an effective address. The
value specified is added to the Most Significant Word of the accumulator, by
sign-extending and zero backfilling the source operand prior to the operation.
The value added to the accumulator may also be shifted by a 4-bit signed
literal before the addition is made.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional shift.
The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right
and negative values of operand Slit4 represent an arithmetic shift
left. The contents of the source register are not affected by Slit4.

Words: 1

Cycles: 1

Example 1 ADD W0, #2, A ; Add W0 right-shifted by 2 to ACCA

Before
Instruction

After
Instruction

W0 8000 W0 8000

ACCA 00 7000 0000 ACCA 00 5000 0000

SR 0000 SR 0000
DS70030F-page 5-12 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 ADD [W5++], A ; Add the effective value of W5 to ACCA
; Post-increment W5

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCA 00 0067 2345 ACCA 00 5067 2345

Data 2000 5000 Data 2000 5000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-13

dsPIC30F Programmer’s Reference Manual

ADDC Add f to WREG with Carry

Syntax: {label:} ADDC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) + (WREG) + (C) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0100 1BDf ffff ffff ffff

Description: Add the contents of the default working register WREG, the contents of
the file register and the Carry bit and place the result in the destination
register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.

These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 ADDC.B RAM100 ; Add WREG and C bit to RAM100
; (Byte mode)

Before
Instruction

After
Instruction

WREG CC60 WREG CC60

 RAM100 8006 RAM100 8067

SR 0001 (C=1) SR 0000

Example 2 ADDC RAM200, WREG ; Add RAM200 and C bit to the WREG
; (Word mode)

Before
Instruction

After
Instruction

WREG 5600 WREG 8A01

 RAM200 3400 RAM200 3400

SR 0001 (C=1) SR 000C (N, OV=1)
DS70030F-page 5-14 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ADDC Add Literal to Wn with Carry

Syntax: {label:} ADDC{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: lit10 + (Wn) + (C) → Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0000 1Bkk kkkk kkkk dddd

Description: Add the 10-bit unsigned literal operand, the contents of the working
register Wn and the Carry bit and place the result back into the working
register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 2.7 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 ADDC.B #0xFF, W7 ; Add -1 and C bit to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 12BF

SR 0000 (C=0) SR 0009 (N,C=1)

Example 2 ADDC #0xFF, W1 ; Add 255 and C bit to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12C0 W1 13C0

SR 0001 (C=1) SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-15

dsPIC30F Programmer’s Reference Manual

ADDC Add Wb to Short Literal with Carry

Syntax: {label:} ADDC{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb) + lit5 + (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 1www wBqq qddd d11k kkkk

Description: Add the contents of the base register Wb, the 5-bit unsigned short literal
operand and the Carry bit and place the result in the destination register
Wd. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 ADDC.B W0, #0x1F, [W7] ; Add W0, 31 and C bit (Byte mode)
; Store the result in [W7]

Before
Instruction

After
Instruction

W0 CC80 W0 CC80

W7 12C0 W7 12C0

Data 12C0 B000 Data 12C0 B09F

SR 0000 (C=0) SR 0008 (N=1)

Example 2 ADDC W3, #0x6, [--W4] ; Add W3, 6 and C bit (Word mode)
; Store the result in [--W4]

Before
Instruction

After
Instruction

W3 6006 W3 6006

W4 1000 W4 0FFE

Data 0FFE DDEE Data 0FFE 600D

Data 1000 DDEE Data 1000
SR

DDEE

SR 0001 (C=1) 0000
DS70030F-page 5-16 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ADDC Add Wb to Ws with Carry

Syntax: {label:} ADDC{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb) + (Ws) + (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 1www wBqq qddd dppp ssss

Description: Add the contents of the source register Ws, the contents of the base
register Wb and the Carry bit and place the result in the destination
register Wd. Register direct addressing must be used for Wb. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 ADDC.B W0,[W1++],[W2++] ; Add W0, [W1] and C bit (Byte mode)
; Store the result in [W2]
; Post-increment W1, W2

Before
Instruction

After
Instruction

W0 CC20 W0 CC20

W1 0800 W1 0801

W2 1000 W2 1001

Data 0800 AB25 Data 0800 AB25

Data 1000 FFFF Data 1000 FF46

SR 0001 (C=1) SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-17

dsPIC30F Programmer’s Reference Manual
Example 2 ADDC W3,[W2++],[W1++] ; Add W3, [W2] and C bit (Word mode)
; Store the result in [W1]
; Post-increment W1, W2

Before
Instruction

After
Instruction

W1 1000 W1 1002

W2 2000 W2 2002

W3 0180 W3 0180

Data 1000 8000 Data 1000 2681

Data 2000 2500 Data 2000 2500

SR 0001 (C=1) SR 0000
DS70030F-page 5-18 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

AND AND f and WREG

Syntax: {label:} AND{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f).AND.(WREG) → destination designated by D

Status Affected: N, Z

Encoding: 1011 0110 0BDf ffff ffff ffff

Description: Compute the logical AND operation of the contents of the default working
register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 AND.B RAM100 ; AND WREG to RAM100 (Byte mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC80

 RAM100 FFC0 RAM100 FF80

SR 0000 SR 0008 (N=1)

Example 2 AND RAM200, WREG ; AND RAM200 to WREG (Word mode)

Before
Instruction

After
Instruction

WREG CC80 WREG 0080

 RAM200 12C0 RAM200 12C0

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-19

dsPIC30F Programmer’s Reference Manual

AND AND Literal and Wd

Syntax: {label:} AND{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: lit10.AND.(Wn) → Wn

Status Affected: N, Z

Encoding: 1011 0010 0Bkk kkkk kkkk dddd

Description: Compute the logical AND operation of the 10-bit literal operand and the
contents of the working register Wn and place the result back into the
working register Wn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.

Words: 1

Cycles: 1

Example 1 AND.B #0x83, W7 ; AND 0x83 to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 1280

SR 0000 SR 0008 (N=1)

Example 2 AND #0x333, W1 ; AND 0x333 to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12D0 W1 0210

SR 0000 SR 0000
DS70030F-page 5-20 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

AND AND Wb and Short Literal

Syntax: {label:} AND{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb).AND.lit5 → Wd

Status Affected: N, Z

Encoding: 0110 0www wBqq qddd d11k kkkk

Description: Compute the logical AND operation of the contents of the base register
Wb and the 5-bit literal and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 AND.B W0,#0x3,[W1++] ; AND W0 and 0x3 (Byte mode)
; Store to [W1]
; Post-increment W1

Before
Instruction

After
Instruction

W0 23A5 W0 23A5

W1 2211 W1 2212

 Data 2210 9999 Data 2210 0199

SR 0000 SR 0000

Example 2 AND W0,#0x1F,W1 ; AND W0 and 0x1F (Word mode)
; Store to W1

Before
Instruction

After
Instruction

W0 6723 W0 6723

W1 7878 W1 0003

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-21

dsPIC30F Programmer’s Reference Manual

AND And Wb and Ws

Syntax: {label:} AND{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb).AND.(Ws) → Wd

Status Affected: N, Z

Encoding: 0110 0www wBqq qddd dppp ssss

Description: Compute the logical AND operation of the contents of the source register
Ws and the contents of the base register Wb and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 AND.B W0, W1 [W2++] ; AND W0 and W1, and
; store to [W2] (Byte mode)
; Post-increment W2

Before
Instruction

After
Instruction

W0 AA55 W0 AA55

W1 2211 W1 2211

W2 1001 W2 1002

 Data 1000 FFFF Data 1000 11FF

SR 0000 SR 0000
DS70030F-page 5-22 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 AND W0, [W1++], W2 ; AND W0 and [W1], and
; store to W2 (Word mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 AA55 W0 AA55

W1 1000 W1 1002

W2 55AA W2 2214

 Data 1000 2634 Data 1000 2634

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-23

dsPIC30F Programmer’s Reference Manual

ASR Arithmetic Shift Right f

Syntax: {label:} ASR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (f<7>) → Dest<7>
 (f<7>) → Dest<6>
 (f<6:1>) → Dest<5:0>
 (f<0>) → C
For word operation:
 (f<15>) → Dest<15>
 (f<15>) → Dest<14>
 (f<14:1>) → Dest<13:0>
 (f<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0101 1BDf ffff ffff ffff

Description: Shift the contents of the file register one bit to the right and place the
result in the destination register. The Least Significant bit of the file
register is shifted into the Carry bit of the Status Register. After the shift is
performed, the result is sign-extended. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

C

Example 1 ASR.B RAM400, WREG ; ASR RAM400 and store to WREG
; (Byte mode)

Before
Instruction

After
Instruction

WREG 0600 WREG 0611

RAM400 0823 RAM400 0823

SR 0000 SR 0001 (C=1)

Example 2 ASR RAM200 ; ASR RAM200 (Word mode)

Before
Instruction

After
Instruction

RAM200 8009 RAM200 C004

SR 0000 SR 0009 (N, C=1)
DS70030F-page 5-24 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ASR Arithmetic Shift Right Ws

Syntax: {label:} ASR{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (Ws<7>) → Wd<7>
 (Ws<7>) → Wd<6>
 (Ws<6:1>) → Wd<5:0>
 (Ws<0>) → C
For word operation:
 (Ws<15>) → Wd<15>
 (Ws<15>) → Wd<14>
 (Ws<14:1>) → Wd<13:0>
 (Ws<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0001 1Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the right and place
the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the Status Register. After the shift is performed,
the result is sign-extended. Either register direct or indirect addressing may
be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

C

© 2005 Microchip Technology Inc. DS70030F-page 5-25

dsPIC30F Programmer’s Reference Manual
Example 1 ASR.B [W0++], [W1++] ; ASR [W0] and store to [W1] (Byte mode)
; Post-increment W0 and W1

Before
Instruction

After
Instruction

W0 0600 W0 0601

W1 0801 W1 0802

Data 600 2366 Data 600 2366

 Data 800 FFC0 Data 800 33C0

SR 0000 SR 0000

Example 2 ASR W12, W13 ; ASR W12 and store to W13 (Word mode)

Before
Instruction

After
Instruction

W12 AB01 W12 AB01

W13 0322 W13 D580

SR 0000 SR 0009 (N, C=1)
DS70030F-page 5-26 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ASR Arithmetic Shift Right by Short Literal

Syntax: {label:} ASR Wb, #lit4, Wnd

Operands: Wb ∈ [W0 ... W15]
lit4 ∈ [0...15]
Wnd ∈ [W0 ... W15]

Operation: lit4<3:0> → Shift_Val
Wb<15> → Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> → Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 1www wddd d100 kkkk

Description: Arithmetic shift right the contents of the source register Wb by the 4-bit
unsigned literal and store the result in the destination register Wnd. After
the shift is performed, the result is sign-extended. Direct addressing must
be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 ASR W0, #0x4, W1 ; ASR W0 by 4 and store to W1

Before
Instruction

After
Instruction

W0 060F W0 060F

W1 1234 W1 0060

SR 0000 SR 0000

Example 2 ASR W0, #0x6, W1 ; ASR W0 by 6 and store to W1

Before
Instruction

After
Instruction

W0 80FF W0 80FF

W1 0060 W1 FE03

SR 0000 SR 0008 (N=1)

Example 3 ASR W0, #0xF, W1 ; ASR W0 by 15 and store to W1

Before
Instruction

After
Instruction

W0 70FF W0 70FF

W1 CC26 W1 0000

SR 0000 SR 0002 (Z=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-27

dsPIC30F Programmer’s Reference Manual

ASR Arithmetic Shift Right by Wns

Syntax: {label:} ASR Wb, Wns, Wnd

Operands: Wb ∈ [W0 ... W15]
Wns ∈ [W0 ...W15]
Wnd ∈ [W0 ... W15]

Operation: Wns<3:0> → Shift_Val
Wb<15> → Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> → Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 1www wddd d000 ssss

Description: Arithmetic shift right the contents of the source register Wb by the 4 Least
Significant bits of Wns (up to 15 positions) and store the result in the
destination register Wnd. After the shift is performed, the result is
sign-extended. Direct addressing must be used for Wb, Wns and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd = 0x0 if Wb is positive, and

Wnd = 0xFFFF if Wb is negative.

Words: 1

Cycles: 1

Example 1 ASR W0, W5, W6 ; ASR W0 by W5 and store to W6

Before
Instruction

After
Instruction

W0 80FF W0 80FF

W5 0004 W5 0004

W6 2633 W6 F80F

SR 0000 SR 0000

Example 2 ASR W0, W5, W6 ; ASR W0 by W5 and store to W6

Before
Instruction

After
Instruction

W0 6688 W0 6688

W5 000A W5 000A

W6 FF00 W6 0019

SR 0000 SR 0000

Example 3 ASR W11, W12, W13 ; ASR W11 by W12 and store to W13

Before
Instruction

After
Instruction

W11 8765 W11 8765

W12 88E4 W12 88E4

W13 A5A5 W13 F876

SR 0000 SR 0008 (N=1)
DS70030F-page 5-28 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BCLR Bit Clear f

Syntax: {label:} BCLR{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for byte operation

Operation: 0 → f<bit4>

Status Affected: None

Encoding: 1010 1001 bbbf ffff ffff fffb

Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BCLR.B 0x800, #0x7 ; Clear bit 7 in 0x800

Before
Instruction

After
Instruction

Data 0800 66EF Data 0800 666F

SR 0000 SR 0000

Example 2 BCLR 0x400, #0x9 ; Clear bit 9 in 0x400

Before
Instruction

After
Instruction

Data 0400 AA55 Data 0400 A855

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-29

dsPIC30F Programmer’s Reference Manual

BCLR Bit Clear in Ws

Syntax: {label:} BCLR{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: 0 → Ws<bit4>

Status Affected: None

Encoding: 1010 0001 bbbb 0B00 0ppp ssss

Description: Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit
(bit 7 for byte operations, bit 15 for word operations). Register direct or
indirect addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BCLR.B W2, #0x2 ; Clear bit 3 in W2

Before
Instruction

After
Instruction

W2 F234 W2 F230

SR 0000 SR 0000

Example 2 BCLR [W0++], #0x0 ; Clear bit 0 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5607 Data 2300 5606

SR 0000 SR 0000
DS70030F-page 5-30 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA Branch Unconditionally

Syntax: {label:} BRA Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16 ∈ [-32768 ... +32767].

Operation: (PC+2) + 2*Slit16 → PC
NOP → Instruction Register

Status Affected: None

Encoding: 0011 0111 nnnn nnnn nnnn nnnn

Description: The program will branch unconditionally, relative to the next PC. The offset
of the branch is the 2’s complement number ‘2*Slit16’, which supports
branches up to 32K instructions forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or
expression. After the branch is taken, the new address will be (PC+2) +
2*Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words
offset from (PC+2).

Words: 1

Cycles: 2

Example 1 002000 HERE: BRA THERE
002002 . . .
002004 . . .
002006 . . .
002008 . . .
00200A THERE: . . .
00200C . . .

; Branch to THERE

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200A

SR 0000 SR 0000

Example 2 002000 HERE: BRA THERE+0x2
002002 . . .
002004 . . .
002006 . . .
002008 . . .
00200A THERE: . . .
00200C . . .

; Branch to THERE+0x2

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0000 SR 0000

Example 3 002000 HERE: BRA 0x1366
002002 . . .
002004 . . .

; Branch to 0x1366

Before
Instruction

After
Instruction

PC 00 2000 PC 00 1366

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-31

dsPIC30F Programmer’s Reference Manual

BRA Computed Branch

Syntax: {label:} BRA Wn

Operands: Wn ∈ [W0 ... W15]

Operation: (PC+2) + (2*Wn) → PC
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0001 0110 0000 0000 ssss

Description: The program will branch unconditionally, relative to the next PC. The
offset of the branch is the sign-extended 17-bit value (2*Wn), which
supports branches up to 32K instructions forward or backward. After this
instruction executes, the new PC will be (PC+2)+2*Wn, since the PC will
have incremented to fetch the next instruction.

The ‘s’ bits select the address of the source register.

Words: 1

Cycles: 2

Example 1 002000 HERE: BRA W7
002002 . . .

002108 . . .
00210A TABLE7: . . .
00210C . . .

; Branch forward (2+2*W7)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2108

W7 0084 W7 0084

SR 0000 SR 0000
DS70030F-page 5-32 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA C Branch if Carry

Syntax: {label:} BRA C, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16 ∈ [-32768 ... +32767].

Operation: Condition = C
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag bit is ‘1’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA C, CARRY
002002 NO_C: . . .
002004 . . .
002006 GOTO THERE
002008 CARRY: . . .
00200A . . .
00200C THERE: . . .
00200E . . .

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2008

SR 0001 (C=1) SR 0001 (C=1)

Example 2 002000 HERE: BRA C, CARRY
002002 NO_C: ...
002004 ...
002006 GOTO THERE
002008 CARRY: ...
00200A ...
00200C THERE: ...
00200E ...

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-33

dsPIC30F Programmer’s Reference Manual
Example 3 006230 HERE: BRA C, CARRY
006232 NO_C: ...
006234 ...
006236 GOTO THERE
006238 CARRY: ...
00623A ...
00623C THERE: ...
00623E ...

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 6230 PC 00 6238

SR 0001 (C=1) SR 0001 (C=1)

Example 4 006230 START: ...
006232 ...
006234 CARRY: ...
006236 ...
006238 ...
00623A ...
00623C HERE: BRA C, CARRY
00623E ...

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 623C PC 00 6234

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-34 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA GE Branch if Signed Greater Than or Equal

Syntax: {label:} BRA GE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = (N&&OV)||(!N&&!OV)
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1101 nnnn nnnn nnnn nnnn

Description: If the logical expression (N&&OV)||(!N&&!OV) is true, then the program
will branch relative to the next PC. The offset of the branch is the 2’s
complement number ‘2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.

Note: The assembler will convert the specified label into the offset to
be used.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 007600 LOOP: . . .
007602 . . .
007604 . . .
007606 . . .
007608 HERE: BRA GE, LOOP
00760A NO_GE: . . .

; If GE, branch to LOOP
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 7608 PC 00 7600

SR 0000 SR 0000

Example 2 007600 LOOP: . . .
007602 . . .
007604 . . .
007606 . . .
007608 HERE: BRA GE, LOOP
00760A NO_GE: . . .

; If GE, branch to LOOP
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 7608 PC 00 760A

SR 0008 (N=1) SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-35

dsPIC30F Programmer’s Reference Manual

BRA GEU Branch if Unsigned Greater Than or Equal

Syntax: {label:} BRA GEU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset
range of [-32768 ... +32767] program words.

Operation: Condition = C
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward.
The Slit16 value is resolved by the linker from the supplied label,
absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The
instruction then becomes a two-cycle instruction, with a NOP executed
in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2)
in instruction words.

Note: This instruction is identical to the BRA C, Expr (Branch if
Carry) instruction and has the same encoding. It will reverse
assemble as BRA C, Slit16.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA GEU, BYPASS
002002 NO_GEU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If C is set, branch
; to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-36 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA GT Branch if Signed Greater Than

Syntax: {label:} BRA GT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = (!Z&&N&&OV)||(!Z&&!N&&!OV)
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1100 nnnn nnnn nnnn nnnn

Description: If the logical expression (!Z&&N&&OV)||(!Z&&!N&&!OV) is true, then the
program will branch relative to the next PC. The offset of the branch is the
2’s complement number ‘2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA GT, BYPASS
002002 NO_GT: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If GT, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-37

dsPIC30F Programmer’s Reference Manual

BRA GTU Branch if Unsigned Greater Than

Syntax: {label:} BRA GTU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = (C&&!Z)
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1110 nnnn nnnn nnnn nnnn

Description: If the logical expression (C&&!Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA GTU, BYPASS
002002 NO_GTU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If GTU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-38 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA LE Branch if Signed Less Than or Equal

Syntax: {label:} BRA LE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = Z||(N&&!OV)||(!N&&OV)
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0100 nnnn nnnn nnnn nnnn

Description: If the logical expression (Z||(N&&!OV)||(!N&&OV)) is true, then the
program will branch relative to the next PC. The offset of the branch is the
2’s complement number ‘2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA LE, BYPASS
002002 NO_LE: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LE, branch to
BYPASS

; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-39

dsPIC30F Programmer’s Reference Manual

BRA LEU Branch if Unsigned Less Than or Equal

Syntax: {label:} BRA LEU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !C||Z
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0110 nnnn nnnn nnnn nnnn

Description: If the logical expression (!C||Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA LEU, BYPASS
002002 NO_LEU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LEU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-40 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA LT Branch if Signed Less Than

Syntax: {label:} BRA LT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = (N&&!OV)||(!N&&OV)
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0101 nnnn nnnn nnnn nnnn

Description: If the logical expression ((N&&!OV)||(!N&&OV)) is true, then the program
will branch relative to the next PC. The offset of the branch is the 2’s
complement number ‘2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA LT, BYPASS
002002 NO_LT: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LT, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-41

dsPIC30F Programmer’s Reference Manual
BRA LTU Branch if Unsigned Less Than

Syntax: {label:} BRA LTU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !C
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address
or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Note: This instruction is identical to the BRA NC, Expr (Branch if Not
Carry) instruction and has the same encoding. It will reverse
assemble as BRA NC, Slit16.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA LTU, BYPASS
002002 NO_LTU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LTU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-42 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA N Branch if Negative

Syntax: {label:} BRA N, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = N
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register.

Status Affected: None

Encoding: 0011 0011 nnnn nnnn nnnn nnnn

Description: If the Negative flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA N, BYPASS
002002 NO_N: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If N, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0008 (N=1) SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-43

dsPIC30F Programmer’s Reference Manual

BRA NC Branch if Not Carry

Syntax: {label:} BRA NC, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !C
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA NC, BYPASS
002002 NO_NC: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NC, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-44 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA NN Branch if Not Negative

Syntax: {label:} BRA NN, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !N
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1011 nnnn nnnn nnnn nnnn

Description: If the Negative flag is ‘0’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA NN, BYPASS
002002 NO_NN: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NN, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-45

dsPIC30F Programmer’s Reference Manual

BRA NOV Branch if Not Overflow

Syntax: {label:} BRA NOV, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !OV
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1000 nnnn nnnn nnnn nnnn

Description: If the Overflow flag is ‘0’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA NOV, BYPASS
002002 NO_NOV: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NOV, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0008 (N=1) SR 0008 (N=1)
DS70030F-page 5-46 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA NZ Branch if Not Zero

Syntax: {label:} BRA NZ, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = !Z
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 1010 nnnn nnnn nnnn nnnn

Description: If the Z flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the 2’s complement number ‘2*Slit16’, which sup-
ports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA NZ, BYPASS
002002 NO_NZ: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NZ, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0002 (Z=1) SR 0002 (Z=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-47

dsPIC30F Programmer’s Reference Manual

BRA OA Branch if Overflow Accumulator A

Syntax: {label:} BRA OA, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = OA
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0000 1100 nnnn nnnn nnnn nnnn

Description: If the Overflow Accumulator A flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Note: The assembler will convert the specified label into the offset to
be used.

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA OA, BYPASS
002002 NO_OA: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OA, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 8800 (OA, OAB=1) SR 8800 (OA, OAB=1)
DS70030F-page 5-48 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA OB Branch if Overflow Accumulator B

Syntax: {label:} BRA OB, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = OB
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0000 1101 nnnn nnnn nnnn nnnn

Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch rel-
ative to the next PC. The offset of the branch is the 2’s complement num-
ber ‘2*Slit16’, which supports branches up to 32K instructions forward or
backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA OB, BYPASS
002002 NO_OB: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OB, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 8800 (OA, OAB=1) SR 8800 (OA, OAB=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-49

dsPIC30F Programmer’s Reference Manual

BRA OV Branch if Overflow

Syntax: {label:} BRA OV, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = OV
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0000 nnnn nnnn nnnn nnnn

Description: If the Overflow flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA OV, BYPASS
002002 NO_OV . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OV, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0002 (Z=1) SR 0002 (Z=1)
DS70030F-page 5-50 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA SA Branch if Saturation Accumulator A

Syntax: {label:} BRA SA, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = SA
If (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0000 1110 nnnn nnnn nnnn nnnn

Description: If the Saturation Accumulator A flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA SA, BYPASS
002002 NO_SA: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If SA, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 2400 (SA, SAB=1) SR 2400 (SA, SAB=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-51

dsPIC30F Programmer’s Reference Manual

BRA SB Branch if Saturation Accumulator B

Syntax: {label:} BRA SB, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = SB
if (Condition)
 (PC+2) + 2*Slit16→ PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0000 1111 nnnn nnnn nnnn nnnn

Description: If the Saturation Accumulator B flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1

Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA SB, BYPASS
002002 NO_SB: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If SB, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0000 SR 0000
DS70030F-page 5-52 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BRA Z Branch if Zero

Syntax: {label:} BRA Z, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 ∈ [-32768 ... +32767].

Operation: Condition = Z
if (Condition)
 (PC+2) + 2*Slit16 → PC
 NOP → Instruction Register

Status Affected: None

Encoding: 0011 0010 nnnn nnnn nnnn nnnn

Description: If the Zero flag is ‘1’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1
Cycles: 1 (2 if branch taken)

Example 1 002000 HERE: BRA Z, BYPASS
002002 NO_Z: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If Z, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0002 (Z=1) SR 0002 (Z=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-53

dsPIC30F Programmer’s Reference Manual

BSET Bit Set f

Syntax: {label:} BSET{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: 1 → f<bit4>

Status Affected: None

Encoding: 1010 1000 bbbf ffff ffff fffb

Description: Set the bit in the file register f specified by ‘bit4’. Bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BSET.B 0x601, #0x3 ; Set bit 3 in 0x601

Before
Instruction

After
Instruction

Data 0600 F234 Data 0600 FA34

SR 0000 SR 0000

Example 2 BSET 0x444, #0xF ; Set bit 15 in 0x444

Before
Instruction

After
Instruction

Data 0444 5604 Data 0444 D604

SR 0000 SR 0000
DS70030F-page 5-54 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BSET Bit Set in Ws

Syntax: {label:} BSET{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: 1 → Ws<bit4>

Status Affected: None

Encoding: 1010 0000 bbbb 0B00 0ppp ssss

Description: Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations). Register direct or indirect
addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source/destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BSET.B W3, #0x7 ; Set bit 7 in W3

Before
Instruction

After
Instruction

W3 0026 W3 00A6

SR 0000 SR 0000

Example 2 BSET [W4++], #0x0 ; Set bit 0 in [W4]
; Post-increment W4

Before
Instruction

After
Instruction

W4 6700 W4 6702

Data 6700 1734 Data 6700 1735

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-55

dsPIC30F Programmer’s Reference Manual

BSW Bit Write in Ws

Syntax: {label:} BSW.C Ws, Wb

BSW.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]

Operation: For “.C” operation:
 C → Ws<(Wb)>
For “.Z” operation (default):
 Z → Ws<(Wb)>

Status Affected: None

Encoding: 1010 1101 Zwww w000 0ppp ssss

Description: The (Wb) bit in register Ws is written with the value of the C or Z flag from
the Status register. Bit numbering begins with the Least Significant bit (bit
0) and advances to the Most Significant bit (bit 15) of the working register.
Only the four Least Significant bits of Wb are used to determine the desti-
nation bit number. Register direct addressing must be used for Wb, and
either register direct, or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as source.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “.Z” operation is assumed.

Words: 1

Cycles: 1

Example 1 BSW.C W2, W3 ; Set bit W3 in W2 to the value
; of the C bit

Before
Instruction

After
Instruction

W2 F234 W2 7234

W3 111F W3 111F

SR 0002 (Z=1, C=0) SR 0002 (Z=1, C=0)

Example 2 BSW.Z W2, W3 ; Set bit W3 in W2 to the complement
; of the Z bit

Before
Instruction

After
Instruction

W2 E235 W2 E234

W3 0550 W3 0550

SR 0002 (Z=1, C=0) SR 0002 (Z=1, C=0)
DS70030F-page 5-56 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 3 BSW.C [++W0], W6 ; Set bit W6 in [W0++] to the value
; of the C bit

Before
Instruction

After
Instruction

W0 1000 W0 1002

W6 34A3 W6 34A3

Data 1002 2380 Data 1002 2388

SR 0001 (Z=0, C=1) SR 0001 (Z=0, C=1)

Example 4 BSW [W1--], W5 ; Set bit W5 in [W1] to the
; complement of the Z bit
; Post-decrement W1

Before
Instruction

After
Instruction

W1 1000 W1 0FFE

W5 888B W5 888B

Data 1000 C4DD Data 1000 CCDD

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-57

dsPIC30F Programmer’s Reference Manual

BTG Bit Toggle f

Syntax: {label:} BTG{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: (f)<bit4> → (f)<bit4>

Status Affected: None

Encoding: 1010 1010 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register f is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operation, bit 15 for word operation)
of the byte.

The ‘b’ bits select value bit4, the bit position to toggle.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BTG.B 0x1001, #0x4 ; Toggle bit 4 in 0x1001

Before
Instruction

After
Instruction

Data 1000 F234 Data 1000 E234

SR 0000 SR 0000

Example 2 BTG 0x1660, #0x8 ; Toggle bit 8 in RAM660

Before
Instruction

After
Instruction

Data 1660 5606 Data 1660 5706

SR 0000 SR 0000
DS70030F-page 5-58 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BTG Bit Toggle in Ws

Syntax: {label:} BTG{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: (Ws)<bit4> → Ws<bit4>

Status Affected: None

Encoding: 1010 0010 bbbb 0B00 0ppp ssss

Description: Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operations, bit 15 for word
operations). Register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BTG W2, #0x0 ; Toggle bit 0 in W2

Before
Instruction

After
Instruction

W2 F234 W2 F235

SR 0000 SR 0000

Example 2 BTG [W0++], #0x0 ; Toggle bit 0 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5606 Data 2300 5607
SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-59

dsPIC30F Programmer’s Reference Manual

BTSC Bit Test f, Skip if Clear

Syntax: {label:} BTSC{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if clear

Status Affected: None

Encoding: 1010 1111 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in the file register is tested. If the tested bit is ‘0’, the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘1’,
the next instruction is executed as normal. In either case, the contents of
the file register are not changed. For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1 (2 or 3)

Example 1 002000 HERE: BTSC.B 0x1201, #2
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 2 of 0x1201 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

Data 1200 264F Data 1200 264F

SR 0000 SR 0000
DS70030F-page 5-60 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 002000 HERE: BTSC 0x804, #14
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 14 of 0x804 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

Data 0804 2647 Data 0804 2647

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-61

dsPIC30F Programmer’s Reference Manual

BTSC Bit Test Ws, Skip if Clear

Syntax: {label:} BTSC Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 15]

Operation: Test (Ws)<bit4>, skip if clear

Status Affected: None

Encoding: 1010 0111 bbbb 0000 0ppp ssss

Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘0’, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘1’, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)

Example 1 002000 HERE: BTSC W0, #0x0
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 0 of W0 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W0 264F W0 264F

SR 0000 SR 0000
DS70030F-page 5-62 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 002000 HERE: BTSC W6, #0xF
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 15 of W6 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W6 264F W6 264F

SR 0000 SR 0000

Example 3 003400 HERE: BTSC [W6++], #0xC
003402 GOTO BYPASS
003404 . . .
003406 . . .
003408 BYPASS: . . .
00340A . . .

; If bit 12 of [W6] is 0,
; skip the GOTO
; Post-increment W6

Before
Instruction

After
Instruction

PC 00 3400 PC 00 3402

W6 1800 W6 1802

Data 1800 1000 Data 1800 1000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-63

dsPIC30F Programmer’s Reference Manual

BTSS Bit Test f, Skip if Set

Syntax: {label:} BTSS{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if set

Status Affected: None

Encoding: 1010 1110 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in the file register f is tested. If the tested bit is ‘1’, the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘0’, the
next instruction is executed as normal. In either case, the contents of the
file register are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)

Example 1 007100 HERE: BTSS.B 0x1401, #0x1
007102 CLR WREG
007104 . . .

; If bit 1 of 0x1401 is 1,
; don’t clear WREG

Before
Instruction

After
Instruction

PC 00 7100 PC 00 7104

Data 1400 0280 Data 1400 0280

SR 0000 SR 0000

Example 2 007100 HERE: BTSS 0x890, #0x9
007102 GOTO BYPASS
007104 . . .
007106 BYPASS: . . .

; If bit 9 of 0x890 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 7100 PC 00 7102

Data 0890 00FE Data 0890 00FE

SR 0000 SR 0000
DS70030F-page 5-64 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BTSS Bit Test Ws, Skip if Set

Syntax: {label:} BTSS Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 15]

Operation: Test (Ws)<bit4>, skip if set.

Status Affected: None

Encoding: 1010 0110 bbbb 0000 0ppp ssss

Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘1’, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘0’, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the address of the source register.
The ‘p’ bits select the source Address mode.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)

Example 1 002000 HERE: BTSS W0, #0x0
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 0 of W0 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W0 264F W0 264F

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-65

dsPIC30F Programmer’s Reference Manual
Example 2 002000 HERE: BTSS W6, #0xF
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 15 of W6 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W6 264F W6 264F

SR 0000 SR 0000

Example 3 003400 HERE: BTSS [W6++], 0xC
003402 GOTO BYPASS
003404 . . .
003406 . . .
003408 BYPASS: . . .
00340A . . .

; If bit 12 of [W6] is 1,
; skip the GOTO
; Post-increment W6

Before
Instruction

After
Instruction

PC 00 3400 PC 00 3404

W6 1800 W6 1802

Data 1800 1000 Data 1800 1000

SR 0000 SR 0000
DS70030F-page 5-66 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BTST Bit Test f

Syntax: {label:} BTST{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: (f)<bit4> → Z

Status Affected: Z

Encoding: 1010 1011 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register f is tested and the complement of the tested bit is
stored to the Z flag in the Status Register. The contents of the file register
are not changed. For the bit4 operand, bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BTST.B 0x1201, #0x3 ; Set Z = complement of
; bit 3 in 0x1201

Before
Instruction

After
Instruction

Data 1200 F7FF Data 1200 F7FF

SR 0000 SR 0002 (Z=1)

Example 2 BTST 0x1302, #0x7 ; Set Z = complement of
; bit 7 in 0x1302

Before
Instruction

After
Instruction

Data 1302 F7FF Data 1302 F7FF

SR 0002 (Z=1) SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-67

dsPIC30F Programmer’s Reference Manual

BTST Bit Test in Ws

Syntax: {label:} BTST.C Ws, #bit4

BTST.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 15]

Operation: For “.C” operation:
 (Ws)<bit4> → C
For “.Z” operation (default):

 (Ws)<bit4> → Z

Status Affected: Z or C

Encoding: 1010 0011 bbbb Z000 0ppp ssss

Description: Bit ‘bit4’ in register Ws is tested. If the “.Z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
Status register. If the “.C” option of the instruction is specified, the value of
the tested bit is stored to the Carry flag in the Status register. In either
case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.
The ‘b’ bits select value bit4, the bit position to test.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “.Z” operation is assumed.

Words: 1

Cycles: 1

Example 1 BTST.C [W0++], #0x3 ; Set C = bit 3 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

Data 1200 FFF7 Data 1200 FFF7

SR 0001 (C=1) SR 0000

Example 2 BTST.Z W0, #0x7 ; Set Z = complement of bit 7 in W0

Before
Instruction

After
Instruction

W0 F234 W0 F234

SR 0000 SR 0002 (Z=1)
DS70030F-page 5-68 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BTST Bit Test in Ws

Syntax: {label:} BTST.C Ws, Wb

BTST.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]

Operation: For “.C” operation:
 (Ws)<(Wb)> → C
For “.Z” operation (default):
 (Ws)<(Wb)> → Z

Status Affected: Z or C

Encoding: 1010 0101 Zwww w000 0ppp ssss

Description: The (Wb) bit in register Ws is tested. If the “.C” option of the instruction is
specified, the value of the tested bit is stored to the Carry flag in the Status
register. If the “.Z” option of the instruction is specified, the complement of
the tested bit is stored to the Zero flag in the Status register. In either case,
the contents of Ws are not changed.

Only the four Least Significant bits of Wb are used to determine the bit
number. Bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the working register.
Register direct or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as destination.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “.Z” operation is assumed.

Words: 1

Cycles: 1

Example 1 BTST.C W2, W3 ; Set C = bit W3 of W2

Before
Instruction

After
Instruction

W2 F234 W2 F234

W3 2368 W3 2368

SR 0001 (C=1) SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-69

dsPIC30F Programmer’s Reference Manual
Example 2 BTST.Z [W0++], W1 ; Set Z = complement of
; bit W1 in [W0],
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

W1 CCC0 W1 CCC0

Data 1200 6243 Data 1200 6243

SR 0002 (Z=1) SR 0000
DS70030F-page 5-70 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

BTSTS Bit Test/Set f

Syntax: {label:} BTSTS{.B} f, #bit4

Operands: f ∈ [0 ... 8191] for byte operation
f ∈ [0 ... 8190] (even only) for word operation
bit4 ∈ [0 ... 7] for byte operation
bit4 ∈ [0 ... 15] for word operation

Operation: (f)<bit4> → Z
1 → (f)<bit4>

Status Affected: Z

Encoding: 1010 1100 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register f is tested and the complement of the tested bit is
stored to the Zero flag in the Status register. The tested bit is then set to
“1” in the file register. For the bit4 operand, bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1

Example 1 BTSTS.B 0x1201, #0x3 ; Set Z = complement of bit 3 in 0x1201,
; then set bit 3 of 0x1201 = 1

Before
Instruction

After
Instruction

Data 1200 F7FF Data 1200 FFFF

SR 0000 SR 0002 (Z=1)

Example 2 BTSTS 0x808, #15 ; Set Z = complement of bit 15 in 0x808,
; then set bit 15 of 0x808 = 1

Before
Instruction

After
Instruction

RAM300 8050 RAM300 8050

SR 0002 (Z=1) SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-71

dsPIC30F Programmer’s Reference Manual

BTSTS Bit Test/Set in Ws

Syntax: {label:} BTSTS.C Ws, #bit4

BTSTS.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
bit4 ∈ [0 ... 15]

Operation: For “.C” operation:
 (Ws)<bit4> → C
 1 → Ws<bit4>
For “.Z” operation (default):

 (Ws)<bit4> → Z
 1 → Ws<bit4>

Status Affected: Z or C

Encoding: 1010 0100 bbbb Z000 0ppp ssss

Description: Bit ‘bit4’ in register Ws is tested. If the “.Z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
Status register. If the “.C” option of the instruction is specified, the value of
the tested bit is stored to the Carry flag in the Status register. In both
cases, the tested bit in Ws is set to “1”.

The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “.Z” operation is assumed.

Words: 1

Cycles: 1

Example 1 BTSTS.C [W0++], #0x3 ; Set C = bit 3 in [W0]
; Set bit 3 in [W0] = 1
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

Data 1200 FFF7 Data 1200 FFFF

SR 0001 (C=1) SR 0000

Example 2 BTSTS.Z W0, #0x7 ; Set Z = complement of bit 7
; in W0, and set bit 7 in W0 = 1

Before
Instruction

After
Instruction

W0 F234 W0 F2BC

SR 0000 SR 0002 (Z=1)
DS70030F-page 5-72 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CALL Call Subroutine

Syntax: {label:} CALL Expr

Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 ∈ [0 ... 8388606].

Operation: (PC)+4 → PC
(PC<15:0>) → (TOS)
(W15)+2 → W15
(PC<23:16>) → (TOS)
(W15)+2 → W15
lit23 → PC
NOP → Instruction Register

Status Affected: None
Encoding:
 1st word 0000 0010 nnnn nnnn nnnn nnn0

 2nd word 0000 0000 0000 0000 0nnn nnnn

Description: Direct subroutine call over the entire 4 Mbyte instruction program
memory range. Before the call is made, the 24-bit return address
(PC+4) is pushed onto the stack. After the return address is stacked,
the 23-bit value ‘lit23’ is loaded into the PC.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to
be used.

Words: 2
Cycles: 2

Example 1 026000 CALL _FIR
026004 MOV W0, W1

026844 _FIR: MOV #0x400, W2
026846 ...

; Call _FIR subroutine

; _FIR subroutine start

Before
Instruction

After
Instruction

PC 02 6000 PC 02 6844

W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002

SR 0000 SR 0000

Example 2 072000 CALL _G66 ; call routine _G66
072004 MOV W0, W1

077A28 _G66: INC W6, [W7++] ; routine start
077A2A ...
077A2C

Before
Instruction

After
Instruction

PC 07 2000 PC 07 7A28

W15 9004 W15 9008

Data 9004 FFFF Data 9004 2004

Data 9006 FFFF Data 9006 0007

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-73

dsPIC30F Programmer’s Reference Manual

CALL Call Indirect Subroutine

Syntax: {label:} CALL Wn

Operands: Wn ∈ [W0 ... W15]

Operation: (PC)+2 → PC
(PC<15:0>) → TOS
(W15)+2 → W15
(PC<23:16>) → TOS
(W15)+2 → W15
0 → PC<22:16>
(Wn<15:1>) → PC<15:1>
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0001 0000 0000 0000 ssss

Description: Indirect subroutine call over the first 32K instructions of program memory.
Before the call is made, the 24-bit return address (PC+2) is pushed onto
the stack. After the return address is stacked, Wn<15:1> is loaded into
PC<15:1> and PC<22:16> is cleared. Since PC<0> is always ‘0’, Wn<0>
is ignored.

The ‘s’ bits select the address of the source register.

Words: 1

Cycles: 2

Example 1 001002 CALL W0
001004 ...

001600 _BOOT: MOV #0x400, W2
001602 MOV #0x300, W6

; Call BOOT subroutine indirectly
; using W0

; _BOOT starts here

Before
Instruction

After
Instruction

PC 00 1002 PC 00 1600

W0 1600 W0 1600

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 1004

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000

Example 2 004200 CALL W7
004202 ...

005500 _TEST: INC W1, W2
005502 DEC W1, W3

; Call TEST subroutine indirectly
; using W7

; _TEST starts here
;

Before
Instruction

After
Instruction

PC 00 4200 PC 00 5500

W7 5500 W7 5500

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 4202

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000
DS70030F-page 5-74 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CLR Clear f or WREG

Syntax: {label:} CLR{.B} f

WREG

Operands: f ∈ [0 ... 8191]

Operation: 0 → destination designated by D

Status Affected: None

Encoding: 1110 1111 0BDf ffff ffff ffff

Description: Clear the contents of a file register or the default working register WREG.
If WREG is specified, the WREG is cleared. Otherwise, the specified file
register f is cleared.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 CLR.B RAM200 ; Clear RAM200 (Byte mode)

Before
Instruction

After
Instruction

RAM200 8009 RAM200 8000

SR 0000 SR 0000

Example 2 CLR WREG ; Clear WREG (Word mode)

Before
Instruction

After
Instruction

WREG 0600 WREG 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-75

dsPIC30F Programmer’s Reference Manual

CLR Clear Wd

Syntax: {label:} CLR{.B} Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd ∈ [W0 ... W15]

Operation: 0 → Wd

Status Affected: None

Encoding: 1110 1011 0Bqq qddd d000 0000

Description: Clear the contents of register Wd. Either register direct or indirect
addressing may be used for Wd.

The ‘B’ bits selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 CLR.B W2 ; Clear W2 (Byte mode)

Before
Instruction

After
Instruction

W2 3333 W2 3300

SR 0000 SR 0000

Example 2 CLR [W0++] ; Clear [W0]
 ; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5607 Data 2300 0000

SR 0000 SR 0000
DS70030F-page 5-76 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CLR Clear Accumulator, Pre-Fetch Operands

Syntax: {label:} CLR Acc {,[Wx],Wxd} {,[Wy],Wyd} {,AWB}

{,[Wx]+=kx,Wxd} {,[Wy]+=ky,Wyd}

{,[Wx]-=kx,Wxd} {,[Wy]-=ky,Wyd}

{,[W9+W12],Wxd} {,[W11+W12],Wyd}

Operands: Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]
AWB ∈ [W13, [W13]+=2]

Operation: 0 → Acc(A or B)
([Wx])→ Wxd; (Wx)+/-kx→Wx
([Wy])→ Wyd; (Wy)+/-ky→Wy
(Acc(B or A)) rounded → AWB

Status Affected: OA, OB, SA, SB

Encoding: 1100 0011 A0xx yyii iijj jjaa

Description: Clear all 40 bits of the specified accumulator, optionally pre-fetch
operands in preparation for a MAC type instruction and optionally store
the non-specified accumulator results. This instruction clears the
respective overflow and saturate flags (either OA, SA or OB, SB).

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional register direct or indirect store of the convergently rounded
contents of the “other” accumulator, as described in Section 4.14.4
“MAC Write Back”.

The ‘A’ bit selects the other accumulator used for write back.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.
The ‘a’ bits select the accumulator write back destination.

Words: 1

Cycles: 1

Example 1 CLR A, [W8]+=2, W4, W13 ; Clear ACCA
; Load W4 with [W8], post-inc W8
; Store ACCB to W13

Before
Instruction

After
Instruction

W4 F001 W4 1221

W8 2000 W8 2002

W13 C623 W13 5420

ACCA 00 0067 2345 ACCA 00 0000 0000

ACCB 00 5420 3BDD ACCB 00 5420 3BDD

Data 2000 1221 Data 2000 1221

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-77

dsPIC30F Programmer’s Reference Manual
Example 2 CLR B, [W8]+=2, W6, [W10]+=2, W7, [W13]+=2 ; Clear ACCB
; Load W6 with [W8]
; Load W7 with [W10]
; Save ACCA to [W13]
; Post-inc W8,W10,W13

Before
Instruction

After
Instruction

W6 F001 W6 1221

W7 C783 W7 FF80

W8 2000 W8 2002

W10 3000 W10 3002

W13 4000 W13 4002

ACCA 00 0067 2345 ACCA 00 0067 2345

ACCB 00 5420 ABDD ACCB 00 0000 0000

Data 2000 1221 Data 2000 1221

Data 3000 FF80 Data 3000 FF80

Data 4000 FFC3 Data 4000 0067

SR 0000 SR 0000
DS70030F-page 5-78 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CLRWDT Clear Watchdog Timer

Syntax: {label:} CLRWDT

Operands: None

Operation: 0 → WDT count register
0 → WDT prescaler A count
0 → WDT prescaler B count

Status Affected: None

Encoding: 1111 1110 0110 0000 0000 0000

Description: Clear the contents of the Watchdog Timer count register and the
prescaler count registers. The Watchdog Prescaler A and Prescaler B
settings, set by configuration fuses in the FWDT, are not changed.

Words: 1

Cycles: 1

Example 1 CLRWDT ; Clear Watchdog Timer

Before
Instruction

After
Instruction

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-79

dsPIC30F Programmer’s Reference Manual

COM Complement f

Syntax: {label:} COM{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) → destination designated by D

Status Affected: N, Z

Encoding: 1110 1110 1BDf ffff ffff ffff

Description: Compute the 1’s complement of the contents of the file register and place
the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 COM.b RAM200 ; COM RAM200 (Byte mode)

Before
Instruction

After
Instruction

RAM200 80FF RAM200 8000

SR 0000 SR 0002 (Z)

Example 2 COM RAM400, WREG ; COM RAM400 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG F7DC

RAM400 0823 RAM400 0823

SR 0000 SR 0008 (N=1)
DS70030F-page 5-80 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

COM Complement Ws

Syntax: {label:} COM{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) → Wd

Status Affected: N, Z

Encoding: 1110 1010 1Bqq qddd dppp ssss

Description: Compute the 1’s complement of the contents of the source register Ws
and place the result in the destination register Wd. Either register direct or
indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 COM.B [W0++], [W1++] ; COM [W0] and store to [W1] (Byte mode)
; Post-increment W0, W1

Before
Instruction

After
Instruction

W0 2301 W0 2302

W1 2400 W1 2401

Data 2300 5607 Data 2300 5607

Data 2400 ABCD Data 2400 ABA9

SR 0000 SR 0008 (N=1)

Example 2 COM W0, [W1++] ; COM W0 and store to [W1] (Word mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 D004 W0 D004

W1 1000 W1 1002

Data 1000 ABA9 Data 1000 2FFB

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-81

dsPIC30F Programmer’s Reference Manual

CP Compare f with WREG, Set Status Flags

Syntax: {label:} CP{.B} f

Operands: f ∈ [0 ...8191]

Operation: (f) – (WREG)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0011 0B0f ffff ffff ffff

Description: Compute (f) – (WREG) and update the Status register. This instruction is
equivalent to the SUBWF instruction, but the result of the subtraction is not
stored.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 CP.B RAM400 ; Compare RAM400 with WREG (Byte mode)

Before
Instruction

After
Instruction

WREG 8823 WREG 8823

RAM400 0823 RAM400 0823

SR 0000 SR 0002 (Z=1)

Example 2 CP 0x1200 ; Compare (0x1200) with WREG (Word mode)

Before
Instruction

After
Instruction

WREG 2377 WREG 2377

Data 1200 2277 Data 1200 2277

SR 0000 SR 0008 (N=1)
DS70030F-page 5-82 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CP Compare Wb with lit5, Set Status Flags

Syntax: {label:} CP{.B} Wb, #lit5

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]

Operation: (Wb) – lit5

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 0www wB00 011k kkkk

Description: Compute (Wb) – lit5, and update the Status register. This instruction is
equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.

The ‘w’ bits select the address of the Wb base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 CP.B W4, #0x12 ; Compare W4 with 0x12 (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0008 (N=1)

Example 2 CP W4, #0x12 ; Compare W4 with 0x12 (Word mode)

Before
Instruction

After
Instruction

W4 7713 W4 7713

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-83

dsPIC30F Programmer’s Reference Manual

CP Compare Wb with Ws, Set Status Flags

Syntax: {label:} CP{.B} Wb, Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]

Operation: (Wb) – (Ws)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 0www wB00 0ppp ssss

Description: Compute (Wb) – (Ws), and update the Status register. This instruction is
equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 CP.B W0, [W1++] ; Compare [W1] with W0 (Byte mode)
 ; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 2000 W1 2001

Data 2000 D004 Data 2000 D004

SR 0000 SR 0008 (N=1)

Example 2 CP W5, W6 ; Compare W6 with W5 (Word mode)

Before
Instruction

After
Instruction

W5 2334 W5 2334

W6 8001 W6 8001

SR 0000 SR 000C (N,OV=1)
DS70030F-page 5-84 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CP0 Compare f with 0x0, Set Status Flags

Syntax: {label:} CP0{.B} f

Operands: f ∈ [0 ... 8191]

Operation: (f) – 0x0

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0010 0B0f ffff ffff ffff

Description: Compute (f) – 0x0 and update the Status register. The result of the
subtraction is not stored.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 CP0.B RAM100 ; Compare RAM100 with 0x0 (Byte mode)

Before
Instruction

After
Instruction

RAM100 44C3 RAM100 44C3

SR 0000 SR 0008 (N=1)

Example 2 CP0 0x1FFE ; Compare (0x1FFE) with 0x0 (Word mode)

Before
Instruction

After
Instruction

Data 1FFE 0001 Data 1FFE 0001

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-85

dsPIC30F Programmer’s Reference Manual

CP0 Compare Ws with 0x0, Set Status Flags

Syntax: {label:} CP0{.B} Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Ws ∈ [W0 ... W15]

Operation: (Ws) – 0x0000

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0000 0000 0B00 0ppp ssss

Description: Compute (Ws) – 0x0000 and update the Status register. The result of the
subtraction is not stored. Register direct or indirect addressing may be
used for Ws.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 CP0.B [W4--] ; Compare [W4] with 0 (Byte mode)
 ; Post-decrement W4

Before
Instruction

After
Instruction

W4 1001 W4 1000

Data 1000 0034 Data 1000 0034

SR 0000 SR 0002 (Z=1)

Example 2 CP0 [--W5] ; Compare [--W5] with 0 (Word mode)

Before
Instruction

After
Instruction

W5 2400 W5 23FE

Data 23FE 9000 Data 23FE 9000

SR 0000 SR 0008 (N=1)
DS70030F-page 5-86 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CPB Compare f with WREG using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} f

Operands: f ∈ [0 ...8191]

Operation: (f) – (WREG) – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0011 1B0f ffff ffff ffff

Description: Compute (f) – (WREG) – (C), and update the Status register. This
instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These

instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 CPB.B RAM400 ; Compare RAM400 with WREG using C (Byte mode)

Before
Instruction

After
Instruction

WREG 8823 WREG 8823

RAM400 0823 RAM400 0823

SR 0000 SR 0008 (N=1)

Example 2 CPB 0x1200 ; Compare (0x1200) with WREG using C (Word mode)

Before
Instruction

After
Instruction

WREG 2377 WREG 2377

Data 1200 2377 Data 1200 2377

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-87

dsPIC30F Programmer’s Reference Manual

CPB Compare Wb with lit5 using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} Wb, #lit5

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]

Operation: (Wb) – lit5 – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 1www wB00 011k kkkk

Description: Compute (Wb) – lit5 – (C), and update the Status register. This instruction
is equivalent to the SUBB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits provide the literal operand, a five bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0001 (C=1) SR 0008 (N=1)

Example 2 CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0008 (N=1)

Example 3 CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0002 (Z=1) SR 0003 (Z, C=1)

Example 4 CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0003 (Z, C=1) SR 0001 (C=1)
DS70030F-page 5-88 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CPB Compare Ws with Wb using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} Wb, Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]

Operation: (Wb) – (Ws) – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 1www wB00 0ppp ssss

Description: Compute (Wb) – (Ws) – (C), and update the Status register. This instruction
is equivalent to the SUBB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 CPB.B W0, [W1++] ; Compare [W1] with W0 using C (Byte mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 1000 W1 1001

Data 1000 D0A9 Data 1000 D0A9

SR 0002 (Z=1) SR 0008 (N=1)

Example 2 CPB.B W0, [W1++] ; Compare [W1] with W0 using C (Byte mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 1000 W1 1001

Data 1000 D0A9 Data 1000 D0A9

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-89

dsPIC30F Programmer’s Reference Manual
Example 3 CPB W4, W5 ; Compare W5 with W4 using C (Word mode)

Before
Instruction

After
Instruction

W4 4000 W4 4000

W5 3000 W5 3000

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-90 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CPSEQ Compare Wb with Wn, Skip if Equal (Wb = Wn)

Syntax: {label:} CPSEQ{.B} Wb, Wn

Operands: Wb ∈ [W0 ... W15]
Wn ∈ [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) = (Wn)

Status Affected: None

Encoding: 1110 0111 1www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. If (Wb) ≠
(Wn), the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1 002000 HERE: CPSEQ.B W0, W1 ; If W0 = W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002004 . . .
002006 . . .
002008 BYPASS:. . .
00200A . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W0 1001 W0 1001

W1 1000 W1 1000

SR 0000 SR 0000

Example 2 018000 HERE: CPSEQ W4, W8 ; If W4 = W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W4 3344 W4 3344

W8 3344 W8 3344

SR 0002 (Z=1) SR 0002 (Z=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-91

dsPIC30F Programmer’s Reference Manual

CPSGT Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Syntax: {label:} CPSGT{.B} Wb, Wn

Operands: Wb ∈ [W0 ... W15]
Wn ∈ [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) > (Wn)

Status Affected: None

Encoding: 1110 0110 0www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) – (Wn), but do not store the result. If (Wb) > (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise,
the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1 002000 HERE: CPSGT.B W0, W1; If W0 > W1 (Byte mode),
002002 GOTO BYPASS; skip the GOTO
002006 . . .
002008 . . .
00200A BYPASS . . .
00200C . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W0 00FF W0 00FF

W1 26FE W1 26FE

SR 0009 (N, C=1) SR 0009 (N, C=1)

Example 2 018000 HERE: CPSGT W4, W5 ; If W4 > W5 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W4 2600 W4 2600

W5 2600 W5 2600

SR 0004 (OV=1) SR 0004 (OV=1)
DS70030F-page 5-92 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

CPSLT Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Syntax: {label:} CPSLT{.B} Wb, Wn

Operands: Wb ∈ [W0 ... W15]
Wn ∈ [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) < (Wn)

Status Affected: None

Encoding: 1110 0110 1www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) – (Wn), but do not store the result. If (Wb) < (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise, the
next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1 002000 HERE: CPSLT.B W8, W9 ; If W8 < W9 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 . . .
002008 . . .
00200A BYPASS: . . .
00200C . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W8 00FF W8 00FF

W9 26FE W9 26FE

SR 0008 (N=1) SR 0008 (N=1)

Example 2 018000 HERE: CPSLT W3, W6 ; If W3 < W6 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 . . .
018008 . . .

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W3 2600 W3 2600

W6 3000 W6 3000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-93

dsPIC30F Programmer’s Reference Manual

CPSNE Signed Compare Wb with Wn, Skip if Not Equal (Wb ≠ Wn)

Syntax: {label:} CPSNE{.B} Wb, Wn

Operands: Wb ∈ [W0 ... W15]
Wn ∈ [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) ≠ (Wn)

Status Affected: None

Encoding: 1110 0111 0www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) – (Wn), but do not store the result. If (Wb) ≠ (Wn), the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. Otherwise, the next
instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1 002000 HERE: CPSNE.B W2, W3 ; If W2 != W3 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 . . .
002008 . . .
00200A BYPASS: . . .
00200C . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W2 00FF W2 00FF

W3 26FE W3 26FE

SR 0001 (C=1) SR 0001 (C=1)

Example 2 018000 HERE: CPSNE W0, W8 ; If W0 != W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W0 3000 W0 3000

W8 3000 W8 3000

SR 0000 SR 0000
DS70030F-page 5-94 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DAW.B Decimal Adjust Wn

Syntax: {label:} DAW.B Wn

Operands: Wn ∈ [W0 ... W15]

Operation: If (Wn<3:0> > 9) or (DC = 1)
 (Wn<3:0>) + 6 → Wn<3:0>
Else
 (Wn<3:0>) → Wn<3:0>

If (Wn<7:4> > 9) or (C = 1)
 (Wn<7:4>) + 6 → Wn<7:4>
Else
 (Wn<7:4>) → Wn<7:4>

Status Affected: C

Encoding: 1111 1101 0100 0000 0000 ssss

Description: Adjust the Least Significant Byte in Wn to produce a binary coded decimal
(BCD) result. The Most Significant Byte of Wn is not changed, and the
Carry flag is used to indicate any decimal rollover. Register direct
addressing must be used for Wn.

The ‘s’ bits select the address of the source/destination register.

Note 1: This instruction is used to correct the data format after two
packed BCD bytes have been added.

2: This instruction operates in Byte mode only and the .B
extension must be included with the opcode.

Words: 1

Cycles: 1

Example 1 DAW.B W0 ; Decimal adjust W0

Before
Instruction

After
Instruction

W0 771A W0 7720

SR 0002 (DC=1) SR 0002 (DC=1)

Example 2 DAW.B W3 ; Decimal adjust W3

Before
Instruction

After
Instruction

W3 77AA W3 7710

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-95

dsPIC30F Programmer’s Reference Manual

DEC Decrement f

Syntax: {label:} DEC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) – 1 → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1101 0BDf ffff ffff ffff

Description: Subtract one from the contents of the file register and place the result in the
destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 DEC.B 0x200 ; Decrement (0x200) (Byte mode)

Before
Instruction

After
Instruction

Data 200 80FF Data 200 80FE

SR 0000 SR 0009 (N,C=1)

Example 2 DEC RAM400, WREG ; Decrement RAM400 and store to WREG
; (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG 0822

RAM400 0823 RAM400 0823

SR 0000 SR 0000
DS70030F-page 5-96 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DEC Decrement Ws

Syntax: {label:} DEC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) – 1 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1001 0Bqq qddd dppp ssss

Description: Subtract one from the contents of the source register Ws and place the
result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 DEC.B [W7++], [W8++] ; DEC [W7] and store to [W8] (Byte mode)
 ; Post-increment W7, W8

Before
Instruction

After
Instruction

W7 2301 W7 2302

W8 2400 W8 2401

Data 2300 5607 Data 2300 5607

Data 2400 ABCD Data 2400 AB55

SR 0000 SR 0000

Example 2 DEC W5, [W6++] ; Decrement W5 and store to [W6] (Word mode)
 ; Post-increment W6

Before
Instruction

After
Instruction

W5 D004 W5 D004

W6 2000 W6 2002

Data 2000 ABA9 Data 2000 D003

SR 0000 SR 0009 (N, C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-97

dsPIC30F Programmer’s Reference Manual

DEC2 Decrement f by 2

Syntax: {label:} DEC2{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) – 2 → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1101 1BDf ffff ffff ffff

Description: Subtract two from the contents of the file register and place the result in the
destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 DEC2.B 0x200 ; Decrement (0x200) by 2 (Byte mode)

Before
Instruction

After
Instruction

Data 200 80FF Data 200 80FD

SR 0000 SR 0009 (N, C=1)

Example 2 DEC2 RAM400, WREG ; Decrement RAM400 by 2 and
 ; store to WREG (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG 0821

RAM400 0823 RAM400 0823

SR 0000 SR 0000
DS70030F-page 5-98 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DEC2 Decrement Ws by 2

Syntax: {label:} DEC2{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) – 2 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1001 1Bqq qddd dppp ssss

Description: Subtract two from the contents of the source register Ws and place the
result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 DEC2.B [W7--], [W8--]; DEC [W7] by 2, store to [W8] (Byte mode)
; Post-decrement W7, W8

Before
Instruction

After
Instruction

W7 2301 W7 2300

W8 2400 W8 23FF

Data 2300 0107 Data 2300 0107

Data 2400 ABCD Data 2400 ABFF
SR 0000 SR 0008 (N=1)

Example 2 DEC2 W5, [W6++] ; DEC W5 by 2, store to [W6] (Word mode)
; Post-increment W6

Before
Instruction

After
Instruction

W5 D004 W5 D004

W6 1000 W6 1002

Data 1000 ABA9 Data 1000 D002

SR 0000 SR 0009 (N, C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-99

dsPIC30F Programmer’s Reference Manual

DISI Disable Interrupts Temporarily

Syntax: {label:} DISI #lit14

Operands: lit14 ∈ [0 ... 16383]

Operation: lit14 → DISICNT
1 → DISI
Disable interrupts for (lit14+1) cycles

Status Affected: None

Encoding: 1111 1100 00kk kkkk kkkk kkkk

Description: Disable interrupts of priority 0 through priority 6 for (lit14+1) instruction
cycles. Priority 0 through priority 6 interrupts are disabled starting in the
cycle that DISI executes, and remain disabled for the next (lit 14) cycles.
The lit14 value is written to the DISICNT register, and the DISI flag
(INTCON2<14>) is set to ‘1’. This instruction can be used before
executing time critical code, to limit the effects of interrupts.

Note: This instruction does not prevent priority 7 interrupts and traps
from running. See the dsPIC30F Family Reference Manual for
details.

Words: 1

Cycles: 1

Example 1 002000 HERE: DISI #100 ; Disable interrupts for 101 cycles
002002 ; next 100 cycles protected by DISI
002004 . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

DISICNT 0000 DISICNT 0100

INTCON2 0000 INTCON2 4000 (DISI=1)

SR 0000 SR 0000
DS70030F-page 5-100 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DIV.S Signed Integer Divide

Syntax: {label:} DIV.S{W} Wm, Wn

DIV.SD Wm, Wn

Operands: Wm ∈ [W0 ... W15] for word operation
Wm ∈ [W0, W2, W4 ... W14] for double operation
Wn ∈ [W2 ... W15]

Operation: For word operation (default):
 Wm → W0
 If (Wm<15> = 1):
 0xFFFF → W1
 Else:
 0x0 → W1
 W1:W0 / Wn → W0
 Remainder → W1

For double operation (DIV.SD):
 Wm+1:Wm → W1:W0
 W1:W0 / Wn → W0
 Remainder → W1

Status Affected: N, OV, Z, C

Encoding: 1101 1000 0ttt tvvv vW00 ssss

Description: Iterative, signed integer divide, where the dividend is stored in Wm (for a
16-bit by 16-bit divide) or Wm+1:Wm (for a 32-bit by 16-bit divide) and the
divisor is stored in Wn. In the default word operation, Wm is first copied to
W0 and sign-extended through W1 to perform the operation. In the double
operation, Wm+1:Wm is first copied to W1:W0. The 16-bit quotient of the
divide operation is stored in W0, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is 0
and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the Most Significant Word of the dividend for the double
operation. These bits are clear for the word operation.
The ‘v’ bits select the Least Significant Word of the dividend.
The ‘W’ bit selects the dividend size (0 for 16-bit, 1 for 32-bit).
The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double-word
(32-bit) dividend rather than a word dividend. You may use a .W
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be repre-
sented in 16 bits. When this occurs for the double operation
(DIV.SD), the OV status bit will be set and the quotient and
remainder should not be used. For the word operation
(DIV.S), only one type of overflow may occur (0x8000 /
0xFFFF = +32768 or 0x00008000), which allows the OV status
bit to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.
© 2005 Microchip Technology Inc. DS70030F-page 5-101

dsPIC30F Programmer’s Reference Manual
Words: 1

Cycles: 18 (plus 1 for REPEAT execution)

DIV.S Signed Integer Divide

Example 1 REPEAT #17 ; Execute DIV.S 18 times
DIV.S W3, W4 ; Divide W3 by W4
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 013B

W1 1234 W1 0003

W3 3000 W3 3000

W4 0027 W4 0027

SR 0000 SR 0000

Example 2 REPEAT #17 ; Execute DIV.SD 18 times
DIV.SD W0, W12 ; Divide W1:W0 by W12
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 2500 W0 FA6B

W1 FF42 W1 EF00

W12 2200 W12 2200

SR 0000 SR 0008 (N=1)
DS70030F-page 5-102 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DIV.U Unsigned Integer Divide

Syntax: {label:} DIV.U{W} Wm, Wn

DIV.UD Wm, Wn

Operands: Wm ∈ [W0 ... W15] for word operation
Wm ∈ [W0, W2, W4 ... W14] for double operation
Wn ∈ [W2 ... W15]

Operation: For word operation (default):
 Wm → W0
 0x0 → W1
 W1:W0 / Wn → W0
 Remainder → W1

For double operation (DIV.UD):
 Wm+1:Wm → W1:W0
 W1:W0 / Wns → W0
 Remainder → W1

Status Affected: N, OV, Z, C

Encoding: 1101 1000 1ttt tvvv vW00 ssss

Description: Iterative, unsigned integer divide, where the dividend is stored in Wm (for
a 16-bit by 16-bit divide), or Wm+1:Wm (for a 32-bit by 16-bit divide) and
the divisor is stored in Wn. In the word operation, Wm is first copied to W0
and W1 is cleared to perform the divide. In the double operation,
Wm+1:Wm is first copied to W1:W0. The 16-bit quotient of the divide
operation is stored in W0, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will always be cleared. The OV flag will be set if the
divide operation resulted in an overflow and cleared otherwise. The Z flag
will be set if the remainder is 0 and cleared otherwise. The C flag is used
to implement the divide algorithm and its final value should not be used.

The ‘t’ bits select the Most Significant Word of the dividend for the double
operation. These bits are clear for the word operation.
The ‘v’ bits select the Least Significant Word of the dividend.
The ‘W’ bit selects the dividend size (0 for 16-bit, 1 for 32-bit).
The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double-word
(32-bit) dividend rather than a word dividend. You may use a .W
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be
represented in 16 bits. This may only occur for the double
operation (DIV.UD). When an overflow occurs, the OV status
bit will be set and the quotient and remainder should not be
used.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution)
© 2005 Microchip Technology Inc. DS70030F-page 5-103

dsPIC30F Programmer’s Reference Manual
Example 1 REPEAT #17 ; Execute DIV.U 18 times
DIV.U W2, W4 ; Divide W2 by W4
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 0040

W1 1234 W1 0000

W2 8000 W2 8000

W4 0200 W4 0200
SR 0000 SR 0002 (Z=1)

Example 2 REPEAT #17 ; Execute DIV.UD 18 times
DIV.UD W10, W12 ; Divide W11:W10 by W12
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 01F2

W1 1234 W1 0100

W10 2500 W10 2500

W11 0042 W11 0042

W12 2200 W12 2200

SR 0000 SR 0000
DS70030F-page 5-104 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DIVF Fractional Divide

Syntax: {label:} DIVF Wm, Wn

Operands: Wm ∈ [W0 ... W15]
Wn ∈ [W2 ... W15]

Operation: 0x0 → W0
Wm → W1
W1:W0 / Wn → W0
Remainder → W1

Status Affected: N, OV, Z, C

Encoding: 1101 1001 0ttt t000 0000 ssss

Description: Iterative, signed fractional 16-bit by 16-bit divide, where the dividend is
stored in Wm and the divisor is stored in Wn. To perform the operation,
W0 is first cleared and Wm is copied to W1. The 16-bit quotient of the
divide operation is stored in W0, and the 16-bit remainder is stored in W1.
The sign of the remainder will be the same as the sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is 0
and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the dividend register.
The ‘s’ bits select the divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than
or equal to Wn. If Wm is greater than Wn, unexpected results
will occur because the fractional result will be greater than 1.0.
When this occurs, the OV status bit will be set and the quotient
and remainder should not be used.

2: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

3: This instruction is interruptible on each instruction cycle
boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution)

Example 1 REPEAT #17 ; Execute DIVF 18 times
DIVF W8, W9 ; Divide W8 by W9
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8000 W0 2000

W1 1234 W1 0000

W8 1000 W8 1000

W9 4000 W9 4000

SR 0000 SR 0002 (Z=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-105

dsPIC30F Programmer’s Reference Manual
Example 2 REPEAT #17 ; Execute DIVF 18 times
DIVF W8, W9 ; Divide W8 by W9
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8000 W0 F000

W1 1234 W1 0000

W8 1000 W8 1000

W9 8000 W9 8000
SR 0000 SR 0002 (Z=1)

Example 3 REPEAT #17 ; Execute DIVF 18 times
DIVF W0, W1 ; Divide W0 by W1
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8002 W0 7FFE

W1 8001 W1 8002

SR 0000 SR 0008 (N=1)
DS70030F-page 5-106 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DO Initialize Hardware Loop Literal

Syntax: {label:} DO #lit14, Expr

Operands: lit14 ∈ [0 ... 16383]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 ∈ [-32768 ... +32767].

Operation: Push DO shadows (DCOUNT, DOEND, DOSTART)
(lit14) → DCOUNT
(PC)+4 → PC
(PC) → DOSTART
(PC) + (2*Slit16) → DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

Encoding: 0000 1000 00kk kkkk kkkk kkkk

0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (lit14+1) times.
The DO loop begins at the address following the DO instruction, and ends at
the address 2*Slit16 instruction words away. The 14-bit count value (lit14)
supports a maximum loop count value of 16384, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
pushed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the pushed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘k’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.
2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may

occur if these offsets are used.
3. The very last two instructions of the DO loop can NOT be:

• an instruction which changes program control flow

• a DO or REPEAT instruction

Unexpected results may occur if any of these instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of
hardware nesting. Nesting up to an additional 5 levels may be
provided in software by the user. See the dsPIC30F Family
Reference Manual for details.

2: The linker will convert the specified expression into the offset to
be used.

Words: 2

Cycles: 2
© 2005 Microchip Technology Inc. DS70030F-page 5-107

dsPIC30F Programmer’s Reference Manual
Example 1 002000 LOOP6: DO #5, END6 ; Initiate DO loop (5 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 . . .
002008 . . .
00200A END6: SUB W2, W3, W4 ; Last instruction in loop
00200C . . .

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

DCOUNT 0000 DCOUNT 0005

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 200A

CORCON 0000 CORCON 0100 (DL=1)

SR 0001 (C=1) SR 0201 (DA, C=1)

Example 2 01C000 LOOP12: DO #0x160, END12 ; Init DO loop (352 reps)
01C004 DEC W1, W2 ; First instruction in loop
01C006 . . .
01C008 . . .
01C00A . . .
01C00C . . .
01C00E . . .
01C010 CALL _FIR88 ; Call the FIR88 subroutine
01C014 END12: NOP ; Last instruction in loop

; (Required NOP filler)

Before
Instruction

After
Instruction

PC 01 C000 PC 01 C004

DCOUNT 0000 DCOUNT 0160

DOSTART FF FFFF DOSTART 01 C004

DOEND FF FFFF DOEND 01 C014

CORCON 0000 CORCON 0100 (DL=1)

SR 0008 (N=1) SR 0208 (DA, N=1)
DS70030F-page 5-108 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

DO Initialize Hardware Loop Wn

Syntax: {label:} DO Wn, Expr

Operands: Wn ∈ [W0 ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 ∈ [-32768 ... +32767].

Operation: Push Shadows (DCOUNT, DOEND, DOSTART)
(Wn) → DCOUNT
(PC)+4 → PC
(PC) → DOSTART
(PC) + (2*Slit16) → DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

0000 1000 1000 0000 0000 ssss

Encoding: 0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (Wn+1) times.
The DO loop begins at the address following the DO instruction, and ends at
the address 2*Slit16 instruction words away. The lower 14 bits of Wn
support a maximum count value of 16384, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
pushed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the pushed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.
2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur

if these offsets are used.
3. The very last two instructions of the DO loop can NOT be:

• an instruction which changes program control flow

• a DO or REPEAT instruction

Unexpected results may occur if these last instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of nesting.
Nesting up to an additional 5 levels may be provided in software
by the user. See the dsPIC30F Family Reference Manual for
details.

2: The linker will convert the specified expression into the offset to
be used.

Words: 2

Cycles: 2
© 2005 Microchip Technology Inc. DS70030F-page 5-109

dsPIC30F Programmer’s Reference Manual
Example 1 002000 LOOP6: DO W0, END6 ; Initiate DO loop (W0 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 . . .
002008 . . .
00200A . . .
00200C REPEAT #6
00200E SUB W2, W3, W4
002010 END6: NOP ; Last instruction in loop
 ; (Required NOP filler)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W0 0012 W0 0012

DCOUNT 0000 DCOUNT 0012

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL=1)

SR 0000 SR 0080 (DA=1)

Example 2 002000 LOOPA: DO W7, ENDA ; Initiate DO loop (W7 reps)
002004 SWAP W0 ; First instruction in loop
002006 . . .
002008 . . .
00200A . . .
002010 ENDA: MOV W1, [W2++] ; Last instruction in loop

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W7 E00F W7 E00F

DCOUNT 0000 DCOUNT 200F

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL=1)

SR 0000 SR 0080 (DA=1)
DS70030F-page 5-110 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

ED Euclidean Distance (No Accumulate)

Syntax: {label:} ED Wm*Wm, Acc, [Wx], [Wy], Wxd

[Wx]+=kx, [Wy]+=ky,

[Wx]-=kx, [Wy]-=ky,

[W9+W12], [W11+W12],

Operands: Acc ∈ [A,B]
Wm*Wm ∈ [W4*W4, W5*W5, W6*W6, W7*W7]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]
Wxd ∈ [W4 ... W7]

Operation: (Wm)*(Wm) → Acc(A or B)
([Wx]–[Wy])→ Wxd
(Wx)+kx→Wx
(Wy)+ky→Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A1xx 00ii iijj jj11

Description: Compute the square of Wm, and optionally compute the difference of the
pre-fetch values specified by [Wx] and [Wy]. The results of Wm*Wm are
sign-extended to 40-bits and stored in the specified accumulator. The
results of [Wx] – [Wy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the pre-fetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch difference Wxd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Words: 1

Cycles: 1

Example 1 ED W4*W4, A, [W8]+=2, [W10]-=2, W4; Square W4 to ACCA
; [W8]-[W10] to W4
; Post-increment W8
; Post-decrement W10

Before
Instruction

After
Instruction

W4 009A W4 0057

W8 1100 W8 1102

W10 2300 W10 22FE

ACCA 00 3D0A 0000 ACCA 00 0000 5CA4

Data 1100 007F Data 1100 007F

Data 2300 0028 Data 2300 0028

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-111

dsPIC30F Programmer’s Reference Manual
Example 2 ED W5*W5, B, [W9]+=2, [W11+W12], W5 ; Square W5 to ACCB
; [W9]-[W11+W12] to W5
; Post-increment W9

Before
Instruction

After
Instruction

W5 43C2 W5 3F3F

W9 1200 W9 1202

W11 2500 W11 2500

W12 0008 W12 0008

ACCB 00 28E3 F14C ACCB 00 11EF 1F04

Data 1200 6A7C Data 1200 6A7C

Data 2508 2B3D Data 2508 2B3D

SR 0000 SR 0000
DS70030F-page 5-112 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

EDAC Euclidean Distance

Syntax: {label:} EDAC Wm*Wm, Acc, [Wx], [Wy], Wxd

[Wx]+=kx, [Wy]+=ky,

[Wx]-=kx, [Wy]-=ky,

[W9+W12], [W11+W12],

Operands: Acc ∈ [A,B]
Wm*Wm ∈ [W4*W4, W5*W5, W6*W6, W7*W7]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]
Wxd ∈ [W4 ... W7]

Operation: (Acc(A or B)) + (Wm)*(Wm) → Acc(A or B)
([Wx]–[Wy])→ Wxd
(Wx)+kx→Wx
(Wy)+ky→Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A1xx 00ii iijj jj10

Description: Compute the square of Wm, and also the difference of the pre-fetch
values specified by [Wx] and [Wy]. The results of Wm*Wm are
sign-extended to 40-bits and added to the specified accumulator. The
results of [Wx] – [Wy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the pre-fetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch difference Wxd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Words: 1

Cycles: 1

Example 1 EDAC W4*W4, A, [W8]+=2, [w10]-=2, W4 ; Square W4 and
; add to ACCA
; [W8]-[W10] to W4
; Post-increment W8
; Post-decrement W10

Before
Instruction

After
Instruction

W4 009A W4 0057

W8 1100 W8 1102

W10 2300 W10 22FE

ACCA 00 3D0A 3D0A ACCA 00 3D0A 99AE

Data 1100 007F Data 1100 007F

Data 2300 0028 Data 2300 0028

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-113

dsPIC30F Programmer’s Reference Manual
Example 2 EDAC W5*W5, B, [w9]+=2, [W11+W12], W5 ; Square W5 and
; add to ACCB
; [W9]-[W11+W12] to W5
; Post-increment W9

Before
Instruction

After
Instruction

W5 43C2 W5 3F3F

W9 1200 W9 1202

W11 2500 W11 2500

W12 0008 W12 0008

ACCB 00 28E3 F14C ACCB 00 3AD3 1050

Data 1200 6A7C Data 1200 6A7C

Data 2508 2B3D Data 2508 2B3D

SR 0000 SR 0000
DS70030F-page 5-114 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

EXCH Exchange Wns and Wnd

Syntax: {label:} EXCH Wns, Wnd

Operands: Wns ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: (Wns) ↔ (Wnd)

Status Affected: None

Encoding: 1111 1101 0000 0ddd d000 ssss

Description: Exchange the word contents of two working registers. Register direct
addressing must be used for Wns and Wnd.

The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.

Note: This instruction only executes in Word mode.

Words: 1

Cycles: 1

Example 1 EXCH W1, W9 ; Exchange the contents of W1 and W9

 Before
Instruction

 After
Instruction

W1 55FF W1 A3A3

W9 A3A3 W9 55FF

SR 0000 SR 0000

Example 2 EXCH W4, W5 ; Exchange the contents of W4 and W5

 Before
Instruction

 After
Instruction

W4 ABCD W4 4321

W5 4321 W5 ABCD

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-115

dsPIC30F Programmer’s Reference Manual

FBCL Find First Bit Change from Left

Syntax: {label:} FBCL Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: Max_Shift = 15
Sign = (Ws) & 0x8000
Temp = (Ws) << 1
Shift = 0
While ((Shift < Max_Shift) && ((Temp & 0x8000) == Sign))
 Temp = Temp << 1
 Shift = Shift + 1
-Shift → (Wnd)

Status Affected: C

Encoding: 1101 1111 0000 0ddd dppp ssss

Description: Find the first occurrence of a one (for a positive value), or zero (for a
negative value), starting from the Most Significant bit after the sign bit of
Ws and working towards the Least Significant bit of the word operand. The
bit number result is sign-extended to 16-bits and placed in Wnd.

The next Most Significant bit after the sign bit is allocated bit number 0 and
the Least Significant bit is allocated bit number -14. This bit ordering
allows for the immediate use of Wd with the SFTAC instruction for scaling
values up. If a bit change is not found, a result of -15 is returned and the C
flag is set. When a bit change is found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 FBCL W1, W9 ; Find 1st bit change from left in W1
; and store result to W9

Before
Instruction

After
Instruction

W1 55FF W1 55FF

W9 FFFF W9 0000

SR 0000 SR 0000
DS70030F-page 5-116 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 FBCL W1, W9 ; Find 1st bit change from left in W1
; and store result to W9

Before
Instruction

After
Instruction

W1 FFFF W1 FFFF

W9 BBBB W9 FFF1

SR 0000 SR 0001 (C=1)

Example 3 FBCL [W1++], W9 ; Find 1st bit change from left in [W1]
; and store result to W9
; Post-increment W1

Before
Instruction

After
Instruction

W1 2000 W1 2002

W9 BBBB W9 FFF9

Data 2000 FF0A Data 2000 FF0A

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-117

dsPIC30F Programmer’s Reference Manual

FF1L Find First One from Left

Syntax: {label:} FF1L Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: Max_Shift = 17
Temp = (Ws)
Shift = 1
While ((Shift < Max_Shift) && !(Temp & 0x8000))
 Temp = Temp << 1
 Shift = Shift + 1
If (Shift == Max_Shift)
 0 → (Wnd)
Else
 Shift → (Wnd)

Status Affected: C

Encoding: 1100 1111 1000 0ddd dppp ssss

Description: Finds the first occurrence of a ‘1’ starting from the Most Significant bit of
Ws and working towards the Least Significant bit of the word operand.
The bit number result is zero-extended to 16-bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1)
and advances to the Least Significant bit (allocated number 16). A result
of zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 FF1L W2, W5 ; Find the 1st one from the left in W2
 ; and store result to W5

Before
Instruction

After
Instruction

W2 000A W2 000A

W5 BBBB W5 000D

SR 0000 SR 0000
DS70030F-page 5-118 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 FF1L [W2++], W5 ; Find the 1st one from the left in [W2]
; and store the result to W5
; Post-increment W2

Before
Instruction

After
Instruction

W2 2000 W2 2002

W5 BBBB W5 0000

Data 2000 0000 Data 2000 0000

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-119

dsPIC30F Programmer’s Reference Manual

FF1R Find First One from Right

Syntax: {label:} FF1R Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: Max_Shift = 17
Temp = (Ws)
Shift = 1
While ((Shift < Max_Shift) && !(Temp & 0x1))
 Temp = Temp >> 1
 Shift = Shift + 1
If (Shift == Max_Shift)
 0 → (Wnd)
Else
 Shift → (Wnd)

Status Affected: C

Encoding: 1100 1111 0000 0ddd dppp ssss

Description: Finds the first occurrence of a ‘1’ starting from the Least Significant bit of
Ws and working towards the Most Significant bit of the word operand. The
bit number result is zero-extended to 16-bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated number 1)
and advances to the Most Significant bit (allocated number 16). A result of
zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 FF1R W1, W9 ; Find the 1st one from the right in W1
; and store the result to W9

Before
Instruction

After
Instruction

W1 000A W1 000A

W9 BBBB W9 0002

SR 0000 SR 0000
DS70030F-page 5-120 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 FF1R [W1++], W9 ; Find the 1st one from the right in [W1]
; and store the result to W9
; Post-increment W1

Before
Instruction

After
Instruction

W1 2000 W1 2002

W9 BBBB W9 0010

Data 2000 8000 Data 2000 8000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-121

dsPIC30F Programmer’s Reference Manual

GOTO Unconditional Jump

Syntax: {label:} GOTO Expr

Operands: Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 ∈ [0 ... 8388606].

Operation: lit23 → PC
NOP → Instruction Register

Status Affected: None

Encoding:

 1st word 0000 0100 nnnn nnnn nnnn nnn0

 2nd word 0000 0000 0000 0000 0nnn nnnn

Description: Unconditional jump to anywhere within the 4M instruction word program
memory range. The PC is loaded with the 23-bit literal specified in the
instruction. Since the PC must always reside on an even address boundary,
lit23<0> is ignored.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to be
used.

Words: 2

Cycles: 2

Example 1 026000 GOTO _THERE
026004 MOV W0, W1

027844 _THERE: MOV #0x400, W2
027846 ...

; Jump to _THERE

; Code execution
; resumes here

Before
Instruction

After
Instruction

PC 02 6000 PC 02 7844

SR 0000 SR 0000

Example 2 000100 _code: ...

026000 GOTO _code+2
026004 ...

; start of code

; Jump to _code+2

Before
Instruction

After
Instruction

PC 02 6000 PC 00 0102

SR 0000 SR 0000
DS70030F-page 5-122 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

GOTO Unconditional Indirect Jump

Syntax: {label:} GOTO Wn

Operands: Wn ∈ [W0 ... W15]

Operation: 0 → PC<22:16>
(Wn<15:1>) → PC<15:1>
0 → PC<0>
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0001 0100 0000 0000 ssss

Description: Unconditional indirect jump within the first 32K words of program memory.
Zero is loaded into PC<22:16> and the value specified in (Wn) is loaded
into PC<15:1>. Since the PC must always reside on an even address
boundary, Wn<0> is ignored.

The ‘s’ bits select the address of the source register.

Words: 1

Cycles: 2

Example 1 006000 GOTO W4
006002 MOV W0, W1

007844 _THERE: MOV #0x400, W2
007846 ...

; Jump unconditionally
; to 16-bit value in W4

; Code execution
; resumes here

Before
Instruction

After
Instruction

W4 7844 W4 7844

PC 00 6000 PC 00 7844

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-123

dsPIC30F Programmer’s Reference Manual

INC Increment f

Syntax: {label:} INC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) + 1 → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1100 0BDf ffff ffff ffff

Description: Add one to the contents of the file register and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 INC.B 0x1000 ; Increment 0x1000 (Byte mode)

Before
Instruction

After
Instruction

Data 1000 8FFF Data 1000 8F00

SR 0000 SR 0101 (DC, C=1)

Example 2 INC 0x1000, WREG ; Increment 0x1000 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG ABCD WREG 9000

Data 1000 8FFF Data 1000 8FFF

SR 0000 SR 0108 (DC, N=1)
DS70030F-page 5-124 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

INC Increment Ws

Syntax: {label:} INC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) + 1 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1000 0Bqq qddd dppp ssss

Description: Add one to the contents of the source register Ws and place the result in
the destination register Wd. Register direct or indirect addressing may be
used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 INC.B W1, [++W2] ; Pre-increment W2
 ; Increment W1 and store to W2
 ; (Byte mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 2001

Data 2000 ABCD Data 2000 80CD

SR 0000 SR 010C (DC, N, OV=1)

Example 2 INC W1, W2 ; Increment W1 and store to W2
 ; (Word mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 FF80

SR 0000 SR 0108 (DC, N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-125

dsPIC30F Programmer’s Reference Manual

INC2 Increment f by 2

Syntax: {label:} INC2{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) + 2 → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1100 1BDf ffff ffff ffff

Description: Add two to the contents of the file register and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 INC2.B 0x1000 ; Increment 0x1000 by 2
 ; (Byte mode)

Before
Instruction

After
Instruction

Data 1000 8FFF Data 1000 8F01

SR 0000 SR 0101 (DC, C=1)

Example 2 INC2 0x1000, WREG ; Increment 0x1000 by 2 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG ABCD WREG 9001

Data 1000 8FFF Data 1000 8FFF

SR 0000 SR 0108 (DC, N=1)
DS70030F-page 5-126 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

INC2 Increment Ws by 2

Syntax: {label:} INC2{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) + 2 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1000 1Bqq qddd dppp ssss

Description: Add two to the contents of the source register Ws and place the result in the
destination register Wd. Register direct or indirect addressing may be used
for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 INC2.B W1, [++W2] ; Pre-increment W2
 ; Increment by 2 and store to W1
 ; (Byte mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 2001

Data 2000 ABCD Data 2000 81CD

SR 0000 SR 010C (DC, N, OV=1)

Example 2 INC2 W1, W2 ; Increment W1 by 2 and store to W2
 ; (word mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 FF81

SR 0000 SR 0108 (DC, N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-127

dsPIC30F Programmer’s Reference Manual

IOR Inclusive OR f and WREG

{label:} IOR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f).IOR.(WREG) → destination designated by D

Status Affected: N, Z

Encoding: 1011 0111 0BDf ffff ffff ffff

Description: Compute the logical inclusive OR operation of the contents of the working
register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 IOR.B 0x1000 ; IOR WREG to (0x1000) (Byte mode)
 ; (Byte mode)

Before
Instruction

After
Instruction

WREG 1234 WREG 1234

Data 1000 FF00 Data 1000 FF34

SR 0000 SR 0000

Example 2 IOR 0x1000, WREG ; IOR (0x1000) to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG 1234 WREG 1FBF

Data 1000 0FAB Data 1000 0FAB

SR 0008 (N=1) SR 0000
DS70030F-page 5-128 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

IOR Inclusive OR Literal and Wn

Syntax: {label:} IOR{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: lit10.IOR.(Wn) → Wn

Status Affected: N, Z

Encoding: 1011 0011 0Bkk kkkk kkkk dddd

Description: Compute the logical inclusive OR operation of the 10-bit literal operand
and the contents of the working register Wn and place the result back into
the working register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Oper-
ands” for information on using 10-bit literal operands in Byte
mode.

Words: 1

Cycles: 1

Example 1 IOR.B #0xAA, W9 ; IOR 0xAA to W9
 ; (Byte mode)

Before
Instruction

After
Instruction

W9 1234 W9 12BE

SR 0000 SR 0008 (N=1)

Example 2 IOR #0x2AA, W4 ; IOR 0x2AA to W4
 ; (Word mode)

Before
Instruction

After
Instruction

W4 A34D W4 A3EF

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-129

dsPIC30F Programmer’s Reference Manual

IOR Inclusive OR Wb and Short Literal

Syntax: {label:} IOR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb).IOR.lit5 → Wd

Status Affected: N, Z

Encoding: 0111 0www wBqq qddd d11k kkkk

Description: Compute the logical inclusive OR operation of the contents of the base
register Wb and the 5-bit literal operand and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 IOR.B W1, #0x5, [W9++] ; IOR W1 and 0x5 (Byte mode)
 ; Store to [W9]
 ; Post-increment W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W9 2000 W9 2001

Data 2000 0000 Data 2000 00AF

SR 0000 SR 0008 (N=1)

Example 2 IOR W1, #0x0, W9 ; IOR W1 with 0x0 (Word mode)
 ; Store to W9

Before
Instruction

After
Instruction

W1 0000 W1 0000

W9 A34D W9 0000

SR 0000 SR 0002 (Z=1)
DS70030F-page 5-130 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

IOR Inclusive OR Wb and Ws

Syntax: {label:} IOR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb).IOR.(Ws) → Wd

Status Affected: N, Z

Encoding: 0111 0www wBqq qddd dppp ssss

Description: Compute the logical inclusive OR operation of the contents of the source
register Ws and the contents of the base register Wb and place the result in
the destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

 The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 IOR.B W1, [W5++], [W9++] ; IOR W1 and [W5] (Byte mode)
 ; Store result to [W9]
 ; Post-increment W5 and W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W5 2000 W5 2001

W9 2400 W9 2401

Data 2000 1155 Data 2000 1155

Data 2400 0000 Data 2400 00FF

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-131

dsPIC30F Programmer’s Reference Manual
Example 2 IOR W1, W5, W9 ; IOR W1 and W5 (Word mode)
 ; Store the result to W9

 Before
 Instruction

 After
 Instruction

W1 AAAA W1 AAAA

W5 5555 W5 5555

W9 A34D W9 FFFF

SR 0000 SR 0008 (N=1)
DS70030F-page 5-132 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

LAC Load Accumulator

Syntax: {label:} LAC Ws, {#Slit4,} Acc

[Ws],

[Ws++],

[Ws--],

[--Ws],

[++Ws],

[Ws+Wb],

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]
Slit4 ∈ [-8 ... +7]
Acc ∈ [A,B]

Operation: ShiftSlit4(Extend(Ws)) → Acc(A or B)

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1010 Awww wrrr rggg ssss

Description: Read the contents of the source register, optionally perform a signed 4-bit
shift and store the result in the specified accumulator. The shift range is -8:7,
where a negative operand indicates an arithmetic left shift and a positive
operand indicates an arithmetic right shift. The data stored in the source
register is assumed to be 1.15 fractional data and is automatically
sign-extended (through bit 39) and zero-backfilled (bits [15:0]), prior to
shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the accumulator pre-shift.
The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: If the operation moves more than sign-extension data into the
upper Accumulator register (AccxU), or causes a saturation, the
appropriate overflow and saturation bits will be set.

Words: 1

Cycles: 1

Example 1 LAC [W4++], #-3, B ; Load ACCB with [W4] << 3
 ; Contents of [W4] do not change
 ; Post increment W4
 ; Assume saturation disabled
 ; (SATB = 0)

Before
Instruction

After
Instruction

W4 2000 W4 2002

ACCB 00 5125 ABCD ACCB FF 9108 0000

Data 2000 1221 Data 2000 1221

SR 0000 SR 4800 (OB, OAB=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-133

dsPIC30F Programmer’s Reference Manual
Example 2 LAC [--W2], #7, A ; Pre-decrement W2
 ; Load ACCA with [W2] >> 7
 ; Contents of [W2] do not change
 ; Assume saturation disabled
 ; (SATA = 0)

Before
Instruction

After
Instruction

W2 4002 W2 4000

ACCA 00 5125 ABCD ACCA FF FF22 1000

Data 4000 9108 Data 4000 9108

Data 4002 1221 Data 4002 1221

SR 0000 SR 0000
DS70030F-page 5-134 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

LNK Allocate Stack Frame

Syntax: {label:} LNK #lit14

Operands: lit14 ∈ [0 ... 16382]

Operation: (W14) → (TOS)
(W15) + 2 → W15
(W15) → W14
(W15) + lit14 → W15

Status Affected: None

Encoding: 1111 1010 00kk kkkk kkkk kkk0

Description: This instruction allocates a stack frame of size lit14 bytes for a subroutine
calling sequence. The stack frame is allocated by pushing the contents of
the frame pointer (W14) onto the stack, storing the updated stack pointer
(W15) to the frame pointer and then incrementing the stack pointer by the
unsigned 14-bit literal operand. This instruction supports a maximum
stack frame of 16382 bytes.

The ‘k’ bits specify the size of the stack frame.

Note: Since the stack pointer can only reside on a word boundary,
lit14 must be even.

Words: 1

Cycles: 1

Example 1 LNK #0xA0 ; Allocate a stack frame of 160 bytes

Before
Instruction

After
Instruction

W14 2000 W14 2002

W15 2000 W15 20A2

Data 2000 0000 Data 2000 2000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-135

dsPIC30F Programmer’s Reference Manual

LSR Logical Shift Right f

Syntax: {label:} LSR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 0 → Dest<7>
 (f<7:1>) → Dest<6:0>
 (f<0>) → C
For word operation:
 0 → Dest<15>
 (f<15:1>) → Dest<14:0>
 (f<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0101 0BDf ffff ffff ffff

Description: Shift the contents of the file register one bit to the right and place the result
in the destination register. The Least Significant bit of the file register is
shifted into the Carry bit of the Status register. Zero is shifted into the Most
Significant bit of the destination register.

The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

C0

Example 1 LSR.B 0x600 ; Logically shift right (0x600) by one
 ; (Byte mode)

Before
Instruction

After
Instruction

Data 600 55FF Data 600 557F

SR 0000 SR 0001 (C=1)

Example 2 LSR 0x600, WREG ; Logically shift right (0x600) by one
 ; Store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

Data 600 55FF Data 600 55FF

WREG 0000 WREG 2AFF

SR 0000 SR 0001 (C=1)
DS70030F-page 5-136 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

LSR Logical Shift Right Ws

Syntax: {label:} LSR{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 0 → Wd<7>
 (Ws<7:1>) → Wd<6:0>
 (Ws<0>) → C
 For word operation:
 0 → Wd<15>
 (Ws<15:1>) → Wd<14:0>
 (Ws<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0001 0Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the right and place
the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the Status register. Zero is shifted into the
Most Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

C0

Example 1 LSR.B W0, W1 ; LSR W0 (Byte mode)
 ; Store result to W1

Before
Instruction

After
Instruction

W0 FF03 W0 FF03

W1 2378 W1 2301

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-137

dsPIC30F Programmer’s Reference Manual
Example 2 LSR W0, W1 ; LSR W0 (Word mode)
 ; Store the result to W1

 Before
 Instruction

 After
 Instruction

W0 8000 W0 8000

W1 2378 W1 4000

SR 0000 SR 0000
DS70030F-page 5-138 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

LSR Logical Shift Right by Short Literal

Syntax: {label:} LSR Wb, #lit4, Wnd

Operands: Wb ∈ [W0 ... W15]
lit4 ∈ [0 ... 15]
Wnd ∈ [W0 ... W15]

Operation: lit4<3:0> → Shift_Val
0 → Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> → Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 0www wddd d100 kkkk

Description: Logical shift right the contents of the source register Wb by the 4-bit
unsigned literal and store the result in the destination register Wnd.
Direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 LSR W4, #14, W5 ; LSR W4 by 14
 ; Store result to W5

Before
Instruction

After
Instruction

W4 C800 W4 C800

W5 1200 W5 0003

SR 0000 SR 0000

Example 2 LSR W4, #1, W5 ; LSR W4 by 1
 ; Store result to W5

 Before
 Instruction

 After
 Instruction

W4 0505 W4 0505

W5 F000 W5 0282

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-139

dsPIC30F Programmer’s Reference Manual

LSR Logical Shift Right by Wns

Syntax: {label:} LSR Wb, Wns, Wnd

Operands: Wb ∈ [W0 ... W15]
Wns ∈ [W0 ...W15]
Wnd ∈ [W0 ... W15]

Operation: Wns<4:0> → Shift_Val
0 → Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> → Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 0www wddd d000 ssss

Description: Logical shift right the contents of the source register Wb by the 5 Least
Significant bits of Wns (only up to 15 positions) and store the result in the
destination register Wnd. Direct addressing must be used for Wb and
Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1

Cycles: 1

Example 1 LSR W0, W1, W2 ; LSR W0 by W1
 ; Store result to W2

Before
Instruction

After
Instruction

W0 C00C W0 C00C

W1 0001 W1 0001

W2 2390 W2 6006

SR 0000 SR 0000

Example 2 LSR W5, W4, W3 ; LSR W5 by W4
 ; Store result to W3

 Before
 Instruction

 After
 Instruction

W3 DD43 W3 0000

W4 000C W4 000C

W5 0800 W5 0800

SR 0000 SR 0002 (Z=1)
DS70030F-page 5-140 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MAC Multiply and Accumulate

Syntax: {label:} MAC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn ∈ [W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]
AWB ∈ [W13, [W13]+=2]

Operation: (Acc(A or B)) + (Wm)*(Wn) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy
(Acc(B or A)) rounded → AWB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A0xx yyii iijj jjaa

Description: Multiply the contents of two working registers, optionally pre-fetch
operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and added to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator, as described in
Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.
The ‘a’ bits select the accumulator write back destination.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1

Cycles: 1
© 2005 Microchip Technology Inc. DS70030F-page 5-141

dsPIC30F Programmer’s Reference Manual
Example 1 MAC W4*W5, A, [W8]+=6, W4, [W10]+=2, W5
 ; Multiply W4*W5 and add to ACCA
 ; Fetch [W8] to W4, Post-increment W8 by 6
 ; Fetch [W10] to W5, Post-increment W10 by 2
 ; CORCON = 0x00C0 (fractional multiply, normal saturation)

Before
Instruction

After
Instruction

W4 A022 W4 2567

W5 B900 W5 909C

W8 0A00 W8 0A06

W10 1800 W10 1802

ACCA 00 1200 0000 ACCA 00 472D 2400

Data 0A00 2567 Data 0A00 2567

Data 1800 909C Data 1800 909C

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000

Example 2 MAC W4*W5, A, [W8]-=2, W4, [W10]+=2, W5, W13
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-decrement W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; Write Back ACCB to W13
; CORCON = 0x00D0 (fractional multiply, super saturation)

Before
Instruction

After
Instruction

W4 1000 W4 5BBE

W5 3000 W5 C967

W8 0A00 W8 09FE

W10 1800 W10 1802

W13 2000 W13 0001

ACCA 23 5000 2000 ACCA 23 5600 2000

ACCB 00 0000 8F4C ACCB 00 0000 1F4C

Data 0A00 5BBE Data 0A00 5BBE

Data 1800 C967 Data 1800 C967

CORCON 00D0 CORCON 00D0

SR 0000 SR 8800 (OA, OAB=1)
DS70030F-page 5-142 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MAC Square and Accumulate

Syntax: {label:} MAC Wm*Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wm ∈ [W4*W4, W5*W5, W6*W6, W7*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]

Operation: (Acc(A or B)) + (Wm)*(Wm) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A0xx yyii iijj jj00

Description: Square the contents of a working register, optionally pre-fetch operands in
preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and added to the specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is fractional
or an integer.

Words: 1

Cycles: 1
© 2005 Microchip Technology Inc. DS70030F-page 5-143

dsPIC30F Programmer’s Reference Manual
Example 1 MAC W4*W4, B, [W9+W12], W4, [W10]-=2, W5
 ; Square W4 and add to ACCB
 ; Fetch [W9+W12] to W4
 ; Fetch [W10] to W5, Post-decrement W10 by 2
 ; CORCON = 0x00C0 (fractional multiply, normal saturation)

Before
Instruction

After
Instruction

W4 A022 W4 A230

W5 B200 W5 650B

W9 0C00 W9 0C00

W10 1900 W10 18FE

W12 0020 W12 0020

ACCB 00 2000 0000 ACCB 00 67CD 0908

Data 0C20 A230 Data 0C20 A230

Data 1900 650B Data 1900 650B

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000

Example 2 MAC W7*W7, A, [W11]-=2, W7
; Square W7 and add to ACCA
; Fetch [W11] to W7, Post-decrement W11 by 2
; CORCON = 0x00D0 (fractional multiply, super saturation)

Before
Instruction

After
Instruction

W7 76AE W7 23FF

W11 2000 W11 1FFE

ACCA FE 9834 4500 ACCA FF 063E 0188

Data 2000 23FF Data 2000 23FF

CORCON 00D0 CORCON 00D0

SR 0000 SR 8800 (OA, OAB=1)
DS70030F-page 5-144 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV Move f to Destination

Syntax: {label:} MOV{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) → destination designated by D

Status Affected: N, Z

Encoding: 1011 1111 1BDf ffff ffff ffff

Description: Move the contents of the specified file register to the destination register.
The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored back to the file register and the only effect is
to modify the status register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: When moving word data from file register memory, the “MOV f

to Wnd” (page 5-147) instruction allows any working register
(W0:W15) to be the destination register.

Words: 1

Cycles: 1

Example 1 MOV.B TMR0, WREG ; move (TMR0) to WREG (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 9080 WREG (W0) 9055

TMR0 2355 TMR0 2355

SR 0000 SR 0000

Example 2 MOV 0x800 ; update SR based on (0x800) (Word mode)

Before
Instruction

After
Instruction

Data 0800 B29F Data 0800 B29F

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-145

dsPIC30F Programmer’s Reference Manual

MOV Move WREG to f

Syntax: {label:} MOV{.B} WREG, f

Operands: f ∈ [0 ... 8191]

Operation: (WREG) → f

Status Affected: None

Encoding: 1011 0111 1B1f ffff ffff ffff

Description: Move the contents of the default working register WREG into the
specified file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: The WREG is set to working register W0.
3: When moving word data from the working register array to file

register memory, the “MOV Wns to f” (page 5-148) instruc-
tion allows any working register (W0:W15) to be the source
register.

Words: 1

Cycles: 1

Example 1 MOV.B WREG, 0x801 ; move WREG to 0x801 (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 98F3 WREG (W0) 98F3

Data 0800 4509 Data 0800 F309

SR 0000 SR 0008 (N=1)

Example 2 MOV WREG, DISICNT ; move WREG to DISICNT

Before
Instruction

After
Instruction

WREG (W0) 00A0 WREG (W0) 00A0

DISICNT 0000 DISICNT 00A0

SR 0000 SR 0000
DS70030F-page 5-146 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV Move f to Wnd

Syntax: {label:} MOV f, Wnd

Operands: f ∈ [0 ... 65534]
Wnd ∈ [W0 ... W15]

Operation: (f) → Wnd

Status Affected: None

Encoding: 1000 0fff ffff ffff ffff dddd

Description: Move the word contents of the specified file register to Wnd. The file
register may reside anywhere in the 32K words of data memory, but must
be word aligned. Register direct addressing must be used for Wnd.

The ‘f’ bits select the address of the file register.
The ‘d’ bits select the address of the destination register.

Note 1: This instruction only operates on word operands.
2: Since the file register address must be word aligned, only the

upper 15 bits of the file register address are encoded (bit 0 is
assumed to be ‘0’).

3: To move a byte of data from file register memory, the “MOV f
to Destination” instruction (page 5-145) may be used.

Words: 1

Cycles: 1

Example 1 MOV CORCON, W12 ; move CORCON to W12

Before
Instruction

After
Instruction

W12 78FA W12 00F0

CORCON 00F0 CORCON 00F0

SR 0000 SR 0000

Example 2 MOV 0x27FE, W3 ; move (0x27FE) to W3

Before
Instruction

After
Instruction

W3 0035 W3 ABCD

Data 27FE ABCD Data 27FE ABCD

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-147

dsPIC30F Programmer’s Reference Manual

MOV Move Wns to f

Syntax: {label:} MOV Wns, f

Operands: f ∈ [0 ... 65534]
Wns ∈ [W0 ... W15]

Operation: (Wns) → f

Status Affected: None

Encoding: 1000 1fff ffff ffff ffff ssss

Description: Move the word contents of the working register Wns to the specified file
register. The file register may reside anywhere in the 32K words of data
memory, but must be word aligned. Register direct addressing must be
used for Wn.

The ‘f’ bits select the address of the file register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction only operates on word operands.
2: Since the file register address must be word aligned, only the

upper 15 bits of the file register address are encoded (bit 0 is
assumed to be ‘0’).

3: To move a byte of data to file register memory, the “MOV WREG
to f” instruction (page 5-146) may be used.

Words: 1

Cycles: 1

Example 1 MOV W4, XMDOSRT ; move W4 to XMODSRT

Before
Instruction

After
Instruction

W4 1200 W4 1200

XMODSRT 1340 XMODSRT 1200

SR 0000 SR 0000

Example 2 MOV W8, 0x1222 ; move W8 to data address 0x1222

Before
Instruction

After
Instruction

W8 F200 W8 F200

Data 1222 FD88 Data 1222 F200

SR 0000 SR 0000
DS70030F-page 5-148 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV.B Move 8-bit Literal to Wnd

Syntax: {label:} MOV.B #lit8, Wnd

Operands: lit8 ∈ [0 ... 255]
Wnd ∈ [W0 ... W15]

Operation: lit8 → Wnd

Status Affected: None

Encoding: 1011 0011 1100 kkkk kkkk dddd

Description: The unsigned 8-bit literal ‘k’ is loaded into the lower byte of Wnd. The
upper byte of Wnd is not changed. Register direct addressing must be
used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.

Note: This instruction operates in Byte mode and the .B extension
must be provided.

Words: 1

Cycles: 1

Example 1 MOV.B #0x17, W5 ; load W5 with #0x17 (Byte mode)

Before
Instruction

After
Instruction

W5 7899 W5 7817

SR 0000 SR 0000

Example 2 MOV.B #0xFE, W9 ; load W9 with #0xFE (Byte mode)

Before
Instruction

After
Instruction

W9 AB23 W9 ABFE

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-149

dsPIC30F Programmer’s Reference Manual

MOV Move 16-bit Literal to Wnd

Syntax: {label:} MOV #lit16, Wnd

Operands: lit16 ∈ [-32768 ... 65535]
Wnd ∈ [W0 ... W15]

Operation: lit16 → Wnd

Status Affected: None

Encoding: 0010 kkkk kkkk kkkk kkkk dddd

Description: The 16-bit literal ‘k’ is loaded into Wnd. Register direct addressing must
be used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.

Note 1: This instruction operates only in Word mode.
2: The literal may be specified as a signed value [-32768:32767],

or unsigned value [0:65535].

Words: 1

Cycles: 1

Example 1 MOV #0x4231, W13 ; load W13 with #0x4231

Before
Instruction

After
Instruction

W13 091B W13 4231

SR 0000 SR 0000

Example 2 MOV #0x4, W2 ; load W2 with #0x4

Before
Instruction

After
Instruction

W2 B004 W2 0004

SR 0000 SR 0000

Example 3 MOV #-1000, W8 ; load W8 with #-1000

Before
Instruction

After
Instruction

W8 23FF W8 FC18

SR 0000 SR 0000
DS70030F-page 5-150 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV Move [Ws with offset] to Wnd

Syntax: {label:} MOV{.B} [Ws+Slit10], Wnd

Operands: Ws ∈ [W0 ... W15]
Slit10 ∈ [-512 ... 511] for byte operation
Slit10 ∈ [-1024 ... 1022] (even only) for word operation
Wnd ∈ [W0 ... W15]

Operation: [Ws+Slit10] → Wnd

Status Affected: None

Encoding: 1001 0kkk kBkk kddd dkkk ssss

Description: The contents of [Ws+Slit10] are loaded into Wnd. In Word mode, the
range of Slit10 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register indirect addressing must be
used for the source, and direct addressing must be used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Ws.

Words: 1

Cycles: 1

Example 1 MOV.B [W8+0x13], W10 ; load W10 with [W8+0x13]
 ; (Byte mode)

Before
Instruction

After
Instruction

W8 1008 W8 1008

W10 4009 W10 4033

Data 101A 3312 Data 101A 3312

SR 0000 SR 0000

Example 2 MOV [W4+0x3E8], W2 ; load W2 with [W4+0x3E8]
 ; (Word mode)

Before
Instruction

After
Instruction

W2 9088 W2 5634

W4 0800 W4 0800

Data 0BE8 5634 Data 0BE8 5634

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-151

dsPIC30F Programmer’s Reference Manual

MOV Move Wns to [Wd with offset]

Syntax: {label:} MOV{.B} Wns, [Wd+Slit10]

Operands: Wns ∈ [W0 ... W15]
Slit10 ∈ [-512 ... 511] in Byte mode
Slit10 ∈ [-1024 ... 1022] (even only) in Word mode
Wd ∈ [W0 ... W15]

Operation: (Wns) → [Wd+Slit10]

Status Affected: None

Encoding: 1001 1kkk kBkk kddd dkkk ssss

Description: The contents of Wns are stored to [Wd+Slit10]. In Word mode, the range
of Slit10 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register direct addressing must be
used for Wns, and indirect addressing must be used for the destination.

The ‘k’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the destination register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Wd.

Words: 1

Cycles: 1

Example 1 MOV.B W0, [W1+0x7] ; store W0 to [W1+0x7]
 ; (Byte mode)

Before
Instruction

After
Instruction

W0 9015 W0 9015

W1 1800 W1 1800

Data 1806 2345 Data 1806 1545

SR 0000 SR 0000

Example 2 MOV W11, [W1-0x400] ; store W11 to [W1-0x400]
 ; (Word mode)

Before
Instruction

After
Instruction

W1 1000 W1 1000

W11 8813 W11 8813

Data 0C00 FFEA Data 0C00 8813

SR 0000 SR 0000
DS70030F-page 5-152 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV Move Ws to Wd

Syntax: {label:} MOV{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[--Ws], [--Wd]

[++Ws], [++Wd]

[Ws+Wb], [Wd+Wb]

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) → Wd

Status Affected: None

Encoding: 0111 1www wBhh hddd dggg ssss

Description: Move the contents of the source register into the destination register.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits define the offset register Wb.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘h’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘g’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: When Register Offset Addressing mode is used for both the
source and destination, the offset must be the same because
the ‘w’ encoding bits are shared by Ws and Wd.

3: The instruction “PUSH Ws” translates to MOV Ws, [W15++].
4: The instruction “POP Wd” translates to MOV [--W15], Wd.

Words: 1

Cycles: 1

Example 1 MOV.B [W0--], W4 ; Move [W0] to W4 (Byte mode)
 ; Post-decrement W0

Before
Instruction

After
Instruction

W0 0A01 W0 0A00

W4 2976 W4 2989

Data 0A00 8988 Data 0A00 8988

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-153

dsPIC30F Programmer’s Reference Manual
Example 2 MOV [W6++], [W2+W3] ; Move [W6] to [W2+W3] (Word mode)
 ; Post-increment W6

Before
Instruction

After
Instruction

W2 0800 W2 0800

W3 0040 W3 0040

W6 1228 W6 122A

Data 0840 9870 Data 0840 0690

Data 1228 0690 Data 1228 0690

SR 0000 SR 0000
DS70030F-page 5-154 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV.D Double-Word Move from Source to Wnd

Syntax: {label:} MOV.D Wns, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wns ∈ [W0, W2, W4 ... W14]
Ws ∈ [W0 ... W15]
Wnd ∈ [W0, W2, W4 ... W14]

Operation: For direct addressing of source:
 Wns → Wnd
 Wns+1 → Wnd+1
For indirect addressing of source:
 See Description

Status Affected: None

Encoding: 1011 1110 0000 0ddd 0ppp ssss

Description: Move the double-word specified by the source to a destination working
register pair (Wnd:Wnd+1). If register direct addressing is used for the
source, the contents of two successive working registers (Wns:Wns+1) are
moved to Wnd:Wnd+1. If indirect addressing is used for the source, Ws
specifies the effective address for the Least Significant Word of the
double-word. Any pre/post-increment or pre/post-decrement will adjust Ws
by 4 bytes to accommodate for the double-word.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the first source register.

Note 1: This instruction only operates on double-words. See Figure 4-2
for information on how double-words are aligned in memory.

2: Wnd must be an even working register.
3: The instruction “POP.D Wnd” translates to MOV.D [--W15],

Wnd.

Words: 1

Cycles: 2

Example 1 MOV.D W2, W6 ; Move W2 to W6 (Double mode)

Before
Instruction

After
Instruction

W2 12FB W2 12FB

W3 9877 W3 9877

W6 9833 W6 12FB

W7 FCC6 W7 9877

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-155

dsPIC30F Programmer’s Reference Manual
Example 2 MOV.D [W7--], W4 ; Move [W7] to W4 (Double mode)
 ; Post-decrement W7

Before
Instruction

After
Instruction

W4 B012 W4 A319

W5 FD89 W5 9927

W7 0900 W7 08FC

Data 0900 A319 Data 0900 A319

Data 0902 9927 Data 0902 9927

SR 0000 SR 0000
DS70030F-page 5-156 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOV.D Double-Word Move from Wns to Destination

Syntax: {label:} MOV.D Wns, Wnd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wns ∈ [W0, W2, W4 ... W14]
Wnd ∈ [W0, W2, W4 ... W14]
Wd ∈ [W0 ... W15]

Operation: For direct addressing of destination:
 Wns → Wnd
 Wns+1 → Wnd+1
For indirect addressing of destination:
 See Description

Status Affected: None

Encoding: 1011 1110 10qq qddd d000 sss0

Description: Move a double-word (Wns:Wns+1) to the specified destination. If register
direct addressing is used for the destination, the contents of Wns:Wns+1
are stored to Wnd:Wnd+1. If indirect addressing is used for the
destination, Wd specifies the effective address for the Least Significant
Word of the double-word. Any pre/post-increment or pre/post-decrement
will adjust Wd by 4 bytes to accommodate for the double-word.

The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register pair.

Note 1: This instruction only operates on double-words. See
Figure 4-2 for information on how double-words are aligned in
memory.

2: Wnd must be an even working register.
3: The instruction PUSH.D Ws translates to MOV.D Wns,

[W15++].

Words: 1

Cycles: 2

Example 1 MOV.D W10, W0 ; Move W10 to W0 (Double mode)

Before
Instruction

After
Instruction

W0 9000 W0 CCFB

W1 4322 W1 0091

W10 CCFB W10 CCFB

W11 0091 W11 0091

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-157

dsPIC30F Programmer’s Reference Manual
Example 2 MOV.D W4, [--W6] ; Pre-decrement W6 (Double mode)
 ; Move W4 to [W6]

Before
Instruction

After
Instruction

W4 100A W4 100A

W5 CF12 W5 CF12

W6 0804 W6 0800

Data 0800 A319 Data 0800 100A

Data 0802 9927 Data 0802 CF12

SR 0000 SR 0000
DS70030F-page 5-158 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MOVSAC Pre-Fetch Operands and Store Accumulator

Syntax: {label:} MOVSAC Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]
AWB ∈ [W13, [W13]+=2]

Operation: ([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy
(Acc(B or A)) rounded → AWB

Status Affected: None

Encoding: 1100 0111 A0xx yyii iijj jjaa

Description: Optionally pre-fetch operands in preparation for another MAC type
instruction and optionally store the unspecified accumulator results.
Even though an accumulator operation is not performed in this
instruction, an accumulator must be specified to designate which
accumulator to write back.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator, as described in
Section 4.14.4 “MAC Write Back”.

The ‘A’ bit selects the other accumulator used for write back.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.
The ‘a’ bits select the accumulator write back destination.

Words: 1

Cycles: 1

Example 1 MOVSAC B, [W9], W6, [W11]+=4, W7, W13
 ; Fetch [W9] to W6
 ; Fetch [W11] to W7, Post-increment W11 by 4
 ; Store ACCA to W13

Before
Instruction

After
Instruction

W6 A022 W6 7811

W7 B200 W7 B2AF

W9 0800 W9 0800

W11 1900 W11 1904

W13 0020 W13 3290

ACCA 00 3290 5968 ACCA 00 3290 5968

Data 0800 7811 Data 0800 7811

Data 1900 B2AF Data 1900 B2AF

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-159

dsPIC30F Programmer’s Reference Manual
Example 2 MOVSAC A, [W9]-=2, W4, [W11+W12], W6, [W13]+=2
; Fetch [W9] to W4, Post-decrement W9 by 2
; Fetch [W11+W12] to W6
; Store ACCB to [W13], Post-increment W13 by 2

Before
Instruction

After
Instruction

W4 76AE W4 BB00

W6 2000 W6 52CE

W9 1200 W9 11FE

W11 2000 W11 2000

W12 0024 W12 0024

W13 2300 W13 2302

ACCB 00 9834 4500 ACCB 00 9834 4500

Data 1200 BB00 Data 1200 BB00

Data 2024 52CE Data 2024 52CE

Data 2300 23FF Data 2300 9834

SR 0000 SR 0000
DS70030F-page 5-160 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MPY Multiply Wm by Wn to Accumulator

Syntax: {label:} MPY Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn ∈ [W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]
AWB ∈ [W13], [W13]+=2

Operation: (Wm)*(Wn) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A0xx yyii iijj jj11

Description: Multiply the contents of two working registers, optionally pre-fetch
operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and stored to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply:
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1

Cycles: 1
© 2005 Microchip Technology Inc. DS70030F-page 5-161

dsPIC30F Programmer’s Reference Manual
Example 1 MPY W4*W5, A, [W8]+=2, W6, [W10]-=2, W7
 ; Multiply W4*W5 and store to ACCA
 ; Fetch [W8] to W6, Post-increment W8 by 2
 ; Fetch [W10] to W7, Post-decrement W10 by 2
 ; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 C000 W4 C000

W5 9000 W5 9000

W6 0800 W6 671F

W7 B200 W7 E3DC

W8 1780 W8 1782

W10 2400 W10 23FE

ACCA FF F780 2087 ACCA 00 3800 0000

Data 1780 671F Data 1780 671F

Data 2400 E3DC Data 2400 E3DC

CORCON 0000 CORCON 0000

SR 0000 SR 0000

Example 2 MPY W6*W7, B, [W8]+=2, W4, [W10]-=2, W5
; Multiply W6*W7 and store to ACCB
; Fetch [W8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 C000 W4 8FDC

W5 9000 W5 0078

W6 671F W6 671F

W7 E3DC W7 E3DC

W8 1782 W8 1784

W10 23FE W10 23FC

ACCB 00 9834 4500 ACCB FF E954 3748

Data 1782 8FDC Data 1782 8FDC

Data 23FE 0078 Data 23FE 0078

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70030F-page 5-162 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MPY Square to Accumulator

Syntax: {label:} MPY Wm*Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wm ∈ [W4*W4, W5*W5, W6*W6, W7*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]

Operation: (Wm)*(Wm) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A0xx yyii iijj jj01

Description: Square the contents of a working register, optionally pre-fetch operands
in preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and stored in the specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1

Cycles: 1

Example 1 MPY W6*W6, A, [W9]+=2, W6
 ; Square W6 and store to ACCA
 ; Fetch [W9] to W6, Post-increment W9 by 2
 ; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W6 6500 W6 B865

W9 0900 W9 0902

ACCA 00 7C80 0908 ACCA 00 4FB2 0000

Data 0900 B865 Data 0900 B865

CORCON 0000 CORCON 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-163

dsPIC30F Programmer’s Reference Manual
Example 2 MPY W4*W4, B, [W9+W12], W4, [W10]+=2, W5
; Square W4 and store to ACCB
; Fetch [W9+W12] to W4
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 E228 W4 8911

W5 9000 W5 F678

W9 1700 W9 1700

W10 1B00 W10 1B02

W12 FF00 W12 FF00

ACCB 00 9834 4500 ACCB 00 06F5 4C80

Data 1600 8911 Data 1600 8911

Data 1B00 F678 Data 1B00 F678

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70030F-page 5-164 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MPY.N Multiply -Wm by Wn to Accumulator

Syntax: {label:} MPY.N Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn ∈ [W4*W5; W4*W6; W4*W7; W5*W6; W5*W7; W6*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]

Operation: -(Wm)*(Wn) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy

Status Affected: OA, OB, OAB

Encoding: 1100 0mmm A1xx yyii iijj jj11

Description: Multiply the contents of a working register by the negative of the contents
of another working register, optionally pre-fetch operands in preparation
for another MAC type instruction and optionally store the unspecified
accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and stored to the specified accumulator.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is fractional
or an integer.

Words: 1

Cycles: 1

Example 1 MPY.N W4*W5, A, [W8]+=2, W4, [W10]+=2, W5
 ; Multiply W4*W5, negate the result and store to ACCA
 ; Fetch [W8] to W4, Post-increment W8 by 2
 ; Fetch [W10] to W5, Post-increment W10 by 2
 ; CORCON = 0x0001 (integer multiply, no saturation)

Before
Instruction

After
Instruction

W4 3023 W4 0054

W5 1290 W5 660A

W8 0B00 W8 0B02

W10 2000 W10 2002

ACCA 00 0000 2387 ACCA FF FC82 7650

Data 0B00 0054 Data 0B00 0054

Data 2000 660A Data 2000 660A

CORCON 0001 CORCON 0001

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-165

dsPIC30F Programmer’s Reference Manual
Example 2 MPY.N W4*W5, A, [W8]+=2, W4, [W10]+=2, W5
 ; Multiply W4*W5, negate the result and store to ACCA
 ; Fetch [W8] to W4, Post-increment W8 by 2
 ; Fetch [W10] to W5, Post-increment W10 by 2
 ; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 3023 W4 0054

W5 1290 W5 660A

W8 0B00 W8 0B02

W10 2000 W10 2002

ACCA 00 0000 2387 ACCA FF F904 ECA0

Data 0B00 0054 Data 0B00 0054

Data 2000 660A Data 2000 660A

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70030F-page 5-166 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MSC Multiply and Subtract from Accumulator

Syntax: {label:} MSC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}

{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}

{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn ∈ [W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7]
Acc ∈ [A,B]
Wx ∈ [W8, W9]; kx ∈ [-6, -4, -2, 2, 4, 6]; Wxd ∈ [W4 ... W7]
Wy ∈ [W10, W11]; ky ∈ [-6, -4, -2, 2, 4, 6]; Wyd ∈ [W4 ... W7]
AWB ∈ [W13, [W13]+=2]

Operation: (Acc(A or B)) − (Wm)*(Wn) → Acc(A or B)
([Wx])→ Wxd; (Wx)+kx→Wx
([Wy])→ Wyd; (Wy)+ky→Wy
(Acc(B or A)) rounded → AWB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A1xx yyii iijj jjaa

Description: Multiply the contents of two working registers, optionally pre-fetch
operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and subtracted from the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator as described in
Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the pre-fetch Wxd destination.
The ‘y’ bits select the pre-fetch Wyd destination.
The ‘i’ bits select the Wx pre-fetch operation.
The ‘j’ bits select the Wy pre-fetch operation.
The ‘a’ bits select the accumulator write back destination.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1

Cycles: 1
© 2005 Microchip Technology Inc. DS70030F-page 5-167

dsPIC30F Programmer’s Reference Manual
Example 1 MSC W6*W7, A, [W8]-=4, W6, [W10]-=4, W7
 ; Multiply W6*W7 and subtract the result from ACCA
 ; Fetch [W8] to W6, Post-decrement W8 by 4
 ; Fetch [W10] to W7, Post-decrement W10 by 4
 ; CORCON = 0x0001 (integer multiply, no saturation)

Before
Instruction

After
Instruction

W6 9051 W6 D309

W7 7230 W7 100B

W8 0C00 W8 0BFC

W10 1C00 W10 1BFC

ACCA 00 0567 8000 ACCA 00 3738 5ED0

Data 0C00 D309 Data 0C00 D309

Data 1C00 100B Data 1C00 100B

CORCON 0001 CORCON 0001

SR 0000 SR 0000

Example 2 MSC W4*W5, B, [W11+W12], W5, W13
 ; Multiply W4*W5 and subtract the result from ACCB
 ; Fetch [W11+W12] to W5
 ; Write Back ACCA to W13
 ; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 0500 W4 0500

W5 2000 W5 3579

W11 1800 W11 1800

W12 0800 W12 0800

W13 6233 W13 3738

ACCA 00 3738 5ED0 ACCA 00 3738 5ED0

ACCB 00 1000 0000 ACCB 00 0EC0 0000

Data 2000 3579 Data 2000 3579

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70030F-page 5-168 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MUL Integer Unsigned Multiply f and WREG

Syntax: {label:} MUL{.B} f

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (WREG)<7:0> * (f)<7:0> → W2
For word operation:
 (WREG) * (f) → W2:W3

Status Affected: None

Encoding: 1011 1100 0B0f ffff ffff ffff

Description: Multiply the default working register WREG with the specified file
register and place the result in the W2:W3 register pair. Both operands
and the result are interpreted as unsigned integers. If this instruction is
executed in Byte mode, the 16-bit result is stored in W2. In Word mode,
the Most Significant Word of the 32-bit result is stored in W3, and the
Least Significant Word of the 32-bit result is stored in W2.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: The IF bit, CORCON<0>, has no effect on this operation.
4: This is the only instruction which provides for an 8-bit

multiply.

Words: 1

Cycles: 1

Example 1 MUL.B 0x800 ; Multiply (0x800)*WREG (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 9823 WREG (W0) 9823

W2 FFFF W2 13B0

W3 FFFF W3 FFFF

Data 0800 2690 Data 0800 2690

SR 0000 SR 0000

Example 2 MUL TMR1 ; Multiply (TMR1)*WREG (Word mode)

Before
Instruction

After
Instruction

WREG (W0) F001 WREG (W0) F001

W2 0000 W2 C287

W3 0000 W3 2F5E

TMR1 3287 TMR1 3287

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-169

dsPIC30F Programmer’s Reference Manual

MUL.SS Integer 16x16-bit Signed Multiply

Syntax: {label:} MUL.SS Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws) → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1001 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The Least Significant Word
of the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
Both source operands and the result Wnd are interpreted as two’s
complement signed integers. Register direct addressing must be used
for Wb and Wnd. Register direct or register indirect addressing may be
used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.SS W0, W1, W12 ; Multiply W0*W1
 ; Store the result to W12:W13

Before
Instruction

After
Instruction

W0 9823 W0 9823

W1 67DC W1 67DC

W12 FFFF W12 D314

W13 FFFF W13 D5DC

SR 0000 SR 0000
DS70030F-page 5-170 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 MUL.SS W2, [--W4], W0 ; Pre-decrement W4
 ; Multiply W2*[W4]
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 FFFF W0 28F8

W1 FFFF W1 0000

W2 0045 W2 0045

W4 27FE W4 27FC

Data 27FC 0098 Data 27FC 0098

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-171

dsPIC30F Programmer’s Reference Manual

MUL.SU Integer 16x16-bit Signed-Unsigned Short Literal Multiply

Syntax: {label:} MUL.SU Wb, #lit5, Wnd

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned lit5 → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1001 0www wddd d11k kkkk

Description: Multiply the contents of Wb with the 5-bit literal, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The literal is interpreted as an unsigned
integer. Register direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.SU W0, #0x1F, W2 ; Multiply W0 by literal 0x1F
 ; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 C000 W0 C000

W2 1234 W2 4000

W3 C9BA W3 FFF8

SR 0000 SR 0000
DS70030F-page 5-172 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 MUL.SU W2, #0x10, W0 ; Multiply W2 by literal 0x10
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 ABCD W0 2400

W1 89B3 W1 000F

W2 F240 W2 F240

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-173

dsPIC30F Programmer’s Reference Manual

MUL.SU Integer 16x16-bit Signed-Unsigned Multiply

Syntax: {label:} MUL.SU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (Ws) → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1001 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an
unsigned integer. Register direct addressing must be used for Wb and
Wnd. Register direct or register indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.SU W8, [W9], W0 ; Multiply W8*[W9]
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 68DC W0 0000

W1 AA40 W1 F100

W8 F000 W8 F000

W9 178C W9 178C

Data 178C F000 Data 178C F000

SR 0000 SR 0000
DS70030F-page 5-174 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 MUL.SU W2, [++W3], W4 ; Pre-Increment W3
 ; Multiply W2*[W3]
 ; Store the result to W4:W5

Before
Instruction

After
Instruction

W2 0040 W2 0040

W3 0280 W3 0282

W4 1819 W4 1A00

W5 2021 W5 0000

Data 0282 0068 Data 0282 0068

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-175

dsPIC30F Programmer’s Reference Manual

MUL.US Integer 16x16-bit Unsigned-Signed Multiply

Syntax: {label:} MUL.US Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws) → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1000 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand is interpreted as an unsigned integer. The Ws operand
and the result Wnd are interpreted as a two’s complement signed
integer. Register direct addressing must be used for Wb and Wnd.
Register direct or register indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.US W0, [W1], W2 ; Multiply W0*[W1] (unsigned-signed)
 ; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 C000 W0 C000

W1 2300 W1 2300

W2 00DA W2 0000

W3 CC25 W3 F400

Data 2300 F000 Data 2300 F000

SR 0000 SR 0000
DS70030F-page 5-176 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 MUL.US W6, [W5++], W10 ; Mult. W6*[W5] (unsigned-signed)
 ; Store the result to W10:W11
 ; Post-Increment W5

Before
Instruction

After
Instruction

W5 0C00 W5 0C02

W6 FFFF W6 FFFF

W10 0908 W10 8001

W11 6EEB W11 7FFE

Data 0C00 7FFF Data 0C00 7FFF

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-177

dsPIC30F Programmer’s Reference Manual

MUL.UU Integer 16x16-bit Unsigned Short Literal Multiply

Syntax: {label:} MUL.UU Wb, #lit5, Wnd

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned lit5 → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1000 0www wddd d11k kkkk

Description: Multiply the contents of Wb with the 5-bit literal, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
Both operands and the result are interpreted as unsigned integers.
Register direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.UU W0, #0xF, W12 ; Multiply W0 by literal 0xF
 ; Store the result to W12:W13

Before
Instruction

After
Instruction

W0 2323 W0 2323

W12 4512 W12 0F0D

W13 7821 W13 0002

SR 0000 SR 0000

Example 2 MUL.UU W7, #0x1F, W0 ; Multiply W7 by literal 0x1F
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 780B W0 55C0

W1 3805 W1 001D

W7 F240 W7 F240

SR 0000 SR 0000
DS70030F-page 5-178 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

MUL.UU Integer 16x16-bit Unsigned Multiply

Syntax: {label:} MUL.UU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wnd ∈ [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws) → Wnd:Wnd+1

Status Affected: None

Encoding: 1011 1000 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the most Significant Word of the result is stored in Wnd+1.
Both source operands and the result are interpreted as unsigned
integers. Register direct addressing must be used for Wb and Wnd.
Register direct or indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: Since the product of the multiplication is 32-bits, Wnd must be

an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1

Cycles: 1

Example 1 MUL.UU W4, W0, W2 ; Multiply W4*W0 (unsigned-unsigned)
 ; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 FFFF W0 FFFF

W2 2300 W2 0001

W3 00DA W3 FFFE

W4 FFFF W4 FFFF

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-179

dsPIC30F Programmer’s Reference Manual
Example 2 MUL.UU W0, [W1++], W4 ; Mult. W0*[W1] (unsigned-unsigned)
 ; Store the result to W4:W5
 ; Post-Increment W1

Before
Instruction

After
Instruction

W0 1024 W0 1024

W1 2300 W1 2302

W4 9654 W4 6D34

W5 BDBC W5 0D80

Data 2300 D625 Data 2300 D625

SR 0000 SR 0000
DS70030F-page 5-180 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

NEG Negate f

Syntax: {label:} NEG{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) + 1 → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1110 0BDf ffff ffff ffff

Description: Compute the 2’s complement of the contents of the file register and
place the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 NEG.B 0x880, WREG ; Negate (0x880) (Byte mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 9080 WREG (W0) 90AB

Data 0880 2355 Data 0880 2355

SR 0000 SR 0008 (N=1)

Example 2 NEG 0x1200 ; Negate (0x1200) (Word mode)

Before
Instruction

After
Instruction

Data 1200 8923 Data 1200 76DD

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-181

dsPIC30F Programmer’s Reference Manual

NEG Negate Ws

Syntax: {label:} NEG{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) + 1 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1010 0Bqq qddd dppp ssss

Description: Compute the 2’s complement of the contents of the source register Ws
and place the result in the destination register Wd. Either register direct
or indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 NEG.B W3, [W4++] ; Negate W3 and store to [W4] (Byte mode)
 ; Post-increment W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 1006

Data 1004 2355 Data 1004 C755

SR 0000 SR 0008 (N=1)

Example 2 NEG [W2++], [--W4] ; Pre-decrement W4 (Word mode)
 ; Negate [W2] and store to [W4]
 ; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0902

W4 1002 W4 1000

Data 0900 870F Data 0900 870F

Data 1000 5105 Data 1000 78F1

SR 0000 SR 0000
DS70030F-page 5-182 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

NEG Negate Accumulator

Syntax: {label:} NEG Acc

Operands: Acc ∈ [A,B]

Operation: If (Acc = A):
 -ACCA → ACCA
Else:
 -ACCB → ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A001 0000 0000 0000

Description: Compute the 2’s complement of the contents of the specified
accumulator. Regardless of the Saturation mode, this instruction
operates on all 40-bits of the accumulator.

The ‘A’ bit specifies the selected accumulator.

Words: 1

Cycles: 1

Example 1 NEG A ; Negate ACCA
 ; Store result to ACCA
 ; CORCON = 0x0000 (no saturation)

Before
Instruction

After
Instruction

ACCA 00 3290 59C8 ACCA FF CD6F A638

CORCON 0000 CORCON 0000

SR 0000 SR 0000

Example 2 NEG B ; Negate ACCB
 ; Store result to ACCB
 ; CORCON = 0x00C0 (normal saturation)

Before
Instruction

After
Instruction

ACCB FF F230 10DC ACCB 00 0DCF EF24

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-183

dsPIC30F Programmer’s Reference Manual

NOP No Operation

Syntax: {label:} NOP

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 0000 0000 xxxx xxxx xxxx xxxx

Description: No Operation is performed.

The ‘x’ bits can take any value.

Words: 1

Cycles: 1

Example 1 NOP ; execute no operation

Before
Instruction

After
Instruction

PC 00 1092 PC 00 1094

SR 0000 SR 0000

Example 2 NOP ; execute no operation

Before
Instruction

After
Instruction

PC 00 08AE PC 00 08B0

SR 0000 SR 0000
DS70030F-page 5-184 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

NOPR No Operation

Syntax: {label:} NOPR

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 1111 1111 xxxx xxxx xxxx xxxx

Description: No Operation is performed.

The ‘x’ bits can take any value.

Words: 1

Cycles: 1

Example 1 NOPR ; execute no operation

Before
Instruction

After
Instruction

PC 00 2430 PC 00 2432

SR 0000 SR 0000

Example 2 NOPR ; execute no operation

Before
Instruction

After
Instruction

PC 00 1466 PC 00 1468

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-185

dsPIC30F Programmer’s Reference Manual

POP Pop TOS to f

Syntax: {label:} POP f

Operands: f ∈ [0 ... 65534]

Operation: (W15)-2 → W15
(TOS) → f

Status Affected: None

Encoding: 1111 1001 ffff ffff ffff fff0

Description: The stack pointer (W15) is pre-decremented by 2 and the Top-of-Stack
(TOS) word is written to the specified file register, which may reside
anywhere in the lower 32K words of data memory.

The ‘f’ bits select the address of the file register.

Note 1: This instruction operates in Word mode only.
2: The file register address must be word aligned.

Words: 1

Cycles: 1

Example 1 POP 0x1230 ; Pop TOS to 0x1230

Before
Instruction

After
Instruction

W15 1006 W15 1004

Data 1004 A401 Data 1004 A401

Data 1230 2355 Data 1230 A401

SR 0000 SR 0000

Example 2 POP 0x880 ; Pop TOS to 0x880

Before
Instruction

After
Instruction

W15 2000 W15 1FFE

Data 0880 E3E1 Data 0880 A090

Data 1FFE A090 Data 1FFE A090

SR 0000 SR 0000
DS70030F-page 5-186 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

POP Pop TOS to Wd

Syntax: {label:} POP Wd

[Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd+Wb]

Operands: Wd ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]

Operation: (W15)-2 → W15
(TOS) → Wd

Status Affected: None

Encoding: 0111 1www w0hh hddd d100 1111

Description: The stack pointer (W15) is pre-decremented by 2 and the Top-of-Stack
(TOS) word is written to Wd. Either register direct or indirect addressing
may be used for Wd.

The ‘w’ bits define the offset register Wb.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note 1: This instruction operates in Word mode only.
2: This instruction is a specific version of the “MOV Ws, Wd”

instruction (MOV [--W15], Wd). It reverse assembles as
MOV.

Words: 1

Cycles: 1

Example 1 POP W4 ; Pop TOS to W4

Before
Instruction

After
Instruction

W4 EDA8 W4 C45A

W15 1008 W15 1006

Data 1006 C45A Data 1006 C45A

SR 0000 SR 0000

Example 2 POP [++W10] ; Pre-increment W10
 ; Pop TOS to [W10]

Before
Instruction

After
Instruction

W10 0E02 W10 0E04

W15 1766 W15 1764

Data 0E04 E3E1 Data 0E04 C7B5

Data 1764 C7B5 Data 1764 C7B5

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-187

dsPIC30F Programmer’s Reference Manual
POP.D Double Pop TOS to Wnd:Wnd+1

Syntax: {label:} POP.D Wnd

Operands: Wnd ∈ [W0, W2, W4, ... W14]

Operation: (W15)-2 → W15
(TOS) → Wnd+1
(W15)-2 → W15
(TOS) → Wnd

Status Affected: None

Encoding: 1011 1110 0000 0ddd 0100 1111

Description: A double-word is popped from the Top-of-Stack (TOS) and stored to
Wnd:Wnd+1. The Most Significant Word is stored to Wnd+1, and the
Least Significant Word is stored to Wnd. Since a double-word is popped,
the stack pointer (W15) gets decremented by 4.

The ‘d’ bits select the address of the destination register pair.

Note 1: This instruction operates on double-words. See Figure 4-2 for
information on how double-words are aligned in memory.

2: Wnd must be an even working register.
3: This instruction is a specific version of the “MOV.D Ws, Wnd”

instruction (MOV.D [--W15], Wnd). It reverse assembles as
MOV.D.

Words: 1

Cycles: 2

Example 1 POP.D W6 ; Double pop TOS to W6

Before
Instruction

After
Instruction

W6 07BB W6 3210

W7 89AE W7 7654

W15 0850 W15 084C

Data 084C 3210 Data 084C 3210

Data 084E 7654 Data 084E 7654

SR 0000 SR 0000

Example 2 POP.D W0 ; Double pop TOS to W0

Before
Instruction

After
Instruction

W0 673E W0 791C

W1 DD23 W1 D400

W15 0BBC W15 0BB8

Data 0BB8 791C Data 0BB8 791C

Data 0BBA D400 Data 0BBA D400

SR 0000 SR 0000
DS70030F-page 5-188 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

POP.S Pop Shadow Registers

Syntax: {label:} POP.S

Operands: None

Operation: Pop shadow registers

Status Affected: DC, N, OV, Z, C

Encoding: 1111 1110 1000 0000 0000 0000

Description: The values in the shadow registers are copied into their respective
primary registers. The following registers are affected: W0-W3, and the
C, Z, OV, N and DC Status register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH.S and POP.S.

2: The shadow registers are only one-level deep.

Words: 1

Cycles: 1

Example 1 POP.S ; Pop the shadow registers
 ; (See PUSH.S Example 1 for contents of shadows)

Before
Instruction

After
Instruction

W0 07BB W0 0000

W1 03FD W1 1000

W2 9610 W2 2000

W3 7249 W3 3000

SR 00E0 (IPL=7) SR 00E1 (IPL=7, C=1)

Note: After instruction execution, contents of shadow registers are NOT modified.
© 2005 Microchip Technology Inc. DS70030F-page 5-189

dsPIC30F Programmer’s Reference Manual

PUSH Push f to TOS

Syntax: {label:} PUSH f

Operands: f ∈ [0 ... 65534]

Operation: (f) → (TOS)
(W15)+2 → W15

Status Affected: None

Encoding: 1111 1000 ffff ffff ffff fff0

Description: The contents of the specified file register are written to the Top-of-Stack
(TOS) location and then the stack pointer (W15) is incremented by 2.
The file register may reside anywhere in the lower 32K words of data
memory.

The ‘f’ bits select the address of the file register.

Note 1: This instruction operates in Word mode only.
2: The file register address must be word aligned.

Words: 1

Cycles: 1

Example 1 PUSH 0x2004 ; Push (0x2004) to TOS

Before
Instruction

After
Instruction

W15 0B00 W15 0B02

Data 0B00 791C Data 0B00 D400

Data 2004 D400 Data 2004 D400

SR 0000 SR 0000

Example 2 PUSH 0xC0E ; Push (0xC0E) to TOS

Before
Instruction

After
Instruction

W15 0920 W15 0922

Data 0920 0000 Data 0920 67AA

Data 0C0E 67AA Data 2004 67AA

SR 0000 SR 0000
DS70030F-page 5-190 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

PUSH Push Ws to TOS

Syntax: {label:} PUSH Ws

[Ws]

[Ws++]

[Ws--]

[--Ws]

[++Ws]

[Ws+Wb]

Operands: Ws ∈ [W0 ... W15]
Wb ∈ [W0 ... W15]

Operation: (Ws) → (TOS)
(W15)+2 → W15

Status Affected: None

Encoding: 0111 1www w001 1111 1ggg ssss

Description: The contents of Ws are written to the Top-of-Stack (TOS) location and
then the stack pointer (W15) is incremented by 2.

The ‘w’ bits define the offset register Wb.
The ‘g’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: This instruction is a specific version of the “MOV Ws, Wd”

instruction (MOV Ws, [W15++]). It reverse assembles as
MOV.

Words: 1

Cycles: 1

Example 1 PUSH W2 ; Push W2 to TOS

Before
Instruction

After
Instruction

W2 6889 W2 6889

W15 1566 W15 1568

Data 1566 0000 Data 1566 6889

SR 0000 SR 0000

Example 2 PUSH [W5+W10] ; Push [W5+W10] to TOS

Before
Instruction

After
Instruction

W5 1200 W5 1200

W10 0044 W10 0044

W15 0806 W15 0808

Data 0806 216F Data 0806 B20A

Data 1244 B20A Data 1244 B20A

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-191

dsPIC30F Programmer’s Reference Manual

PUSH.D Double Push Wns:Wns+1 to TOS

Syntax: {label:} PUSH.D Wns

Operands: Wns ∈ [W0, W2, W4 ... W14]

Operation: (Wns) → (TOS)
(W15)+2 → W15
(Wns+1) → (TOS)
(W15)+2 → W15

Status Affected: None

Encoding: 1011 1110 1001 1111 1000 sss0

Description: A double-word (Wns:Wns+1) is pushed to the Top-of-Stack (TOS). The
Least Significant word (Wns) is pushed to the TOS first, and the Most
Significant word (Wns+1) is pushed to the TOS last. Since a
double-word is pushed, the stack pointer (W15) gets incremented by 4.

The ‘s’ bits select the address of the source register pair.

Note 1: This instruction operates on double-words. See Figure 4-2
for information on how double-words are aligned in memory.

2: Wns must be an even working register.
3: This instruction is a specific version of the “MOV.D Wns, Wd”

instruction (MOV.D Wns, [W15++]). It reverse assembles
as MOV.D.

Words: 1

Cycles: 2

Example 1 PUSH.D W6 ; Push W6:W7 to TOS

Before
Instruction

After
Instruction

W6 C451 W6 C451

W7 3380 W7 3380

W15 1240 W15 1244

Data 1240 B004 Data 1240 C451

Data 1242 0891 Data 1242 3380

SR 0000 SR 0000

Example 2 PUSH.D W10 ; Push W10:W11 to TOS

Before
Instruction

After
Instruction

W10 80D3 W10 80D3

W11 4550 W11 4550

W15 0C08 W15 0C0C

Data 0C08 79B5 Data 0C08 80D3

Data 0C0A 008E Data 0C0A 4550

SR 0000 SR 0000
DS70030F-page 5-192 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

PUSH.S Push Shadow Registers

Syntax: {label:} PUSH.S

Operands: None

Operation: Push shadow registers

Status Affected: None

Encoding: 1111 1110 1010 0000 0000 0000

Description: The contents of the primary registers are copied into their respective
shadow registers. The following registers are shadowed: W0-W3, and
the C, Z, OV, N and DC Status register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH.S and POP.S.

2: The shadow registers are only one-level deep.

Words: 1

Cycles: 1

Example 1 PUSH.S ; Push primary registers into shadow registers

Before
Instruction

After
Instruction

W0 0000 W0 0000

W1 1000 W1 1000

W2 2000 W2 2000

W3 3000 W3 3000

SR 0001 (C=1) SR 0001 (C=1)

Note: After an instruction execution, contents of the shadow registers are updated.
© 2005 Microchip Technology Inc. DS70030F-page 5-193

dsPIC30F Programmer’s Reference Manual

PWRSAV Enter Power Saving Mode

Syntax: {label:} PWRSAV #lit1

Operands: lit1 ∈ [0,1]

Operation: 0 → WDT count register
0 → WDT prescaler A count
0 → WDT prescaler B count
0 → WDTO (RCON<4>)
0 → SLEEP (RCON<3>)
0 → IDLE (RCON<2>)
If (lit1 = 0):
 Enter SLEEP mode
Else:
 Enter IDLE mode

Status Affected: None

Encoding: 1111 1110 0100 0000 0000 000k

Description: Place the processor into the specified Power Saving mode. If lit1 = 0,
SLEEP mode is entered. In SLEEP mode, the clock to the CPU and
peripherals are shutdown. If an on-chip oscillator is being used, it is also
shutdown. If lit1 = 1, IDLE mode is entered. In IDLE mode, the clock to
the CPU shuts down, but the clock source remains active and the
peripherals continue to operate.

This instruction resets the Watchdog Timer Count register and the
Prescaler Count registers. In addition, the WDTO, SLEEP and IDLE
flags of the Reset System and Control (RCON) register are reset.

Note 1: The processor will exit from IDLE or SLEEP through an
interrupt, processor RESET or Watchdog Time-out. See the
dsPIC30F Data Sheet for details.

2: If awakened from IDLE mode, IDLE (RCON<2>) is set to ‘1’
and the clock source is applied to the CPU.

3: If awakened from SLEEP mode, SLEEP (RCON<3>) is set to
‘1’ and the clock source is started.

4: If awakened from a Watchdog Time-out, WDTO (RCON<4>)
is set to ‘1’.

Words: 1

Cycles: 1

Example 1 PWRSAV #0 ; Enter SLEEP mode

Before
Instruction

After
Instruction

SR 0040 (IPL=2) SR 0040 (IPL=2)

Example 2 PWRSAV #1 ; Enter IDLE mode

Before
Instruction

After
Instruction

SR 0020 (IPL=1) SR 0020 (IPL=1)
DS70030F-page 5-194 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RCALL Relative Call

Syntax: {label:} RCALL Expr

Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 ∈ [-32768 ... 32767].

Operation: (PC) + 2 → PC
(PC<15:0>) → (TOS)
(W15) + 2 → W15
(PC<22:16>) → (TOS)
(W15) + 2 → W15
(PC) + (2 * Slit16) → PC
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0111 nnnn nnnn nnnn nnnn

Description: Relative subroutine call with a range of 32K program words forward or back
from the current PC. Before the call is made, the return address (PC+2) is
pushed onto the stack. After the return address is stacked, the
sign-extended 17-bit value (2 * Slit16) is added to the contents of the PC
and the result is stored in the PC.

The ‘n’ bits are a signed literal that specifies the size of the relative call (in
program words) from (PC+2).

Note: When possible, this instruction should be used instead of CALL,
since it only consumes one word of program memory.

Words: 1

Cycles: 2

Example 1 012004 RCALL _Task1
012006 ADD W0, W1, W2

012458 _Task1: SUB W0, W2, W3
01245A ...

; Call _Task1

; _Task1 subroutine

Before
Instruction

After
Instruction

PC 01 2004 PC 01 2458

W15 0810 W15 0814

Data 0810 FFFF Data 0810 2006

Data 0812 FFFF Data 0812 0001

SR 0000 SR 0000

Example 2 00620E RCALL _Init
006210 MOV W0, [W4++]

007000 _Init: CLR W2
007002 ...

; Call _Init

; _Init subroutine

Before
Instruction

After
Instruction

PC 00 620E PC 00 7000

W15 0C50 W15 0C54

Data 0C50 FFFF Data 0C50 6210

Data 0C52 FFFF Data 0C52 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-195

dsPIC30F Programmer’s Reference Manual

RCALL Computed Relative Call

Syntax: {label:} RCALL Wn

Operands: Wn ∈ [W0 ... W15]

Operation: (PC) + 2 → PC
(PC<15:0>) → (TOS)
(W15) + 2 → W15
(PC<22:16>) → (TOS)
(W15) + 2 → W15
(PC) + (2 * (Wn)) → PC
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0001 0010 0000 0000 ssss

Description: Computed, relative subroutine call specified by the working register Wn.
The range of the call is 32K program words forward or back from the current
PC. Before the call is made, the return address (PC+2) is pushed onto the
stack. After the return address is stacked, the sign-extended 17-bit value
(2 * (Wn)) is added to the contents of the PC and the result is stored in the
PC. Register direct addressing must be used for Wn.

The ‘s’ bits select the address of the source register.

Words: 1

Cycles: 2

Example 1 00FF8C EX1: INC W2, W3
00FF8E ...

010008
01000A RCALL W6
01000C MOVE W4, [W10]

; Destination of RCALL

; RCALL with W6

Before
Instruction

After
Instruction

PC 01 000A PC 00 FF8C

W6 FFC0 W6 FFC0

W15 1004 W15 1008

Data 1004 98FF Data 1004 000C

Data 1006 2310 Data 1006 0001

SR 0000 SR 0000

Example 2 000302 RCALL W2
000304 FF1L W0, W1

000450 EX2: CLR W2
000452 ...

; RCALL with W2

; Destination of RCALL

Before
Instruction

After
Instruction

PC 00 0302 PC 00 0450

W2 00A6 W2 00A6

W15 1004 W15 1008

Data 1004 32BB Data 1004 0304

Data 1006 901A Data 1006 0000

SR 0000 SR 0000
DS70030F-page 5-196 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

REPEAT Repeat Next Instruction ‘lit14+1’ Times

Syntax: {label:} REPEAT #lit14

Operands: lit14 ∈ [0 ... 16383]

Operation: (lit14) → RCOUNT
(PC)+2 → PC
Enable Code Looping

Status Affected: RA

Encoding: 0000 1001 00kk kkkk kkkk kkkk

Description: Repeat the instruction immediately following the REPEAT instruction
(lit14 + 1) times. The repeated instruction (or target instruction) is held in
the instruction register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the
repeat count value specified in the instruction. RCOUNT is decremented
with each execution of the target instruction. When RCOUNT equals
zero, the target instruction is executed one more time, and then normal
instruction execution continues with the instruction following the target
instruction.

The ‘k’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:

1. When the repeat literal is ‘0’, REPEAT has the effect of a NOP and
the RA bit is not set.

2. The target REPEAT instruction can NOT be:

• an instruction that changes program flow
• a DO, DISI, LNK, MOV.D, PWRSAV, REPEAT or UNLK

instruction
• a 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [W0++], W1, [W2++] ; Vector update

Before
Instruction

After
Instruction

PC 00 0452 PC 00 0454

RCOUNT 0000 RCOUNT 0009

SR 0000 SR 0010 (RA=1)

Example 2 00089E REPEAT #0x3FF ; Execute CLR 1024 times
0008A0 CLR [W6++] ; Clear the scratch space

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

RCOUNT 0000 RCOUNT 03FF

SR 0000 SR 0010 (RA=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-197

dsPIC30F Programmer’s Reference Manual

REPEAT Repeat Next Instruction Wn+1 Times

Syntax: {label:} REPEAT Wn

Operands: Wn ∈ [W0 ... W15]

Operation: (Wn<13:0>) → RCOUNT
(PC)+2 → PC
Enable Code Looping

Status Affected: RA

Encoding: 0000 1001 1000 0000 0000 ssss

Description: Repeat the instruction immediately following the REPEAT instruction
(Wn<13:0>) times. The instruction to be repeated (or target instruction)
is held in the instruction register for all iterations and is only fetched
once.

When this instruction executes, the RCOUNT register is loaded with the
lower 14-bits of Wn. RCOUNT is decremented with each execution of
the target instruction. When RCOUNT equals zero, the target instruction
is executed one more time, and then normal instruction execution
continues with the instruction following the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is
not set.

2. The target REPEAT instruction can NOT be:

• an instruction that changes program flow
• a DO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK

instruction
• a 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [W0++], [W2++] ; Vector complement

Before
Instruction

After
Instruction

PC 00 0A26 PC 00 0A28

W4 0023 W4 0023

RCOUNT 0000 RCOUNT 0023

SR 0000 SR 0010 (RA=1)
DS70030F-page 5-198 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 00089E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

W10 00FF W10 00FF

RCOUNT 0000 RCOUNT 00FF

SR 0000 SR 0010 (RA=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-199

dsPIC30F Programmer’s Reference Manual

RESET Reset

Syntax: {label:} RESET

Operands: None

Operation: Force all registers that are affected by a MCLR Reset to their RESET
condition.
1 → SWR (RCON<6>)
0 → PC

Status Affected: OA, OB, OAB, SA, SB, SAB, DA, DC, IPL<2:0>, RA, N, OV, Z, C

Encoding: 1111 1110 0000 0000 0000 0000

Description: This instruction provides a way to execute a software RESET. All core
and peripheral registers will take their power-on value. The PC will be
set to ‘0’, the location of the RESET GOTO instruction. The SWR bit,
RCON<6>, will be set to ‘1’ to indicate that the RESET instruction was
executed.

Note: Refer to the dsPIC30F Family Reference Manual for the
power-on value of all registers.

Words: 1

Cycles: 1

Example 1 00202A RESET ; Execute software RESET

Before
Instruction

After
Instruction

PC 00 202A PC 00 0000

W0 8901 W0 0000

W1 08BB W1 0000

W2 B87A W2 0000

W3 872F W3 0000

W4 C98A W4 0000

W5 AAD4 W5 0000

W6 981E W6 0000

W7 1809 W7 0000

W8 C341 W8 0000

W9 90F4 W9 0000

W10 F409 W10 0000

W11 1700 W11 0000

W12 1008 W12 0000

W13 6556 W13 0000

W14 231D W14 0000

W15 1704 W15 0800

SPLIM 1800 SPLIM 0000

TBLPAG 007F TBLPAG 0000

PSVPAG 0001 PSVPAG 0000

CORCON 00F0 CORCON 0020 (SATDW=1)

RCON 0000 RCON 0040 (SWR=1)

SR 0021 (IPL, C=1) SR 0000
DS70030F-page 5-200 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RETFIE Return from Interrupt

Syntax: {label:} RETFIE

Operands: None

Operation: (W15)-2 → W15
(TOS<15:8>) → (SR<7:0>)
(TOS<7>) → (IPL3, CORCON<3>)
(TOS<6:0>) → (PC<22:16>)
(W15)-2 → W15
(TOS<15:0>) → (PC<15:0>)
NOP → Instruction Register

Status Affected: IPL<3:0>, RA, N, OV, Z, C

Encoding: 0000 0110 0100 0000 0000 0000

Description: Return from Interrupt Service Routine. The stack is popped, which loads
the low byte of the Status register, IPL<3> (CORCON<3>) and the Most
Significant Byte of the PC. The stack is popped again, which loads the
lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the Status register
restores the Interrupt Priority Level to the level before the
execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag
must be cleared in software to avoid recursive interrupts.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1 000A26 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 0A26 PC 01 0230

W15 0834 W15 0830

Data 0830 0230 Data 0830 0230

Data 0832 8101 Data 0832 8101

CORCON 0001 CORCON 0001

SR 0000 SR 0081 (IPL=4, C=1)

Example 2 008050 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 8050 PC 00 7008

W15 0926 W15 0922

Data 0922 7008 Data 0922 7008

Data 0924 0300 Data 0924 0300

CORCON 0000 CORCON 0000

SR 0000 SR 0003 (Z, C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-201

dsPIC30F Programmer’s Reference Manual

RETLW Return with Literal in Wn

Syntax: {label:} RETLW{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: (W15)-2 → W15
(TOS) → (PC<22:16>)
(W15)-2 → W15
(TOS) → (PC<15:0>)
lit10 → Wn

Status Affected: None

Encoding: 0000 0101 0Bkk kkkk kkkk dddd

Description: Return from subroutine with the specified, unsigned 10-bit literal stored
in Wn. The software stack is popped twice to restore the PC and the
signed literal is stored in Wn. Since two pops are made, the stack
pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the address of the destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Oper-
ands” for information on using 10-bit literal operands in Byte
mode.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1 000440 RETLW.B #0xA, W0 ; Return with 0xA in W0

Before
Instruction

After
Instruction

PC 00 0440 PC 00 7006

W0 9846 W0 980A

W15 1988 W15 1984

Data 1984 7006 Data 1984 7006

Data 1986 0000 Data 1986 0000

SR 0000 SR 0000

Example 2 00050A RETLW #0x230, W2 ; Return with 0x230 in W2

Before
Instruction

After
Instruction

PC 00 050A PC 01 7008

W2 0993 W2 0230

W15 1200 W15 11FC

Data 11FC 7008 Data 11FC 7008

Data 11FE 0001 Data 11FE 0001

SR 0000 SR 0000
DS70030F-page 5-202 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RETURN Return

Syntax: {label:} RETURN

Operands: None

Operation: (W15)-2 → W15
(TOS) → (PC<22:16>)
(W15)-2 → W15
(TOS) → (PC<15:0>)
NOP → Instruction Register

Status Affected: None

Encoding: 0000 0110 0000 0000 0000 0000

Description: Return from subroutine. The software stack is popped twice to restore
the PC. Since two pops are made, the stack pointer (W15) is
decremented by 4.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1 001A06 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 1A06 PC 01 0004

W15 1248 W15 1244

Data 1244 0004 Data 1244 0004

Data 1246 0001 Data 1246 0001

SR 0000 SR 0000

Example 2 005404 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 5404 PC 00 0966

W15 090A W15 0906

Data 0906 0966 Data 0906 0966

Data 0908 0000 Data 0908 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-203

dsPIC30F Programmer’s Reference Manual

RLC Rotate Left f through Carry

Syntax: {label:} RLC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (C) → Dest<0>
 (f<6:0>) → Dest<7:1>
 (f<7>) → C
For word operation:
 (C) → Dest<0>
 (f<14:0>) → Dest<15:1>
 (f<15>) → C

Status Affected: N, Z, C

Encoding: 1101 0110 1BDf ffff ffff ffff

Description: Rotate the contents of the file register f one bit to the left through the
Carry flag and place the result in the destination register. The Carry flag
of the Status Register is shifted into the Least Significant bit of the
destination, and it is then overwritten with the Most Significant bit of Ws.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for f, 1 for WREG).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

C

Example 1 RLC.B 0x1233 ; Rotate Left w/ C (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 D007

SR 0000 SR 0009 (N, C=1)

Example 2 RLC 0x820, WREG ; Rotate Left w/ C (0x820) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 42DD

Data 0820 216E Data 0820 216E

SR 0001 (C=1) SR 0000 (C=0)
DS70030F-page 5-204 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RLC Rotate Left Ws through Carry

Syntax: {label:} RLC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (C) → Wd<0>
 (Ws<6:0>) → Wd<7:1>
 (Ws<7>) → C
For word operation:
 (C) → Wd<0>
 (Ws<14:0>) → Wd<15:1>
 (Ws<15>) → C

Status Affected: N, Z, C

Encoding: 1101 0010 1Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws one bit to the left through
the Carry flag and place the result in the destination register Wd. The
Carry flag of the Status register is shifted into the Least Significant bit of
Wd, and it is then overwritten with the Most Significant bit of Ws. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

C

Example 1 RLC.B W0, W3 ; Rotate Left w/ C (W0) (Byte mode)
 ; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58ED

SR 0001 (C=1) SR 0009 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-205

dsPIC30F Programmer’s Reference Manual
Example 2 RLC [W2++], [W8] ; Rotate Left w/ C [W2] (Word mode)
 ; Post-increment W2
 ; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E 8082

Data 2008 C041 Data 2008 C041

SR 0001 (C=1) SR 0009 (N, C=1)
DS70030F-page 5-206 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RLNC Rotate Left f without Carry

Syntax: {label:} RLNC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (f<6:0>) → Dest<7:1>
 (f<7>) → Dest<0>
For word operation:
 (f<14:0>) → Dest<15:1>
 (f<15>) → Dest<0>

Status Affected: N, Z

Encoding: 1101 0110 0BDf ffff ffff ffff

Description: Rotate the contents of the file register f one bit to the left and place the
result in the destination register. The Most Significant bit of f is stored in
the Least Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 RLNC.B 0x1233 ; Rotate Left (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1233 D107

SR 0000 SR 0008 (N=1)

Example 2 RLNC 0x820, WREG ; Rotate Left (0x820) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 42DC

Data 0820 216E Data 0820 216E

SR 0001 (C=1) SR 0000 (C=0)
© 2005 Microchip Technology Inc. DS70030F-page 5-207

dsPIC30F Programmer’s Reference Manual

RLNC Rotate Left Ws without Carry

Syntax: {label:} RLNC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (Ws<6:0>) → Wd<7:1>
 (Ws<7>) → Wd<0>
For word operation:
 (Ws<14:0>) → Wd<15:1>
 (Ws<15>) → Wd<0>

Status Affected: N, Z

Encoding: 1101 0010 0Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws one bit to the left and
place the result in the destination register Wd. The Most Significant bit of
Ws is stored in the Least Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for
Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for byte, 1 for word).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 RLNC.B W0, W3 ; Rotate Left (W0) (Byte mode)
 ; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58EC

SR 0001 (C=1) SR 0009 (N, C=1)
DS70030F-page 5-208 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 RLNC [W2++], [W8] ; Rotate Left [W2] (Word mode)
 ; Post-increment W2
 ; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E 8083

Data 2008 C041 Data 2008 C041

SR 0001 (C=1) SR 0009 (N, C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-209

dsPIC30F Programmer’s Reference Manual

RRC Rotate Right f through Carry

Syntax: {label:} RRC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (C) → Dest<7>
 (f<7:1>) → Dest<6:0>
 (f<0>) → C
For word operation:
 (C) → Dest<15>
 (f<15:1>) → Dest<14:0>
 (f<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0111 1BDf ffff ffff ffff

Description: Rotate the contents of the file register f one bit to the right through the
Carry flag and place the result in the destination register. The Carry flag
of the Status Register is shifted into the Most Significant bit of the
destination, and it is then overwritten with the Least Significant bit of Ws.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for byte, 1 for word).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

C

Example 1 RRC.B 0x1233 ; Rotate Right w/ C (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 7407

SR 0000 SR 0000

Example 2 RRC 0x820, WREG ; Rotate Right w/ C (0x820) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 90B7

Data 0820 216E Data 0820 216E

SR 0001 (C=1) SR 0008 (N=1)
DS70030F-page 5-210 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RRC Rotate Right Ws through Carry

Syntax: {label:} RRC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (C) → Wd<7>
 (Ws<7:1>) → Wd<6:0>
 (Ws<0>) → C
For word operation:
 (C) → Wd<15>
 (Ws<15:1>) → Wd<14:0>
 (Ws<0>) → C

Status Affected: N, Z, C

Encoding: 1101 0011 1Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws one bit to the right through
the Carry flag and place the result in the destination register Wd. The
Carry flag of the Status Register is shifted into the Most Significant bit of
Wd, and it is then overwritten with the Least Significant bit of Ws. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

C

Example 1 RRC.B W0, W3 ; Rotate Right w/ C (W0) (Byte mode)
 ; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58BB

SR 0001 (C=1) SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-211

dsPIC30F Programmer’s Reference Manual
Example 2 RRC [W2++], [W8] ; Rotate Right w/ C [W2] (Word mode)
 ; Post-increment W2
 ; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E E020

Data 2008 C041 Data 2008 C041

SR 0001 (C=1) SR 0009 (N, C=1)
DS70030F-page 5-212 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

RRNC Rotate Right f without Carry

Syntax: {label:} RRNC{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 (f<7:1>) → Dest<6:0>
 (f<0>) → Dest<7>
For word operation:
 (f<15:1>) → Dest<14:0>
 (f<0>) → Dest<15>

Status Affected: N, Z

Encoding: 1101 0111 0BDf ffff ffff ffff

Description: Rotate the contents of the file register f one bit to the right and place the
result in the destination register. The Least Significant bit of f is stored in
the Most Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 RRNC.B 0x1233 ; Rotate Right (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 7407

SR 0000 SR 0000

Example 2 RRNC 0x820, WREG ; Rotate Right (0x820) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 10B7

Data 0820 216E Data 0820 216E

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-213

dsPIC30F Programmer’s Reference Manual

RRNC Rotate Right Ws without Carry

Syntax: {label:} RRNC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (Ws<7:1>) → Wd<6:0>
 (Ws<0>) → Wd<7>
For word operation:
 (Ws<15:1>) → Wd<14:0>
 (Ws<0>) → Wd<15>

Status Affected: N, Z

Encoding: 1101 0011 0Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws one bit to the right and
place the result in the destination register Wd. The Least Significant bit
of Ws is stored in the Most Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for Ws
and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 RRNC.B W0, W3 ; Rotate Right (W0) (Byte mode)
 ; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 583B

SR 0001 (C=1) SR 0001 (C=1)
DS70030F-page 5-214 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 RRNC [W2++], [W8] ; Rotate Right [W2] (Word mode)
 ; Post-increment W2
 ; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E E020

Data 2008 C041 Data 2008 C041

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-215

dsPIC30F Programmer’s Reference Manual

SAC Store Accumulator

Syntax: {label:} SAC Acc, {#Slit4,} Wd

[Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd+Wb]

Operands: Acc ∈ [A,B]
Slit4 ∈ [-8 ... +7]
Wb, Wd ∈ [W0 ... W15]

Operation: ShiftSlit4(Acc) (optional)
(Acc[31:16]) → Wd

Status Affected: None

Encoding: 1100 1100 Awww wrrr rhhh dddd

Description: Perform an optional, signed 4-bit shift of the specified accumulator, then
store the shifted contents of AccH (Acc[31:16]) to Wd. The shift range is
-8:7, where a negative operand indicates an arithmetic left shift and a
positive operand indicates an arithmetic right shift. Either register direct
or indirect addressing may be used for Wd.

The ‘A’ bit specifies the source accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of Acc.
2: This instruction stores the truncated contents of Acc. The

instruction SAC.R may be used to store the rounded
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>, =
1), the value stored to Wd is subject to saturation after the
optional shift is performed.

Words: 1

Cycles: 1

Example 1 SAC A, #4, W5
 ; Right shift ACCA by 4
 ; Store result to W5
 ; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 B900 W5 0120

ACCA 00 120F FF00 ACCA 00 120F FF00

CORCON 0010 CORCON 0010

SR 0000 SR 0000
DS70030F-page 5-216 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 SAC B, #-4, [W5++]
; Left shift ACCB by 4
; Store result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCB FF C891 8F4C ACCB FF C891 1F4C

Data 2000 5BBE Data 2000 8000

CORCON 0010 CORCON 0010

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-217

dsPIC30F Programmer’s Reference Manual

SAC.R Store Rounded Accumulator

Syntax: {label:} SAC.R Acc, {#Slit4,} Wd

 [Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd+Wb]

Operands: Acc ∈ [A,B]
Slit4 ∈ [-8 ... +7]
Wb ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: ShiftSlit4(Acc) (optional)
Round(Acc)
(Acc[31:16]) → Wd

Status Affected: None

Encoding: 1100 1101 Awww wrrr rhhh dddd

Description: Perform an optional, signed 4-bit shift of the specified accumulator, then
store the rounded contents of AccH (Acc[31:16]) to Wd. The shift range
is -8:7, where a negative operand indicates an arithmetic left shift and a
positive operand indicates an arithmetic right shift. The Rounding mode
(Conventional or Convergent) is set by the RND bit, CORCON<1>.
Either register direct or indirect addressing may be used for Wd.

The ‘A’ bit specifies the source accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of the Acc.
2: This instruction stores the rounded contents of Acc. The

instruction SAC may be used to store the truncated
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>,
= 1), the value stored to Wd is subject to saturation after the
optional shift is performed.

Words: 1

Cycles: 1

Example 1 SAC.R A, #4, W5
 ; Right shift ACCA by 4
 ; Store rounded result to W5
 ; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 B900 W5 0121

ACCA 00 120F FF00 ACCA 00 120F FF00

CORCON 0010 CORCON 0010

SR 0000 SR 0000
DS70030F-page 5-218 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 SAC.R B, #-4, [W5++]
; Left shift ACCB by 4
; Store rounded result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCB FF F891 8F4C ACCB FF F891 8F4C

Data 2000 5BBE Data 2000 8919

CORCON 0010 CORCON 0010

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-219

dsPIC30F Programmer’s Reference Manual

SE Sign-Extend Ws

Syntax: {label:} SE Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: Ws<7:0> → Wnd<7:0>
If (Ws<7> = 1):
 0xFF → Wnd<15:8>
Else:
 0 → Wnd<15:8>

Status Affected: N, Z, C

Encoding: 1111 1011 0000 0ddd dppp ssss

Description: Sign-extend the byte in Ws and store the 16-bit result in Wnd. Either
register direct or indirect addressing may be used for Ws, and register
direct addressing must be used for Wnd. The C flag is set to the
complement of the N flag.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This operation converts a byte to a word, and it uses no .B or
.W extension.

2: The source Ws is addressed as a byte operand, so any
address modification is by ‘1’.

Words: 1

Cycles: 1

Example 1 SE W3, W4 ; Sign-extend W3 and store to W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 0039

SR 0000 SR 0001 (C=1)

Example 2 SE [W2++], W12 ; Sign-extend [W2] and store to W12
 ; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0901

W12 1002 W12 FF8F

Data 0900 008F Data 0900 008F

SR 0000 SR 0008 (N=1)
DS70030F-page 5-220 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SETM Set f or WREG

Syntax: {label:} SETM{.B} f

WREG

Operands: f ∈ [0 ... 8191]

Operation: For byte operation:
 0xFF → destination designated by D
For word operation:
 0xFFFF → destination designated by D

Status Affected: None

Encoding: 1110 1111 1BDf ffff ffff ffff

Description: All the bits of the specified register are set to ‘1’. If WREG is specified,
the bits of WREG are set. Otherwise, the bits of the specified file register
are set.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 SETM.B 0x891 ; Set 0x891 (Byte mode)

Before
Instruction

After
Instruction

Data 0890 2739 Data 0890 FF39

SR 0000 SR 0000

Example 2 SETM WREG ; Set WREG (Word mode)

Before
Instruction

After
Instruction

WREG (W0) 0900 WREG (W0) FFFF

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-221

dsPIC30F Programmer’s Reference Manual

SETM Set Ws

Syntax: {label:} SETM{.B} Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd ∈ [W0 ... W15]

Operation: For byte operation:
 0xFF → Wd for byte operation
For word operation:
 0xFFFF → Wd for word operation

Status Affected: None

Encoding: 1110 1011 1Bqq qddd d000 0000

Description: All the bits of the specified register are set to ‘1’. Either register direct or
indirect addressing may be used for Wd.

The ‘B’ bits selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SETM.B W13 ; Set W13 (Byte mode)

Before
Instruction

After
Instruction

W13 2739 W13 27FF

SR 0000 SR 0000

Example 2 SETM [--W6] ; Pre-decrement W6 (Word mode)
 ; Set [W6]

Before
Instruction

After
Instruction

W6 1250 W6 124E

Data 124E 3CD9 Data 124E FFFF

SR 0000 SR 0000
DS70030F-page 5-222 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SFTAC Arithmetic Shift Accumulator by Slit6

Syntax: {label:} SFTAC Acc, #Slit6

Operands: Acc ∈ [A,B]
Slit6 ∈ [-16 ... 16]

Operation: Shiftk(Acc) → Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1000 A000 0000 01kk kkkk

Description: Arithmetic shift the 40-bit contents of the specified accumulator by the
signed, 6-bit literal and store the result back into the accumulator. The
shift range is -16:16, where a negative operand indicates a left shift and
a positive operand indicates a right shift. Any bits which are shifted out of
the accumulator are lost.

The ‘A’ bit selects the accumulator for the result.
The ‘k’ bits determine the number of bits to be shifted.

Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words: 1

Cycles: 1

Example 1 SFTAC A, #12
 ; Arithmetic right shift ACCA by 12
 ; Store result to ACCA
 ; CORCON = 0x0080 (SATA = 1)

Before
Instruction

After
Instruction

ACCA 00 120F FF00 ACCA 00 0001 20FF

CORCON 0080 CORCON 0080

SR 0000 SR 0000

Example 2 SFTAC B, #-10
; Arithmetic left shift ACCB by 10
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

ACCB FF FFF1 8F4C ACCB FF C63D 3000

CORCON 0040 CORCON 0040

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-223

dsPIC30F Programmer’s Reference Manual

SFTAC Arithmetic Shift Accumulator by Wb

Syntax: {label:} SFTAC Acc, Wb

Operands: Acc ∈ [A,B]
Wb ∈ [W0 ... W15]

Operation: Shift(Wb)(Acc) → Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1000 A000 0000 0000 ssss

Description: Arithmetic shift the 40-bit contents of the specified accumulator and
store the result back into the accumulator. The Least Significant 6 bits of
Wb are used to specify the shift amount. The shift range is -16:16,
where a negative value indicates a left shift and a positive value
indicates a right shift. Any bits which are shifted out of the accumulator
are lost.

The ‘A’ bit selects the accumulator for the source/destination.
The ‘s’ bits select the address of the shift count register.

Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words: 1

Cycles: 1

Example 1 SFTAC A, W0
 ; Arithmetic shift ACCA by (W0)
 ; Store result to ACCA
 ; CORCON = 0x0000 (saturation disabled)

Before
Instruction

After
Instruction

W0 FFFC W0 FFFC

ACCA 00 320F AB09 ACCA 03 20FA B090

CORCON 0000 CORCON 0000

SR 0000 SR 8800 (OA, OAB=1)

Example 2 SFTAC B, W12
; Arithmetic shift ACCB by (W12)
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

W12 000F W12 000F

ACCB FF FFF1 8F4C ACCB FF FFFF FFE3

CORCON 0040 CORCON 0040

SR 0000 SR 0000
DS70030F-page 5-224 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SL Shift Left f

Syntax: {label:} SL{.B} f {,WREG}

Operands: f ∈ [0... 8191]

Operation: For byte operation:
 (f<7>) → (C)
 (f<6:0>) → Dest<7:1>
 0 → Dest<0>
For word operation:
 (f<15>) → (C)
 (f<14:0>) → Dest<15:1>
 0 → Dest<0>

Status Affected: N, Z, C

Encoding: 1101 0100 0BDf ffff ffff ffff

Description: Shift the contents of the file register one bit to the left and place the
result in the destination register. The Most Significant bit of the file
register is shifted into the Carry bit of the Status register, and zero is
shifted into the Least Significant bit of the destination register.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

C 0

Example 1 SL.B 0x909 ; Shift left (0x909) (Byte mode)

Before
Instruction

After
Instruction

Data 0908 9439 Data 0908 0839

SR 0000 SR 0001 (C=1)

Example 2 SL 0x1650, WREG ; Shift left (0x1650) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 0900 WREG (W0) 80CA

Data 1650 4065 Data 1650 4065

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-225

dsPIC30F Programmer’s Reference Manual

SL Shift Left Ws

Syntax: {label:} SL{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 (Ws<7>) → C
 (Ws<6:0>) → Wd<7:1>
 0 → Wd<0>
For word operation:
 (Ws<15>) → C
 (Ws<14:0>) → Wd<15:1>
 0 → Wd<0>

Status Affected: N, Z, C

Encoding: 1101 0000 0Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the left and place
the result in the destination register Wd. The Most Significant bit of Ws is
shifted into the Carry bit of the Status register, and 0 is shifted into the
Least Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

C 0

Example 1 SL.B W3, W4 ; Shift left W3 (Byte mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W3 78A9 W3 78A9

W4 1005 W4 1052

SR 0000 SR 0001 (C=1)
DS70030F-page 5-226 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 SL [W2++], [W12] ; Shift left [W2] (Word mode)
 ; Store result to [W12]
 ; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0902

W12 1002 W12 1002

Data 0900 800F Data 0900 800F

Data 1002 6722 Data 1002 001E

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-227

dsPIC30F Programmer’s Reference Manual

SL Shift Left by Short Literal

Syntax: {label:} SL Wb, #lit4, Wnd

Operands: Wb ∈ [W0 ... W15]
lit4 ∈ [0...15]
Wnd ∈ [W0 ... W15]

Operation: lit4<3:0> → Shift_Val
Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val-1:0> = 0

Status Affected: N, Z

Encoding: 1101 1101 0www wddd d100 kkkk

Description: Shift left the contents of the source register Wb by the 4-bit unsigned
literal and store the result in the destination register Wnd. Any bits
shifted out of the source register are lost. Direct addressing must be
used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1 SL W2, #4, W2 ; Shift left W2 by 4
 ; Store result to W2

Before
Instruction

After
Instruction

W2 78A9 W2 8A90

SR 0000 SR 0008 (N=1)

Example 2 SL W3, #12, W8 ; Shift left W3 by 12
 ; Store result to W8

Before
Instruction

After
Instruction

W3 0912 W3 0912

W8 1002 W8 2000

SR 0000 SR 0000
DS70030F-page 5-228 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SL Shift Left by Wns

Syntax: {label:} SL Wb, Wns, Wnd

Operands: Wb ∈ [W0 ... W15]
Wns ∈ [W0 ...W15]
Wnd ∈ [W0 ... W15]

Operation: Wns<4:0> → Shift_Val
Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val-1:0> = 0

Status Affected: N, Z

Encoding: 1101 1101 0www wddd d000 ssss

Description: Shift left the contents of the source register Wb by the 5 Least
Significant bits of Wns (only up to 15 positions) and store the result in
the destination register Wnd. Any bits shifted out of the source register
are lost. Register direct addressing must be used for Wb, Wns and
Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1

Cycles: 1

Example 1 SL W0, W1, W2 ; Shift left W0 by W1<0:4>
 ; Store result to W2

Before
Instruction

After
Instruction

W0 09A4 W0 09A4

W1 8903 W1 8903

W2 78A9 W2 4D20

SR 0000 SR 0000

Example 2 SL W4, W5, W6 ; Shift left W4 by W5<0:4>
 ; Store result to W6

Before
Instruction

After
Instruction

W4 A409 W4 A409

W5 FF01 W5 FF01

W6 0883 W6 4812

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-229

dsPIC30F Programmer’s Reference Manual

SUB Subtract WREG from f

Syntax: {label:} SUB{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) – (WREG) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0101 0BDf ffff ffff ffff

Description: Subtract the contents of the default working register WREG from the
contents of the specified file register, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 SUB.B 0x1FFF ; Sub. WREG from (0x1FFF) (Byte mode)
 ; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 9039

SR 0000 SR 0009 (N, C=1)

Example 2 SUB 0xA04, WREG ; Sub. WREG from (0xA04) (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) E2EF

Data 0A04 4523 Data 0A04 4523

SR 0000 SR 0008 (N=1)
DS70030F-page 5-230 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUB Subtract Literal from Wn

Syntax: {label:} SUB{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: (Wn) – lit10 → Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0001 0Bkk kkkk kkkk dddd

Description: Subtract the 10-bit unsigned literal operand from the contents of the
working register Wn, and store the result back in the working register
Wn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation.
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

Words: 1

Cycles: 1

Example 1 SUB.B #0x23, W0 ; Sub. 0x23 from W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 78E1

SR 0000 SR 0008 (N=1)

Example 2 SUB #0x108, W4 ; Sub. 0x108 from W4 (Word mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W4 6234 W4 612C

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-231

dsPIC30F Programmer’s Reference Manual

SUB Subtract Short Literal from Wb

Syntax: {label:} SUB{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb) – lit5 → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 0www wBqq qddd d11k kkkk

Description: Subtract the 5-bit unsigned literal operand from the contents of the base
register Wb, and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Register direct or indirect
addressing must be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SUB.B W4, #0x10, W5 ; Sub. 0x10 from W4 (Byte mode)
 ; Store result to W5

Before
Instruction

After
Instruction

W4 1782 W4 1782

W5 7804 W5 7872

SR 0000 SR 0005 (OV, C=1)

Example 2 SUB W0, #0x8, [W2++] ; Sub. 0x8 from W0 (Word mode)
 ; Store result to [W2]
 ; Post-increment W2

Before
Instruction

After
Instruction

W0 F230 W0 F230

W2 2004 W2 2006

Data 2004 A557 Data 2004 F228

SR 0000 SR 0009 (N, C=1)
DS70030F-page 5-232 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUB Subtract Ws from Wb

Syntax: {label:} SUB{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb) – (Ws) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 0www wBqq qddd dppp ssss

Description: Subtract the contents of the source register Ws from the contents of the
base register Wb and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SUB.B W0, W1, W0 ; Sub. W1 from W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 17EE

W1 7844 W1 7844

SR 0000 SR 0108 (DC, N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-233

dsPIC30F Programmer’s Reference Manual
Example 2 SUB W7, [W8++], [W9++] ; Sub. [W8] from W7 (Word mode)
 ; Store result to [W9]
 ; Post-increment W8
 ; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2020 W9 2022

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 916C

SR 0000 SR 010C (DC, N, OV=1)
DS70030F-page 5-234 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUB Subtract Accumulators

Syntax: {label:} SUB Acc

Operands: Acc ∈ [A,B]

Operation: If (Acc = A):
 ACCA – ACCB → ACCA
Else:
 ACCB – ACCA → ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A011 0000 0000 0000

Description: Subtract the contents of the unspecified accumulator from the contents
of Acc, and store the result back into Acc. This instruction performs a
40-bit subtraction.

The ‘A’ bit specifies the destination accumulator.

Words: 1

Cycles: 1

Example 1 SUB A ; Subtract ACCB from ACCA
 ; Store the result to ACCA
 ; CORCON = 0x0000 (no saturation)

Before
Instruction

After
Instruction

ACCA 76 120F 098A ACCA 52 1EFC 4D73

ACCB 23 F312 BC17 ACCB 23 F312 BC17

CORCON 0000 CORCON 0000

SR 0000 SR 1100 (OA, OB=1)

Example 2 SUB B ; Subtract ACCA from ACCB
 ; Store the result to ACCB
 ; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

ACCA FF 9022 2EE1 ACCA FF 9022 2EE1

ACCB 00 2456 8F4C ACCB 00 7FFF FFFF

CORCON 0040 CORCON 0040

SR 0000 SR 1400 (SB, SAB=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-235

dsPIC30F Programmer’s Reference Manual

SUBB Subtract WREG and Carry bit from f

Syntax: {label:} SUBB{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f) – (WREG) – (C) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0101 1BDf ffff ffff ffff

Description: Subtract the contents of the default working register WREG and the
Borrow flag (Carry flag inverse, C) from the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.

These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBB.B 0x1FFF ; Sub. WREG and C from (0x1FFF) (Byte mode)
 ; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 8F39

SR 0000 SR 0008 (N=1)

Example 2 SUBB 0xA04, WREG ; Sub. WREG and C from (0xA04) (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) 0000

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0001 (C=1)
DS70030F-page 5-236 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBB Subtract Wn from Literal with Borrow

Syntax: {label:} SUBB{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: (Wn) – lit10 – (C) → Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0001 1Bkk kkkk kkkk dddd

Description: Subtract the unsigned 10-bit literal operand and the Borrow flag (Carry
flag inverse, C) from the contents of the working register Wn, and store
the result back in the working register Wn. Register direct addressing
must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBB.B #0x23, W0 ; Sub. 0x23 and C from W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 78E0

SR 0000 SR 0108 (DC, N=1)

Example 2 SUBB #0x108, W4 ; Sub. 0x108 and C from W4 (Word mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W4 6234 W4 612C

SR 0001 (C=1) SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-237

dsPIC30F Programmer’s Reference Manual

SUBB Subtract Short Literal from Wb with Borrow

Syntax: {label:} SUBB{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb) – lit5 – (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 1www wBqq qddd d11k kkkk

Description: Subtract the 5-bit unsigned literal operand and the Borrow flag (Carry
flag inverse, C) from the contents of the base register Wb and place the
result in the destination register Wd. Register direct addressing must be
used for Wb. Either register direct or indirect addressing may be used
for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBB.B W4, #0x10, W5 ; Sub. 0x10 and C from W4 (Byte mode)
 ; Store result to W5

Before
Instruction

After
Instruction

W4 1782 W4 1782

W5 7804 W5 7871

SR 0000 SR 0005 (OV, C=1)

Example 2 SUBB W0, #0x8, [W2++] ; Sub. 0x8 and C from W0 (Word mode)
 ; Store result to [W2]
 ; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 0000

SR 0020 (Z=1) SR 0103 (DC, Z, C=1)
DS70030F-page 5-238 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBB Subtract Ws from Wb with Borrow

Syntax: {label:} SUBB{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb) – (Ws) – (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 1www wBqq qddd dppp ssss

Description: Subtract the contents of the source register Ws and the Borrow flag
(Carry flag inverse, C) from the contents of the base register Wb, and
place the result in the destination register Wd. Register direct
addressing must be used for Wb. Register direct or indirect addressing
may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension
to denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBB.B W0, W1, W0 ; Sub. W1 and C from W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 17ED

W1 7844 W1 7844

SR 0000 SR 0108 (DC, N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-239

dsPIC30F Programmer’s Reference Manual
Example 2 SUBB W7,[W8++],[W9++] ; Sub. [W8] and C from W7 (Word mode)
 ; Store result to [W9]
 ; Post-increment W8
 ; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 916C

SR 0000 SR 010C (DC, N, OV=1)
DS70030F-page 5-240 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBBR Subtract f from WREG with Borrow

Syntax: {label:} SUBBR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (WREG) – (f) – (C) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 1101 1BDf ffff ffff ffff

Description: Subtract the contents of the specified file register f and the Borrow flag
(Carry flag inverse, C) from the contents of WREG, and place the result
in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.

These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBBR.B 0x803 ; Sub. (0x803) and C from WREG (Byte mode)
 ; Store result to 0x803

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 0802 9439 Data 0802 6F39

SR 0002 (Z=1) SR 0000

Example 2 SUBBR 0xA04, WREG ; Sub. (0xA04) and C from WREG (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) FFFE

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-241

dsPIC30F Programmer’s Reference Manual

SUBBR Subtract Wb from Short Literal with Borrow

Syntax: {label:} SUBBR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: lit5 – (Wb) – (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 1www wBqq qddd d11k kkkk

Description: Subtract the contents of the base register Wb and the Borrow flag (Carry
flag inverse, C) from the 5-bit unsigned literal and place the result in the
destination register Wd. Register direct addressing must be used for
Wb. Register direct or indirect addressing must be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBBR.B W0, #0x10, W1 ; Sub. W0 and C from 0x10 (Byte mode)
 ; Store result to W1

Before
Instruction

After
Instruction

W0 F310 W0 F310

W1 786A W1 7800

SR 0003 (Z, C=1) SR 0103 (DC, Z, C=1)

Example 2 SUBBR W0, #0x8, [W2++] ; Sub. W0 and C from 0x8 (Word mode)
 ; Store result to [W2]
 ; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 FFFE

SR 0020 (Z=1) SR 0108 (DC, N=1)
DS70030F-page 5-242 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBBR Subtract Wb from Ws with Borrow

Syntax: {label:} SUBBR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) – (Wb) – (C) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 1www wBqq qddd dppp ssss

Description: Subtract the contents of the base register Wb and the Borrow flag (Carry
flag inverse, C) from the contents of the source register Ws and place
the result in the destination register Wd. Register direct addressing must
be used for Wb. Register direct or indirect addressing may be used for
Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1

Example 1 SUBBR.B W0, W1, W0 ; Sub. W0 and C from W1 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 1711

W1 7844 W1 7844

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-243

dsPIC30F Programmer’s Reference Manual
Example 2 SUBBR W7,[W8++],[W9++] ; Sub. W7 and C from [W8] (Word mode)
 ; Store result to [W9]
 ; Post-increment W8
 ; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 6E93

SR 0000 SR 0005 (OV, C=1)
DS70030F-page 5-244 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBR Subtract f from WREG

Syntax: {label:} SUBR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (WREG) – (f) → destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 1101 0BDf ffff ffff ffff

Description: Subtract the contents of the specified file register from the contents of
the default working register WREG, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 SUBR.B 0x1FFF ; Sub. (0x1FFF) from WREG (Byte mode)
 ; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 7039

SR 0000 SR 0000

Example 2 SUBR 0xA04, WREG ; Sub. (0xA04) from WREG (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) FFFF

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-245

dsPIC30F Programmer’s Reference Manual

SUBR Subtract Wb from Short Literal

Syntax: {label:} SUBR{.B} Wb, #lit5 Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: lit5 – (Wb) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 0www wBqq qddd d11k kkkk

Description: Subtract the contents of the base register Wb from the unsigned 5-bit
literal operand, and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SUBR.B W0, #0x10, W1 ; Sub. W0 from 0x10 (Byte mode)
 ; Store result to W1

Before
Instruction

After
Instruction

W0 F310 W0 F310

W1 786A W1 7800

SR 0000 SR 0103 (DC, Z, C=1)

Example 2 SUBR W0, #0x8, [W2++] ; Sub. W0 from 0x8 (Word mode)
 ; Store result to [W2]
 ; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 FFFF

SR 0000 SR 0108 (DC, N=1)
DS70030F-page 5-246 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SUBR Subtract Wb from Ws

Syntax: {label:} SUBR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Ws) – (Wb) → Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 0www wBqq qddd dppp ssss

Description: Subtract the contents of the base register Wb from the contents of the
source register Ws and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SUBR.B W0, W1, W0 ; Sub. W0 from W1 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 1712

W1 7844 W1 7844

SR 0000 SR 0001 (C=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-247

dsPIC30F Programmer’s Reference Manual
Example 2 SUBR W7, [W8++], [W9++] ; Sub. W7 from [W8] (Word mode)
 ; Store result to [W9]
 ; Post-increment W8
 ; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 6E94

SR 0000 SR 0005 (OV, C=1)
DS70030F-page 5-248 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

SWAP Byte or Nibble Swap Wn

Syntax: {label:} SWAP{.B} Wn

Operands: Wn ∈ [W0 ... W15]

Operation: For byte operation:
 (Wn)<7:4> ↔ (Wn)<3:0>
For word operation:
 (Wn)<15:8> ↔ (Wn)<7:0>

Status Affected: None

Encoding: 1111 1101 1B00 0000 0000 ssss

Description: Swap the contents of the working register Wn. In Word mode, the two
bytes of Wn are swapped. In Byte mode, the two nibbles of the Least
Significant Byte of Wn are swapped, and the Most Significant Byte of
Wn is unchanged. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the working register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 SWAP.B W0 ; Nibble swap (W0)

Before
Instruction

After
Instruction

W0 AB87 W0 AB78

SR 0000 SR 0000

Example 2 SWAP W0 ; Byte swap (W0)

Before
Instruction

After
Instruction

W0 8095 W0 9580

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-249

dsPIC30F Programmer’s Reference Manual

TBLRDH Table Read High

Syntax: {label:} TBLRDH{.B} [Ws], Wd

[Ws++], [Wd]

[Ws--], [Wd++]

[++Ws], [Wd--]

[--Ws], [++Wd]

[--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 If (LSB(Ws) = 1)
 0 → Wd
 Else
 Program Mem [(TBLPAG),(Ws)] <23:16> → Wd
For word operation:
 Program Mem [(TBLPAG),(Ws)] <23:16> → Wd <7:0>
 0 → Wd <15:8>

Status Affected: None

Encoding: 1011 1010 1Bqq qddd dppp ssss

Description: Read the contents of the Most Significant Word of program memory and
store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, zero is stored to the Most Significant Byte of the destination
register (due to non-existent program memory) and the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the Least Significant Byte of the destination register.

In Byte mode, the source address depends on the contents of Ws. If Ws is
not word aligned, zero is stored to the destination register (due to
non-existent program memory). If Ws is word aligned, the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the destination register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination (data) register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source (address) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

Words: 1

Cycles: 2
DS70030F-page 5-250 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 1 TBLRDH.B [W0], [W1++] ; Read PM (TBLPAG:[W0]) (Byte mode)
 ; Store to [W1]
 ; Post-increment W1

Before
Instruction

After
Instruction

W0 0812 W0 0812

W1 0F71 W1 0F72

Data 0F70 0944 Data 0F70 EF44

Program 01 0812 EF 2042 Program 01 0812 EF 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Example 2 TBLRDH [W6++], W8 ; Read PM (TBLPAG:[W6]) (Word mode)
 ; Store to W8
 ; Post-increment W6

Before
Instruction

After
Instruction

W6 3406 W6 3408

W8 65B1 W8 0029

Program 00 3406 29 2E40 Program 00 3406 29 2E40

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-251

dsPIC30F Programmer’s Reference Manual

TBLRDL Table Read Low

Syntax: {label:} TBLRDL{.B} [Ws], Wd

[Ws++], [Wd]

[Ws--], [Wd++]

[++Ws], [Wd--]

[--Ws], [++Wd]

[--Wd]

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 If (LSB(Ws) = 1)
 Program Mem [(TBLPAG),(Ws)] <15:8> → Wd
 Else
 Program Mem [(TBLPAG),(Ws)] <7:0> → Wd
For word operation:
 Program Mem [(TBLPAG),(Ws)] <15:0> → Wd

Status Affected: None

Encoding: 1011 1010 0Bqq qddd dppp ssss

Description: Read the contents of the Least Significant Word of program memory and
store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, the lower 2 bytes of program memory are stored to the
destination register. In Byte mode, the source address depends on the
contents of Ws. If Ws is not word aligned, the second byte of the program
memory word (PM<15:7>) is stored to the destination register. If Ws is
word aligned, the first byte of the program memory word (PM<7:0>) is
stored to the destination register.

The ‘B’ bit selects byte or word operation (0 for word mode, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination (data) register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source (address) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

Words: 1

Cycles: 2
DS70030F-page 5-252 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 1 TBLRDL.B [W0++], W1 ; Read PM (TBLPAG:[W0]) (Byte mode)
 ; Store to W1
 ; Post-increment W0

Before
Instruction

After
Instruction

W0 0813 W0 0814

W1 0F71 W1 0F20

Data 0F70 0944 Data 0F70 EF44

Program 01 0812 EF 2042 Program 01 0812 EF 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Example 2 TBLRDL [W6], [W8++] ; Read PM (TBLPAG:[W6]) (Word mode)
 ; Store to W8
 ; Post-increment W8

Before
Instruction

After
Instruction

W6 3406 W6 3408

W8 1202 W8 1204

Data 1202 658B Data 1202 2E40

Program 00 3406 29 2E40 Program 00 3406 29 2E40

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000
© 2005 Microchip Technology Inc. DS70030F-page 5-253

dsPIC30F Programmer’s Reference Manual

TBLWTH Table Write High

Syntax: {label:} TBLWTH{.B} Ws, [Wd]

[Ws], [Wd++]

[Ws++], [Wd--]

[Ws--], [++Wd]

[++Ws], [--Wd]

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 If (LSB(Wd) = 1)
 NOP
 Else
 (Ws) → Program Mem [(TBLPAG),(Wd)]<23:16>
For word operation:
 (Ws)<7:0> → Program Mem [(TBLPAG),(Wd)] <23:16>

Status Affected: None

Encoding: 1011 1011 1Bqq qddd dppp ssss

Description: Store the contents of the working source register Ws to the Most
Significant Word of program memory. The destination word address of
program memory is formed by concatenating the 8-bit Table Pointer
register, TBLPAG<7:0>, with the effective address specified by Wd. Either
direct or indirect addressing may be used for Ws, and indirect addressing
must be used for Wd.

Since program memory is 24-bits wide, this instruction can only write to
the upper byte of program memory (PM<23:16>). This may be performed
using a Wd that is word aligned in Byte mode or Word mode. If Byte mode
is used with a Wd that is not word aligned, no operation is performed.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination (address) register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source (data) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

Words: 1

Cycles: 2
DS70030F-page 5-254 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 1 TBLWTH.B [W0++], [W1] ; Write [W0]... (Byte mode)
 ; to PM Latch High (TBLPAG:[W1])
 ; Post-increment W0

Before
Instruction

After
Instruction

W0 0812 W0 0812

W1 0F70 W1 0F70

Data 0812 0944 Data 0812 EF44

Program 01 0F70 EF 2042 Program 01 0F70 44 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.

Example 2 TBLWTH W6, [W8++] ; Write W6... (Word mode)
 ; to PM Latch High (TBLPAG:[W8])
 ; Post-increment W8

Before
Instruction

After
Instruction

W6 0026 W6 0026

W8 0870 W8 0872

Program 00 0870 22 3551 Program 00 0870 26 3551

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000

Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.
© 2005 Microchip Technology Inc. DS70030F-page 5-255

dsPIC30F Programmer’s Reference Manual

TBLWTL Table Write Low

Syntax: {label:} TBLWTL{.B} Ws, [Wd]

[Ws], [Wd++]

[Ws++], [Wd--]

[Ws--], [++Wd]

[++Ws], [--Wd]

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: For byte operation:
 If (LSB(Wd)=1)
 (Ws) → Program Mem [(TBLPAG),(Wd)] <15:8>
 Else
 (Ws) → Program Mem [(TBLPAG),(Wd)] <7:0>
For word operation:
 (Ws) → Program Mem [(TBLPAG),(Wd)] <15:0>

Status Affected: None

Encoding: 1011 1011 0Bqq qddd dppp ssss

Description: Store the contents of the working source register Ws to the Least Significant
Word of program memory. The destination word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Wd. Either direct or
indirect addressing may be used for Ws, and indirect addressing must be
used for Wd.

In Word mode, Ws is stored to the lower 2 bytes of program memory. In
Byte mode, the Least Significant bit of Wd determines the destination byte.
If Wd is not word aligned, Ws is stored to the second byte of program
memory (PM<15:8>). If Wd is word aligned, Ws is stored to the first byte of
program memory (PM<7:0>).

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination (address) register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source (data) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a word
move, but it is not required.

Words: 1

Cycles: 2
DS70030F-page 5-256 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 1 TBLWTL.B W0, [W1++] ; Write W0... (Byte mode)
 ; to PM Latch Low (TBLPAG:[W1])
 ; Post-increment W1

Before
Instruction

After
Instruction

W0 6628 W0 6628

W1 1225 W1 1226

Program 00 1224 78 0080 Program 01 1224 78 2880

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000

Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.

Example 2 TBLWTL [W6], [W8] ; Write [W6]... (Word mode)
 ; to PM Latch Low (TBLPAG:[W8])
 ; Post-increment W8

Before
Instruction

After
Instruction

W6 1600 W6 1600

W8 7208 W8 7208

Data 1600 0130 Data 1600 0130

Program 01 7208 09 0002 Program 01 7208 09 0130

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.
© 2005 Microchip Technology Inc. DS70030F-page 5-257

dsPIC30F Programmer’s Reference Manual

ULNK De-allocate Stack Frame

Syntax: {label:} ULNK

Operands: None

Operation: W14 → W15
(W15)-2 → W15
(TOS) → W14

Status Affected: None

Encoding: 1111 1010 1000 0000 0000 0000

Description: This instruction de-allocates a stack frame for a subroutine calling
sequence. The stack frame is de-allocated by setting the stack pointer
(W15) equal to the frame pointer (W14), and then popping the stack to
reset the frame pointer (W14).

Words: 1

Cycles: 1

Example 1 ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 2002 W14 2000

W15 20A2 W15 2000

Data 2000 2000 Data 2000 2000

SR 0000 SR 0000

Example 2 ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 0802 W14 0800

W15 0812 W15 0800

Data 0800 0800 Data 0800 0800

SR 0000 SR 0000
DS70030F-page 5-258 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

XOR Exclusive OR f and WREG

Syntax: {label:} XOR{.B} f {,WREG}

Operands: f ∈ [0 ... 8191]

Operation: (f).XOR.(WREG) → destination designated by D

Status Affected: N, Z

Encoding: 1011 0110 1BDf ffff ffff ffff

Description: Compute the logical exclusive OR operation of the contents of the
default working register WREG and the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1

Example 1 XOR.B 0x1FFF ; XOR (0x1FFF) and WREG (Byte mode)
 ; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 9039

SR 0000 SR 0008 (N=1)

Example 2 XOR 0xA04, WREG ; XOR (0xA04) and WREG (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) C267

Data 0A04 A053 Data 0A04 A053

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-259

dsPIC30F Programmer’s Reference Manual
XOR Exclusive OR Literal and Wn

Syntax: {label:} XOR{.B} #lit10, Wn

Operands: lit10 ∈ [0 ... 255] for byte operation
lit10 ∈ [0 ... 1023] for word operation
Wn ∈ [W0 ... W15]

Operation: lit10.XOR.(Wn) → Wn

Status Affected: N, Z

Encoding: 1011 0010 1Bkk kkkk kkkk dddd

Description: Compute the logical exclusive OR operation of the unsigned 10-bit literal
operand and the contents of the working register Wn and store the result
back in the working register Wn. Register direct addressing must be
used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

Words: 1

Cycles: 1

Example 1 XOR.B #0x23, W0 ; XOR 0x23 and W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 7827

SR 0000 SR 0000

Example 2 XOR #0x108, W4 ; XOR 0x108 and W4 (Word mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W4 6134 W4 603C

SR 0000 SR 0000
DS70030F-page 5-260 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

XOR Exclusive OR Wb and Short Literal

Syntax: {label:} XOR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb ∈ [W0 ... W15]
lit5 ∈ [0 ... 31]
Wd ∈ [W0 ... W15]

Operation: (Wb).XOR.lit5 → Wd

Status Affected: N, Z

Encoding: 0110 1www wBqq qddd d11k kkkk

Description: Compute the logical exclusive OR operation of the contents of the base
register Wb and the unsigned 5-bit literal operand and place the result in
the destination register Wd. Register direct addressing must be used for
Wb. Either register direct or indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits provide the literal operand, a 5-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 XOR.B W4, #0x16, W5 ; XOR W4 and 0x14 (Byte mode)
 ; Store result to W5

Before
Instruction

After
Instruction

W4 C822 W4 C822

W5 1200 W5 1234

SR 0000 SR 0000

Example 2 XOR W2, #0x1F, [W8++] ; XOR W2 by 0x1F (Word mode)
 ; Store result to [W8]
 ; Post-increment W8

 Before
 Instruction

 After
 Instruction

W2 8505 W2 8505

W8 1004 W8 1006

Data 1004 6628 Data 1004 851A

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-261

dsPIC30F Programmer’s Reference Manual

XOR Exclusive OR Wb and Ws

Syntax: {label:} XOR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb ∈ [W0 ... W15]
Ws ∈ [W0 ... W15]
Wd ∈ [W0 ... W15]

Operation: (Wb).XOR.(Ws) → Wd

Status Affected: N, Z

Encoding: 0110 1www wBqq qddd dppp ssss

Description: Compute the logical exclusive OR operation of the contents of the
source register Ws and the contents of the base register Wb, and place
the result in the destination register Wd. Register direct addressing must
be used for Wb. Either register direct or indirect addressing may be used
for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Example 1 XOR.B W1, [W5++], [W9++] ; XOR W1 and [W5] (Byte mode)
 ; Store result to [W9]
 ; Post-increment W5 and W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W5 2000 W5 2001

W9 2600 W9 2601

Data 2000 115A Data 2000 115A

Data 2600 0000 Data 2600 00F0

SR 0000 SR 0008 (N=1)
DS70030F-page 5-262 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n
D

escrip
tio

n
s

5

Example 2 XOR W1, W5, W9 ; XOR W1 and W5 (Word mode)
 ; Store the result to W9

 Before
 Instruction

 After
 Instruction

W1 FEDC W1 FEDC

W5 1234 W5 1234

W9 A34D W9 ECE8

SR 0000 SR 0008 (N=1)
© 2005 Microchip Technology Inc. DS70030F-page 5-263

dsPIC30F Programmer’s Reference Manual

ZE Zero-Extend Wn

Syntax: {label:} ZE Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws ∈ [W0 ... W15]
Wnd ∈ [W0 ... W15]

Operation: Ws<7:0> → Wnd<7:0>
0 → Wnd<15:8>

Status Affected: N, Z, C

Encoding: 1111 1011 10qq qddd dppp ssss

Description: Zero-extend the Least Significant Byte in source working register Ws to
a 16-bit value and store the result in the destination working register
Wnd. Either register direct or indirect addressing may be used for Ws,
and register direct addressing must be used for Wnd. The N flag is
cleared and the C flag is set, because the zero-extended word is always
positive.

The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This operation converts a byte to a word, and it uses no .B or
.W extension.

2: The source Ws is addressed as a byte operand, so any
address modification is by 1.

Words: 1

Cycles: 1

Example 1 ZE W3, W4 ; zero-extend W3
 ; Store result to W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 0039

SR 0000 SR 0001 (C=1)

Example 2 ZE [W2++], W12 ; Zero-extend [W2]
 ; Store to W12
 ; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0901

W12 1002 W12 008F

Data 0900 268F Data 0900 268F

SR 0000 SR 0001 (C=1)
DS70030F-page 5-264 © 2005 Microchip Technology Inc.

R
eferen

ce

6

Section 6. Reference
HIGHLIGHTS

This section of the manual contains reference information for the dsPIC30F. It consists of the
following sections:

6.1 Data Memory Map ... 6-2
6.2 Core Special Function Register Map ... 6-3

6.3 Program Memory Map ... 6-6

6.4 Instruction Bit Map ... 6-7

6.5 Instruction Set Summary Table .. 6-9
© 2005 Microchip Technology Inc. DS70030F-page 6-1

dsPIC30F Programmer’s Reference Manual
6.1 Data Memory Map

A sample dsPIC30F data memory map is shown in Figure 6-1.

Figure 6-1: Data Memory Map

0x0000

0x07FE

0x17FE

0xFFFE

LS Byte
Address16-bits

LSBMSB

MS Byte
Address

0x0001

0x07FF

0x17FF

0xFFFF

0x8001 0x8000

Provides Program
Space Visibility

0x27FF 0x27FE
0x28000x2801

0x0801 0x0800

0x1801 0x1800

Near
RAM

0x1FFF

 X Data RAM
Unimplemented

 Y Data RAM

 X Data RAM

 SFR Space

Note 1: The partition between the X and Y data spaces is device specific. Refer to the
appropriate device data sheet for further details. The data space boundaries
indicated here are for example purposes only.

2: Refer to Section 4. “Instruction Set Details” for information on Data Addressing
modes, performing byte accesses and word alignment requirements.

3: Refer to the dsPIC30F Family Reference Manual for information on accessing
program memory through data address space.
DS70030F-page 6-2 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

6.2 Core Special Function Register Map

The Core Special Function Register Map is shown in Table 6-1. Please refer to the dsPIC30F
Data Sheet for complete register descriptions and the memory map of the remaining special
function registers.
© 2005 Microchip Technology Inc. DS70030F-page 6-3

dsPIC30F Programmer’s Reference Manual
Ta
b

le
 6

-1
:

d
sP

IC
30

F
 C

o
re

 R
eg

is
te

r
M

ap

 N
am

e
A

d
d

r
B

it
 1

5
B

it
 1

4
B

it
 1

3
B

it
 1

2
B

it
 1

1
B

it
 1

0
B

it
 9

B
it

 8
B

it
 7

B
it

 6
B

it
 5

B
it

 4
B

it
 3

B
it

 2
B

it
 1

B
it

 0
R

E
S

E
T

 S
ta

te

W
0

00
00

W
0

(W
R

E
G

)
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
1

00
02

W
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
2

00
04

W
2

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
3

00
06

W
3

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
4

00
08

W
4

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
5

00
0A

W
5

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
6

00
0C

W
6

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
7

00
0E

W
7

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
8

00
10

W
8

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
9

00
12

W
9

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
10

00
14

W
10

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
11

00
16

W
11

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
12

00
18

W
12

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
13

00
1A

W
13

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
14

00
1C

W
14

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

W
15

00
1E

W
15

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
0

S
P

LI
M

00
20

S
P

LI
M

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
A

L
00

22
A

C
C

A
L

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
A

H
00

24
A

C
C

A
H

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
A

U
00

26
S

ig
n-

ex
te

ns
io

n
of

 A
C

C
A

<
39

>
A

C
C

A
U

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
B

L
00

28
A

C
C

B
L

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
B

H
00

2A
A

C
C

B
H

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

A
C

C
B

U
00

2C
S

ig
n-

ex
te

ns
io

n
of

 A
C

C
B

<
39

>
A

C
C

B
U

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

P
C

L
00

2E
P

C
L

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

P
C

H
00

30
—

—
—

—
—

—
—

—
—

P
C

H
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

T
B

LP
A

G
00

32
—

—
—

—
—

—
—

—
T

B
LP

A
G

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

P
S

V
P

A
G

00
34

—
—

—
—

—
—

—
—

P
S

V
P

A
G

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

R
C

O
U

N
T

00
36

R
C

O
U

N
T

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

D
C

O
U

N
T

00
38

D
C

O
U

N
T

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

D
O

S
TA

R
T

L
00

3A
D

O
S

TA
R

T
L

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

D
O

S
TA

R
T

H
00

3C
—

—
—

—
—

—
—

—
—

—
D

O
S

TA
R

T
H

0
0
0
0

0
0
0
0

0
0
x
x

x
x
x
x

D
O

E
N

D
L

00
3E

D
O

E
N

D
L

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

D
O

E
N

D
H

00
40

—
—

—
—

—
—

—
—

—
—

D
O

E
N

D
H

0
0
0
0

0
0
0
0

0
0
x
x

x
x
x
x

S
R

00
42

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
A

D
C

IP
L2

IP
L1

IP
L0

R
A

N
O

V
Z

C
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

DS70030F-page 6-4 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

C
O

R
C

O
N

00
44

—
—

—
U

S
E

D
T

D
L2

D
L1

D
L0

S
A

TA
S

A
T

B
S

A
T

D
W

A
C

C
S

A
T

IP
L3

P
S

V
R

N
D

IF
0
0
0
0

0
0
0
0

0
0
1
0

0
0
0
0

M
O

D
C

O
N

00
46

X
M

O
D

E
N

Y
M

O
D

E
N

—
—

B
W

M
<

3:
0>

Y
W

M
<

3:
0>

X
W

M
<

3:
0>

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

X
M

O
D

S
R

T
00

48
X

M
O

D
S

R
T

<
15

:0
>

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

X
M

O
D

E
N

D
00

4A
X

M
O

D
E

N
D

<
15

:0
>

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

Y
M

O
D

S
R

T
00

4C
Y

M
O

D
S

R
T

<
15

:0
>

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

Y
M

O
D

E
N

D
00

4E
Y

M
O

D
E

N
D

<
15

:0
>

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

X
B

R
E

V
00

50
B

R
E

N
X

B
R

E
V

<
14

:0
>

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

D
IS

IC
N

T
00

52
—

—
D

IS
IC

N
T

<
13

:0
>

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

R
es

er
ve

d
00

54
 -

 0
07

E
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Ta
b

le
 6

-1
:

d
sP

IC
30

F
 C

o
re

 R
eg

is
te

r
M

ap
 (

C
o

n
ti

n
u

ed
)

 N
am

e
A

d
d

r
B

it
 1

5
B

it
 1

4
B

it
 1

3
B

it
 1

2
B

it
 1

1
B

it
 1

0
B

it
 9

B
it

 8
B

it
 7

B
it

 6
B

it
 5

B
it

 4
B

it
 3

B
it

 2
B

it
 1

B
it

 0
R

E
S

E
T

 S
ta

te
© 2003 Microchip Technology Inc. DS70030F-page 6-5

dsPIC30F Programmer’s Reference Manual
6.3 Program Memory Map

A sample dsPIC30F program memory map is shown in Figure 6-2.

Figure 6-2: Program Space Memory Map

RESET - Target Address

U
se

r
M

em
or

y
S

pa
ce

000000

00007E

Osc. Fail Trap Vector
000002

000080

Fuse Configuration

User FLASH
Program Memory

018000
017FFE

C
on

fig
ur

at
io

n
M

em
or

y
S

pa
ce

Data FLASH

Stack Error Trap Vector
Address Error Trap Vector

Arithmetic Warn. Trap Vector
Software Trap

Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector
Interrupt 1 Vector

Interrupt 52 Vector
Interrupt 53 Vector

(48K instructions)

(4 Kbytes)

800000

F80000

Registers F8000E
F80010

DEVID

FEFFFE
FF0000
FFFFFE

Reserved

F7FFFE

Reserved

7FF000
7FEFFE

(Read 0’s)

8005FE
800600

UNITID

0000FE
000100

000014

Alternate Vector Table

Vector Tables

8005BE
8005C0

RESET - GOTO Instruction

000004

Reserved

7FFFFE

Reserved
DS70030F-page 6-6 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

6.4 Instruction Bit Map

Instruction encoding for the dsPIC30F is summarized in Table 6-2. This table contains the
encoding for the Most Significant Byte of each instruction. The first column in the table represents
bits 23:20 of the opcode, and the first row of the table represents bits 19:16 of the opcode. The
first byte of the opcode is formed by taking the first column bit value and appending the first row
bit value. For instance, the Most Significant Byte of the PUSH instruction (last row, ninth column)
is encoded with 11111000b (0xF8).

Note: The complete opcode for each instruction may be determined by the instruction
descriptions in Section 5. “Instruction Descriptions”, using Table 5.2 through
Table 5-12.
© 2005 Microchip Technology Inc. DS70030F-page 6-7

dsPIC30F Programmer’s Reference Manual
Ta
b

le
 6

-2
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 E

n
co

d
in

g

O
p

co
d

e<
19

:1
6>

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

Opcode<23:20>

0
0
0
0

N
O

P
B

R
A

C
A

LL
G

O
T

O
R

C
A

LL

C
A

LL
—

G
O

T
O

R
E

T
LW

R
E

T
F

IE
R

E
T

U
R

N
R

C
A

LL
D

O
R

E
P

E
A

T
—

—
B

R
A

(O
A

)
B

R
A

(O
B

)
B

R
A

(S
A

)
B

R
A

(S
B

)

0
0
0
1

S
U

B
R

S
U

B
B

R

0
0
1
0

M
O

V

0
0
1
1

B
R

A
(O

V
)

B
R

A

(C
)

B
R

A
(Z

)
B

R
A

(N
)

B
R

A
(L

E
)

B
R

A
(L

T
)

B
R

A
(L

E
U

)
B

R
A

B
R

A
 (

N
O

V
)

B
R

A
(N

C
)

B
R

A
(N

Z
)

B
R

A
(N

N
)

B
R

A
(G

T
)

B
R

A
(G

E
)

B
R

A
(G

T
U

)

—

0
1
0
0

A
D

D
A

D
D

C

0
1
0
1

S
U

B
S

U
B

B

0
1
1
0

A
N

D
X

O
R

0
1
1
1

IO
R

M
O

V

1
0
0
0

M
O

V

1
0
0
1

M
O

V

1
0
1
0

B
S

E
T

B
C

LR
B

T
G

B
T

S
T

B
T

S
T

S
B

T
S

T
B

T
S

S
B

T
S

C
B

S
E

T
B

C
LR

B
T

G
B

T
S

T
B

T
S

T
S

B
S

W
B

T
S

S
B

T
S

C

1
0
1
1

A
D

D
A

D
D

C
S

U
B

S
U

B
B

A
N

D
X

O
R

IO
R

M
O

V
A

D
D

A
D

D
C

S
U

B
S

U
B

B
A

N
D

X
O

R
IO

R
M

O
V

M
U

L.
U

S
M

U
L.

U
U

M
U

L.
S

S
M

U
L.

S
U

T
B

LR
D

H
T

B
LR

D
L

T
B

LW
T

H
T

B
LW

T
L

M
U

L
S

U
B

S
U

B
B

M
O

V.
D

M
O

V

1
1
0
0

M
A

C
M

P
Y

M
P

Y.
N

M
S

C

C
LR

A
C

M
A

C
M

P
Y

M
P

Y.
N

M
S

C

M
O

V
S

A
C

S
F

TA
C

A
D

D
LA

C
A

D
D

N
E

G
S

U
B

S
A

C
S

A
C

.R
—

F
F

1L
F

F
1R

1
1
0
1

S
L

A
S

R
LS

R
R

LC
R

LN
C

R
R

C

R

R
N

C
S

L
A

S
R

LS
R

R
LC

R

LN
C

R
R

C

R
R

N
C

D
IV

.S
D

IV
.U

D
IV

F
—

—
—

S
L

A
S

R
LS

R
F

B
C

L

1
1
1
0

C
P

0
C

P
C

P
B

C
P

0
C

P
C

P
B

—
—

C
P

S
G

T
C

P
S

LT
C

P
S

E
Q

C
P

S
N

E
IN

C
IN

C
2

D
E

C
D

E
C

2
C

O
M

N
E

G
C

LR
S

E
T

M
IN

C
IN

C
2

D
E

C
D

E
C

2
C

O
M

N
E

G
C

LR
S

E
T

M

1
1
1
1

E
D

E
D

A
C

M
A

C
M

P
Y

—
—

—
—

P
U

S
H

P
O

P
LN

K
U

LN
K

S
E

Z
E

D
IS

I
D

A
W

E
X

C
H

S
W

A
P

C
LR

W
D

T
P

W
R

S
A

V
P

O
P.

S
P

U
S

H
.S

R
E

S
E

T

N
O

P
R

DS70030F-page 6-8 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

6.5 Instruction Set Summary Table

The complete dsPIC30F instruction set is summarized in Table 6-3. This table contains an alpha-
betized listing of the instruction set. It includes instruction assembly syntax, description, size (in
24-bit words), execution time (in instruction cycles), affected status bits and the page number in
which the detailed description can be found. Table 1-2 identifies the symbols which are used in
the Instruction Set Summary Table.

© 2005 Microchip Technology Inc. DS70030F-page 6-9

dsPIC30F Programmer’s Reference Manual
Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

A
D

D
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
+

 W
R

E
G

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

7

A
D

D
#l

it1
0,

W
n

W
n

=
 li

t1
0

+
 W

n
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
8

A
D

D
W

b,
#l

it5
,W

d
W

d
=

 W
b

+
 li

t5
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
9

A
D

D
W

b,
W

s,
W

d
W

d
=

 W
b

+
 W

s
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
10

A
D

D
A

cc
A

dd
 a

cc
um

ul
at

or
s

1
1

�
�

�
�

�
�

—
—

—
—

—
5-

11

A
D

D
W

s,
#S

lit
4,

A
cc

16
-b

it
si

gn
ed

 a
dd

 to
 a

cc
um

ul
at

or
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
12

A
D

D
C

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 f

+
 W

R
E

G
 +

 (
C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
14

A
D

D
C

#l
it1

0,
W

n
W

n
=

 li
t1

0
+

 W
n

+
 (

C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

15

A
D

D
C

W
b,

#l
it5

,W
d

W
d

=
 W

b
+

 li
t5

 +
 (

C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

16

A
D

D
C

W
b,

W
s,

W
d

W
d

=
 W

b
+

 W
s

+
 (

C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

17

A
N

D
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
.A

N
D

. W
R

E
G

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

19

A
N

D
#l

it1
0,

W
n

W
n

=
 li

t1
0

.A
N

D
. W

n
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
20

A
N

D
W

b,
#l

it5
,W

d
W

d
=

 W
b

.A
N

D
. l

it5
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
21

A
N

D
W

b,
W

s,
W

d
W

d
=

 W
b

.A
N

D
. W

s
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
22

A
S

R
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 a
rit

hm
et

ic
 r

ig
ht

 s
hi

ft
f

1
1

—
—

—
—

—
—

—
�

—
�

�
5-

24

A
S

R
W

s,
W

d
W

d
=

 a
rit

hm
et

ic
 r

ig
ht

 s
hi

ft
W

s
1

1
—

—
—

—
—

—
—

�
—

�
�

5-
25

A
S

R
W

b,
#l

it4
,W

nd
W

nd
 =

 a
rit

hm
et

ic
 r

ig
ht

 s
hi

ft
W

b
by

 li
t4

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

27

A
S

R
W

b,
W

ns
,W

nd
W

nd
 =

 a
rit

hm
et

ic
 r

ig
ht

 s
hi

ft
W

b
by

 W
ns

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

28

B
C

LR
f,#

bi
t4

B
it

cl
ea

r
f

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

29

B
C

LR
W

s,
#b

it4
B

it
cl

ea
r

W
s

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

30

B
R

A
E

xp
r

B
ra

nc
h

un
co

nd
iti

on
al

ly

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

31

B
R

A
W

n
C

om
pu

te
d

br
an

ch
1

2
—

—
—

—
—

—
—

—
—

—
—

5-
32

B
R

A
C

,E
xp

r
B

ra
nc

h
if

C
ar

ry
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
33

B
R

A
G

E
,E

xp
r

B
ra

nc
h

if
gr

ea
te

r
th

an
 o

r
eq

ua
l

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

35

B
R

A
G

E
U

,E
xp

r
B

ra
nc

h
if

C
ar

ry
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
36

B
R

A
G

T,
E

xp
r

B
ra

nc
h

if
gr

ea
te

r
th

an
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
37

B
R

A
G

T
U

,E
xp

r
B

ra
nc

h
if

un
si

gn
ed

 g
re

at
er

 th
an

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

38

B
R

A
LE

,E
xp

r
B

ra
nc

h
if

le
ss

 th
an

 o
r

eq
ua

l
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
39

B
R

A
LE

U
,E

xp
r

B
ra

nc
h

if
un

si
gn

ed
 le

ss
 th

an
 o

r
eq

ua
l

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

40

B
R

A
LT

,E
xp

r
B

ra
nc

h
if

le
ss

 th
an

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

41

B
R

A
LT

U
,E

xp
r

B
ra

nc
h

if
no

t C
ar

ry
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
42

B
R

A
N

,E
xp

r
B

ra
nc

h
if

N
eg

at
iv

e
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
43

B
R

A
N

C
,E

xp
r

B
ra

nc
h

if
no

t C
ar

ry
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
44

B
R

A
N

N
,E

xp
r

B
ra

nc
h

if
no

t N
eg

at
iv

e
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
45

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
DS70030F-page 6-10 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

B
R

A
N

O
V,

E
xp

r
B

ra
nc

h
if

no
t O

ve
rf

lo
w

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

46

B
R

A
N

Z
,E

xp
r

B
ra

nc
h

if
no

t Z
er

o
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
47

B
R

A
O

A
,E

xp
r

B
ra

nc
h

if
A

cc
um

ul
at

or
 A

 o
ve

rf
lo

w
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
48

B
R

A
O

B
,E

xp
r

B
ra

nc
h

if
A

cc
um

ul
at

or
 B

 o
ve

rf
lo

w
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
49

B
R

A
O

V,
E

xp
r

B
ra

nc
h

if
O

ve
rf

lo
w

1
1

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

50

B
R

A
S

A
,E

xp
r

B
ra

nc
h

if
A

cc
um

ul
at

or
 A

 s
at

ur
at

ed
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
51

B
R

A
S

B
,E

xp
r

B
ra

nc
h

if
A

cc
um

ul
at

or
 B

 s
at

ur
at

ed
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
52

B
R

A
Z

,E
xp

r
B

ra
nc

h
if

Z
er

o
1

1
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
53

B
S

E
T

f,#
bi

t4
B

it
se

t f
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
54

B
S

E
T

W
s,

#b
it4

B
it

se
t W

s
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
55

B
S

W
.C

W
s,

W
b

W
rit

e
C

 b
it

to
 W

s<
W

b>
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
56

B
S

W
.Z

W
s,

W
b

W
rit

e
Z

 b
it

to
 W

s<
W

b>
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
56

B
T

G
f,#

bi
t4

B
it

to
gg

le
 f

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

58

B
T

G
W

s,
#b

it4
B

it
to

gg
le

 W
s

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

59

B
T

S
C

f,#
bi

t4
B

it
te

st
 f,

 s
ki

p
if

cl
ea

r
1

1
(2

 o
r

3)
—

—
—

—
—

—
—

—
—

—
—

5-
60

B
T

S
C

W
s,

#b
it4

B
it

te
st

 W
s,

 s
ki

p
if

cl
ea

r
1

1
(2

 o
r

3)
—

—
—

—
—

—
—

—
—

—
—

5-
62

B
T

S
S

f,#
bi

t4
B

it
te

st
 f,

 s
ki

p
if

se
t

1
1

(2
 o

r
3)

—
—

—
—

—
—

—
—

—
—

—
5-

64

B
T

S
S

W
s,

#b
it4

B
it

te
st

 W
s,

 s
ki

p
if

se
t

1
1

(2
 o

r
3)

—
—

—
—

—
—

—
—

—
—

—
5-

65

B
T

S
T

f,#
bi

t4
B

it
te

st
 f

1
1

—
—

—
—

—
—

—
—

—
�

—
5-

67

B
T

S
T.

C
W

s,
#b

it4
B

it
te

st
 W

s
to

 C
1

1
—

—
—

—
—

—
—

—
—

—
�

5-
68

B
T

S
T.

Z
W

s,
#b

it4
B

it
te

st
 W

s
to

 Z
1

1
—

—
—

—
—

—
—

—
—

�
—

5-
68

B
T

S
T.

C
W

s,
W

b
B

it
te

st
 W

s<
W

b>
 to

 C
1

1
—

—
—

—
—

—
—

—
—

—
�

5-
69

B
T

S
T.

Z
W

s,
W

b
B

it
te

st
 W

s<
W

b>
 to

 Z
1

1
—

—
—

—
—

—
—

—
—

�
—

5-
69

B
T

S
T

S
f,#

bi
t4

B
it

te
st

 th
en

 s
et

 f
1

1
—

—
—

—
—

—
—

—
—

�
—

5-
71

B
T

S
T

S
.C

W
s,

#b
it4

B
it

te
st

 W
s

to
 C

 th
en

 s
et

1
1

—
—

—
—

—
—

—
—

—
—

�
5-

72

B
T

S
T

S
.Z

W
s,

#b
it4

B
it

te
st

 W
s

to
 Z

 th
en

 s
et

1
1

—
—

—
—

—
—

—
—

—
�

—
5-

72

C
A

LL
E

xp
r

C
al

l s
ub

ro
ut

in
e

2
2

—
—

—
—

—
—

—
—

—
—

—
5-

73

C
A

LL
W

n
C

al
l i

nd
ire

ct
 s

ub
ro

ut
in

e
1

2
—

—
—

—
—

—
—

—
—

—
—

5-
74

C
LR

f
f =

 0
x
0
0
0
0

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

75

C
LR

W
R

E
G

W
R

E
G

 =
 0
x
0
0
0
0

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

75

C
LR

W
d

W
d

=
 0

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

76

C
LR

A
cc

,W
x,

W
xd

,W
y,

W
yd

,A
W

B
C

le
ar

 A
cc

um
ul

at
or

1
1

0
0

0
0

0
0

—
—

—
—

—
5-

77

C
LR

W
D

T
C

le
ar

 W
at

ch
do

g
Ti

m
er

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

79

C
O

M
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
80

C
O

M
W

s,
W

d
W

d
=

 W
s

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

81

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
© 2003 Microchip Technology Inc. DS70030F-page 6-11

dsPIC30F Programmer’s Reference Manual
C
P

f
C

om
pa

re
 (

f –
 W

R
E

G
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

82

C
P

W
b,

#l
it5

C
om

pa
re

 (
W

b
–

lit
5)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

83

C
P

W
b,

W
s

C
om

pa
re

 (
W

b
–

W
s)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

84

C
P

0
f

C
om

pa
re

 (
f –

 0
x
0
0
0
0

)
1

1
—

—
—

—
—

—
1

�
�

�
1

5-
85

C
P

0
W

s
C

om
pa

re
 (

W
s

–
0
x
0
0
0
0

)
1

1
—

—
—

—
—

—
1

�
�

�
1

5-
86

C
P

B
f

C
om

pa
re

 w
ith

 b
or

ro
w

 (
f –

 W
R

E
G

 –
 C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
87

C
P

B
W

b,
#l

it5
C

om
pa

re
 w

ith
 b

or
ro

w
 (

W
b

–
lit

5
–

C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

88

C
P

B
W

b,
W

s
C

om
pa

re
 w

ith
 b

or
ro

w
 (

W
b

–
W

s
–

C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

89

C
P

S
E

Q
W

b,
 W

n
C

om
pa

re
 (

W
b

w
ith

 W
n)

, s
ki

p
if

=
1

1
(2

 o
r

3)
—

—
—

—
—

—
—

—
—

—
—

5-
91

C
P

S
G

T
W

b,
 W

n
S

ig
ne

d
C

om
pa

re
 (

W
b

w
ith

 W
n)

, s
ki

p
if

>
1

1
(2

 o
r

3)
—

—
—

—
—

—
—

—
—

—
—

5-
92

C
P

S
LT

W
b,

 W
n

S
ig

ne
d

C
om

pa
re

 (
W

b
w

ith
 W

n)
, s

ki
p

if
<

1
1

(2
 o

r
3)

—
—

—
—

—
—

—
—

—
—

—
5-

93

C
P

S
N

E
W

b,
 W

n
S

ig
ne

d
C

om
pa

re
 (

W
b

w
ith

 W
n)

, s
ki

p
if

≠
1

1
(2

 o
r

3)
—

—
—

—
—

—
—

—
—

—
—

5-
94

D
A

W
.B

W
n

W
n

=
 d

ec
im

al
 a

dj
us

t W
n

1
1

—
—

—
—

—
—

—
—

—
—

�
5-

95

D
E

C
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
–

1
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
96

D
E

C
W

s,
W

d
W

d
=

 W
s

–
1

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

97

D
E

C
2

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 f

–
2

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

98

D
E

C
2

W
s,

W
d

W
d

=
 W

s
–

2
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
99

D
IS

I
#l

it1
4

D
is

ab
le

 in
te

rr
up

ts
 fo

r
lit

14
 in

st
ru

ct
io

n
cy

cl
es

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

10
0

D
IV

.S
W

m
, W

n
S

ig
ne

d
16

/1
6-

bi
t i

nt
eg

er
 d

iv
id

e
1

18
—

—
—

—
—

—
—

�
�

�
�

5-
10

1

D
IV

.S
D

W
m

, W
n

S
ig

ne
d

32
/1

6-
bi

t i
nt

eg
er

 d
iv

id
e

1
18

—
—

—
—

—
—

—
�

�
�

�
5-

10
1

D
IV

.U
W

m
, W

n
U

ns
ig

ne
d

16
/1

6-
bi

t i
nt

eg
er

 d
iv

id
e

1
18

—
—

—
—

—
—

—
0

0
�

�
5-

10
3

D
IV

.U
D

W
m

, W
n

U
ns

ig
ne

d
32

/1
6-

bi
t i

nt
eg

er
 d

iv
id

e
1

18
—

—
—

—
—

—
—

0
�

�
�

5-
10

3

D
IV

F
W

m
, W

n
S

ig
ne

d
16

/1
6-

bi
t f

ra
ct

io
na

l d
iv

id
e

1
18

—
—

—
—

—
—

—
�

�
�

�
5-

10
5

D
O

#l
it1

4,
 E

xp
r

D
o

co
de

 to
 P

C
+

E
xp

r,
(li

t1
4+
1

)
tim

es
2

2
—

—
—

—
—

—
—

—
—

—
—

5-
10

7

D
O

W
n,

 E
xp

r
D

o
co

de
 to

 P
C

+
E

xp
r,

(W
n+
1

)
tim

es
2

2
—

—
—

—
—

—
—

—
—

—
—

5-
10

9

E
D

W
m

*W
m

,A
cc

,W
x,

W
y,

W
xd

E
uc

lid
ea

n
di

st
an

ce
 (

no
 a

cc
um

ul
at

e)
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
11

1

E
D

A
C

W
m

*W
m

,A
cc

,W
x,

W
y,

W
xd

E
uc

lid
ea

n
di

st
an

ce
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
11

3

E
X

C
H

W
ns

,W
nd

S
w

ap
 W

ns
 a

nd
 W

nd
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
11

5

F
B

C
L

W
s,

W
nd

F
in

d
bi

t c
ha

ng
e

fr
om

 le
ft

(M
S

b)
 s

id
e

1
1

—
—

—
—

—
—

—
—

—
—

�
5-

11
6

F
F

1L
W

s,
W

nd
F

in
d

fir
st

 o
ne

 fr
om

 le
ft

(M
S

b)
 s

id
e

1
1

—
—

—
—

—
—

—
—

—
—

�
5-

11
8

F
F

1R
W

s,
W

nd
F

in
d

fir
st

 o
ne

 fr
om

 r
ig

ht
 (

LS
b)

 s
id

e
1

1
—

—
—

—
—

—
—

—
—

—
�

5-
12

0

G
O

T
O

E
xp

r
G

o
to

 a
dd

re
ss

2
2

—
—

—
—

—
—

—
—

—
—

—
5-

12
2

G
O

T
O

W
n

G
o

to
 a

dd
re

ss
 in

di
re

ct
ly

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

12
3

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
DS70030F-page 6-12 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

IN
C

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 f

+
 1

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

12
4

IN
C

W
s,

W
d

W
d

=
 W

s
+

 1
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
12

5

IN
C

2
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
+

 2
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
12

6

IN
C

2
W

s,
W

d
W

d
=

 W
s

+
 2

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

12
7

IO
R

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 f

.IO
R

. W
R

E
G

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

12
8

IO
R

#l
it1

0,
W

n
W

n
=

 li
t1

0
.IO

R
. W

n
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
12

9

IO
R

W
b,

#l
it5

,W
d

W
d

=
 W

b
.IO

R
. l

it5
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
13

0

IO
R

W
b,

W
s,

W
d

W
d

=
 W

b
.IO

R
. W

s
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
13

1

LA
C

W
s,

#S
lit

4,
 A

cc
Lo

ad
 A

cc
um

ul
at

or
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
13

3

LN
K

#l
it1

4
Li

nk
 fr

am
e

po
in

te
r

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

13
5

LS
R

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 lo

gi
ca

l r
ig

ht
 s

hi
ft

f
1

1
—

—
—

—
—

—
—

0
—

�
�

5-
13

6

LS
R

W
s,

W
d

W
d

=
 lo

gi
ca

l r
ig

ht
 s

hi
ft

W
s

1
1

—
—

—
—

—
—

—
0

—
�

�
5-

13
7

LS
R

W
b,

#l
it4

,W
nd

W
nd

 =
 lo

gi
ca

l r
ig

ht
 s

hi
ft

W
b

by
 li

t4
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
13

9

LS
R

W
b,

W
ns

,W
nd

W
nd

 =
 lo

gi
ca

l r
ig

ht
 s

hi
ft

W
b

by
 W

ns
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
14

0

M
A

C
W

m
*W

n,
A

cc
,W

x,
W

xd
,W

y,
W

yd
,A

W
B

M
ul

tip
ly

 a
nd

 a
cc

um
ul

at
e

1
1

�
�

�
�

�
�

—
—

—
—

—
5-

14
1

M
A

C
W

m
*W

m
,A

cc
,W

x,
W

xd
,W

y,
W

yd
,

S
qu

ar
e

an
d

ac
cu

m
ul

at
e

1
1

�
�

�
�

�
�

—
—

—
—

—
5-

14
3

M
O

V
f {

,W
R

E
G

}
M

ov
e

f t
o

de
st

in
at

io
n

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

14
5

M
O

V
W

R
E

G
,f

M
ov

e
W

R
E

G
 to

 f
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
14

6

M
O

V
f,W

nd
M

ov
e

f t
o

W
nd

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

14
7

M
O

V
W

ns
,f

M
ov

e
W

ns
 to

 f
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
14

8

M
O

V.
B

#l
it8

,W
nd

M
ov

e
8-

bi
t u

ns
ig

ne
d

lit
er

al
 to

 W
nd

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

14
9

M
O

V
#l

it1
6,

W
nd

M
ov

e
16

-b
it

lit
er

al
 to

 W
nd

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

15
0

M
O

V
[W

ns
+

S
lit

10
],W

nd
M

ov
e

[W
ns

 +
 S

lit
10

] t
o

W
nd

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

15
1

M
O

V
W

ns
,[W

nd
+

S
lit

10
]

M
ov

e
W

ns
 to

 [W
nd

 +
 S

lit
10

]
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
15

2

M
O

V
W

s,
W

d
M

ov
e

W
s

to
 W

d
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
15

3

M
O

V.
D

W
s,

W
nd

M
ov

e
do

ub
le

 W
s

to
 W

nd
:W

nd
+1

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

15
5

M
O

V.
D

W
ns

,W
d

M
ov

e
do

ub
le

 W
ns

:W
ns

+
1

 to
 W

d
1

2
—

—
—

—
—

—
—

—
—

—
—

5-
15

7

M
O

V
S

A
C

A
cc

,W
x,

W
xd

,W
y,

W
yd

,A
W

B
M

ov
e

[W
x]

 to
 W

xd
, a

nd
 [W

y]
 to

 W
yd

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

15
9

M
P

Y
W

m
*W

n,
A

cc
,W

x,
W

xd
,W

y,
W

yd
M

ul
tip

ly
 W

n
by

 W
m

 to
 a

cc
um

ul
at

or
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
16

1

M
P

Y
W

m
*W

m
,A

cc
,W

x,
W

xd
,W

y,
W

yd
S

qu
ar

e
to

 A
cc

um
ul

at
or

1
1

�
�

�
�

�
�

—
—

—
—

—
5-

16
3

M
P

Y.
N

W
m

*W
n,

A
cc

,W
x,

W
xd

,W
y,

W
yd

-(
M

ul
tip

ly
 W

n
by

 W
m

)
to

 A
cc

um
ul

at
or

1
1

0
0

—
—

0
—

—
—

—
—

—
5-

16
5

M
S

C
W

m
*W

n,
A

cc
,W

x,
W

xd
,W

y,
W

yd
,A

W
B

M
ul

tip
ly

 a
nd

 s
ub

tr
ac

t f
ro

m
 A

cc
um

ul
at

or
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
16

7

M
U

L
f

W
3:

W
2

=
 f

*
W

R
E

G
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
16

9

M
U

L.
S

S
W

b,
W

s,
W

nd
{W

nd
+

1,
W

nd
}

=
 s

ig
n(

W
b)

 *
 s

ig
n(

W
s)

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

17
0

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
© 2003 Microchip Technology Inc. DS70030F-page 6-13

dsPIC30F Programmer’s Reference Manual
M
U

L.
S

U
W

b,
#l

it5
,W

nd
{W

nd
+

1,
W

nd
}

=
 s

ig
n(

W
b)

 *
 u

ns
ig

n(
lit

5)
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
17

2

M
U

L.
S

U
W

b,
W

s,
W

nd
{W

nd
+

1,
W

nd
}

=
 s

ig
n(

W
b)

 *
 u

ns
ig

n(
W

s)
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
17

4

M
U

L.
U

S
W

b,
W

s,
W

nd
{W

nd
+

1,
W

nd
}

=
 u

ns
ig

n(
W

b)
 *

 s
ig

n(
W

s)
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
17

6

M
U

L.
U

U
W

b,
#l

it5
,W

nd
{W

nd
+

1,
W

nd
}

=
 u

ns
ig

n(
W

b)
 *

 u
ns

ig
n(

lit
5)

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

17
8

M
U

L.
U

U
W

b,
W

s,
W

nd
{W

nd
+

1,
W

nd
}

=
 u

ns
ig

n(
W

b)
 *

 u
ns

ig
n(

W
s)

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

17
9

N
E

G
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
+

 1
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
18

1

N
E

G
W

s,
W

d
W

d
=

 W
s

+
 1

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

18
2

N
E

G
A

cc
N

eg
at

e
A

cc
um

ul
at

or
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
18

3

N
O

P
N

o
op

er
at

io
n

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

18
4

N
O

P
R

N
o

op
er

at
io

n
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
18

5

P
O

P
f

P
op

 T
O

S
 to

 f
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
18

6

P
O

P
W

d
P

op
 T

O
S

 to
 W

d
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
18

7

P
O

P.
D

W
nd

P
op

 d
ou

bl
e

fr
om

 T
O

S
 to

 W
nd

:W
nd

+
1

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

18
8

P
O

P.
S

P
op

 s
ha

do
w

 r
eg

is
te

rs
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
18

9

P
U

S
H

f
P

us
h

f t
o

T
O

S
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
19

0

P
U

S
H

W
s

P
us

h
W

s
to

 T
O

S
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
19

1

P
U

S
H

.D
W

ns
P

us
h

do
ub

le
 W

ns
:W

ns
+
1

 to
 T

O
S

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

19
2

P
U

S
H

.S
P

us
h

sh
ad

ow
 r

eg
is

te
rs

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

19
3

P
W

R
S

A
V

#l
it1

E
nt

er
 P

ow
er

 S
av

in
g

m
od

e
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
19

4

R
C

A
LL

E
xp

r
R

el
at

iv
e

ca
ll

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

19
5

R
C

A
LL

W
n

C
om

pu
te

d
ca

ll
1

2
—

—
—

—
—

—
—

—
—

—
—

5-
19

6

R
E

P
E

A
T

#l
it1

4
R

ep
ea

t n
ex

t i
ns

tr
uc

tio
n

(li
t1

4+
1

)
tim

es
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
19

7

R
E

P
E

A
T

W
n

R
ep

ea
t n

ex
t i

ns
tr

uc
tio

n
(W

n+
1

)
tim

es
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
19

8

R
E

S
E

T
S

of
tw

ar
e

de
vi

ce
 R

E
S

E
T

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

20
0

R
E

T
F

IE
R

et
ur

n
fr

om
 in

te
rr

up
t e

na
bl

e
1

3
(2

)
—

—
—

—
—

—
—

�
�

�
�

5-
20

1

R
E

T
LW

#l
it1

0,
W

n
R

et
ur

n
w

ith
 li

t1
0

in
 W

n
1

3
(2

)
—

—
—

—
—

—
—

—
—

—
—

5-
20

2

R
E

T
U

R
N

R
et

ur
n

fr
om

 s
ub

ro
ut

in
e

1
3

(2
)

—
—

—
—

—
—

—
—

—
—

—
5-

20
3

R
LC

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 r

ot
at

e
le

ft
th

ro
ug

h
C

ar
ry

 f
1

1
—

—
—

—
—

—
—

�
—

�
�

5-
20

4

R
LC

W
s,

W
d

W
d

=
 r

ot
at

e
le

ft
th

ro
ug

h
C

ar
ry

 W
s

1
1

—
—

—
—

—
—

—
�

—
�

�
5-

20
5

R
LN

C
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 r
ot

at
e

le
ft

(n
o

C
ar

ry
)

f
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
20

7

R
LN

C
W

s,
W

d
W

d
=

 r
ot

at
e

le
ft

(n
o

C
ar

ry
)

W
s

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

20
8

R
R

C
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 r
ot

at
e

rig
ht

 th
ro

ug
h

C
ar

ry
 f

1
1

—
—

—
—

—
—

—
�

—
�

�
5-

21
0

R
R

C
W

s,
W

d
W

d
=

 r
ot

at
e

rig
ht

 th
ro

ug
h

C
ar

ry
 W

s
1

1
—

—
—

—
—

—
—

�
—

�
�

5-
21

1

R
R

N
C

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 r

ot
at

e
rig

ht
 (

no
 C

ar
ry

)
f

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

21
3

R
R

N
C

W
s,

W
d

W
d

=
 r

ot
at

e
rig

ht
 (

no
 C

ar
ry

)
W

s
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
21

4

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
DS70030F-page 6-14 © 2005 Microchip Technology Inc.

Section 6. Reference
R

eferen
ce

6

S
A

C
A

cc
,#

S
lit

4,
W

d
S

to
re

 A
cc

um
ul

at
or

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

21
6

S
A

C
.R

A
cc

,#
S

lit
4,

W
d

S
to

re
 r

ou
nd

ed
 A

cc
um

ul
at

or
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
21

8

S
E

W
s,

W
d

W
d

=
 s

ig
n-

ex
te

nd
ed

 W
s

1
1

—
—

—
—

—
—

—
�

—
�

�
5-

22
0

S
E

T
M

f
f =

 0
x
F
F
F
F

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

22
1

S
E

T
M

W
R

E
G

W
R

E
G

 =
 0
x
F
F
F
F

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

22
1

S
E

T
M

W
s

W
s

=
 0
x
F
F
F
F

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

22
2

S
F

TA
C

A
cc

,#
S

lit
6

A
rit

hm
et

ic
 s

hi
ft

ac
cu

m
ul

at
or

 b
y

S
lit

6
1

1
�

�
�

�
�

�
—

—
—

—
—

5-
22

3

S
F

TA
C

A
cc

,W
n

A
rit

hm
et

ic
 s

hi
ft

ac
cu

m
ul

at
or

 b
y

(W
n)

1

1
�

�
�

�
�

�
—

—
—

—
—

5-
22

4

S
L

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 a

rit
hm

et
ic

 le
ft

sh
ift

 f
1

1
—

—
—

—
—

—
—

�
—

�
�

5-
22

5

S
L

W
s,

W
d

W
d

=
 a

rit
hm

et
ic

 le
ft

sh
ift

 W
s

1
1

—
—

—
—

—
—

—
�

—
�

�
5-

22
6

S
L

W
b,

#l
it4

,W
nd

W
nd

 =
 le

ft
sh

ift
 W

b
by

 li
t4

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

22
8

S
L

W
b,

W
ns

,W
nd

W
nd

 =
 le

ft
sh

ift
 W

b
by

 W
ns

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

22
9

S
U

B
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
–

W
R

E
G

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

23
0

S
U

B
#l

it1
0,

W
n

W
n

=
 W

n
–

lit
10

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

23
1

S
U

B
W

b,
#l

it5
,W

d
W

d
=

 W
b

–
lit

5
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

2

S
U

B
W

b,
W

s,
W

d
W

d
=

 W
b

–
W

s
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

3

S
U

B
A

cc
S

ub
tr

ac
t A

cc
um

ul
at

or
s

1
1

�
�

�
�

�
�

—
—

—
—

—
5-

23
5

S
U

B
B

f {
,W

R
E

G
}

de
st

in
at

io
n

=
 f

–
W

R
E

G
 –

 (
C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

6

S
U

B
B

#l
it1

0,
W

n
W

n
=

 W
n

–
lit

10
 –

 (
C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

7

S
U

B
B

W
b,

#l
it5

,W
d

W
d

=
 W

b
–

lit
5

–
(C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

8

S
U

B
B

W
b,

W
s,

W
d

W
d

=
 W

b
–

W
s

–
(C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
23

9

S
U

B
B

R
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 W
R

E
G

 –
 f

–
(C

)
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
24

1

S
U

B
B

R
W

b,
#l

it5
,W

d
W

d
=

 li
t5

 –
 W

b
–

(C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

24
2

S
U

B
B

R
W

b,
W

s,
W

d
W

d
=

 W
s

–
W

b
–

(C
)

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

24
3

S
U

B
R

f {
,W

R
E

G
}

D
es

tin
at

io
n

=
 W

R
E

G
 –

 f
1

1
—

—
—

—
—

—
�

�
�

�
�

5-
24

5

S
U

B
R

W
b,

#l
it5

,W
d

W
d

=
 li

t5
 –

 W
b

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

24
6

S
U

B
R

W
b,

W
s,

W
d

W
d

=
 W

s
–

W
b

1
1

—
—

—
—

—
—

�
�

�
�

�
5-

24
7

S
W

A
P

W
n

W
n

=
 b

yt
e

or
 n

ib
bl

e
sw

ap
 W

n
1

1
—

—
—

—
—

—
—

—
—

—
—

5-
24

9

T
B

LR
D

H
W

s,
W

d
R

ea
d

hi
gh

 p
ro

gr
am

 w
or

d
to

 W
d

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

25
0

T
B

LR
D

L
W

s,
W

d
R

ea
d

lo
w

 p
ro

gr
am

 w
or

d
to

 W
d

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

25
2

T
B

LW
T

H
W

s,
W

d
W

rit
e

W
s

to
 h

ig
h

pr
og

ra
m

 w
or

d
1

2
—

—
—

—
—

—
—

—
—

—
—

5-
25

4

T
B

LW
T

L
W

s,
W

d
W

rit
e

W
s

to
 lo

w
 p

ro
gr

am
 w

or
d

1
2

—
—

—
—

—
—

—
—

—
—

—
5-

25
6

U
LN

K
U

nl
in

k
fr

am
e

po
in

te
r

1
1

—
—

—
—

—
—

—
—

—
—

—
5-

25
8

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
© 2003 Microchip Technology Inc. DS70030F-page 6-15

dsPIC30F Programmer’s Reference Manual
X
O

R
f {

,W
R

E
G

}
D

es
tin

at
io

n
=

 f
.X

O
R

. W
R

E
G

1
1

—
—

—
—

—
—

—
�

—
�

—
5-

25
9

X
O

R
#l

it1
0,

W
n

W
n

=
 li

t1
0

.X
O

R
. W

n
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
26

0

X
O

R
W

b,
#l

it5
,W

d
W

d
=

 W
b

.X
O

R
. l

it5
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
26

1

X
O

R
W

b,
W

s,
W

d
W

d
=

 W
b

.X
O

R
. W

s
1

1
—

—
—

—
—

—
—

�
—

�
—

5-
26

2

Z
E

W
s,

W
d

W
d

=
 z

er
o-

ex
te

nd
ed

 W
s

1
1

—
—

—
—

—
—

—
0

—
�

1
5-

26
4

Ta
b

le
 6

-3
:

d
sP

IC
30

F
 In

st
ru

ct
io

n
 S

et
 S

u
m

m
ar

y
Ta

b
le

 (
C

o
n

ti
n

u
ed

)

A
ss

em
b

ly
 S

yn
ta

x
M

n
em

o
n

ic
,O

p
er

an
d

s
D

es
cr

ip
ti

o
n

W
o

rd
s

C
yc

le
s

O
A

O
B

S
A

S
B

O
A

B
S

A
B

D
C

N
O

V
Z

C
P

ag
e

#

Le
ge

nd
:

�
 s

et
 o

r
cl

ea
re

d;

�

 m
ay

 b
e

cl
ea

re
d,

 b
ut

 n
ev

er
 s

et
;

 �
 m

ay
 b

e
se

t,
bu

t n
ev

er
 c

le
ar

ed
;

 ‘1
’ a

lw
ay

s
se

t;
 ‘
0

’ a
lw

ay
s

cl
ea

re
d;

 —

 u
nc

ha
ng

ed

N
o

te
:

S
A

, S
B

 a
nd

 S
A

B
 a

re
 o

nl
y

m
od

ifi
ed

 if
 th

e
co

rr
es

po
nd

in
g

sa
tu

ra
tio

n
is

 e
na

bl
ed

, o
th

er
w

is
e

un
ch

an
ge

d.
DS70030F-page 6-16 © 2005 Microchip Technology Inc.

In
d

ex
Index
INDEX

A

Accumulator A, Accumulator B ..2-5
Accumulator Access ..4-33
Accumulator Usage..4-32
Addressing Modes for Wd Destination Register5-3
Addressing Modes for Ws Source Register5-3
Assigned Working Register Usage4-27

B

Byte Operations ...4-13

C

Code Examples
‘Z’ Status bit Operation for 32-bit Addition4-26
Base MAC Syntax..4-35
File Register Addressing..4-3
File Register Addressing and WREG.........................4-3
Frame Pointer Usage...4-23
Illegal Word Move Operations..................................4-18
Immediate Addressing ...4-10
Indirect Addressing with Effective Address Update ...4-6
Indirect Addressing with Register Offset....................4-7
Legal Word Move Operations4-17
MAC Accumulator WB Syntax4-36
MAC Pre-Fetch Syntax ..4-35
Move with Literal Offset Instructions4-7
MSC Instruction with Two Pre-Fetches and

Accumulator Write Back4-36
Normalizing with FBCL ..4-39
Register Direct Addressing ..4-4
Sample Byte Math Operations4-15
Sample Byte Move Operations4-14
Scaling with FBCL..4-38
Stack Pointer Usage ..4-21
Unsigned f and WREG Multiply

(Legacy MULWF Instruction)4-29
Using 10-bit Literals for Byte Operands4-19
Using the Default Working Register WREG.............4-28

Conditional Branch Instructions4-25
Core Control Register ..2-9
Core Special Function Register Map6-3

D

Data Addressing Mode Tree ..4-10
Data Addressing Modes...4-2
Data Memory Map ...6-2
DCOUNT Register ...2-6
Default Working Register (WREG)2-3
Default Working Register WREG.....................................4-28
Development Support ..1-2
DOEND Register..2-6
DOSTART Register ...2-6
DSP Accumulator Instructions ...4-37
DSP Data Formats...4-30
DSP MAC Indirect Addressing Modes4-8
DSP MAC Instructions ...4-33
dsPIC30F Overview ...2-2

F

File Register Addressing..4-2

I

Immediate Addressing... 4-9
Operands in the Instruction Set 4-9

Implied DSP Operands.. 4-27
Implied Frame and Stack Pointer 4-27
Instruction Bit Map... 6-7
Instruction Description Example .. 5-6
Instruction Descriptions ... 5-7

ADD (16-bit Signed Add to Accumulator) 5-12
ADD (Add Accumulators) .. 5-11
ADD (Add f to WREG) ... 5-7
ADD (Add Literal to Wn) .. 5-8
ADD (Add Wb to Short Literal) 5-9
ADD (Add Wb to Ws)... 5-10
ADDC (Add f to WREG with Carry) 5-14
ADDC (Add Literal to Wn with Carry) 5-15
ADDC (Add Wb to Short Literal with Carry)............. 5-16
ADDC (Add Wb to Ws with Carry)........................... 5-17
AND (AND f and WREG)... 5-19
AND (AND Literal and Wd)...................................... 5-20
AND (AND Wb and Short Literal) 5-21
AND (AND Wb and Ws) .. 5-22
ASR (Arithmetic Shift Right by Short Literal) 5-27
ASR (Arithmetic Shift Right by Wns) 5-28
ASR (Arithmetic Shift Right f) 5-24
ASR (Arithmetic Shift Right Ws) 5-25
BCLR (Bit Clear in Ws).. 5-30
BCLR.B (Bit Clear f) .. 5-29
BRA (Branch Unconditionally) 5-31
BRA (Computed Branch)... 5-32
BRA C (Branch if Carry) .. 5-33
BRA GE (Branch if Signed Greater Than

or Equal) .. 5-35
BRA GEU (Branch if Unsigned Greater Than

or Equal) .. 5-36
BRA GT (Branch if Signed Greater Than) 5-37
BRA GTU (Branch if Unsigned Greater Than) 5-38
BRA LE (Branch if Signed Less Than or Equal)...... 5-39
BRA LEU (Branch if Unsigned Less Than

or Equal) .. 5-40
BRA LT (Branch if Signed Less Than) 5-41
BRA LTU (Branch if Not Carry) 5-44
BRA LTU (Branch if Unsigned Less Than).............. 5-42
BRA N (Branch if Negative)..................................... 5-43
BRA NN (Branch if Not Negative)............................ 5-45
BRA NOV (Branch if Not Overflow) 5-46
BRA NZ (Branch if Not Zero)................................... 5-47
BRA OA (Branch if Overflow Accumulator A).......... 5-48
BRA OB (Branch if Overflow Accumulator B).......... 5-49
BRA OV (Branch if Overflow) 5-50
BRA SA (Branch if Saturation Accumulator A) 5-51
BRA SB (Branch if Saturation Accumulator B) 5-52
BRA Z (Branch if Zero) .. 5-53
BSET (Bit Set f) ... 5-54
BSET (Bit Set in Ws) ... 5-55
BSW (Bit Write in Ws) ... 5-56
BTG (Bit Toggle f).. 5-58
BTG (Bit Toggle in Ws).. 5-59
BTSC (Bit Test f, Skip if Clear) 5-60
BTSC (Bit Test Ws, Skip if Clear)............................ 5-62
BTSS (Bit Test f, Skip if Set) 5-64
BTSS (Bit Test Ws, Skip if Set) 5-65
BTST (Bit Test f).. 5-67
BTST (Bit Test in Ws)..................................... 5-68, 5-69
© 2005 Microchip Technology Inc. DS70030F-page 1

dsPIC30F Programmer’s Reference Manual
BTSTS (Bit Test/Set f) ...5-71
BTSTS (Bit Test/Set in Ws)5-72
CALL (Call Indirect Subroutine)5-74
CALL (Call Subroutine) ..5-73
CLR (Clear Accumulator, Pre-Fetch Operands)5-77
CLR (Clear f or WREG) ...5-75
CLR (Clear Wd) ...5-76
CLRWDT (Clear Watchdog Timer)5-79
COM (Complement f) ...5-80
COM (Complement Ws)...5-81
CP (Compare f with WREG, Set Status Flags)5-82
CP (Compare Wb with lit5, Set Status Flags)5-83
CP (Compare Wb with Ws, Set Status Flags)5-84
CP0 (Compare f with 0x0, Set Status Flags)5-85
CP0 (Compare Ws with 0x0, Set Status Flags)5-86
CPB (Compare f with WREG using Borrow,

Set Status Flags) ...5-87
CPB (Compare Wb with lit5 using Borrow,

Set Status Flags) ...5-88
CPB (Compare Ws with Wb using Borrow,

Set Status Flags) ...5-89
CPSEQ (Compare Wb with Wn, Skip if Equal)5-91
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than)..5-92
CPSLT (Signed Compare Wb with Wn,

Skip if Less Than) ..5-93
CPSNE (Signed Compare Wb with Wn,

Skip if Not Equal) ...5-94
DAW.B (Decimal Adjust Wn)5-95
DEC (Decrement f) ..5-96
DEC (Decrement Ws) ..5-97
DEC2 (Decrement f by 2)...5-98
DEC2 (Decrement Ws by 2)5-99
DISI (Disable Interrupts Temporarily)5-100
DIV.S (Signed Integer Divide)5-101
DIV.U (Unsigned Integer Divide)............................5-103
DIVF (Fractional Divide)...5-105
DO (Initialize Hardware Loop Literal)5-107
DO (Initialize Hardware Loop Wn)5-109
ED (Euclidean Distance, No Accumulate)5-111
EDAC (Euclidean Distance)5-113
EXCH (Exchange Wns and Wnd)5-115
FBCL (Find First Bit Change from Left)5-116
FF1L (Find First One from Left)5-118
FF1R (Find First One from Right)5-120
GOTO (Unconditional Indirect Jump).....................5-123
GOTO (Unconditional Jump)5-122
INC (Increment f) ...5-124
INC (Increment Ws) ...5-125
INC2 (Increment f by 2)..5-126
INC2 (Increment Ws by 2)5-127
IOR (Inclusive OR f and WREG)............................5-128
IOR (Inclusive OR Literal and Wn).........................5-129
IOR (Inclusive OR Wb and Short Literal)5-130
IOR (Inclusive OR Wb and Ws)5-131
LAC (Load Accumulator)..5-133
LNK (Allocate Stack Frame)5-135
LSR (Logical Shift Right by Short Literal)5-139
LSR (Logical Shift Right by Wns)...........................5-140
LSR (Logical Shift Right f)......................................5-136
LSR (Logical Shift Right Ws)5-137
MAC (Multiply and Accumulate).............................5-141
MAC (Square and Accumulate)5-143
MOV (Move 16-bit Literal to Wn)5-150
MOV (Move f to Destination)..................................5-145
MOV (Move f to Wnd) ..5-147
MOV (Move Wns to [Wd with offset])5-152

MOV (Move Wns to f) .. 5-148
MOV (Move WREG to f) .. 5-146
MOV (Move Ws to Wd).. 5-153
MOV (Move Ws with offset to Wnd)....................... 5-151
MOV.B (Move 8-bit Literal to Wnd)........................ 5-149
MOV.D (Double-Word Move from Source

to Wnd) .. 5-155
MOV.D (Double-Word Move from Wns

to Destination) ... 5-157
MOVSAC (Pre-Fetch Operands and

Store Accumulator).. 5-159
MPY (Multiply Wm by Wn to Accumulator)............ 5-161
MPY (Square to Accumulator) 5-163
MPY.N (Multiply -Wm by Wn to Accumulator) 5-165
MSC (Multiply and Subtract from Accumulator)..... 5-167
MUL (Integer Unsigned Multiply f and WREG)...... 5-169
MUL.SS (Integer 16x16-bit Signed Multiply).......... 5-170
MUL.SU (Integer 16x16-bit

Signed-Unsigned Multiply)............................. 5-174
MUL.SU (Integer 16x16-bit

Signed-Unsigned Short Literal Multiply) 5-172
MUL.US (Integer 16x16-bit

Unsigned-Signed Multiply)............................. 5-176
MUL.UU (Integer 16x16-bit Unsigned Multiply) 5-179
MUL.UU (Integer 16x16-bit Unsigned

Short Literal Multiply)..................................... 5-178
NEG (Negate Accumulator) 5-183
NEG (Negate f) .. 5-181
NEG (Negate Ws).. 5-182
NOP (No Operation) .. 5-184
NOPR (No Operation).. 5-185
POP (Pop TOS to f) ... 5-186
POP (Pop TOS to Wd)... 5-187
POP.D (Double Pop TOS to Wnd/

Wnd+1) .. 5-188
POP.S (Pop Shadow Registers)............................ 5-189
PUSH (Push f to TOS)... 5-190
PUSH (Push Ws to TOS)....................................... 5-191
PUSH.D (Double Push Wns/

Wns+1 to TOS).. 5-192
PUSH.S (Push Shadow Registers)........................ 5-193
PWRSAV (Enter Power Saving Mode) 5-194
RCALL (Computed Relative Call) 5-196
RCALL (Relative Call).. 5-195
REPEAT (Repeat Next Instruction ‘lit14’ Times) ... 5-197
REPEAT (Repeat Next Instruction Wn Times) 5-198
RESET (Reset) .. 5-200
RETFIE (Return from Interrupt) 5-201
RETLW (Return with Literal in Wn)........................ 5-202
RETURN (Return).. 5-203
RLC (Rotate Left f through Carry).......................... 5-204
RLC (Rotate Left Ws through Carry) 5-205
RLNC (Rotate Left f without Carry)........................ 5-207
RLNC (Rotate Left Ws without Carry).................... 5-208
RRC (Rotate Right f through Carry)....................... 5-210
RRC (Rotate Right Ws through Carry) 5-211
RRNC (Rotate Right f without Carry)..................... 5-213
RRNC (Rotate Right Ws without Carry)................. 5-214
SAC (Store Accumulator) 5-216
SAC.R (Store Rounded Accumulator) 5-218
SE (Sign-Extend Ws)... 5-220
SETM (Set f or WREG).. 5-221
SETM (Set Ws).. 5-222
SFTAC (Arithmetic Shift Accumulator by Slit6)...... 5-223
SFTAC (Arithmetic Shift Accumulator by Wb) 5-224
SL (Shift Left by Short Literal)................................ 5-228
SL (Shift Left by Wns).. 5-229
DS70030F-page 2 © 2005 Microchip Technology Inc.

In
d

ex
Index
SL (Shift Left f) ...5-225
SL (Shift Left Ws)...5-226
SUB (Subtract Accumulators)5-235
SUB (Subtract Literal from Wn)5-231
SUB (Subtract Short Literal from Wb)....................5-232
SUB (Subtract WREG from f)5-230
SUB (Subtract Ws from Wb)5-233
SUBB (Subtract Short Literal from

Wb with Borrow) ..5-238
SUBB (Subtract Wn from Literal with Borrow)5-237
SUBB (Subtract WREG and Carry bit from f)5-236
SUBB (Subtract Ws from Wb with Borrow)............5-239
SUBBR (Subtract f from WREG with Borrow)........5-241
SUBBR (Subtract Wb from

Short Literal with Borrow)5-242
SUBBR (Subtract Wb from Ws with Borrow)5-243
SUBR (Subtract f from WREG)..............................5-245
SUBR (Subtract Wb from Short Literal)5-246
SUBR (Subtract Wb from Ws)5-247
SWAP (Byte or Nibble Swap Wn)5-249
TBLRDH (Table Read High)5-250
TBLRDL (Table Read Low)....................................5-252
TBLWTH (Table Write High)5-254
TBLWTL (Table Write Low)5-256
ULNK (De-allocate Stack Frame)5-258
XOR (Exclusive OR f and WREG)5-259
XOR (Exclusive OR Literal and Wn)5-260
XOR (Exclusive OR Wb and Short Literal)5-261
XOR (Exclusive OR Wb and Ws)...........................5-262
ZE (Zero-Extend Wn)...5-264

Instruction Encoding Field Descriptors Introduction...........5-2
Instruction Set Overview ..3-2

Bit Instructions ...3-7
Compare/Skip Instructions...3-8
Control Instructions ..3-10
DSP Instructions ..3-10
dsPIC30F Instruction Groups.....................................3-2
Logic Instructions ...3-5
Math Instructions..3-4
Move Instructions...3-3
Program Flow Instructions ...3-9
Rotate/Shift Instructions...3-6
Shadow/Stack Instructions.......................................3-10

Instruction Set Summary Table..6-9
Instruction Set Symbols ...1-4

#text ...1-4
(text)...1-4
<n:m>...1-4
[text] ...1-4
{ }..1-4
{label:} ..1-4
Acc ...1-4
AWB...1-4
bit4 ...1-4
Expr..1-4
f ..1-4
lit1 ..1-4
lit10 ..1-4
lit14 ..1-4
lit16 ..1-4
lit23 ..1-4
lit4 ..1-4
lit5 ..1-4
lit8 ..1-4
Slit10 ..1-4
Slit16 ..1-4

Slit4.. 1-4
Slit5.. 1-4
TOS ... 1-4
Wb ... 1-4
Wd ... 1-4
Wm*Wm .. 1-4
Wm*Wn ... 1-4
Wm, Wn... 1-4
Wn ... 1-4
Wnd ... 1-4
Wns ... 1-4
WREG ... 1-4
Ws ... 1-4
Wx ... 1-4
Wxd ... 1-4
Wy ... 1-4
Wyd ... 1-4

Instruction Stalls .. 4-12
DO/REPEAT Loops ... 4-13
Exceptions ... 4-13
Instructions that Change Program Flow 4-13
PSV ... 4-13
RAW Dependency Detection................................... 4-12

Instruction Symbols ... 5-2
Integer and Fractional Data ... 4-30

Representation .. 4-31
Interrupt Priority Level.. 2-8
Introduction.. 1-2

M

MAC
Operations ... 4-34
Pre-Fetch Register Updates 4-34
Pre-Fetches ... 4-33
Syntax.. 4-34
Write Back ... 4-34

MAC Accumulator Write Back Selection............................ 5-5
MAC or MPY Source Operands

(Different Working Register) 5-5
MAC or MPY Source Operands

(Same Working Register) .. 5-5
Manual Objective... 1-2
Microchip Documentation .. 1-5
Modulo and Bit-Reversed Addressing Modes 4-8
Multi-Cycle Instructions.. 3-2
Multi-Word Instructions.. 3-3

N

Normalizing the Accumulator with the
FBCL Instruction.. 4-39

O

Offset Addressing Modes for Wd Destination Register
(with Register Offset)... 5-3

Offset Addressing Modes for Ws Source Register
(with Register Offset)... 5-3

P

PICmicro® Microcontroller Compatibility 4-28
PRODH

PRODL Register Pair .. 4-28
Program Addressing Modes .. 4-11

Methods of Modifying Flow...................................... 4-11
Program Counter ... 2-5
Program Memory Map... 6-6
© 2005 Microchip Technology Inc. DS70030F-page 3

dsPIC30F Programmer’s Reference Manual
Programmer’s Model..2-3
Diagram ...2-4
Register Descriptions...2-3

PSVPAG Register ..2-5

R

RCOUNT Register ...2-6
Register Direct Addressing ..4-4
Register Indirect Addressing ..4-5

Modes ..4-5
Register Indirect Addressing and the Instruction Set4-8
Registers

CORCON (Core Control) Register2-12
SR (Status) Register ..2-10

Related Documents..1-5

S

Scaling Data with the FBCL Instruction............................4-37
Scaling Examples ..4-38

Shadow Registers ..2-9
Automatic Usage..2-9

Software Stack Frame Pointer2-3, 4-22
Example ...4-23
Overflow...4-24
Underflow...4-24

Software Stack Pointer..2-5, 4-20
Example ...4-21

Stack Pointer Limit Register (SPLIM).................................2-5
Status Register...2-7

DSP ALU Status Bits ...2-8
Loop Status Bits...2-7
MCU ALU Status Bits...2-7

Style and Symbol Conventions ..1-3
Document Conventions..1-3

T

TBLPAG Register .. 2-5
Third Party Documentation .. 1-5

U

Using 10-bit Literal Operands .. 4-19
10-bit Literal Coding... 4-19

W

Word Move Operations.. 4-16
Data Alignment in Memory 4-16

Working Register Array.. 2-3

X

X Data Space Pre-Fetch Destination................................. 5-4
X Data Space Pre-Fetch Operation 5-4

Y

Y Data Space Pre-Fetch Destination................................. 5-5
Y Data Space Pre-Fetch Operation 5-4

Z

Z Status Bit .. 4-26
DS70030F-page 4 © 2005 Microchip Technology Inc.

In
d

ex
Index
NOTES:
© 2005 Microchip Technology Inc. DS70030F-page 5

DS70030F-page 6 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http:\\support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8632
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4420-9895
Fax: 45-4420-9910

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Section 1. Introduction
	Highlights
	1.1 Introduction
	1.2 Manual Objective
	1.3 Development Support
	1.4 Style and Symbol Conventions
	1.5 Instruction Set Symbols
	1.6 Related Documents
	1.6.1 Microchip Documentation
	1.6.2 Third Party Documentation

	Section 2. Programmer’s Model
	Highlights
	2.1 dsPIC30F Overview
	2.2 Programmer’s Model
	2.2.1 Working Register Array
	2.2.2 Default Working Register (WREG)
	2.2.3 Software Stack Frame Pointer
	2.2.4 Software Stack Pointer
	2.2.5 Stack Pointer Limit Register (SPLIM)
	2.2.6 Accumulator A, Accumulator B
	2.2.7 Program Counter
	2.2.8 TBLPAG Register
	2.2.9 PSVPAG Register
	2.2.10 RCOUNT Register
	2.2.11 DCOUNT Register
	2.2.12 DOSTART Register
	2.2.13 DOEND Register
	2.2.14 Status Register
	2.2.15 Core Control Register
	2.2.16 Shadow Registers

	Section 3. Instruction Set Overview
	Highlights
	3.1 Introduction
	3.2 Instruction Set Overview
	3.2.1 Multi-Cycle Instructions
	3.2.2 Multi-Word Instructions

	3.3 Instruction Set Summary Tables

	Section 4. Instruction Set Details
	Highlights
	4.1 Data Addressing Modes
	4.1.1 File Register Addressing
	4.1.2 Register Direct Addressing
	4.1.3 Register Indirect Addressing
	4.1.4 Immediate Addressing
	4.1.5 Data Addressing Mode Tree

	4.2 Program Addressing Modes
	4.3 Instruction Stalls
	4.3.1 RAW Dependency Detection
	4.3.2 Instruction Stalls and Exceptions
	4.3.3 Instruction Stalls and Instructions that Change Program Flow
	4.3.4 Instruction Stalls and DO/REPEAT Loops
	4.3.5 Instruction Stalls and PSV

	4.4 Byte Operations
	4.5 Word Move Operations
	4.6 Using 10-bit Literal Operands
	4.7 Software Stack Pointer and Frame Pointer
	4.7.1 Software Stack Pointer
	4.7.2 Stack Pointer Example
	4.7.3 Software Stack Frame Pointer
	4.7.4 Stack Frame Pointer Example
	4.7.5 Stack Pointer Overflow
	4.7.6 Stack Pointer Underflow

	4.8 Conditional Branch Instructions
	4.9 Z Status Bit
	4.10 Assigned Working Register Usage
	4.10.1 Implied DSP Operands
	4.10.2 Implied Frame and Stack Pointer
	4.10.3 PICmicro® Microcontroller Compatibility

	4.11 DSP Data Formats
	4.11.1 Integer and Fractional Data
	4.11.2 Integer and Fractional Data Representation

	4.12 Accumulator Usage
	4.13 Accumulator Access
	4.14 DSP MAC Instructions
	4.14.1 MAC Pre-Fetches
	4.14.2 MAC Pre-Fetch Register Updates
	4.14.3 MAC Operations
	4.14.4 MAC Write Back
	4.14.5 MAC Syntax

	4.15 DSP Accumulator Instructions
	4.16 Scaling Data with the FBCL Instruction
	4.17 Normalizing the Accumulator with the FBCL Instruction

	Section 5. Instruction Descriptions
	Highlights
	5.1 Instruction Symbols
	5.2 Instruction Encoding Field Descriptors Introduction
	5.3 Instruction Description Example
	5.4 Instruction Descriptions

	Section 6. Reference
	Highlights
	6.1 Data Memory Map
	6.2 Core Special Function Register Map
	6.3 Program Memory Map
	6.4 Instruction Bit Map
	6.5 Instruction Set Summary Table

	Worldwide Sales and Service

