
 2000 Microchip Technology Inc. May 2000 DS30277C

In-Circuit Serial Programming™
(ICSP™) Guide

DS30277C - page ii 2000 Microchip Technology Inc.

All rights reserved. Copyright 2000, Microchip Technology
Incorporated, USA. Information contained in this publication regarding
device applications and the like is intended through suggestion only and
may be superseded by updates. No representation or warranty is given
and no liability is assumed by Microchip Technology Incorporated with
respect to the accuracy or use of such information, or infringement of
patents arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except
with express written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.”

The Microchip name and logo, PIC, PICmicro, PRO MATE, PICSTART,
MPLAB, and The Embedded Control Solutions Company are registered
trademarks of Microchip Technology Inc. in the U.S.A. and other coun-
tries.

In-Circuit Serial Programming and ICSP are trademarks and SQTP is a
service mark of Microchip Technology Inc.

All other trademarks mentioned herein are property of their respective
companies.

 2000 Microchip Technology Inc. DS30277C-page iii

PAGE
SECTION 1 INTRODUCTION

In-Circuit Serial Programming™ (ICSP™) Guide ... 1-1

SECTION 2 TECHNICAL BRIEFS

How to Implement ICSP™ Using PIC12C5XX OTP MCUs ... 2-1
How to Implement ICSP™ Using PIC16CXXX OTP MCUs ... 2-9
How to Implement ICSP™ Using PIC17CXXX OTP MCUs ... 2-15
How to Implement ICSP™ Using PIC16F8X FLASH MCUs .. 2-21

SECTION 3 PROGRAMMING SPECIFICATIONS

In-Circuit Serial Programming for PIC12C5XX OTP MCUs ... 3-1
In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs .. 3-15
In-Circuit Serial Programming for PIC14000 OTP MCUs ... 3-27
In-Circuit Serial Programming for PIC16C55X OTP MCUs .. 3-39
In-Circuit Serial Programming for PIC16C6XX/7XX/9XX OTP MCUs .. 3-51
In-Circuit Serial Programming for PIC17C7XX OTP MCUs ... 3-71
In-Circuit Serial Programming for PIC18CXXX OTP MCUs ... 3-97
In-Circuit Serial Programming for PIC16F62X FLASH MCUs .. 3-135
In-Circuit Serial Programming for PIC16F8X FLASH MCUs .. 3-149
In-Circuit Serial Programming for PIC16F8XX FLASH MCUs ... 3-165

SECTION 4 APPLICATION NOTES

In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters Using a PICmicro® Microcontroller 4-1

Table of Contents

DS30277C-page iv © 2000 Microchip Technology Inc.

SECTION 1
INTRODUCTION
IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) GUIDE ...1-1
 2000 Microchip Technology Inc. DS30277C-page 1-i

DS30277C-page 1-ii 2000 Microchip Technology Inc.

INTRODUCTION
In-Circuit Serial Programming™ (ICSP™) Guide
WHAT IS IN-CIRCUIT SERIAL
PROGRAMMING (ICSP)?

In-System Programming (ISP) is a technique where a
programmable device is programmed after the device
is placed in a circuit board.

In-Circuit Serial Programming (ICSP) is an enhanced
ISP technique implemented in Microchip’s PICmicro®

One-Time-Programmable (OTP) and FLASH RISC
microcontrollers (MCU). Use of only two I/O pins to
serially input and output data makes ICSP easy to use
and less intrusive on the normal operation of the MCU.

Because they can accommodate rapid code changes
in a manufacturing line, PICmicro OTP and FLASH
MCUs offer tremendous flexibility, reduce development
time and manufacturing cycles, and improve time to
market.

In-Circuit Serial Programming enhances the flexibility
of the PICmicro even further.

This In-Circuit Serial Programming Guide is designed
to show you how you can use ICSP to get an edge over
your competition. Microchip has helped its customers
implement ICSP using PICmicro MCUs since 1992.
Contact your local Microchip sales representative today
for more information on implementing ICSP in your
product.

PICmicro MCUs MAKE IN-CIRCUIT
SERIAL PROGRAMMING A CINCH

Unlike many other MCUs, most PICmicro MCUs offer a
simple serial programming interface using only two I/O
pins (plus power, ground and VPP). Following very sim-
ple guidelines, these pins can be fully utilized as I/O
pins during normal operation and programming pins
during ICSP.

ICSP can be activated through a simple 5-pin connec-
tor and a standard PICmicro programmer supporting
serial programming mode such as Microchip’s
PRO MATE® II.

No other MCU has a simpler and less intrusive Serial
Programming Mode to facilitate your ICSP needs.

WHAT CAN I DO WITH IN-CIRCUIT
SERIAL PROGRAMMING?

ICSP is truly an enabling technology that can be used
in a variety of ways including:

• Reduce Cost of Field Upgrades

The cost of upgrading a system’s code can be
dramatically reduced using ICSP. With very little
effort and planning, a PICmicro OTP- or FLASH-
based system can be designed to have code updates
in the field.

For PICmicro FLASH devices, the entire code
memory can be rewritten with new code. In PICmicro
OTP devices, new code segments and parameter
tables can be easily added in program memory areas
left blank for update purpose. Often, only a portion of
the code (such as a key algorithm) requires update.

• Reduce Time to Market

In instances where one product is programmed with
different customer codes, generic systems can be
built and inventoried ahead of time. Based on actual
mix of customer orders, the PICmicro MCU can be
programmed using ICSP, then tested and shipped.
The lead-time reduction and simplification of finished
goods inventory are key benefits.

• Calibrate Your System During Manufacturing

Many systems require calibration in the final stages
of manufacturing and testing. Typically, calibration
parameters are stored in Serial EEPROM devices.
Using PICmicro MCUs, it is possible to save the addi-
tional system cost by programming the calibration
parameters directly into the program memory.

• Add Unique ID Code to Your System During
Manufacturing

Many products require a unique ID number or a
serial number. An example application would be a
remote keyless entry device. Each transmitter has a
unique “binary key” that makes it very easy to pro-
gram in the access code at the very end of the man-
ufacturing process and prior to final test.

Serial number, revision code, date code, manufac-
turer ID and a variety of other useful information can
also be added to any product for traceability. Using
ICSP, you can eliminate the need for DIP switches or
jumpers.

In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc. SQTP is a service mark of Microchip Technology Inc.
 2000 Microchip Technology Inc. DS30277C-page 1-1

Introduction
In fact, this capability is so important to many of our
customers that Microchip offers a factory program-
ming service called Serialized Quick Turn Program-
ming (SQTPSM), where each PICmicro MCU device is
coded with up to 16 bytes of unique code.

• Calibrate Your System in the Field

Calibration need not be done only in the factory.
During installation of a system, ICSP can be used to
further calibrate the system to actual operating
environment.

In fact, recalibration can be easily done during
periodic servicing and maintenance. In OTP parts,
newer calibration data can be written to blank
memory locations reserved for such use.

• Customize and Configure Your System in the
Field

Like calibration, customization need not done in the
factory only. In many situations, customizing a
product at installation time is very useful. A good
example is home or car security systems where ID
code, access code and other such information can
be burned in after the actual configuration is deter-
mined. Additionally, you can save the cost of DIP
switches and jumpers, which are traditionally used.

• Program Dice When Using Chip-On-Board
(COB)

If you are using COB, Microchip offers a comprehen-
sive die program. You can get dice that are
preprogrammed, or you may want to program the die
once the circuit board is assembled. Programming
and testing in one single step in the manufacturing
process is simpler and more cost effective.

PROGRAMMING TIME
CONSIDERATIONS

Programming time can be significantly different
between OTP and FLASH MCUs. OTP (EPROM) bytes
typically program with pulses in the order of several
hundred microseconds. FLASH, on the other hand,
require several milliseconds or more per byte (or word)
to program.

Figure 1 and Figure 2 below illustrate the programming
time differences between OTP and FLASH MCUs.
Figure 1 shows programming time in an ideal program-
mer or tester, where the only time spent is actually pro-
gramming the device. This is only important to illustrate
the minimum time required to program such devices,
where the programmer or the tester is fully optimized.

Figure 2 is a more realistic programming time compar-
ison, where the “overhead” time for programmer or a
tester is built in. The programmer often requires 3 to 5
times the “theoretically” minimum programming time.

FIGURE 1: PROGRAMMING TIME FOR FLASH AND OTP MCUS
(THEORETICAL MINIMUM TIMES)

0

5

10

15

20

25

30

35

40

45

0 1K 2K 4K 8K 16K

Typical
Flash
MCU

Microchip
OTP MCU

P
ro

g
ra

m
m

in
g

 T
im

e
(S

ec
o

n
d

s)

Note 1: The programming times shown here only include the total programming time for all memory. Typically, a
programmer will have quite a bit of overhead over this “theoretical minimum” programming time.

2: In the PIC16CXX MCU (used here for comparison) each word is 14 bits wide. For the sake of simplicity,
each word is viewed as “two bytes”.

Memory Size (in bytes)

Typical
FLASH MCU

Microchip
OTP MCU
DS30277C-page 1-2 2000 Microchip Technology Inc.

Introduction
FIGURE 2: PROGRAMMING TIME FOR FLASH AND OTP MCUS
(TYPICAL PROGRAMMING TIMES ON A PROGRAMMER)

Ramifications

The programming time differences between FLASH
and OTP MCUs are not particular material for prototyp-
ing quantities. However, its impact can be significant in
large volume production.

MICROCHIP PROVIDES A COMPLETE
SOLUTION FOR ICSP

Products

Microchip offers the broadest line of ICSP-capable
MCUs:

• PIC12C5XX OTP, 8-pin Family
• PIC12C67X OTP, 8-pin Family

• PIC12CE67X OTP, 8-pin Family
• PIC16C6XX OTP, Mid-Range Family
• PIC17C7XX OTP High-End Family

• PIC18CXXX OTP, High-End Family
• PIC16F62X FLASH, Mid-Range Family
• PIC16F8X FLASH, Mid-Range Family

• PIC6F8XX FLASH, Mid-Range Family

All together, Microchip currently offers over 40 MCUs
capable of ICSP.

Development Tools

Microchip offers a comprehensive set of development
tools for ICSP that allow system engineers to quickly
prototype, make code changes and get designs out the
door faster than ever before.

PRO MATE II Production Programmer – a production
quality programmer designed to support the Serial
Programming Mode in MCUs up to midvolume produc-
tion. PRO MATE II runs under DOS in a Command Line
Mode, Microsoft® Windows® 3.1, Windows® 95/98,
and Windows NT®. PRO MATE II is also capable of
Serialized Quick Turn ProgrammingSM (SQTPSM),
where each device can be programmed with up to 16
bytes of unique code.

Microchip offers an ICSP kit that can be used with the
Universal Microchip Device Programmer,
PRO MATE II. Together these two tools allow you to
implement ICSP with minimal effort and use the ICSP
capability of Microchip’s PICmicro MCUs.

Technical support

Microchip has been delivering ICSP capable MCUs
since 1992. Many of our customers are using ICSP
capability in full production. Our field and factory appli-
cation engineers can help you implement ICSP in your
product.

P
ro

g
ra

m
m

in
g

 T
im

e
(S

ec
o

n
d

s)

Memory Size (in bytes)

Note 1: The programming times shown are actual programming times on vendor supplied programmers.

2: Microchip OTP programming times are based on PRO MATE II programmer.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

0 1K 2K 4K 8K 16K

Typical
Flash
MCU

Microchip
OTP MCU

Typical
FLASH MCU

Microchip
OTP MCU
 2000 Microchip Technology Inc. DS30277C-page 1-3

Introduction
NOTES:
DS30277C-page 1-4 2000 Microchip Technology Inc.

SECTION 2
TECHNICAL BRIEFS
HOW TO IMPLEMENT ICSP™ USING PIC12C5XX OTP MCUS ...2-1

HOW TO IMPLEMENT ICSP™ USING PIC16CXXX OTP MCUS ..2-9

HOW TO IMPLEMENT ICSP™ USING PIC17CXXX OTP MCUS ..2-15

HOW TO IMPLEMENT ICSP™ USING PIC16F8X FLASH MCUS ...2-21
 2000 Microchip Technology Inc. DS30277C-page 2-i

DS30277C-page 2-ii 2000 Microchip Technology Inc.

TB017
How to Implement ICSP™ Using PIC12C5XX OTP MCUs
INTRODUCTION

The technical brief describes how to implement in-cir-
cuit serial programming™ (ICSP) using the
PIC12C5XX OTP PICmicro® MCU.

ICSP is a simple way to manufacture your board with
an unprogrammed PICmicro MCU and program the
device just before shipping the product. Programming
the PIC12C5XX MCU in-circuit has many advantages
for developing and manufacturing your product.

• Reduces inventory of products with old
firmware. With ICSP, the user can manufacture
product without programming the PICmicro MCU.
The PICmicro MCU will be programmed just
before the product is shipped.

• ICSP in production. New software revisions or
additional software modules can be programmed
during production into the PIC12C5XX MCU.

• ICSP in the field. Even after your product has
been sold, a service man can update your
program with new program modules.

• One hardware with different software. ICSP
allows the user to have one hardware, whereas
the PIC12C5XX MCU can be programmed with
different types of software.

• Last minute programming. Last minute pro-
gramming can also facilitate quick turnarounds on
custom orders for your products.

IN-CIRCUIT SERIAL PROGRAMMING

To implement ICSP into an application, the user needs
to consider three main components of an ICSP system:
Application Circuit, Programmer and Programming
Environment.

Application Circuit

During the initial design phase of the application circuit,
certain considerations have to be taken into account.
Figure 1 shows and typical circuit that addresses the
details to be considered during design. In order to
implement ICSP on your application board you have to
put the following issues into consideration:

1. Isolation of the GP3/MCLR/VPP pin from the rest
of the circuit.

2. Isolation of pins GP1 and GP0 from the rest of
the circuit.

3. Capacitance on each of the VDD, GP3/MCLR/
VPP, GP1, and GP0 pins.

4. Interface to the programmer.
5. Minimum and maximum operating voltage for

VDD.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Thomas Schmidt
Microchip Technology Inc.

Application PCB
PIC12C5XX

GP3/MCLR/VPP

VDD

VSS

GP0
GP1

VDD VDD

To application circuit

Isolation circuits

ICSP Connector

PICmicro, PRO MATE and PICSTART are registered trademarks of Microchip Technology Inc.
In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc.
 2000 Microchip Technology Inc. Preliminary DS91017B-page 2-1

TB017
Isolation of the GP3/MCLR/VPP Pin from the
Rest of the Circuit

PIC12C5XX devices have two ways of configuring the
MCLR pin:

• MCLR can be connected either to an external RC
circuit or

• MCLR is tied internally to VDD

When GP3/MCLR/VPP pin is connected to an external
RC circuit, the pull-up resistor is tied to VDD, and a
capacitor is tied to ground. This circuit can affect the
operation of ICSP depending on the size of the capac-
itor.

Another point of consideration with the GP3/MCLR/VPP

pin, is that when the PICmicro MCU is programmed,
this pin is driven up to 13V and also to ground. There-
fore, the application circuit must be isolated from the
voltage coming from the programmer.

When MCLR is tied internally to VDD, the user has only
to consider that up to 13V are present during program-
ming of the GP3/MCLR/VPP pin. This might affect other
components connected to that pin.

For more information about configuring the GP3/
MCLR/VPP internally to VDD, please refer to the
PIC12C5XX data sheet (DS40139).

Isolation of Pins GP1 and GP0 from the Rest
of the Circuit

Pins GP1 and GP0 are used by the PICmicro MCU for
serial programming. GP1 is the clock line and GP0 is
the data line.

GP1 is driven by the programmer. GP0 is a bidirectional
pin that is driven by the programmer when program-
ming and driven by the PICmicro MCU when verifying.
These pins must be isolated from the rest of the appli-
cation circuit so as not to affect the signals during pro-
gramming. You must take into consideration the output
impedance of the programmer when isolating GP1 and
GP0 from the rest of the circuit. This isolation circuit
must account for GP1 being an input on the PICmicro
MCU and for GP0 being bidirectional pin.

For example, PRO MATE® II has an output impedance
of 1 kΩ. If the design permits, these pins should not be
used by the application. This is not the case with most
designs. As a designer, you must consider what type of
circuitry is connected to GP1 and GP0 and then make
a decision on how to isolate these pins.

Total Capacitance on VDD, GP3/MCLR/VPP,
GP1, and GP0

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD, which helps to
dampen noise and improve electromagnetic interfer-
ence. However, this capacitance requires a fairly strong
driver in the programmer to meet the rise rate timings
for VDD.

Interface to the Programmer

Most programmers are designed to simply program the
PICmicro MCU itself and don’t have strong enough
drivers to power the application circuit.

One solution is to use a driver board between the pro-
grammer and the application circuit. The driver board
needs a separate power supply that is capable of driv-
ing the VPP, VDD, GP1, and GP0 pins with the correct
ramp rates and also should provide enough current to
power-up the application circuit.

The cable length between the programmer and the cir-
cuit is also an important factor for ICSP. If the cable
between the programmer and the circuit is too long, sig-
nal reflections may occur. These reflections can
momentarily cause up to twice the voltage at the end of
the cable, that was sent from the programmer. This volt-
age can cause a latch-up. In this case, a termination
resistor has to be used at the end of the signal line.

Minimum and Maximum Operating Voltage
for VDD

The PIC12C5XX programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other point of consideration is that the device
must be verified at minimum and maximum operation
voltage of the circuit in order to ensure proper program-
ming margin.

For example, a battery driven system may operate from
three 1.5V cells giving an operating voltage range of
2.7V to 4.5V. The programmer must program the device
at 5V and must verify the program memory contents at
both 2.7V and 4.5V to ensure that proper programming
margins have been achieved.
DS91017B-page 2-2 Preliminary 2000 Microchip Technology Inc.

TB017
THE PROGRAMMER

PIC12C5XX MCUs only use serial programming and,
therefore, all programmers supporting these devices
will support the ICSP. One issue with the programmer
is the drive capability. As discussed before, it must be
able to provide the specified rise rates on the ICSP sig-
nals and also provide enough current to power the
application circuit. It is recommended that you buffer
the programming signals.

Another point of consideration for the programmer is
what VDD levels are used to verify the memory contents
of the PICmicro MCU. For instance, the PRO MATE II
verifies program memory at the minimum and maxi-
mum VDD levels for the specified device and is there-
fore considered a production quality programmer. On
the other hand, the PICSTART® Plus only verifies at 5V
and is for prototyping use only. The PIC12C5XX pro-
gramming specifications state that the program mem-
ory contents should be verified at both the minimum
and maximum VDD levels that the application circuit will
be operating. This implies that the application circuit
must be able to handle the varying VDD voltages.

There are also several third-party programmers that
are available. You should select a programmer based
on the features it has and how it fits into your program-
ming environment. The Microchip Development Sys-
tems Ordering Guide (DS30177) provides detailed
information on all our development tools. The Microchip
Third Party Guide (DS00104) provides information on
all of our third party development tool developers.
Please consult these two references when selecting a
programmer. Many options exist including serial or par-
allel PC host connection, stand-alone operation, and
single or gang programmers.

PROGRAMMING ENVIRONMENT

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. A gang
programmer should be chosen for programming multi-
ple MCUs at one time. The physical distance between
the programmer and the application circuit affects the
load capacitance on each of the programming signals.
This will directly affect the drive strength needed to pro-
vide the correct signal rise rates and current. Finally,
the application circuit interface to the programmer
depends on the size constraints of the application cir-
cuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board.

A different method is the uses spring loaded test pins
(often referred as pogo-pins). The application circuit
has pads on the board for each of the programming sig-
nals. Then there is a movable fixture that has pogo pins

in the same configuration as the pads on the board.
The application circuit is moved into position and the
fixture is moved such that the spring loaded test pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the
application circuit, the programmer, and the program-
ming environment, anyone can build a high quality,
reliable manufacturing line based on ICSP.

OTHER BENEFITS

ICSP provides several other benefits such as calibra-
tion and serialization. If program memory permits, it
would be cheaper and more reliable to store calibration
constants in program memory instead of using an
external serial EEPROM.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being repro-
grammed, but the PICmicro MCU architecture gives
you this flexibility provided the size of your firmware is
less than half that of the desired device.

This method involves using jump tables for the reset
and interrupt vectors. Example 1 shows the location of
a main routine and the reset vector for the first time a
device with 0.5K-words of program memory is pro-
grammed. Example 2 shows the location of a second
main routine and its reset vector for the second time the
same device is programmed. You will notice that the
GOTO Main that was previously at location 0x0002 is
replaced with an NOP. An NOP is a program memory
location with all the bits programmed as 0s. When the
reset vector is executed, it will execute an NOP and
then a GOTO Main1 instruction to the new code.
 2000 Microchip Technology Inc. Preliminary DS91017B-page 2-3

TB017
EXAMPLE 1: LOCATION OF THE FIRST MAIN ROUTINE AND ITS INTERRUPT VECTOR

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

GOTO MAIN10X001

MAIN10X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

UNPROGRAMMED

UNPROGRAMMED

LEGEND: XX = CALIBRATION VALUE
DS91017B-page 2-4 Preliminary 2000 Microchip Technology Inc.

TB017
EXAMPLE 2: LOCATION OF THE SECOND MAIN ROUTINE AND IT INTERRUPT VECTOR
(AFTER SECOND PROGRAMMING)

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

NOP0X001

MAIN1
0X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

GOTO MAIN2

MAIN2

MAIN2 ROUTINE

0X10E

0X136

UNPROGRAMMED

UNPROGRAMMED

0X002

LEGEND: XX = CALIBRATION VALUE
 2000 Microchip Technology Inc. Preliminary DS91017B-page 2-5

TB017
Since the program memory of the PIC12C5XX devices
is organized in 256 x 12 word pages, placement of such
information as look-up tables and CALL instructions
must be taken into account. For further information,
please refer to application note AN581, Implementing
Long Calls and application note AN556, Implementing
a Table Read.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing in-circuit sys-
tem programming solutions. Anyone can create a reli-
able in-circuit system programming station by coupling
our background with some forethought to the circuit
design and programmer selection issues previously
mentioned. Your local Microchip representative is avail-
able to answer any questions you have about the
requirements for ICSP.
DS91017B-page 2-6 Preliminary 2000 Microchip Technology Inc.

TB017
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

T
O

 C
IR

C
U

IT

 3 2
 1

41
U

1A

T
L

E
21

44
A

R
9

10
0

R
9

10
0

V
C

CQ
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
L

E
21

44
A

V
C

C

V
C

C

15
V

E
X

T
E

R
N

A
L

 P
O

W
E

R
 S

U
P

P
L

Y R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1µ

F

V
D

D
_O

U
T

R
15

1
T

O
 C

IR
C

U
IT

C
6

0.
1µ

F

 1
0

 9
 8

U
1C

T
L

E
21

44
A

V
C

C
R

18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
D

D
_I

N

 1
2

 1
3

14
U

1D

T
L

E
21

44
A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

G
P

1_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

G
P

1_
O

U
T

G
P

0_
IN

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

G
P

0_
O

U
T

T
O

 C
IR

C
U

IT

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

r’s
ap

pl
ic

at
io

n
to

 d
et

er
m

in
e

th
e

ef
fe

ct
s

of
 th

e
ap

pl
ic

at
io

ns
ci

rc
ui

t
on

 t
he

 p
ro

gr
am

m
in

g
si

gn
al

s
tim

in
g.

 C
ha

ng
es

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
an

t
lo

ad
 o

n
V

D
D

, V
P

P
, G

P
0

or
 G

P
1.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.
 2000 Microchip Technology Inc. Preliminary DS91017B-page 2-7

TB017
NOTES:
DS91017B-page 2-8 Preliminary 2000 Microchip Technology Inc.

TB013
How to Implement ICSP™ Using PIC16CXXX OTP MCUs
INTRODUCTION

In-Circuit Serial Programming™ (ICSP) is a great way
to reduce your inventory overhead and time-to-market
for your product. By assembling your product with a
blank Microchip microcontroller (MCU), you can stock
one design. When an order has been placed, these
units can be programmed with the latest revision of
firmware, tested, and shipped in a very short time. This
method also reduces scrapped inventory due to old
firmware revisions. This type of manufacturing system
can also facilitate quick turnarounds on custom orders
for your product.

Most people would think to use ICSP with PICmicro®

OTP MCUs only on an assembly line where the device
is programmed once. However, there is a method by
which an OTP device can be programmed several
times depending on the size of the firmware. This
method, explained later, provides a way to field
upgrade your firmware in a way similar to EEPROM- or
Flash-based devices.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system: Application
Circuit, Programmer and Programming Environment.

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro MCU. Figure 1 shows a typical circuit that is
a starting point for when designing with ICSP. The
application must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the VDD, MCLR/VPP,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
VDD.

5. PICmicro Oscillator.
6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. It is, there-
fore, recommended that the circuit in Figure 1 be used
when an RC is connected to MCLR/VPP. The diode
should be a Schottky-type device. Another issue with
MCLR/VPP is that when the PICmicro MCU device is
programmed, this pin is driven to approximately 13V
and also to ground. Therefore, the application circuit
must be isolated from this voltage provided by the
programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey
Microchip Technology Inc.

Application PCB
PIC16CXXX

MCLR/Vpp

Vdd
Vss
RB7
RB6

Vdd Vdd

To application circuit

Isolation circuits

ICSP Connector
 2000 Microchip Technology Inc. Preliminary DS91013B-page 2-9

TB013
Pins RB6 and RB7 are used by the PICmicro MCU for
serial programming. RB6 is the clock line and RB7 is
the data line. RB6 is driven by the programmer. RB7 is
a bidirectional pin that is driven by the programmer
when programming, and driven by the PICmicro MCU
when verifying. These pins must be isolated from the
rest of the application circuit so as not to affect the sig-
nals during programming. You must take into consider-
ation the output impedance of the programmer when
isolating RB6 and RB7 from the rest of the circuit. This
isolation circuit must account for RB6 being an input on
the PICmicro MCU, and for RB7 being bidirectional
(can be driven by both the PICmicro MCU and the pro-
grammer). For instance, PRO MATE® II has an output
impedance of 1k¾. If the design permits, these pins
should not be used by the application. This is not the
case with most applications so it is recommended that
the designer evaluate whether these signals need to be
buffered. As a designer, you must consider what type of
circuitry is connected to RB6 and RB7 and then make
a decision on how to isolate these pins. Figure 1 does
not show any circuitry to isolate RB6 and RB7 on the
application circuit because this is very application
dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro MCU
itself and don’t have strong enough drivers to power the
application circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the
correct rise rates and should also provide enough cur-
rent to power the application circuit. RB6 and RB7 are
not buffered on this schematic but may require buffer-
ing depending upon the application. A sample driver
board schematic is shown in Appendix A.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other issue is that the device must be verified
at the minimum and maximum voltages at which the
application circuit will be operating. For instance, a bat-
tery operated system may operate from three 1.5V
cells giving an operating voltage range of 2.7V to 4.5V.

The programmer must program the device at 5V and
must verify the program memory contents at both 2.7V
and 4.5V to ensure that proper programming margins
have been achieved. This ensures the PICmicro MCU
option over the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro MCU are not affected by this issue
because the Oscillator Start-up Timer waits for 1024
oscillations before any code is executed. However, RC
oscillators do not require any startup time and, there-
fore, the Oscillator Startup Timer is not used. The pro-
grammer must drive MCLR/VPP to the program mode
entry voltage before the RC oscillator toggles four
times. If the RC oscillator toggles four or more times,
the program counter will be incremented to some value
X. Now when the device enters programming mode,
the program counter will not be zero and the program-
mer will start programming your code at an offset of X.
There are several alternatives that can compensate for
a slow rise rate on MCLR/VPP. The first method would
be to not populate the R, program the device, and then
insert the R. The other method would be to have the
programming interface drive the OSC1 pin of the
PICmicro MCU to ground while programming. This will
prevent any oscillations from occurring during program-
ming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16CXXX MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is the
drive capability. As discussed before, it must be able to
provide the specified rise rates on the ICSP signals and
also provide enough current to power the application
circuit. Appendix A shows an example driver board.
This driver schematic does not show any buffer circuitry
for RB6 and RB7. It is recommended that an evaluation
be performed to determine if buffering is required.
Another issue with the programmer is what VDD levels
are used to verify the memory contents of the PICmicro
MCU. For instance, the PRO MATE II verifies program
memory at the minimum and maximum VDD levels for
the specified device and is therefore considered a pro-
duction quality programmer. On the other hand, the
PICSTART® Plus only verifies at 5V and is for prototyp-
ing use only. The Microchip programming specifica-
tions state that the program memory contents should
be verified at both the minimum and maximum VDD lev-
els that the application circuit will be operating. This
implies that the application circuit must be able to han-
dle the varying VDD voltages.

Note: The driver board design MUST be tested
in the user’s application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on VDD, VPP, RB6 OR

RB7.
DS91013B-page 2-10 Preliminary 2000 Microchip Technology Inc.

TB013
There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly
terminated and shielded, or the programming signals
may be corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application circuit
or fixture is moved into position such that the pogo pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format
allows the microcontroller to compensate in software
for external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro MCU
has already been programmed with firmware that per-
forms a calibration cycle. The calibration data is trans-
ferred to a calibration fixture. When all calibration data
has been transferred, the fixture places the PICmicro
MCU in programming mode and programs the
PICmicro MCU with the calibration data. Application
note AN656, In-Circuit Serial Programming of Calibra-
tion Parameters Using a PICmicro Microcontroller,
shows exactly how to implement this type of calibration
data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory, thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being
reprogrammed, but the PICmicro MCU architecture
gives you this flexibility provided the size of your firm-
ware is at least half that of the desired device and the
device is not code protected. If your target device does
not have enough program memory, Microchip provides
a wide spectrum of devices from 0.5K to 8K program
memory with the same set of peripheral features that
will help meet the criteria.

The PIC16CXXX microcontrollers have two vectors,
reset and interrupt, at locations 0x0000 and 0x0004.
When the PICmicro MCU encounters a reset or inter-
rupt condition, the code located at one of these two
locations in program memory is executed. The first list-
ing of Example 1 shows the code that is first pro-
grammed into the PICmicro MCU. The second listing of
Example 1 shows the code that is programmed into the
PICmicro MCU for the second time.
 2000 Microchip Technology Inc. Preliminary DS91013B-page 2-11

TB013
EXAMPLE 1: PROGRAMMING CYCLE LISTING FILES
First Program Cycle Second Program Cycle

Prog Opcode Assembly |Prog Opcode Assembly
Mem Instruction |Mem Instruction

0000 2808 goto Main ;Main loop |0000 0000 nop
0001 3FFF <blank> ;at 0x0008 |0001 2860 goto Main ;Main now
0002 3FFF <blank> |0002 3FFF <blank> ;at 0x0060
0003 3FFF <blank> |0003 3FFF <blank>
0004 2848 goto ISR ;ISR at |0004 0000 nop
0005 3FFF <blank> ;0x0048 |0005 28A8 goto ISR ;ISR now at
0006 3FFF <blank> |0006 3FFF <blank> ;0x00A8
0007 3FFF <blank> |0007 3FFF <blank>
0008 1683 bsf STATUS,RP0 | 0008 1683 bsf STATUS,RP0
0009 3007 movlw 0x07 |0009 3007 movlw 0x07
000A 009F movwf ADCON1 |000A 009F movwf ADCON1
 . | .
 . | .
 . | .
0048 1C0C btfss PIR1,RBIF | 0048 1C0C btfss PIR1,RBIF
0049 284E goto EndISR |0049 284E goto EndISR
004A 1806 btfsc PORTB,0 |004A 1806 btfsc PORTB,0
 . | .
 . | .
 . | .
0060 3FFF <blank> |0060 1683 bsf STATUS,RP0
0061 3FFF <blank> |0061 3005 movlw 0x05
0062 3FFF <blank> |0062 009F movwf ADCON1
 . | .
 . | .
 . | .
00A8 3FFF <blank> |00A8 1C0C btfss PIR1,RBIF
00A9 3FFF <blank> |00A9 28AE goto EndISR
00AA 3FFF <blank> |00AA 1806 btfsc PORTB,0
 . | .
 . | .
 . | .

DS91013B-page 2-12 Preliminary 2000 Microchip Technology Inc.

TB013
The example shows that to program the PICmicro MCU
a second time the memory location 0x0000, originally
goto Main (0x2808), is reprogrammed to all 0’s which
happens to be a nop instruction. This location cannot
be reprogrammed to the new opcode (0x2860)
because the bits that are 0’s cannot be reprogrammed
to 1’s, only bits that are 1’s can be reprogrammed to
0’s. The next memory location 0x0001 was originally
blank (all 1’s) and now becomes a goto Main
(0x2860). When a reset condition occurs, the PICmicro
MCU executes the instruction at location 0x0000 which
is the nop, a completely benign instruction, and then
executes the goto Main to start the execution of code.
The example also shows that all program memory loca-
tions after 0x005A are blank in the original program so
that the second time the PICmicro MCU is pro-
grammed, the revised code can be programmed at
these locations. The same descriptions can be given
for the interrupt vector at location 0x0004.

This method changes slightly for PICmicro MCUs with
>2K words of program memory. Each of the goto
Main and goto ISR instructions are replaced by the
following code segments due to paging on devices with
>2K words of program memory.

movlw <page> movlw <page>
movwf PCLATH movwf PCLATH
goto Main goto ISR

Now your one time programmable PICmicro MCU is
exhibiting more EEPROM- or Flash-like qualities.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.
 2000 Microchip Technology Inc. Preliminary DS91013B-page 2-13

TB013
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

T
O

 C
IR

C
U

IT

 3 2
 1

41
U

1A

T
L

E
21

44
A

R
9

10
0

R
9

10
0

V
C

CQ
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
L

E
21

44
A

V
C

C

V
C

C

15
V

E
X

T
E

R
N

A
L

 P
O

W
E

R
 S

U
P

P
L

Y R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1µ

F

V
D

D
_O

U
T

R
15

1
T

O
 C

IR
C

U
IT

C
6

0.
1µ

F

 1
0

 9
 8

U
1C

T
L

E
21

44
A

V
C

C
R

18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
D

D
_I

N

 1
2

 1
3

14
U

1D

T
L

E
21

44
A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

R
B

6_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

R
B

6_
O

U
T

R
B

7_
IN

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

R
B

7_
O

U
T

T
O

 C
IR

C
U

IT

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

r’s
ap

pl
ic

at
io

n
to

 d
et

er
m

in
e

th
e

ef
fe

ct
s

of
 t

he
 a

pp
lic

at
io

n
ci

rc
ui

t
on

 t
he

 p
ro

gr
am

m
in

g
si

gn
al

s
tim

in
g.

 C
ha

ng
es

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
an

t
lo

ad
 o

n
V

dd
, V

pp
, R

B
6

or
 R

B
7.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.
DS91013B-page 2-14 Preliminary 2000 Microchip Technology Inc.

TB015
How to Implement ICSP™ Using PIC17CXXX OTP MCUs
INTRODUCTION

PIC17CXXX microcontroller (MCU) devices can be
serially programmed using an RS-232 or equivalent
serial interface. As shown in Figure 2, using just three
pins, the PIC17CXXX can be connected to an external
interface and programmed. In-Circuit Serial Program-
ming (ICSP™) allows for a greater flexibility in an appli-
cation as well as a faster time to market for the user's
product.

This technical brief will demonstrate the practical
aspects associated with ICSP using the PIC17CXXX. It
will also demonstrate some key capabilities of OTP
devices when used in conjunction with ICSP.

Implementation

The PIC17CXXX devices have special instructions,
which enables the user to program and read the
PIC17CXXX's program memory. The instructions are
TABLWT and TLWT which implement the program mem-
ory write operation and TABLRD and TLRD which per-
form the program memory read operation. For more
details, please check the In-Circuit Serial Programming
for PIC17CXXX OTP Microcontrollers Specification
(DS30273), PIC17C4X data sheet (DS30412) and
PIC17C75X data sheet (DS30264).

When doing ICSP, the PIC17CXXX runs a boot code,
which configures the USART port and receives data
serially through the RX line. This data is then pro-
grammed at the address specified in the serial data
string. A high voltage (about 13V) is required for the
EPROM cell to get programmed, and this is usually
supplied by the programming header as shown in
Figure 2 and Figure 3. The PIC17CXXX's boot code
enables and disables the high voltage line using a ded-
icated I/O line.

FIGURE 2: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE
INSTRUCTIONS

Author: Stan D’Souza
Microchip Technology Inc.

PIC17CXXX

Data
Memory

Program
Memory

Data L
Data H

Boot
Code

USART Level Converter

In-Circuit
Programming

Connector

I/O
13V Enable

SYSTEM BOARD

VPP

13V

RX

TX

Data H:Data L
 2000 Microchip Technology Inc. Preliminary DS91015A-page 2-15

TB015
FIGURE 3: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING SCHEMATIC

ICSP Boot Code

The boot code is normally programmed, into the
PIC17CXXX device using a PRO MATE® or
PICSTART® Plus or any third party programmer. As
depicted in the flowchart in Figure 5, on power-up, or a
reset, the program execution always vectors to the boot
code. The boot code is normally located at the bottom
of the program memory space e.g. 0x700 for a
PIC17C42A (Figure 4).

Several methods could be used to reset the
PIC17CXXX when the ICSP header is connected to the
system board. The simplest method, as shown in
Figure 3, is to derive the system 5V, from the 13V sup-
plied by the ICSP header. It is quite common in manu-
facturing lines, to have system boards programmed
with only the boot code ready and available for testing,
calibration or final programming. The ICSP header
would thus supply the 13V to the system and this 13V
would then be stepped down to supply the 5V required
to power the system. Please note that the 13V supply
should have enough drive capability to supply power to
the system as well as maintain the programming volt-
age of 13V.

The first action of the boot code (as shown in flowchart
Figure 5) is to configure the USART to a known baud
rate and transmit a request sequence to the ICSP host
system. The host immediately responds with an
acknowledgment of this request. The boot code then
gets ready to receive ICSP data. The host starts send-
ing the data and address byte sequences to the
PIC17CXXX. On receiving the address and data
information, the 16-bit address is loaded into the
TBLPTR registers and the 16-bit data is loaded into the
TABLAT registers. The RA2 pin is driven low to enable
13V at MCLR. The PIC17CXXX device then executes
a table write instruction. This instruction in turn causes
a long write operation, which disables further code exe-
cution. Code execution is resumed when an internal

interrupt occurs. This delay ensures that the program-
ming pulse width of 1 ms (max.) is met. Once a location
is written, RA2 is driven high to disable further writes
and a verify operation is done using the Table read
instruction. If the result is good, an acknowledge is sent
to the host. This process is repeated till all desired loca-
tions are programmed.

In normal operation, when the ICSP header is not con-
nected, the boot code would still execute and the
PIC17CXXX would send out a request to the host.
However it would not get a response from the host, so
it would abort the boot code and start normal code
execution.

FIGURE 4: BOOT CODE EXAMPLE FOR
PIC17C42A

PIC17CXXX

Vdd

MCLR

RA2

RX

Vss

+5V

MAX232

2N3905 13V

+5V

Serial Port TX

Serial Port RX
TX

7805

Programming Header

Reset Vector

Boot Code

Program Memory

0x700

0x7FF
DS91015A-page 2-16 Preliminary 2000 Microchip Technology Inc.

TB015
FIGURE 5: FLOWCHART FOR ICSP BOOT CODE

Start

Received Host’s

Configure USART
and send request

Goto Boot Code

Prepare to receive
ICSP data

Do Table Write
operation

Received Address
and Data info?

Last Data/Address

Signal Programming
Error

END

sequence?

ACK?
Time-out complete?

Start Code
Execution

Interrupt?

Read Program
Location

Program location
verified correctly?

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

YesNo
 2000 Microchip Technology Inc. Preliminary DS91015A-page 2-17

TB015
USING THE ICSP FEATURE ON
PIC17CXXX OTP DEVICES

The ICSP feature is a very powerful tool when used in
conjunction with OTP devices.

Saving Calibration Information Using ICSP

One key use of ICSP is to store calibration constants or
parameters in program memory. It is quite common to
interface a PIC17CXXX device to a sensor. Accurate,
pre-calibrated sensors can be used, but they are more
expensive and have long lead times. Uncalibrated sen-
sors on the other hand are inexpensive and readily
available. The only caveat is that these sensors have to
be calibrated in the application. Once the calibration
constants have been determined, they would be unique
to a given system, so they have to be saved in program
memory. These calibration parameters/constants can
then be retrieved later during program execution and
used to improve the accuracy of low cost un-calibrated
sensors. ICSP thus offers a cost reduction path for the
end user in the application.

Saving Field Calibration Information Using
ICSP

Sensors typically tend to drift and lose calibration over
time and usage. One expensive solution would be to
replace the sensor with a new one. A more cost effec-
tive solution however, is to re-calibrated the system and
save the new calibration parameter/constants into the
PIC17CXXX devices using ICSP. The user program
however has to take into account certain issues:

1. Un-programmed or blank locations have to be
reserved at each calibration constant location in
order to save new calibration parameters/con-
stants.

2. The old calibration parameters/constants are all
programmed to 0, so the user program will have
to be “intelligent” and differentiate between blank
(0xFFFF), zero (0x0000), and programmed locations.

Figure 6 shows how this can be achieved.

Programming Unique Serial Numbers Using
ICSP

There are applications where each system needs to
have a unique and sometimes random serial number.
Example: security devices. One common solution is to
have a set of DIP switches which are then set to a
unique value during final test. A more cost effective
solution however would be to program unique serial
numbers into the device using ICSP. The user applica-
tion can thus eliminate the need for DIP switches and
subsequently reduce the cost of the system.

FIGURE 6: FIELD CALIBRATION USING ICSP

Parameter 1.1
0xFFFF
0xFFFF
0xFFFF

Parameter 2.1
0xFFFF
0xFFFF
0xFFFF

Factory Settings

0x0000
Parameter 1.2

0xFFFF
0xFFFF
0x0000

Parameter 2.2
0xFFFF
0xFFFF

Field Calibrate #1

0x0000
0x0000

Parameter 1.3
0xFFFF
0x0000
0x0000

Parameter 2.3
0xFFFF

Field Calibrate #2
DS91015A-page 2-18 Preliminary 2000 Microchip Technology Inc.

TB015
Code Updates in the Field Using ICSP

With fast time to market it is not uncommon to see
application programs which need to be updated or cor-
rected for either enhancements or minor errors/bugs. If
ROM parts were used, updates would be impossible
and the product would either become outdated or
recalled from the field. A more cost effective solution
is to use OTP devices with ICSP and program them in
the field with the new updates. Figure 7 shows an
example where the user has allowed for one field
update to his program.

Here are some of the issues which need to be
addressed:

1. The user has to reserve sufficient blank memory
to fit his updated code.

2. At least one blank location needs to be saved at
the reset vector as well as for all the interrupts.

3. Program all the old “goto” locations (located at
the reset vector and the interrupts vectors) to 0
so that these instructions execute as NOPs.

4. Program new “goto” locations (at the reset vec-
tor and the interrupt vectors) just below the old
“goto” locations.

5. Finally, program the new updated code in the
blank memory space.

CONCLUSION

ICSP is a very powerful feature available on the
PIC17CXXX devices. It offers tremendous design flex-
ibility to the end user in terms of saving calibration con-
stants and updating code in final production as well as
in the field, thus helping the user design a low-cost and
fast time-to-market product.

FIGURE 7: CODE UPDATES USING ICSP

Goto Boot

Goto Main1
0xFFFF
0xFFFF

Production Program

0x0000

Main1

Main

Boot

Goto Main

Goto Boot

0x0000
Goto Main2

0xFFFF

Code Update #1

Main1

Main

Boot

Goto Main

Main2

0x0000
 2000 Microchip Technology Inc. Preliminary DS91015A-page 2-19

TB015
NOTES:
DS91015A-page 2-20 Preliminary 2000 Microchip Technology Inc.

TB016
How to Implement ICSP™ Using PIC16F8X FLASH MCUs
INTRODUCTION

In-Circuit Serial Programming™ (ICSP) with
PICmicro® FLASH microcontrollers (MCU) is not only a
great way to reduce your inventory overhead and time-
to-market for your product, but also to easily provide
field upgrades of firmware. By assembling your product
with a Microchip FLASH-based MCU, you can stock the
shelf with one system. When an order has been placed,
these units can be programmed with the latest revision
of firmware, tested, and shipped in a very short time.
This type of manufacturing system can also facilitate
quick turnarounds on custom orders for your product.
You don’t have to worry about scrapped inventory
because of the FLASH-based program memory. This
gives you the advantage of upgrading the firmware at
any time to fix those “features” that pop up from time to
time.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system.

These are the: Application Circuit, Programmer and
Programming Environment.

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro MCUs. Figure 1 shows a typical circuit that is
a starting point for when designing with ICSP. The
application must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the VDD, MCLR/VPP,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
VDD.

5. PICmicro Oscillator.
6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. It is, there-
fore, recommended that the circuit in Figure 1 be used
when an RC is connected to MCLR/VPP. The diode
should be a Schottky-type device. Another issue with
MCLR/VPP is that when the PICmicro MCU device is
programmed, this pin is driven to approximately 13V
and also to ground. Therefore, the application circuit
must be isolated from this voltage provided by the
programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey
Microchip Technology Inc.

Application PCB
PIC16F8X

MCLR/VPP

Vdd
Vss
RB7
RB6

Vdd Vdd

To application circuit

Isolation circuits

ICSP Connector

PICmicro, PRO MATE, and PICSTART are registered trademarks of Microchip Technology Inc.
In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc.
 2000 Microchip Technology Inc. DS91016B-page 2-21

TB016
Pins RB6 and RB7 are used by the PICmicro MCU for
serial programming. RB6 is the clock line and RB7 is
the data line. RB6 is driven by the programmer. RB7 is
a bidirectional pin that is driven by the programmer
when programming, and driven by the PICmicro MCU
when verifying. These pins must be isolated from the
rest of the application circuit so as not to affect the sig-
nals during programming. You must take into consider-
ation the output impedance of the programmer when
isolating RB6 and RB7 from the rest of the circuit. This
isolation circuit must account for RB6 being an input on
the PICmicro MCU and for RB7 being bidirectional (can
be driven by both the PICmicro MCU and the program-
mer). For instance, PRO MATE® II has an output
impedance of 1k¾. If the design permits, these pins
should not be used by the application. This is not the
case with most applications so it is recommended that
the designer evaluate whether these signals need to be
buffered. As a designer, you must consider what type of
circuitry is connected to RB6 and RB7 and then make
a decision on how to isolate these pins. Figure 1 does
not show any circuitry to isolate RB6 and RB7 on the
application circuit because this is very application
dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro MCU
itself and don’t have strong enough drivers to power the
application circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the cor-
rect rise rates and should also provide enough current
to power the application circuit. RB6 and RB7 are not
buffered on this schematic but may require buffering
depending upon the application. A sample driver board
schematic is shown in Appendix A.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other issue is that the device must be verified
at the minimum and maximum voltages at which the
application circuit will be operating. For instance, a bat-
tery operated system may operate from three 1.5V

cells giving an operating voltage range of 2.7V to 4.5V.
The programmer must program the device at 5V and
must verify the program memory contents at both 2.7V
and 4.5V to ensure that proper programming margins
have been achieved. This ensures the PICmicro MCU
option over the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro MCU are not affected by this issue
because the Oscillator Start-up Timer waits for 1024
oscillations before any code is executed. However, RC
oscillators do not require any startup time and, there-
fore, the Oscillator Startup Timer is not used. The pro-
grammer must drive MCLR/VPP to the program mode
entry voltage before the RC oscillator toggles four
times. If the RC oscillator toggles four or more times,
the program counter will be incremented to some value
X. Now when the device enters programming mode,
the program counter will not be zero and the program-
mer will start programming your code at an offset of X.
There are several alternatives that can compensate for
a slow rise rate on MCLR/VPP. The first method would
be to not populate the R, program the device, and then
insert the R. The other method would be to have the
programming interface drive the OSC1 pin of the
PICmicro MCU to ground while programming. This will
prevent any oscillations from occurring during program-
ming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16F8X MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is the
drive capability. As discussed before, it must be able to
provide the specified rise rates on the ICSP signals and
also provide enough current to power the application
circuit. Appendix A shows an example driver board.
This driver schematic does not show any buffer circuitry
for RB6 and RB7. It is recommended that an evalua-
tion be performed to determine if buffering is required.
Another issue with the programmer is what VDD levels
are used to verify the memory contents of the PICmicro
MCU. For instance, the PRO MATE II verifies program
memory at the minimum and maximum VDD levels for
the specified device and is therefore considered a pro-
duction quality programmer. On the other hand, the
PICSTART® Plus only verifies at 5V and is for prototyp-
ing use only. The Microchip programming specifica-
tions state that the program memory contents should
be verified at both the minimum and maximum VDD lev-
els that the application circuit will be operating. This
implies that the application circuit must be able to han-
dle the varying VDD voltages.

Note: The driver board design MUST be tested
in the user’s application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on Vdd, VPP, RB6 or
RB7.
DS91016B-page 2-22 2000 Microchip Technology Inc.

TB016
There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly termi-
nated and shielded or the programming signals may be
corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application circuit
or fixture is moved into position such that the pogo pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format
allows the microcontroller to compensate in software
for external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro MCU
has already been programmed with firmware that per-
forms a calibration cycle. The calibration data is trans-
ferred to a calibration fixture. When all calibration data
has been transferred, the fixture places the PICmicro
MCU in programming mode and programs the
PICmicro MCU with the calibration data. Application
note AN656, In-Circuit Serial Programming of Calibra-
tion Parameters Using a PICmicro Microcontroller,
shows exactly how to implement this type of calibration
data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of FLASH PICmicro MCUs

With the ISP interface circuitry already in place, these
FLASH-based PICmicro MCUs can be easily repro-
grammed in the field. These FLASH devices allow you
to reprogram them even if they are code protected. A
portable ISP programming station might consist of a
laptop computer and programmer. The technician
plugs the ISP interface cable into the application circuit
and downloads the new firmware into the PICmicro
MCU. The next thing you know the system is up and
running without those annoying “bugs”. Another
instance would be that you want to add an additional
feature to your system. All of your current inventory can
be converted to the new firmware and field upgrades
can be performed to bring your installed base of sys-
tems up to the latest revision of firmware.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.
 2000 Microchip Technology Inc. DS91016B-page 2-23

TB016
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

TO
 C

IR
C

U
IT

 3 2
 1

41
U

1A

T
LE

21
44

A

R
9

10
0

R
9

10
0

V
cc

Q
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
LE

21
44

A

V
cc

V
cc

15
V

E
X

T
E

R
N

A
L

P
O

W
E

R
 S

U
P

P
LY R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1m

F

V
D

D
_O

U
T

R
15

1
TO

 C
IR

C
U

IT

C
6

0.
1m

F

 1
0

 9
 8

U
1C

T
LE

21
44

A

V
cc

R
18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
dd

_I
N

 1
2

 1
3

14
U

1D

T
LE

21
44

A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

R
B

6_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

TO
 C

IR
C

U
IT

R
B

6_
O

U
T

R
B

7_
IN

fr
om

pr
og

ra
m

m
er

TO
 C

IR
C

U
IT

R
B

7_
O

U
T

To
 C

irc
ui

t

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

r’s
ap

pl
ic

at
io

n
to

 d
et

er
m

in
e

th
e

ef
fe

ct
s

of
 t

he
 a

pp
lic

at
io

n
ci

rc
ui

t
on

 t
he

 p
ro

gr
am

m
in

g
si

gn
al

s
tim

in
g.

 C
ha

ng
es

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
an

t
lo

ad
 o

n
V

dd
, V

P
P
, R

B
6

or
 R

B
7.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.
DS91016B-page 2-24 2000 Microchip Technology Inc.

 2000 Microchip Technology Inc. DS30277C-page 3-i

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C5XX OTP MCUs ..3-1

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C67X AND PIC12CE67X OTP MCUs3-15

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC14000 OTP MCUs ...3-27

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C55X OTP MCUs ..3-39

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C6XX/7XX/9XX OTP MCUsS3-51

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC17C7XX OTP MCUs ..3-71

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC18CXXX OTP MCUs ..3-97

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F62X FLASH MCUs ..3-135

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8X FLASH MCUs ..3-149

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8XX FLASH MCUs ..3-165

SECTION 3
 PROGRAMMING SPECIFICATIONS

DS30277C-page 3-ii 2000 Microchip Technology Inc.

PIC12C5XX
In-Circuit Serial Programming for PIC12C5XX OTP MCUs
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC12C5XX

The PIC12C5XX can be programmed using a serial
method. Due to this serial programming, the
PIC12C5XX can be programmed while in the user’s
system increasing design flexibility. This programming
specification applies to PIC12C5XX devices in all pack-
ages.

1.1 Hardware Requirements

The PIC12C5XX requires two programmable power
supplies, one for VDD (2.0V to 6.5V recommended) and
one for VPP (12V to 14V). Both supplies should have a
minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC12C5XX allows
programming of user program memory, special loca-
tions used for ID, and the configuration word for the
PIC12C5XX.

Pin Diagram

• PIC12C508 • PIC12C508A • PIC12CE518
• PIC12C509 • PIC12C509A • PIC12CE519

PDIP, SOIC, JW

8

7

6

5

1

2

3

4

VDD

GP5/OSC1/CLKIN

GP4/OSC2/CLKOUT

GP3/MCLR/Vpp

VSS

GP0

GP1

GP2/T0CKI

P
IC

12C
5X

X
P

IC
12C

5X
X

A
P

IC
12C

E
5X

X
A

 2000 Microchip Technology Inc. DS30557E-page 3-1

PIC12C5XX
2.0 PROGRAM MODE ENTRY
The program/verify test mode is entered by holding
pins DB0 and DB1 low while raising MCLR pin from VIL

to VIHH. Once in this test mode the user program mem-
ory and the test program memory can be accessed and
programmed in a serial fashion. The first selected
memory location is the fuses. GP0 and GP1 are
Schmitt trigger inputs in this mode.

Incrementing the PC once (using the increment
address command) selects location 0x000 of the regu-
lar program memory. Afterwards all other memory loca-
tions from 0x001-01FF (PIC12C508/CE518), 0x001-
03FF (PIC12C509/CE519) can be addressed by incre-
menting the PC.

If the program counter has reached the last user pro-
gram location and is incremented again, the on-chip
special EPROM area will be addressed. (See
Figure 2-2 to determine where the special EPROM
area is located for the various PIC12C5XX devices).

2.1 Programming Method

The programming technique is described in the follow-
ing section. It is designed to guarantee good program-
ming margins. It does, however, require a variable
power supply for VCC.

2.1.1 PROGRAMMING METHOD DETAILS

Essentially, this technique includes the following steps:

1. Perform blank check at VDD = VDDmin. Report
failure. The device may not be properly erased.

2. Program location with pulses and verify after
each pulse at VDD = VDDP:
where VDDP = VDD range required during pro-
gramming (4.5V - 5.5V).

a) Programming condition:

VPP = 13.0V to 13.25V

VDD = VDDP = 4.5V to 5.5V

VPP must be ≥ VDD + 7.25V to keep “programming
mode” active.

b) Verify condition:

VDD = VDDP

VPP ≥ VDD + 7.5V but not to exceed 13.25V

If location fails to program after “N” pulses, (sug-
gested maximum program pulses of 8) then report
error as a programming failure.

3. Once location passes “Step 2", apply 11X over
programming, i.e., apply 11 times the number of
pulses that were required to program the loca-
tion. This will guarantee a solid programming
margin. The over programming should be made
“software programmable” for easy updates.

4. Program all locations.

5. Verify all locations (using speed verify mode) at
VDD = VDDmin

6. Verify all locations at VDD = VDDmax

VDDmin is the minimum operating voltage spec. for
the part. VDDmax is the maximum operating volt-
age spec. for the part.

2.1.2 SYSTEM REQUIREMENTS

Clearly, to implement this technique, the most stringent
requirements will be that of the power supplies:

VPP: VPP can be a fixed 13.0V to 13.25V supply. It
must not exceed 14.0V to avoid damage to the pin and
should be current limited to approximately 100mA.

VDD: 2.0V to 6.5V with 0.25V granularity. Since this
method calls for verification at different VDD values, a
programmable VDD power supply is needed.

Current Requirement: 40mA maximum

Microchip may release devices in the future with differ-
ent VDD ranges which make it necessary to have a pro-
grammable VDD.

It is important to verify an EPROM at the voltages
specified in this method to remain consistent with
Mic roch ip 's tes t screen ing . For example, a
PIC12C5XX specified for 4.5V to 5.5V should be
tested for proper programming from 4.5V to 5.5V.

2.1.3 SOFTWARE REQUIREMENTS

Certain parameters should be programmable (and
therefore easily modified) for easy upgrade.

a) Pulse width
b) Maximum number of pulses, present limit 8.

c) Number of over-programming pulses: should be
= (A • N) + B, where N = number of pulses
required in regular programming. In our current
algorithm A = 11, B = 0.

2.2 Programming Pulse Width

Program Memory Cells: When programming one
word of EPROM, a programming pulse width (TPW) of
100µs is recommended.

The maximum number of programming attempts
should be limited to 8 per word.

After the first successful verify, the same location
should be over-programmed with 11X over-program-
ming.

Configuration Word: The configuration word for oscil-
lator selection, WDT (watchdog timer) disable and
code protection, and MCLR enable, requires a pro-
gramming pulse width (TPWF) of 10ms. A series of
100µs pulses is preferred over a single 10ms pulse.

Note: Device must be verified at minimum and
maximum specified operating voltages as
specified in the data sheet.

Note: Any programmer not meeting the programma-
ble VDD requirement and the verify at VDDmax
and VDDmin requirement may only be classi-
fied as “prototype” or “development” program-
mer but not a production programmer.
DS30557E-page 3-2 2000 Microchip Technology Inc.

PIC12C5XX
FIGURE 2-1: PROGRAMMING METHOD FLOWCHART

N > 8?

Start

Blank Check
@ VDD = VDDmin

Pass?

Report Possible Erase Failure
Continue Programming

at user’s option

Program 1 Location
@ VPP = 13.0V to 13.25V

VDD = VDDP

N = N + 1
(N = # of program pulses)

Report Programming Failure

Increment PC to point to
next location, N = 0

Apply 11N additional
program pulses

Pass?

All
locations

done?

Verify all locations
@ VDD = VDDmin

Pass? Report verify failure
@ VDDmin

VDD = VDD max.
Verify all locations
@ VDD = VDDmax

Pass? Report verify failure
@ VDDmax

Done

Yes

No

Yes

No

No

Yes

No

Yes

Yes

Yes

No

No

Now program
Configuration Word

Verify Configuration Word
@ VDDmax & VDDmin
 2000 Microchip Technology Inc. DS30557E-page 3-3

PIC12C5XX
FIGURE 2-2: PIC12C5XX SERIES PROGRAM MEMORY MAP IN PROGRAM/VERIFY MODE
Address
(Hex) 000

Bit Number11 0

NNN

TTT

TTT + 1

TTT + 2

TTT + 3

TTT + 3F

(FFF)

For Customer Use
(4 x 4 bit usable)

For Factory Use

Configuration Word 5 bits

0 0 ID0

0 0 ID1

0 0 ID2

0 0 ID3

User Program Memory
(NNN + 1) x 12 bit

NNN Highest normal EPROM memory address. NNN = 0x1FF for PIC12C508/CE518.
NNN = 0x3FF for PIC12C509/CE519.

TTT Start address of special EPROM area and ID locations.
Note that some versions will have an oscillator calibration value programmed at NNN
DS30557E-page 3-4 2000 Microchip Technology Inc.

PIC12C5XX
2.3 Special Memory Locations

The highest address of program memory space is
reserved for the internal RC oscillator calibration value.
This location should not be overwritten except when
this location is blank, and it should be verified, when
programmed, that it is a MOVLW XX instruction.

The ID Locations area is only enabled if the device is in
programming/verify mode. Thus, in normal operation
mode only the memory location 0x000 to 0xNNN will be
accessed and the Program Counter will just roll over
from address 0xNNN to 0x000 when incremented.

The configuration word can only be accessed immedi-
ately after MCLR going from VIL to VHH. The Program
Counter will be set to all ’1’s upon MCLR = VIL. Thus,
it has the value “0xFFF” when accessing the configura-
tion EPROM. Incrementing the Program Counter once
causes the Program Counter to roll over to all '0's.
Incrementing the Program Counter 4K times after reset
(MCLR = VIL) does not allow access to the configura-
tion EPROM.

2.3.1 CUSTOMER ID CODE LOCATIONS

Per definition, the first four words (address TTT to TTT
+ 3) are reserved for customer use. It is recommended
that the customer use only the four lower order bits (bits
0 through 3) of each word and filling the eight higher
order bits with '0's.

A user may want to store an identification code (ID) in
the ID locations and still be able to read this code after
the code protection bit was programmed.

EXAMPLE 2-1: CUSTOMER CODE 0xD1E2

The Customer ID code “0xD1E2” should be stored in
the ID locations 0x200-0x203 like this (PIC12C508/
508A/CE518):

200: 0000 0000 1101
201: 0000 0000 0001
202: 0000 0000 1110
203: 0000 0000 0010

Reading these four memory locations, even with the
code protection bit programmed would still output on
GP0 the bit sequence “1101”, “0001”, “1110”, “0010”
which is “0xD1E2”.

2.4 Program/Verify Mode

The program/verify mode is entered by holding pins
GP1 and GP0 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial. GP0 and GP1 are Schmitt Trigger
inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

Note: All other locations in PICmicro® MCU con-
figuration memory are reserved and
should not be programmed.

Note: The MCLR pin should be raised from VIL to
VIHH within 9 ms of VDD rise. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.
 2000 Microchip Technology Inc. DS30557E-page 3-5

PIC12C5XX
2.4.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GP0
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (GP1) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin GP0 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1 µs between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin GP0 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1 µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least 1
µs is required between a command and a data word (or
another command).

The commands that are available are listed in Table .

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The clock must be disabled during in-circuit programming.
DS30557E-page 3-6 2000 Microchip Technology Inc.

PIC12C5XX
2.4.1.1 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. Because this is a 12 bit core, the
two msb’s of the data word are ignored. A timing dia-
gram for the load data command is shown in
Figure 5-1.

2.4.1.2 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The GP0
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. Because this is a 12-
bit core, the two MSB’s of the data are unused and read
as ’0’. A timing diagram of this command is shown in
Figure 5-2.

2.4.1.3 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.4.1.4 BEGIN PROGRAMMING

A load data command must be given before every
begin programming command. Programming of the
appropriate memory (test program memory or user
program memory) will begin after this command is
received and decoded. Programming should be per-
formed with a series of 100µs programming pulses. A
programming pulse is defined as the time between the
begin programming command and the end program-
ming command.

2.4.1.5 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.5 Programming Algorithm Requires
Variable VDD

The PIC12C5XX uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin as
well as VDDmax. Verification at VDDmin guarantees
good “erase margin”. Verification at VDDmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDDmax = maximum operating VDD spec for the part.

Programmers must verify the PIC12C5XX at its speci-
fied VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC12C5XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS30557E-page 3-7

PIC12C5XX
3.0 CONFIGURATION WORD
The PIC12C5XX family members have several config-
uration bits. These bits can be programmed (reads ’0’)
or left unprogrammed (reads ’1’) to select various
device configurations. Figure 3-1 provides an overview
of configuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 11 10 9 8 7 6 5 4 3 2 1 0
PIC12C5XX — — — — — — — MCLRE CP WDTE FOSC1 FOSC0

bit 11-5:Reserved, '–' write as '0' for PIC12C5XX

bit 4: MCLRE, Master Clear pin Enable Bit
 0 = MCLR internally connected to Vdd
 1 = MCLR pin enabled

bit 3: CP, Code Protect Enable Bit
1 = Code Memory Unprotected
0 = Code Memory Protected

bit 2: WDTE, WDT Enable Bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC<1:0>, Oscillator Selection Bit
11: ExtRC oscillator
10: IntRC oscillator
01: XT oscillator
00: LP oscillator
DS30557E-page 3-8 2000 Microchip Technology Inc.

PIC12C5XX
4.0 CODE PROTECTION
The program code written into the EPROM can be pro-
tected by writing to the CP bit of the configuration word.

In PIC12C5XX, it is still possible to program and read
locations 0x000 through 0x03F, after code protection.
Once code protection is enabled, all protected seg-
ments read '0's (or “garbage values”) and are pre-
vented from further programming. All unprotected

segments, including ID locations and configuration
word, read normally. These locations can be pro-
grammed.

Once code protection is enabled, all code protected
locations read 0’s. All unprotected segments, including
the internal oscillator calibration value, ID, and configu-
ration word read as normal.

4.1 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CODE PROTECTION

PIC12C508
To code protect:

• (CP enable pattern: XXXXXXXX0XXX)

PIC12C508A
To code protect:

• (CP enable pattern: XXXXXXXX0XXX)

PIC12C509
To code protect:

• (CP enable pattern: XXXXXXXX0XXX))

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x1FF] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

ID Locations (0x200 : 0x203) Read Enabled, Write Enabled Read Enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read enabled, Write Enabled Read enabled, Write Enabled

[0x00:0x3F] Read enabled, Write Enabled Read enabled, Write Enabled

[0x40:0x1FE] Read disabled (all 0’s), Write Disabled Read enabled, Write Enabled

0x1FF Oscillator Calibration Value Read enabled, Write Enabled Read enabled, Write Enabled

ID Locations (0x200 : 0x203) Read enabled, Write Enabled Read enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read enabled, Write Enabled Read enabled, Write Enabled

[0x00:0x3F] Read enabled, Write Enabled Read enabled, Write Enabled

[0x40:0x3FF] Read disabled (all 0’s), Write Disabled Read enabled, Write Enabled

ID Locations (0x400 : 0x403) Read enabled, Write Enabled Read enabled, Write Enabled
 2000 Microchip Technology Inc. DS30557E-page 3-9

PIC12C5XX
PIC12C509A
To code protect:

• (CP enable pattern: XXXXXXXX0XXX))

PIC12CE518
To code protect:

• (CP enable pattern: XXXXXXXX0XXX)

PIC12CE519
To code protect:

• (CP enable pattern: XXXXXXXX0XXX))

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read enabled, Write Enabled Read enabled, Write Enabled

[0x00:0x3F] Read enabled, Write Enabled Read enabled, Write Enabled

[0x40:0x3FE] Read disabled (all 0’s), Write Disabled Read enabled, Write Enabled

0x3FF Oscillator Calibration Value Read enabled, Write Enabled Read enabled, Write Enabled

ID Locations (0x400 : 0x403) Read enabled, Write Enabled Read enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read enabled, Write Enabled Read enabled, Write Enabled

[0x00:0x3F] Read enabled, Write Enabled Read enabled, Write Enabled

[0x40:0x1FE] Read disabled (all 0’s), Write Disabled Read enabled, Write Enabled

0x1FF Oscillator Calibration Value Read enabled, Write Enabled Read enabled, Write Enabled

ID Locations (0x200 : 0x203) Read enabled, Write Enabled Read enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read enabled, Write Enabled Read enabled, Write Enabled

[0x00:0x3F] Read enabled, Write Enabled Read enabled, Write Enabled

[0x40:0x3FF] Read disabled (all 0’s), Write Disabled Read enabled, Write Enabled

ID Locations (0x400 : 0x403) Read enabled, Write Enabled Read enabled, Write Enabled
DS30557E-page 3-10 2000 Microchip Technology Inc.

PIC12C5XX
4.2 Checksum

4.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC12C5XX memory locations and adding up the
opcodes up to the maximum user addressable location,
(not including the last location which is reserved for the
oscillator calibration value) e.g., 0x1FE for the
PIC12C508/CE518. Any carry bits exceeding 16-bits
are neglected. Finally, the configuration word (appropri-
ately masked) is added to the checksum. Checksum
computation for each member of the PIC12C5XX fam-
ily is shown in Table 4-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked
• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

The oscillator calibration value location is not used in
the above checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0x723 at
0 and max
address

PIC12C508 OFF
ON

SUM[0x000:0x1FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20
EDF7

DC68
D363

PIC12C508A OFF
ON

SUM[0x000:0x1FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20
EDF7

DC68
D363

PIC12C509 OFF
ON

SUM[0x000:0x3FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20
EBF7

DA68
D163

PIC12C509A OFF
ON

SUM[0x000:0x3FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20
EBF7

DA68
D163

PIC12CE518 OFF
ON

SUM[0x000:0x1FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20
EDF7

DC68
D363

PIC12CE519 OFF
ON

SUM[0x000:0x3FE] + CFGW & 0x01F
SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20
EBF7

DA68
D163

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
 2000 Microchip Technology Inc. DS30557E-page 3-11

PIC12C5XX
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions
Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (20°C recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)
during programming

20 mA

PD3 VDDV Supply voltage during verify VDDmin VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during
programming

12.75 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current (from
VPP)

50 mA

PD9 VIH1 (GP1, GP0) input high level 0.8 VDD V Schmitt Trigger input

PD8 VIL1 (GP1, GP0) input low level 0.2 VDD V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH) 8.0 µs

P2 Tf MCLR Fall time 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 ns

P8 Thld0 Hold time after MCLR ↑ 2 µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
DS30557E-page 3-12 2000 Microchip Technology Inc.

PIC12C5XX
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1ms min.

P5

1ms min.

P6

0

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

GP1
(CLOCK)

GP0
(DATA) 0

MCLR/VPP

}

00

1ms min.

P5

1ms min.

P6

155432165

Program/Verify Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

GP1
(CLOCK)

GP0
(DATA)

0

MCLR/VPP

GP0 = output
GP0
input

P7

}

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1ms min.
Next Command

P5

1ms min.

VIHH
MCLR/VPP

GP1
(CLOCK)

(DATA)
GP0

Reset
Program/Verify Mode
 2000 Microchip Technology Inc. DS30557E-page 3-13

PIC12C5XX
DS30557E-page 3-14 2000 Microchip Technology Inc.

PIC12C67X AND PIC12CE67X
In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC12C67X AND PIC12CE67X

The PIC12C67X and PIC12CE67X can be pro-
grammed using a serial method. In serial mode the
PIC12C67X and PIC12CE67X can be programmed
while in the users system. This allows for increased
design flexibility.

1.1 Hardware Requirements

The PIC12C67X and PIC12CE67X requires two pro-
grammable power supplies, one for VDD (2.0V to 6.0V
recommended) and one for VPP (12V to 14V). Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC12C67X and
PIC12CE67X allows programming of user program
memory, special locations used for ID, and the configu-
ration word for the PIC12C67X and PIC12CE67X.

Pin Diagram:

• PIC12C671
• PIC12C672
• PIC12CE673
• PIC12CE674

PDIP, SOIC, JW

8

7

6

5

1

2

3

4

P
IC

12C
67X

GP5/OSC1/CLKIN
GP4/OSC2/AN3/

GP3/MCLR/VPP

VDD VSS

GP0/AN0

GP1/AN1/VREF

GP2/T0CKI/
AN2/INT

CLKOUT

PDIP, JW

8

7

6

5

1

2

3

4

GP5/OSC1/CLKIN
GP4/OSC2/AN3/

GP3/MCLR/VPP

VDD VSS

GP0/AN0

GP1/AN1/VREF

GP2/T0CKI/
AN2/INT

CLKOUT

P
IC

12C
E

67X
 2000 Microchip Technology Inc. DS40175B-page 3-15

PIC12C67X and PIC12CE67X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC12C67X family.

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to 0x3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x000 or 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ’1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

The last location of the program memory space holds
the factory programmed oscillator calibration value.
This location should not be programmed except when
blank (a non-blank value should not cause the device to
fail a blank check). If blank, the programmer should pro-
gram it to a RETLW XX statement where “XX” is the
calibration value.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as the PC exceeds 0x2XFF (see
Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003].

Note 1: All other locations in PICmicro® MCU con-
figuration memory are reserved and should
not be programmed.

2: Due to the secure nature of the on-board
EEPROM memory in the PIC12CE673/674,
it can be accessed only by the user pro-
gram.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM MEMORY IN THE
PIC12C67X

Device Program Memory Size

PIC12C671/
PIC12CE673

0x000 - 0x3FF (1K)

PIC12C672/
PIC12CE674

0x000 - 0x7FF (2K)
DS40175B-page 3-16 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
FIGURE 2-1: PROGRAM MEMORY MAPPING

0

3FF

400
7FF
800

BFF
C00

FFF
1000

1FFF

2000

2008

2100

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

1FF
1KW 2KW

Implemented Implemented

Implemented

Reserved

Reserved

Reserved Reserved

Reserved Reserved
 2000 Microchip Technology Inc. DS40175B-page 3-17

PIC12C67X and PIC12CE67X
2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
GP1 and GP0 low while raising MCLR pin from VIL to
VIHH (high voltage). VDD is then raised from VIL to
VIH.Once in this mode the user program memory and
the configuration memory can be accessed and pro-
grammed in serial fashion. The mode of operation is
serial, and the memory that is accessed is the user pro-
gram memory. GP1 is a Schmitt Trigger input in this
mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GP0
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (GP1) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin GP0 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1µs between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin GP0 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1µs is required between a command and a data word
(or another command).

The commands that are available are listed in Table .

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

Note 1:The MCLR pin must be raised from VIL

to VIHH before VDD is applied. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.

Note 2:Do not power GP2, GP4 or GP5
before VDD is applied.

TABLE 1-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0
DS40175B-page 3-18 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
FIGURE 2-2: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X PROGRAM MEMORY

Start

Set VDD = VDDP
•

N = N + 1

Load Data
Command

Increment Address
Command

Report Verify
@ VDD MAX Error

End Programming
Command

Begin Programming
Command

Apply 3N Additional
Program Cycles

Read Data
Command

Program Cycle

Program Cycle N > 25

 Data Correct?

Done

No

Yes

Yes

No

No

Yes

Set VPP = VIHH1

N = 0

 All Locations Done?

Verify all Locations
@ VDD MIN.•
VPP = VIHH2

 Data Correct?

Yes

Verify all Locations
@ VDD MAX.

VPP = VIHH2

 Data Correct?

Yes

Report Programming
Failure

Wait 100 µs

Report Verify
@ VDD MIN. Error

No

No

• VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDD MIN. = Minimum VDD for device operation.
VDD MAX. = Maximum VDD for device operation.

N = # of Program Cycles
 2000 Microchip Technology Inc. DS40175B-page 3-19

PIC12C67X and PIC12CE67X
FIGURE 2-3: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X CONFIGURATION WORD
& ID LOCATIONS

VDDmin

VDDmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1

N = # of Program

ID/Configuration
Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin
Read Data Command

Set VPP = VIHH2

Cycles

Set VPP = VIHH1
DS40175B-page 3-20 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The GP0
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100µs programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VDD

The PIC12C67X and PIC12CE67X uses an intelligent
algorithm. The algorithm calls for program verification
at VDDmin as well as VDDmax. Verification at VDDmin
guarantees good “erase margin”. Verification at
VDDmax guarantees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC12C67X and
PIC12CE67X at its specified VDDmax and VDDmin lev-
els. Since Microchip may introduce future versions of
the PIC12C67X and PIC12CE67X with a broader VDD

range, it is best that these levels are user selectable
(defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS40175B-page 3-21

PIC12C67X and PIC12CE67X
3.0 CONFIGURATION WORD
The PIC12C67X and PIC12CE67X family members
have several configuration bits. These bits can be pro-
grammed (reads ’0’) or left unprogrammed (reads ’1’) to

select various device configurations. Figure 3-1 pro-
vides an overview of configuration bits.

FIGURE 3-1: CONFIGURATION WORD

Bit Number:

11 10 9 8 7 6 5 4 3 2

FOSC2

1

FOSC1

0

FOSC0WDTE

bit 13-8, 6-5: CP1:CP0: Code Protection bits (1) (2)

11 = Code protection off
10 = 0400h-07FFh code protected;
01 = 0200h-07FFh code protected;
00 = 0000h-07FFh code protected;

bit 7: MCLRE: GP3/MCLR pin function select

1 = GP3/MCLR pin function is MCLR
0 = GP3/MCLR pin function is digital I/O, MCLR internally tied to Vdd

bit 4: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 3: WDTE: Watchdog Timer Enable bit

1 = WDT enabled
0 = WDT disabled

bit 2-0: FOSC2:FOSC0: Oscillator Selection bits

111 = EXTRC oscillator / CLKOUT function on GP4/OSC2/CLKOUT pin
110 = EXTRC oscillator / GP4 function on GP4/OSC2/CLKOUT pin
101 = INTRC oscillator / CLKOUT function on GP4/OSC2/CLKOUT pin
100 = INTRC oscillator / GP4 function on GP4/OSC2/CLKOUT pin
011 = invalid selection
010 = HS oscillator
001 = XT oscillator
000 = LP oscillator

3: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.

4: 07FFh is always uncode protected on the 12C672 and 03FFh is always uncode protected on the 12C671. This location
contains the RETLW xx calibration instruction for the INTRC.

13 12

 CP0MCLRE CP1CP0CP1 CP0CP1 CP0CP1 PWRTE
Register: CONFIG
Address 2007h
DS40175B-page 3-22 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
4.0 CODE PROTECTION
The program code written into the EPROM can be pro-
tected by writing to the CP0 & CP1 bits of the configu-
ration word.

For PIC12C67X and PIC12CE67X devices, once code
protection is enabled, all protected segments read ’0’s
(or “garbage values”) and are prevented from further
programming. All unprotected segments, including ID
and configuration word locations, and calibration word
location read normally and can be programmed.

4.1 Embedding Configuration Word and ID Information in the Hex File

TABLE 1-2: CONFIGURATION WORD

PIC12C671, PIC12CE673

To code protect:
• Protect all memory 00 0000 X00X XXXX
• Protect 0200h-07FFh 01 0101 X01X XXXX
• No code protection 11 1111 X11X XXXX

PIC12C672, PIC12CE674

To code protect:
• Protect all memory 00 0000 X00X XXXX

• Protect 0200h-07FFh 01 0101 X01X XXXX

• Protect 0400h-07FFh 10 1010 X10X XXXX

• No code protection 11 1111 X11X XXXX

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Unprotected memory segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

INTRC Calibration Word (0X3FF) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Unprotected memory segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

INTRC Calibration Word (0X7FF) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2000 Microchip Technology Inc. DS40175B-page 3-23

PIC12C67X and PIC12CE67X
4.2 Checksum

4.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC12C67X and PIC12CE67X memory locations and
adding the opcodes up to the maximum user address-
able location, excluding the oscillator calibration loca-
tion in the last address, e.g., 0x3FE for the PIC12C671/
CE673. Any carry bits exceeding 16-bits are neglected.
Finally, the configuration word (appropriately masked)
is added to the checksum. Checksum computation for
each member of the PIC12C67X and PIC12CE67X
devices is shown in Table 4-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-1: CHECKSUM COMPUTATION

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
For example,

ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND

Device
Code

Protect
Checksum*

Blank
Value

Ox25E6 at
0 and max
address

PIC12C671
PIC12CE673

OFF
1/2
ALL

SUM[0x000:0x3FE] + CFGW & 0x3FFF
SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID

CFGW & 0x3FFF + SUM_ID

3B3F
4E5E
3B4E

070D
0013
071C

PIC12C672
PIC12CE674

OFF
1/2
3/4
ALL

SUM[0x000:0x7FE] + CFGW & 0x3FFF
SUM[0x000:0x3FF] + CFGW & 0x3FFF + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID

CFGW & 0x3FFF + SUM_ID

373F
5D6E
4A5E
374E

030D
0F23
FC13
031C
DS40175B-page 3-24 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 1-3: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)
during programming

20 mA

PD3 VDDV Supply voltage during verify VDDmin VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during
programming

12.75 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current (from
VPP)

50 mA

PD9 VIH1 (GP0, GP1) input high level 0.8 VDD V Schmitt Trigger input

PD8 VIL1 (GP0, GP1) input low level 0.2 VDD V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VIHH)
for test mode entry

8.0 µs

P2 Tf MCLR Fall time 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock ↑ to data out valid
(during read data)

200 ns

P8 Thld0 Hold time after VDD↑ 2 µs

P9 TPPDP Hold time after VPP↑ 5 µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
 2000 Microchip Technology Inc. DS40175B-page 3-25

PIC12C67X and PIC12CE67X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

GP1
(CLOCK)

GP0
(DATA) 0

MCLR/VPP

VDD

P9

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

GP1
(CLOCK)

GP0
(DATA)

0

MCLR/VPP

RB7 = output
RB7
input

P7

}

VDD
P9

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR/VPP

GP1
(CLOCK)

(DATA)
GP0

Reset
Program/Verify Mode

VDD
P9
DS40175B-page 3-26 2000 Microchip Technology Inc.

PIC14000
In-Circuit Serial Programming for PIC14000 OTP MCUs
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE PIC14000
The PIC14000 can be programmed using a serial
method. In serial mode the PIC14000 can be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC14000 devices in all packages.

1.1 Hardware Requirements

The PIC14000 requires two programmable power sup-
plies, one for VDD (2.0V to 6.5V recommended) and
one for VPP (12V to 14V).

1.2 Programming Mode

The programming mode for the PIC14000 allows pro-
gramming of user program memory, configuration
word, and calibration memory.

PIN DIAGRAM

• PIC14000 PDIP, SOIC, SSOP, Windowed CERDIP

28

27

26

25

24

23

22

21

20

19

18

17

16

15

RA2/AN2

RA3/AN3

RD4/AN4

RD5/AN5

RD6/AN6

RD7/AN7

CDAC

SUM

VSS

RC0/REFA

RC1/CMPA

RC2

RC3/T0CKI

RC4

P
IC

14000

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

RA1/AN1

RA0/AN0

RD3/REFB

RD2/CMPB

RD1/SDAB

RD0/SCLB

OSC2/CLKOUT

OSC1/PBTN

VDD

VREG

RC7/SDAA

RC6/SCLA

RC5

MCLR/VPP
 2000 Microchip Technology Inc. DS30555B-page 3-27

PIC14000
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The program and calibration memory space extends
from 0x000 to 0xFFF (4096 words). Table 2-1 shows
actual implementation of program memory in the
PIC14000.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM AND
CALIBRATION MEMORY IN
THE PIC14000P

When the PC reaches address 0xFFF, it will wrap
around and address a location within the physically
implemented memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to 0x3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x0000, or 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ’1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as PC exceeds 0x2XFF (Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. All other locations are reserved and should
not be programmed.

The ID locations read out normally, even after code pro-
tection. To understand how the devices behave, refer to
Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.1.

Area Memory Space
Access to
Memory

Program 0x000-0xFBF PC<12:0>
Calibration 0xFC0 -0xFFF PC<12:0>
DS30555B-page 3-28 2000 Microchip Technology Inc.

PIC14000
FIGURE 2-1: PROGRAM MEMORY MAPPING

0

0FC0

0FFF

1FFF

20FF

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

0FBF

2000

Program

Reserved

Calibration

Test

Reserved
 2000 Microchip Technology Inc. DS30555B-page 3-29

PIC14000
2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RC6 and RC7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RC6 and RC7 are both
Schmitt Trigger inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RC6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RC7 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to

have a minimum delay of 1µs between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin RC7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1µs is required between a command and a data word
(or another command).

The commands that are available are listed in Table .

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

Note: The MCLR pin should be raised as quickly
as possible from VIL to VIHH. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The CPU clock must be disabled during in-circuit programming (to avoid incrementing the PC).
DS30555B-page 3-30 2000 Microchip Technology Inc.

PIC14000
FIGURE 2-2: PROGRAM FLOW CHART - PIC14000 PROGRAM MEMORY AND CALIBRATION

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
VDDmax = Maximum VDD for device operation.

Start

No

Yes

Yes

Yes

Done

No

No

No

Data Correct?

Program Cycle

Read Data
Command N = N + 1 N = #

of Program Cycles

N > 25 Report Programming
Failure

Increment Address
Command

Apply 3N Additional
Program Cycles

All Locations Done?

Data Correct? Report Verify
@ VDD min. Error

Program Cycle

Load Data
Command

Begin Programming
Command

Wait 100 µs

End Programming
Command

No

Yes

Data Correct? Report Verify
@ VDD max. Error

N = 0

Yes

Set VDD = VDDP*

Verify all Locations
@ VDD min.*
VPP = VIHH2

Verify all Locations
@ VDD max.
VPP = VIHH2
 2000 Microchip Technology Inc. DS30555B-page 3-31

PIC14000
FIGURE 2-3: PROGRAM FLOW CHART - PIC14000 CONFIGURATION WORD & ID LOCATIONS

VDDmin

VDDmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

Report ID
Configuration Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin
Read Data Command

Set VPP = VIHH2
DS30555B-page 3-32 2000 Microchip Technology Inc.

PIC14000
2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RC7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100µs programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VDD

The PIC14000 uses an intelligent algorithm. The algo-
rithm calls for program verification at VDDmin as well as
VDDmax. Verification at VDDmin guarantees good
“erase margin”. Verification at VDDmax guarantees
good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDDmin = minimum operating VDD spec for the part.

VDDmax = maximum operating VDD spec for the part.

Programmers must verify the PIC14000 at its specified
VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC14000 with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS30555B-page 3-33

PIC14000
3.0 CONFIGURATION WORD
The PIC14000 has several configuration bits. These
bits can be programmed (reads ’0’) or left unpro-
grammed (reads ’1’) to select various device configura-
tions. Figure 3-1 provides an overview of configuration
bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC14000 CPC CPP1 CPP0 CPP0 CPP1 CPC CPC F CPP1 CPP0 PWRTE WDTE F FOSC

CPP<1:0>
11: All Unprotected
10: N/A
01: N/A
00: All Protected

bit 1,6: F Internal trim, factory programmed. DO NOT CHANGE! Program as ‘1’. Note 1.

bit 3: PWRTE, Power Up Timer Enable Bit
0 = Power up timer enabled
1 = Power up timer disabled (unprogrammed)

bit 2: WDTE, WDT Enable Bit
0 = WDT disabled
1 = WDT enabled (unprogrammed)

bit 0: FOSC<1:0>, Oscillator Selection Bit
0: HS oscillator (crystal/resonator)
1: Internal RC oscillator (unprogrammed)

Note 1: See Section 4.1.2 for cautions.
DS30555B-page 3-34 2000 Microchip Technology Inc.

PIC14000
4.0 CODE PROTECTION
The memory space in the PIC14000 is divided into two
areas: program space (0-0xFBF) and calibration space
(0xFC0-0xFFF).

For program space or user space, once code protection
is enabled, all protected segments read ‘0’s (or “gar-
bage values”) and are prevented from further program-
ming. All unprotected segments, including ID locations
and configuration word, read normally. These locations
can be programmed.

4.1 Calibration Space

The calibration space can contain factory-generated
and programmed values. For non-JW devices, the CPC
bits in the configuration word are set to ‘0’ at the factory,
and the calibration data values are write-protected;
they may still be read out, but not programmed. JW
devices contain the factory values, but DO NOT have
the CPC bits set.

Microchip does not recommend setting code protect
bits in windowed devices to ‘0’. Once code-protected,
the device cannot be reprogrammed.

4.1.1 CALIBRATION SPACE CHECKSUM

The data in the calibration space has its own check-
sum. When properly programmed, the calibration
memory will always checksum to 0x0000. When this

checksum is 0x0000, and the checksum of memory
[0x0000:0xFBF] is 0x2FBF, the part is effectively blank,
and the programmer should indicate such.

If the CPC bits are set to ‘1’, but the checksum of the
calibration memory is 0x0000, the programmer should
NOT program locations in the calibration memory
space, even if requested to do so by the operator. This
would be the case for a new JW device.

If the CPC bits are set to ‘1’, and the checksum of the
calibration memory is NOT 0x0000, the programmer is
allowed to program the calibration space as directed by
the operator.

The calibration space contains specially coded data
values used for device parameter calibration. The pro-
grammer may wish to read these values and display
them for the operator’s convenience. For further infor-
mation on these values and their coding, refer to
AN621 (DS00621B).

4.1.2 REPROGRAMMING CALIBRATION SPACE

The operator should be allowed to read and store the
data in the calibration space, for future reprogramming
of the device. This procedure is necessary for repro-
gramming a windowed device, since the calibration
data will be erased along with the rest of the memory.
When saving this data, Configuration Word <1,6> must
also be saved, and restored when the calibration data
is reloaded.

4.2 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CODE PROTECT OPTIONS
• Protect calibration memory
0XXXX00XXXXXXX

• Protect program memory
X0000XXX00XXXX

• No code protection
1111111X11XXXX

Legend: X = Don’t care

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
Unprotected memory segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled
Protected calibration memory Read Unscrambled, Write Disabled Read Unscrambled, Write Enabled
ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2000 Microchip Technology Inc. DS30555B-page 3-35

PIC14000
4.3 Checksum

4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC14000 memory locations and adding up the
opcodes up to the maximum user addressable location,
0xFBF. Any carry bits exceeding 16-bits are neglected.
Finally, the configuration word (appropriately masked)
is added to the checksum. Checksum computation for
the PIC14000 device is shown in Table 4-2:

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Code
Protect

Checksum*
Blank
Value

0x25E6 at
0 and max
address

OFF
OFF OTP
ON

SUM[0000:0FBF] + CFGW & 0x3FBD
SUM[0000:0FBF] + CFGW & 0x3FBD
CFGW & 0x3FBD + SUM(IDs)

0x2FFD
0x0E7D
0x300A

0xFBCB
0xDA4B
0xFBD8

Legend: CFGW = Configuration Word
SUM[A:B] = [Sum of locations a through b inclusive]
SUM(ID) = ID locations masked by 0x7F then made into a 28-bit value with ID0 as the most significant byte
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
DS30555B-page 3-36 2000 Microchip Technology Inc.

PIC14000
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
AC/DC TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions
Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)
during programming

– – 20 mA

PD3 VDDV Supply voltage during verify VDDmin VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during
programming

12.75 – 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current (from
VPP)

– – 50 mA

PD9 VIH1 (RC6, RC7) input high level 0.8 VDD – – V Schmitt Trigger input

PD8 VIL1 (RC6, RC7) input low level 0.2 VDD – – V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)
for test mode entry

– – 8.0 µs

P2 Tf MCLR Fall time – – 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 – – ns

P4 Thld1 Data in hold time after clock ↓ 100 – – ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 – – µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 – – µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 – – ns

P8 Thld0 Hold time after MCLR ↑ 2 – – µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
Note 2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
 2000 Microchip Technology Inc. DS30555B-page 3-37

PIC14000
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RC6
(CLOCK)

RC7
(DATA) 0

MCLR/VPP

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RC6
(CLOCK)

RC7
(DATA)

0

MCLR/VPP

RC7 = output
RC7
input

P7

}

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR/VPP

RC6
(CLOCK)

(DATA)
RC7

Reset
Program/Verify Test Mode
DS30555B-page 3-38 2000 Microchip Technology Inc.

PIC16C55X
In-Circuit Serial Programming for PIC16C55X OTP MCUs

30261C.fm Page 39 Wednesday, May 3, 2000 12:18 PM
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC16C55X

The PIC16C55X can be programmed using a serial
method. In serial mode the PIC16C55X can be pro-
grammed while in the users system. This allows for
increased design flexibility.

1.1 Hardware Requirements

The PIC16C55X requires two programmable power
supplies, one for VDD (2.0V to 6.5V recommended) and
one for VPP (12V to 14V). Both supplies should have a
minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16C55X allows pro-
gramming of user program memory, special locations
used for ID, and the configuration word for the
PIC16C55X.

PIN Diagrams

• PIC16C554
• PIC16C556
• PIC16C558

RA1
RA0

OSC2/CLKOUT
VDD
RB7
RB6
RB5
RB4

OSC1/CLKIN

RA2
RA3

MCLR
VSS

RB0/INT
RB1
RB2
RB3

RA4/T0CKI

P
IC

16C
55X

RA1
RA0

OSC2/CLKOUT
VDD

RB7
RB6
RB5
RB4

OSC1/CLKIN

RA2
RA3

MCLR
VSS
VSS

RB0/INT
RB1
RB2

RA4/T0CKI

P
IC

16C
55X

RB3RB3

VDD

PDIP, SOIC, Windowed CERDIP

SSOP

 2
 3
 4
 5
 6
 7
 8
 9
10

•1

 2
 3
 4
 5
 6
 7
 8
 9

•1

19
18

16
15
14
13
12
11

17

18
17

15
14
13
12
11
10

16

20
 2000 Microchip Technology Inc. DS30261C-page 3-39

PIC16C55X

30261C.fm Page 40 Wednesday, May 3, 2000 12:18 PM
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC16C55X family.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM MEMORY IN THE
PIC16C55X

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to 0x3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x000 or 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ’1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in a configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as the PC exceeds 0x2XFF (see
Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in a scrambled fash-
ion after code protection is enabled. For these devices,
it is recommended that ID location is written as “11
1111 1000 bbbb” where 'bbbb' is ID information.

Note: All other locations are reserved and should
not be programmed.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.1.

Device Program Memory Size
Access to
Program
Memory

PIC16C554 0x000 - 0x1FF (0.5K) PC<8:0>

PIC16C556 0x000 - 0x3FF (1K) PC<9:0>

PIC16C558 0x000 - 0x7FF (2K) PC<10:0>
DS30261C-page 3-40 2000 Microchip Technology Inc.

PIC16C55X

30261C.fm Page 41 Wednesday, May 3, 2000 12:18 PM
FIGURE 2-1: PROGRAM MEMORY MAPPING

0.5KW 1KW 2KW

Implemented Implemented

Implemented

Reserved

Reserved Reserved Reserved

Reserved Reserved Reserved

0

3FF
400

7FF
800

BFF
C00

FFF
1000

1FFF
2000
2008

2100

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

1FF

 Reserved

 Reserved

Implemented

Reserved Reserved
 2000 Microchip Technology Inc. DS30261C-page 3-41

PIC16C55X

30261C.fm Page 42 Wednesday, May 3, 2000 12:18 PM
2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program and configuration memory. RB6 is
a Schmitt Trigger input in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum

setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1µs between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

The commands that are available are listed
in Table 2-1.

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

Note: The MCLR pin should be raised as quickly
as possible from VIL to VIHH. this is to
ensure that the device does not have the
PC incremented while in valid operation
range.

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The CPU clock must be disabled during in-circuit programming.
DS30261C-page3-42 2000 Microchip Technology Inc.

PIC16C55X

30261C.fm Page 43 Wednesday, May 3, 2000 12:18 PM
FIGURE 2-2: PROGRAM FLOW CHART - PIC16C55X PROGRAM MEMORY

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
VDDmax = Maximum VDD for device operation.

Start

No

Yes

Yes

Yes

Done

No

No

No

Data Correct?

Program Cycle

Read Data
Command N = N + 1 N = #

of Program Cycles

N > 25 Report Programming
Failure

Increment Address
Command

Apply 3N Additional
Program Cycles

All Locations Done?

Data Correct? Report Verify
@ VDD min. Error

Program Cycle

Load Data
Command

Begin Programming
Command

Wait 100 µs

End Programming
Command

No

Yes

Data Correct? Report Verify
@ VDD max. Error

N = 0

Yes

Set VDD = VDDP*

Verify all Locations
@ VDD min.*
VPP = VIHH2

Verify all Locations
@ VDD max.
VPP = VIHH2
 2000 Microchip Technology Inc. DS30261C-page 3-43

PIC16C55X

30261C.fm Page 44 Wednesday, May 3, 2000 12:18 PM
FIGURE 2-3: PROGRAM FLOW CHART - PIC16C55X CONFIGURATION WORD & ID LOCATIONS

VDDmin

VDDmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

ID/Configuration
Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin
Read Data Command

Set VPP = VIHH2
DS30261C-page 3-44 2000 Microchip Technology Inc.

PIC16C55X

30261C.fm Page 45 Wednesday, May 3, 2000 12:18 PM
2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RB7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100µs programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VDD

The PIC16C55X uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin as
well as VDDmax. Verification at VDDmin guarantees
good “erase margin”. Verification at VDDmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC16C55X at its speci-
fied VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC16C55X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS30261C-page 3-45

PIC16C55X

30261C.fm Page 46 Wednesday, May 3, 2000 12:18 PM
3.0 CONFIGURATION WORD
The PIC16C55X family members have several configu-
ration bits. These bits can be programmed (reads ’0’) or
left unprogrammed (reads ’1’) to select various device
configurations. Figure 3-1 provides an overview of con-
figuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC16C554/556/558 CP1 CP0 CP1 CP0 CP1 CP0 — 0 CP1 CP0 PWRTE WDTE FOSC1 FOSC0

bit 7: Reserved for future use
bit 6: Set to 0

bit 5-4: CP1:CP0, Code Protect

bit 8-13

bit 3: PWRTE, Power Up Timer Enable Bit
PIC16C554/556/558:
 0 = Power up timer enabled
 1 = Power up timer disabled

bit 2: WDTE, WDT Enable Bit
1 = WDT enabled
0 = WDT disabled

bit 1-0:FOSC<1:0>, Oscillator Selection Bit
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

Device CP1 CP0 Code Protection

PIC16C554 All memory protected
Do not use

Do not use

Code protection off

0 0
0 1

1 0

1 1

PIC16C556 All memory protected
Upper 1/2 memory protected
Do not use

Code protection off

0 0
0 1

1 0
1 1

PIC16C558 All memory protected
Upper 3/4 memory protected

Upper 1/2 memory protected

Code protection off

0 0
0 1

1 0
1 1
DS30261C-page 3-46 2000 Microchip Technology Inc.

PIC16C55X

30261C.fm Page 47 Wednesday, May 3, 2000 12:18 PM
4.0 CODE PROTECTION
The program code written into the EPROM can be pro-
tected by writing to the CP0 & CP1 bits of the configu-
ration word.

4.1 Programming Locations 0x0000 to
0x03F after Code Protection

For PIC16C55X devices, once code protection is
enabled, all protected segments read '0's (or “garbage
values”) and are prevented from further programming.
All unprotected segments, including ID locations and
configuration word, read normally. These locations can
be programmed.

4.2 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CONFIGURATION WORD

PIC16C554

To code protect:
• Protect all memory 0000001000XXXX

• No code protection 1111111011XXXX

PIC16C556

To code protect:
• Protect all memory 0000001000XXXX
• Protect upper 1/2 memory 0101011001XXXX
• No code protection 1111111011XXXX

PIC16C558

To code protect:
• Protect all memory 0000001000XXXX

• Protect upper 3/4 memory 0101011001XXXX

• Protect upper 1/2 memory 1010101010XXXX

• No code protection 1111111011XXXX

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2000 Microchip Technology Inc. DS30261C-page 3-47

PIC16C55X

30261C.fm Page 48 Wednesday, May 3, 2000 12:18 PM
4.3 Checksum

4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC16C55X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., 0x1FF for the PIC16C74. Any carry bits exceeding
16-bits are neglected. Finally, the configuration word
(appropriately masked) is added to the checksum.
Checksum computation for each member of the
PIC16C55X devices is shown in Table .

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

PIC16C554 OFF
ALL

SUM[0x000:0x1FF] + CFGW & 0x3F3F
SUM_ID + CFGW & 0x3F3F

3D3F
3D4E

090D
091C

PIC16C556 OFF
1/2
ALL

SUM[0x000:0x3FF] + CFGW & 0x3F3F
SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

3B3F
4E5E
3B4E

070D
0013
071C

PIC16C558 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F3F
SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

373F
5D6E
4A5E
374E

030D
0F23
FC13
031C

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
DS30261C-page 3-48 2000 Microchip Technology Inc.

PIC16C55X

30261C.fm Page 49 Wednesday, May 3, 2000 12:18 PM
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)
during programming

- - 20 mA

PD3 VDDV Supply voltage during verify VDDmin - VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during
programming

12.75 - 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 - 13.5 -

PD6 IPP Programming supply current (from
VPP)

- - 50 mA

PD9 VIH1 (RB6, RB7) input high level 0.8 VDD - - V Schmitt Trigger input

PD8 VIL1 (RB6, RB7) input low level 0.2 VDD - - V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)
for test mode entry

- - 8.0 µs

P2 Tf MCLR Fall time - - 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 - - ns

P4 Thld1 Data in hold time after clock ↓ 100 - - ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 - - µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 - - µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 - - ns

P8 Thld0 Hold time after MCLR ↑ 2 - - µs

- Tpw Programming Pulse Width 10 100 1000 µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
 2000 Microchip Technology Inc. DS30261C-page 3-49

PIC16C55X

30261C.fm Page 50 Wednesday, May 3, 2000 12:18 PM
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RB6
(CLOCK)

RB7
(DATA) 0

MCLR/VPP

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RB6
(CLOCK)

RB7
(DATA)

0

MCLR/VPP

RB7 = output
RB7
input

P7

}

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR/VPP

RB6
(CLOCK)

(DATA)
RB7

Reset
Program/Verify Test Mode
DS30261C-page 3-50 2000 Microchip Technology Inc.

 2000 Microchip Technology Inc. DS30228J-page 3-51

PIC16C6XX/7XX/9XX

This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC16C6XX/7XX/9XX

The PIC16C6XX/7XX/9XX can be programmed using a
serial method. In serial mode the PIC16C6XX/7XX/
9XX can be programmed while in the users system.
This allows for increased design flexibility. This pro-
gramming specification applies to PIC16C6XX/7XX/
9XX devices in all packages.

1.1 Hardware Requirements

The PIC16C6XX/7XX/9XX requires two programmable
power supplies, one for VDD (2.0V to 6.5V recom-
mended) and one for VPP (12V to 14V). Both supplies
should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16C6XX/7XX/9XX
allows programming of user program memory, special
locations used for ID, and the configuration word for the
PIC16C6XX/7XX/9XX.

Pin Diagrams

• PIC16C61 • PIC16C72A • PIC16CE623
• PIC16C62 • PIC16C73 • PIC16CE624
• PIC16C62A • PIC16C73A • PIC16CE625
• PIC16C62B • PIC16C73B • PIC16C710
• PIC16C63 • PIC16C74 • PIC16C711
• PIC16C63A • PIC16C74A • PIC16C712
• PIC16C64 • PIC16C74B • PIC16C716
• PIC16C64A • PIC16C76 • PIC16C745
• PIC16C65 • PIC16C77 • PIC16C765
• PIC16C65A • PIC16C620 • PIC16C773
• PIC16C65B • PIC16C620A • PIC16C774
• PIC16C66 • PIC16C621 • PIC16C923
• PIC16C67 • PIC16C621A • PIC16C924
• PIC16C71 • PIC16C622
• PIC16C72 • PIC16C622A P

IC
16C

62/62A
/63/66/72/72A

P
IC

16C
73/73A

/73B
/76/745

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD

VSS

RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2

MCLR/VPP

RA0
RA1
RA2
RA3

RA4/T0CKI
RA5
RE0
RE1
RE2
VDD

VSS

OSC1/CLKIN
OSC2/CLKOUT

RC0
RC1
RC2
RC3
RD0
RD1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

PDIP, Windowed CERDIP

PDIP, SOIC, Windowed CERDIP (300 mil)

28

27

26

25

24

23

22

21

20

19

18

17

16

15

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RC7

RC6

RC5

RC4

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

MCLR/VPP

RA0

RA1

RA2

RA3

RA4/T0CKI

RA5

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0

RC1

RC2

RC3

P
IC

16C
64/64A

/65/65A
/67

P
IC

16C
74/74A

/74B
/77/765

In-Circuit Serial Programming for PIC16C6XX/7XX/9XX OTP MCUs

PIC16C6XX/7XX/9XX

DS30228J-page 3-52 2000 Microchip Technology Inc.

Pin Diagrams (Con’t)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

9 8 7 6 5 4 3 2 1
6

8
6

7
6

6
6

5
6

4
6

3
6

2
6

1

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

PIC16C924

RD5/SEG29/COM3
RG6/SEG26
RG5/SEG25
RG4/SEG24
RG3/SEG23
RG2/SEG22
RG1/SEG21
RG0/SEG20
RG7/SEG28
RF7/SEG19
RF6/SEG18
RF5/SEG17
RF4/SEG16
RF3/SEG15
RF2/SEG14
RF1/SEG13
RF0/SEG12

RA4/T0CKI
RA5/AN4/SS

RB1
RB0/INT

RC3/SCK/SCL
RC4/SDI/SDA

RC5/SDO

VLCD2
VLCD3
AVDD
VDD

VSS

C1
C2

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSO/T1CKI

R
A

3/
A

N
3

/V
R

E
F

R
A

2/
A

N
2

V
S

S
R

A
1/

A
N

1
R

A
0/

A
N

0
R

B
2

R
B

3
M

C
LR

/V
P

P
N

/C
R

B
4

R
B

5
R

B
7

R
B

6
V

D
D

C
O

M
0

R
D

7/
S

E
G

31
/C

O
M

1
R

D
6/

S
E

G
30

/C
O

M
2

R
C

1/
T

1O
S

I
R

C
2/

C
C

P
1

V
LC

D
1

V
LC

D
A

D
J

R
D

0/
S

E
G

00
R

D
1/

S
E

G
01

R
D

2/
S

E
G

02
R

D
3/

S
E

G
03

R
D

4/
S

E
G

04
R

E
7/

S
E

G
27

R
E

0/
S

E
G

05
R

E
1/

S
E

G
06

R
E

2/
S

E
G

07
R

E
3/

S
E

G
08

R
E

4/
S

E
G

09

R
E

6/
S

E
G

11
R

E
5/

S
E

G
10

PLCC

PDIP, SOIC, Windowed CERDIP

18

17

16

15

14

13

12

11

10

• 1

2

3

4

5

6

7

8

9

RA2

RA3

RA4/T0CKI

MCLR/VPP

VSS

RB0/INT

RB1

RB2

RB3

RA1

RA0

OSC1/CLKIN

OSC2/CLKOUT

VDD

RB7

RB6

RB5

RB4

P
IC

16C
61/71

P
IC

16C
62X

P
IC

16C
710/711

PIC16C923

MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF-/VRL

RA3/AN3/VREF+/VRH

RA4/T0CKI

AVDD

AVSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RB7

RB6

RB5

RB4

RB3/AN9/LVDIN

RB2/AN8

RB1/SS

RB0/INT

VDD

VSS

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

300 mil. SDIP, SOIC, Windowed CERDIP, SSOP

P
IC

16C
773

P
IC

16C
712

RA2/AN2

RA4/T0CKI

RB0/INT
RB1/T1OSO/T1CKI

RA0/AN0

OSC1/CLKIN

RB7
RB6

• 1

2

3

4

5

6

7

18

17

16

15

14

13

12

8

9

11

10

18 pin PDIP, SOIC, Windowed CERDIP

MCLR/VPP

RA3/AN3/VREF

RB2/T1OSI
RB3/CCP1 RB4

RB5

RA1/AN1

VDD

OSC2/CLKOUT

VSS

P
IC

16C
716

P
IC

16C
712

RA2/AN2

RA4/T0CKI

RB0/INT
RB1/T1OSO/T1CKI

RA0/AN0

OSC1/CLKIN

RB7
RB6

• 1

2

3

4

5

6

7

20

19

18

17

16

15

14

8

9

13

12

20 pin SSOP

MCLR/VPP

RA3/AN3/VREF

RB2/T1OSI
RB3/CCP1 RB4

RB5

RA1/AN1

VDD

OSC2/CLKOUT

VSS

P
IC

16C
716

10

VSS VDD

11

 2000 Microchip Technology Inc. DS30228J-page 3-53

PIC16C6XX/7XX/9XX

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC16C6XX/7XX/9XX fam-
ily.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM MEMORY IN THE
PIC16C6XX/7XX/9XX

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

Once in configuration memory, the highest bit of the PC
stays a ’1’, thus always pointing to the configuration
memory. The only way to point to user program mem-
ory is to reset the part and reenter program/verify
mode, as described in Section 2.2.

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in a scrambled fash-
ion after code protection is enabled. For these devices,
it is recommended that ID location is written as “11
1111 1bbb bbbb” where 'bbbb' is ID information.

Note: All other locations are reserved and should
not be programmed.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 3.1.

Device
Program Memory

Size

PIC16C61 0x000 – 0x3FF (1K)

PIC16C620/620A 0x000 – 0x1FF (0.5K)

PIC16C621/621A 0x000 – 0x3FF (1K)

PIC16C622/622A 0x000 – 0x7FF (2K)

PIC16C62/62A/62B 0x000 – 0x7FF (2K)

PIC16C63/63A 0x000 – 0xFFF (4K)

PIC16C64/64A 0x000 – 0x7FF (2K)

PIC16C65/65A/65B 0x000 – 0xFFF (4K)

PIC16CE623 0x000 – 0x1FF (0.5K)

PIC16CE624 0x000 – 0x3FF (1K)

PIC16CE625 0x000 – 0x7FF (2K)

PIC16C71 0x000 – 0x3FF (1K)

PIC16C710 0x000 – 0x1FF (0.5K)

PIC16C711 0x000 – 0x3FF (1K)

PIC16C712 0x000 – 0x3FF (1K)

PIC16C716 0x000 – 0x7FF (2K)

PIC16C72/72A 0x000 – 0x7FF (2K)

PIC16C73/73A/73B 0x000 – 0xFFF (4K)

PIC16C74/74A/74B 0x000 – 0xFFF (4K)

PIC16C66 0x000 – 0x1FFF (8K)

PIC16C67 0x000 – 0x1FFF (8K)

PIC16C76 0x000 – 0x1FFF (8K)

PIC16C77 0x000 – 0x1FFF (8K)

PIC16C745 0x000 – 0x1FFF (8K)

PIC16C765 0x000 – 0x1FFF (8K)

PIC16C773 0x000 – 0xFFF (4K)

PIC16C774 0x000 – 0xFFF (4K)

PIC16C923/924 0x000 – 0xFFF (4K)

PIC16C6XX/7XX/9XX

DS30228J-page 3-54 2000 Microchip Technology Inc.

FIGURE 2-1: PROGRAM MEMORY MAPPING

0.5K
words

1K
words

2K
words

4K
words

8K
words

Implemented
Implemented Implemented Implemented Implemented

Implemented Implemented Implemented

Reserved Implemented Implemented

Reserved Implemented Implemented

Reserved Implemented

Reserved Implemented

Implemented

Implemented

Reserved Reserved Reserved Reserved Reserved

Reserved Reserved Reserved Reserved Reserved

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000h

2001h

2002h

2003h

2004h

2005h

2006h

2007h

0h

1FFh

3FFh

400h

7FFh

800h

BFFh

C00h

FFFh

1000h

1FFFh

2008h

2100h

3FFFh

 2000 Microchip Technology Inc. DS30228J-page 3-55

PIC16C6XX/7XX/9XX

2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VSS to
the appropriate VIHH (high voltage). Once in this mode
the user program memory and the configuration mem-
ory can be accessed and programmed in serial fash-
ion. The mode of operation is serial, and the memory
that is accessed is the user program memory. RB6 is a
Schmitt Trigger input in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VSS). This means
that all I/O are in the reset state (High impedance
inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSb) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to

have a minimum delay of 1 µs between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSb
first. Therefore, during a read operation the LSb will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSb will be
latched on the falling edge of the second cycle. A min-
imum 1 µs delay is also specified between consecutive
commands.

All commands are transmitted LSb first. Data words are
also transmitted LSb first. The data is transmitted on
the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1 µs is required between a command and a data word
(or another command).

The commands that are available are listed
in Table 2-2.

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

TABLE 2-2: COMMAND MAPPING

Note 1: The MCLR pin should be raised as quickly
as possible from VIL to VIHH. this is to
ensure that the device does not have the
PC incremented while in valid operation
range.

2: Do not power any pin before VDD is
applied.

Command Mapping (MSb... LSb) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The clock must be disabled during In-Circuit Serial Programming.

PIC16C6XX/7XX/9XX

DS30228J-page 3-56 2000 Microchip Technology Inc.

FIGURE 2-2: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX PROGRAM MEMORY

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
VDDmax = Maximum VDD for device operation.

Start

N = 1

Set VDD = VDDP*

Program Cycle

Read Data
Command

Data correct?

Apply 3N Additional
Program Cycles

All locations done?

Verify all locations
@ VDD min.*
VPP = VIHH2

Data correct?

Verify all locations
@ VDD max.*
VPP = VIHH2

Data correct?

Done

N > 25?
Report programming

failure

N = N + 1 N = #
of Program Cycles

Increment Address
Command

Report verify
@ VDD min. Error

Report verify
@ VDD max. Error

Load Data
Command

Begin Programming
Command

End Programming
Command

Wait 100 µs

Program Cycle

Yes

No

No
Yes

No

Yes

No

No

Yes

Yes

Set VPP = VIHH1

 2000 Microchip Technology Inc. DS30228J-page 3-57

PIC16C6XX/7XX/9XX

FIGURE 2-3: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX CONFIGURATION WORD & ID
LOCATIONS

VDDmin

VDDmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

Report ID
Configuration Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 1

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin
Read Data Command

Set VPP = VIHH2

Set VDD = VDDP*

Set VPP = VIHH1

VDDP = VDD Range for programming (Typically 4.25V – 5.25V)
VDDMIN = minimum VDD for device operation
VDDMAX = maximum VDD for device operation

PIC16C6XX/7XX/9XX

DS30228J-page 3-58 2000 Microchip Technology Inc.

2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 4-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RB7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 4-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 4-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100µs programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VDD

The PIC16C6XX/7XX/9XX uses an intelligent algo-
rithm. The algorithm calls for program verification at
VDDmin as well as VDDmax. Verification at VDDmin
guarantees good “erase margin”. Verification at
VDDmax guarantees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDDmax = maximum operating VDD spec for the part.

Programmers must verify the PIC16C6XX/7XX/9XX at
its specified VDDmax and VDDmin levels. Since
Microchip may introduce future versions of the

PIC16C6XX/7XX/9XX with a broader VDD range, it is
best that these levels are user selectable (defaults are
ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

 2000 Microchip Technology Inc. DS30228J-page 3-59

PIC16C6XX/7XX/9XX

3.0 CONFIGURATION WORD
The PIC16C6XX/7XX/9XX family members have sev-
eral configuration bits. These bits can be programmed
(reads ’0’) or left unprogrammed (reads ’1’) to select
various device configurations. Figure 3-1 and
Figure 3-2 provides an overview of configuration bits.

PIC16C6XX/7XX/9XX

DS30228J-page 3-60 2000 Microchip Technology Inc.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC16C61/71 — — — — — — — — — CP0 PWRTE WDTE FOSC1 FOSC0
PIC16C62/64/65/73/74 — — — — — — — 0 CP1 CP0 PWRTE WDTE FOSC1 FOSC0

PIC16C62A/62B/63A/CR62/
63/

64A/CR64/65A/65B/66/67/
72/72A/73A/73B/74A/74B/76/

77/620/620A/621/621A/622/
622A/

712/716 CP1 CP0 CP1 CP0 CP1 CP0 — BODEN CP1 CP0 PWRTE WDTE FOSC1 FOSC0

PIC16C9XX/745/765 CP1 CP0 CP1 CP0 CP1 CP0 — — CP1 CP0 PWRTE WDTE FOSC1 FOSC0

Reserved, '–' write as '1' for PIC16C6XX/7XX/9XX

CP <1:0>, Code Protect

bit 6: BODEN, Brown Out Enable Bit
1 = Enabled
2 = Disable

bit 4: PWRTE/PWRTE, Power Up Timer Enable Bit
PIC16C61/62/64/65/71/73/74:
 1 = Power up timer enabled
 0 = Power up timer disabled
PIC16C620/620A/621/621A/622/622A/62A/63/63A/65A/65B/66/67/72/72A/73A/73B/74A/74B/76/77/710/
711/923/924/745/765:
 0 = Power up timer enabled
 1 = Power up timer disabled

bit 3-2: WDTE, WDT Enable Bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC<1:0>, Oscillator Selection Bit
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

bit 1-0: FOSC<1:0>, PIC16C745/765
11: E external clock with 4k PLL
10: H HS oscillator with 4k PL enabled
01: EC external clock, clkout on osc2
00: HS

Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of bit
PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

Device CP1 CP0 Code Protection
PIC16C622/622A
PIC16C62/62A/62B 0 0 All memory protected

PIC16C63/63A
PIC16C64/64A/712/716

0 1 Upper 3/4 memory protected

PIC16C65/65A/65B
PIC16C66/67/72/72A

1 0 Upper 1/2 memory protected

PIC16C73/73A/73B
PIC16C74/74A/74B/76/77
PIC16C745/765
PIC16C9XX

1 1 Code protection off

PIC16C61/71
PIC16C710/711

— 0 All memory protected
— 1 Off

PIC16C620 0 0 All memory protected
0 1 Do not use
1 0 Do not use
1 1 Code protection off

PIC16C621 0 0 All memory protected
1 0 Upper 1/2 memory protected
1 1 Code protection off

 2000 Microchip Technology Inc. DS30228J-page 3-61

PIC16C6XX/7XX/9XX

FIGURE 3-2: CONFIGURATION WORD FOR PIC16C773/774 DEVICE

CP1 CP0 BORV1 BORV0 CP1 CP0 - BODEN CP1 CP0 PWRTE WDTE FOSC1 FOSC0 Register: CONFIG
Address 2007h

bit13 12 11 10 9 8 7 6 5 4 3 2 1 bit0

CP <1:0> Code Protection bits (2)

bit 11-10: BORV <1:0>: Brown-out Reset Voltage bits
11 = VBOR set to 2.5V
10 = VBOR set to 2.7V
01 = VBOR set to 4.2V
00 = VBOR set to 4.5V

bit 7: Unimplemented, Read as ’1’

bit 6: BODEN: Brown-out Reset Enable bit (1)

1 = Brown-out Reset enabled
0 = Brown-out Reset disabled

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC <1:0>: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP <1:0> pairs have to be given the same value to enable the code protection scheme listed.

Device CP1 CP0 Code Protection

PIC16C773/774 0 0 All memory protected

0 1 Upper 3/4 memory protected

1 0 Upper 1/2 memory protected1

1 1 Code protection off

PIC16C6XX/7XX/9XX

DS30228J-page 3-62 2000 Microchip Technology Inc.

FIGURE 3-3: CONFIGURATION WORD, PIC16C710/711

CP0 CP0 CP0 CP0 CP0 CP0 CP0 BODEN CP0 CP0 PWRTE WDTE FOSC1 FOSC0 Register: CONFIG
Address 2007hbit13 bit0

bit 13-7 CP0: Code protection bits (2)

 5-4: 1 = Code protection off
0 = All memory is code protected, but 00h - 3Fh is writable

bit 6: BODEN: Brown-out Reset Enable bit (1)

1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC <1:0>: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

 2000 Microchip Technology Inc. DS30228J-page 3-63

PIC16C6XX/7XX/9XX

3.1 Embedding Configuration Word and ID Information in the Hex File.

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is beneficial to the end customer.

PIC16C6XX/7XX/9XX

DS30228J-page 3-64 2000 Microchip Technology Inc.

3.2 Checksum

3.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC16C6XX/7XX/9XX memory locations and adding
up the opcodes up to the maximum user addressable
location, e.g., 0x1FF for the PIC16C74. Any carry bits
exceeding 16-bits are neglected. Finally, the configura-
tion word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16C6XX/7XX/9XX devices is shown in Table 3-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked
• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 3-1: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

PIC16C61 OFF
ON

SUM[0x000:0x3FF] + CFGW & 0x001F + 0x3FE0
SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060)

0x3BFF
0xFC6F

0x07CD
0xFC15

PIC16C620 OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F
SUM_ID + CFGW & 0x3F7F

0x3D7F
0x3DCE

0x094D
0x099C

PIC16C620A OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F
SUM_ID + CFGW & 0x3F7F

0x3D7F
0x3DCE

0x094D
0x099C

PIC16C621 OFF
1/2
ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x3B7F
0x4EDE
0x3BCE

0x074D
0x0093
0x079C

PIC16C621A OFF
1/2
ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x3B7F
0x4EDE
0x3BCE

0x074D
0x0093
0x079C

PIC16C622 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C622A OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16CE623 OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F
SUM_ID + CFGW & 0x3F7F

0x3D7F
0x3DCE

0x094D
0x099C

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble. For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

 2000 Microchip Technology Inc. DS30228J-page 3-65

PIC16C6XX/7XX/9XX

PIC16CE624 OFF
1/2
ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x3B7F
0x4EDE
0x3BCE

0x074D
0x0093
0x079C

PIC16CE625 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C62 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80
SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F +
0x3F80
SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F +
0x3F80
SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

0x37BF
0x37AF
0x379F
0x378F

0x038D
0x1D69
0x1D59
0x3735

PIC16C62A OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C62B OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C63 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C63A OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C64 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80
SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F +
0x3F80
SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F +
0x3F80
SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

0x37BF
0x37AF
0x379F
0x378F

0x038D
0x1D69
0x1D59
0x3735

PIC16C64A OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C65 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80
SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F +
0x3F80
SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F +
0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF
0x2FAF
0x2F9F
0x2F8F

0xFB8D
0x1569
0x1559
0x2F35

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble. For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

PIC16C6XX/7XX/9XX

DS30228J-page 3-66 2000 Microchip Technology Inc.

PIC16C65A OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C65B OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C66 OFF
1/2
3/4
ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F
SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x1F7F
0x39EE
0x2CDE
0x1FCE

0xEB4D
0xEBA3
0xDE93
0xEB9C

PIC16C67 OFF
1/2
3/4
ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F
SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x1F7F
0x39EE
0x2CDE
0x1FCE

0xEB4D
0xEBA3
0xDE93
0xEB9C

PIC16C710 OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3FFF
SUM[0x00:0x3F] + CFGW & 0x3FFF + SUM_ID

0x3DFF
0x3E0E

0x09CD
0xEFC3

PIC16C71 OFF
ON

SUM[0x000:0x3FF] + CFGW & 0x001F + 0x3FE0
SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060)

0x3BFF
0xFC6F

0x07CD
0xFC15

PIC16C711 OFF
ON

SUM[0x000:0x03FF] + CFGW & 0x3FFF
SUM[0x00:0x3FF] + CFGW & 0x3FFF + SUM_ID

0x3BFF
0x3C0E

0x07CD
0xEDC3

PIC16C712 OFF
1/2
ALL

SUM[0x000:0x07FF] + CFGW & 0x3F7F
SUM[0x000:0x03FF] + CFGW & 3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x37CE

0x034D
0xF58A
0x039C

PIC16C716 OFF
1/2
3/4
ALL

SUM[0x000:0x07FF] + CFGW & 0x3F7F
SUM[0x000:0x03FF] + CFGW & 0x3F7F + SUM_ID
SUM]0x000:0x01FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C72 OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C72A OFF
1/2
3/4
ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x377F
0x5DEE
0x4ADE
0x37CE

0x034D
0x0FA3
0xFC93
0x039C

PIC16C73 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80
SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F +
0x3F80
SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F +
0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF
0x2FAF
0x2F9F
0x2F8F

0xFB8D
0x1569
0x1559
0x2F35

PIC16C73A OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble. For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

 2000 Microchip Technology Inc. DS30228J-page 3-67

PIC16C6XX/7XX/9XX

PIC16C73B OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C74 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80
SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F +
0x3F80
SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F +
0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF
0x2FAF
0x2F9F
0x2F8F

0xFB8D
0x1569
0x1559
0x2F35

PIC16C74A OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C74B OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x51EE
0x40DE
0x2FCE

0xFB4D
0x03A3
0xF293
0xFB9C

PIC16C76 OFF
1/2
3/4
ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F
SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x1F7F
0x39EE
0x2CDE
0x1FCE

0xEB4D
0xEBA3
0xDE93
0xEB9C

PIC16C77 OFF
1/2
3/4
ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F
SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x1F7F
0x39EE
0x2CDE
0x1FCE

0xEB4D
0xEBA3
0xDE93
0xEB9C

PIC16C773 OFF
1/2
3/4
ALL

SUM[0x000:0x0FFF] + CFGW & 0x3F7F
SUM[0x000:07FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0x55EE
0x48DE
0x3BCE

0xFB4D
0x07A3
0xFA93
0x079C

PIC16C774 OFF
1/2
3/4
ALL

SU:M[0x000:0FFF] + CFGW & 0x3F7F
SUM[0x000:07FF] + CFGW & 0x3F7F + SUM_ID
SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID
CFGW & 0x3F7F + SUM_ID

0x2F7F
0X55EE
0X48DE
0x3BCE

0xFB4D
0x07A3
0xFA93
0X079C

PIC16C923 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F3F
SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID
CFGW & 0x3F3F + SUM_ID

0x2F3F
0x516E
0x405E
0x2F4E

0xFB0D
0x0323
0xF213
0xFB1C

PIC16C924 OFF
1/2
3/4
ALL

SUM[0x000:0xFFF] + CFGW & 0x3F3F
SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID
SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID
CFGW & 0x3F3F + SUM_ID

0x2F3F
0x516E
0x405E
0x2F4E

0xFB0D
0x0323
0xF213
0xFB1C

PIC16C745 OFF
1000:1FFF
800:1FFF

ALL

SUM(0000:1FFF) + CFGW & 0x3F3F
SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID
SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID
CFGW * 0x3F3F + SUM_ID

1F3F
396E
2C5E
1F4E

EB0D
EB23
DE13
EB1C

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble. For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

PIC16C6XX/7XX/9XX

DS30228J-page 3-68 2000 Microchip Technology Inc.

PIC16c765 OFF
1000:1FFF
800:1FFF

ALL

SUM(0000:1FFF) + CFGW & 0x3F3F
SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID
SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID
CFGW * 0x3F3F + SUM_ID

1F3F
396E
2C5E
1F4E

EB0D
EB23
DE13
EB1C

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at
0 and max
address

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble. For example,
 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

 2000 Microchip Technology Inc. DS30228J-page 3-69

PIC16C6XX/7XX/9XX

4.0 PROGRAM/VERIFY MODE

TABLE 4-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (20°C recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)
during programming

– – 20 mA

PD3 VDDV Supply voltage during verify VDDmin – VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during
programming

12.75 – 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.5 – 13.25 –

PD6 IPP Programming supply current (from
VPP)

– – 50 mA

PD9 VIH (RB6, RB7) input high level 0.8 VDD – – V Schmitt Trigger input

PD8 VIL (RB6, RB7) input low level 0.2 VDD – – V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)
for test mode entry

– – 8.0 µs

P2 Tf MCLR Fall time – – 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 – – ns

P4 Thld1 Data in hold time after clock ↓ 100 – – ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 – – µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 – – µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 – – ns

P8 Thld0 Hold time after MCLR ↑ 2 – – µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

PIC16C6XX/7XX/9XX

DS30228J-page 3-70 2000 Microchip Technology Inc.

FIGURE 4-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 4-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 4-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RB6
(CLOCK)

RB7
(DATA) 0

MCLR/VPP

}}

P4

100ns
min.

P3

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RB6
(CLOCK)

RB7
(DATA)

0

MCLR/VPP

RB7 = output
RB7
input

P7

}

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR/VPP

RB6
(CLOCK)

(DATA)
RB7

Reset
Program/Verify Test Mode

 2000 Microchip Technology Inc. DS30274B-page 3-71

PIC17C7XX

This document includes the programming
specifications for the following devices:

• PIC17C752

• PIC17C756
• PIC17C756A
• PIC17C762

• PIC17C766

1.0 PROGRAMMING THE
PIC17C7XX

The PIC17C7XX is programmed using the TABLWT
instruction. The table pointer points to the internal
EPROM location start. Therefore, a user can program
an EPROM location while executing code (even from
internal EPROM). This programming specification
applies to PIC17C7XX devices in all packages.

For the convenience of a programmer developer, a
“program & verify” routine is provided in the on-chip test
program memory space. The program resides in ROM
and not EPROM, therefore, it is not erasable. The “pro-
gram/verify” routine allows the user to load any
address, program a location, verify a location or incre-
ment to the next location. It allows variable program-
ming pulse width.

The PIC17C7XX group of the High End Family has
added a feature that allows the serial programming of
the device. This is very useful in applications where it is
desirable to program the device after it has been man-
ufactured into the users system (In-circuit Serial Pro-
gramming (ISP)). This allows the product to be shipped
with the most current version of the firmware, since the
microcontroller can be programmed just before final
test as opposed to before board manufacture. Devices
may be serialized to make the product unique, “special”
variants of the product may be offered, and code
updates are possible. This allows for increased design
flexibility.

1.1 Hardware Requirements

Since the PIC17C7XX under programming is actually
executing code from “boot ROM,” a clock must be pro-
vided to the part. Furthermore, the PIC17C7XX under
programming may have any oscillator configuration
(EC, XT, LF or RC). Therefore, the external clock driver
must be able to overdrive pulldown in RC mode. CMOS
drivers are required since the OSC1 input has a
Schmitt trigger input with levels (typically) of 0.2 VDD

and 0.8 VDD. See the PIC17C7XX data sheet
(DS30289) for exact specifications.

The PIC17C7XX requires two programmable power
supplies, one for VDD (3.0V to 5.5V recommended) and
one for VPP (13 ± 0.25V). Both supplies should have a
minimum resolution of 0.25V.

The PIC17C7XX uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin as
well as VDDmax. Verification at VDDmin guarantees
good “erase margin”. Verification at VDDmax guaran-
tees good “program margin.” Three times (3X)
additional pulses will increase program margin beyond
VDDmax and insure safe operation in user system.

The actual programming must be done with VDD in the
VDDP range (Parameter PD1).

VDDP = VDD range required during programming.

VDDmin. = minimum operating VDD spec. for the part.

VDDmax. = maximum operating VCC spec for the part.

Programmers must verify the PIC17C7XX at its speci-
fied VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC17C7XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok). Blank checks should be
performed at VDDMIN.

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

In-Circuit Serial Programming for PIC17C7XX OTP MCUs

PIC17C7XX

DS30274B-page 3-72 2000 Microchip Technology Inc.

FIGURE 1-1: PIC17C752/756/756A/762/766 LCC

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING IN PARALLEL MODE): PIC17C7XX

Pin Name

During Programming

Pin Name Pin Type Pin Description

RA4:RA0 RA4:RA0 I Necessary in programming mode
TEST TEST I Must be set to “high” to enter programming mode

PORTB<7:0> DAD15:DAD8 I/O Address & data: high byte
PORTC<7:0> DAD7:DAD0 I/O Address & data: low byte

MCLR/VPP VPP P Programming Power

VDD VDD P Power Supply
VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

60
59

58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43

Top View

RA0/INT
RB0/CAP1
RB1/CAP2
RB3/PWM2
RB4/TCLK12
RB5/TCLK3
RB2/PWM1
VSS

NC
OSC2/CLKOUT
OSC1/CLKIN
VDD

RB7/SDO

RA3/SDI/SDA
RA2/SS/SCL
RA1/T0CKI

RD1/AD9
RD0/AD8
RE0/ALE
RE1/OE
RE2/WR

RE3/CAP4
MCLR/VPP

TEST

VSS

VDD

RF7/AN11
RF6/AN10
RF5/AN9
RF4/AN8
RF3/AN7
RF2/AN6

R
D

2/
A

D
10

R
D

3/
A

D
11

R
D

4/
A

D
12

R
D

5/
A

D
13

R
D

6/
A

D
14

R
D

7/
A

D
15

R
C

0/
A

D
0

V
D

D

N
C

V
S

S

R
C

1/
A

D
1

R
C

2/
A

D
2

R
C

3/
A

D
3

R
C

4/
A

D
4

R
C

5/
A

D
5

R
C

6/
A

D
6

R
C

7/
A

D
7

R
F

1/
A

N
5

R
F

0/
A

N
4

A
V

D
D

A
V

S
S

R
G

3/
A

N
0/

V
R

E
F
+

R
G

2/
A

N
1

/V
R

E
F
-

R
G

1/
A

N
2

R
G

0/
A

N
3

N
C

V
S

S

V
D

D

R
G

4/
C

A
P

3
R

G
5/

P
W

M
3

R
G

7/
T

X
2/

C
K

2
R

G
6

/R
X

2/
D

T
2

R
A

4
/R

X
1/

D
T

1
R

A
5/

T
X

1/
C

K
1

NC

RB6/SCK

R
F

1/
A

N
5

R
F

0/
A

N
4

A
V

D
D

A
V

S
S

R
G

3
/A

N
0/

V
R

E
F
+

R
G

2/
A

N
1/

V
R

E
F
-

R
G

1/
A

N
2

R
G

0/
A

N
3

N
C

V
S

S

V
D

D

R
G

4/
C

A
P

3
R

G
5/

P
W

M
3

R
G

7/
T

X
2/

C
K

2
R

G
6

/R
X

2/
D

T
2

R
A

4
/R

X
1/

D
T

1
R

A
5/

T
X

1/
C

K
1

R
J0

R
J1

R
H

6/
A

N
14

R
H

7/
A

N
15

RD1/AD9
RD0/AD8
RE0/ALE
RE1/OE
RE2/WR

RE3/CAP4
MCLR/VPP

TEST

VSS

VDD
RF7/AN11
RF6/AN10
RF5/AN9
RF4/AN8
RF3/AN7
RF2/AN6

NC

RH2
RH3

RH4/AN12
RH5/AN13

1011
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 60

59
58
57
56
55
54

53525150494847464544

9 8 7 6 5 4 3 2 1

27
28
29
30
31
32

3334353637383940414243

Top View

RA0/INT
RB0/CAP1
RB1/CAP2
RB3/PWM2
RB4/TCLK12
RB5/TCLK3
RB2/PWM1
VSS

NC
OSC2/CLKOUT
OSC1/CLKIN
VDD

RB7/SDO

RA3/SDI/SDA
RA2/SS/SCL
RA1/T0CKI

R
D

2/
A

D
10

R
D

3/
A

D
11

R
D

4/
A

D
12

R
D

5/
A

D
13

R
D

6/
A

D
14

R
D

7/
A

D
15

R
C

0/
A

D
0

V
D

D

N
C

V
S

S

R
C

1/
A

D
1

R
C

2/
A

D
2

R
C

3/
A

D
3

R
C

4/
A

D
4

R
C

5/
A

D
5

R
C

6/
A

D
6

R
C

7/
A

D
7

RB6/SCK

RJ5
RJ4

R
J7

R
J6

RJ3
RJ2

R
H

1
R

H
0

67
66
65
64
63
62
61

68

74
73
72
71
70

767978778083828184 75

69

PIC17C762/766

PIC17C752/756/756A

 2000 Microchip Technology Inc. DS30274B-page 3-73

PIC17C7XX

2.0 PARALLEL MODE PROGRAM
ENTRY

To execute the programming routine, the user must hold
TEST pin high, RA2, RA3 must be low and RA4 must
be high (after power-up) while keeping MCLR low and
then raise MCLR pin from VIL to VDD or VPP. This will
force FFE0h in the program counter and execution will
begin at that location (the beginning of the boot code)
following reset.

All unused pins during programming are in hi-imped-
ance state.

PORTB (RB pins) has internal weak pull-ups which are
active during the programming mode. When the TEST
pin is high, the Power-up timer (PWRT) and Oscillator
Start-up Timers (OST) are disabled.

2.1 Program/Verify Mode

The program/verify mode is intended for full-feature
programmers. This mode offers the following capabili-
ties:

a) Load any arbitrary 16-bit address to start pro-
gram and/or verify at that location.

b) Increment address to program/verify the next
location.

c) Allows arbitrary length programming pulse width.

d) Following a “verify” allows option to program the
same location or increment and verify the next
location.

e) Following a “program” allows options to program
the same location again, verify the same loca-
tion or to increment and verify the next location.

FIGURE 2-1: PROGRAMMING/VERIFY STATE DIAGRAM

Note: The Oscillator must not have 72 OSC
clocks while the device MCLR is between
VIL and VIHH.

Reset
Jump to
Program
Routine

Load
Address

Reset

Pulse
RA1

Pulse
RA1

Pulse RA1
(Raise RA1
after RA0↓)

RA0↑

ProgramRaise RA1
before RA0↓

Pulse RA0
(RA0 pulse
width is
programming time)

Increment
Address

Pulse
RA1

PIC17C7XX

DS30274B-page 3-74 2000 Microchip Technology Inc.

2.1.1 LOADING NEW ADDRESS

The program allows new address to be loaded right out
of reset. A 16-bit address is presented on ports B (high
byte) and C (low byte) and the RA1 is pulsed (0 → 1,
then 1 → 0). The address is latched on the rising edge
of RA1. See timing diagrams for details. After loading
an address, the program automatically goes into a “ver-
ify cycle.” To load a new address at any time, the
PIC17C7XX must be reset and the programming mode
re-entered.

2.1.2 VERIFY (OR READ) MODE

“Verify mode” can be entered from “Load address”
mode, “program mode” or “verify mode.” In verify mode
pulsing RA1 will turn on PORTB and PORTC output
drivers and output the 16-bit value from the current
location. Pulsing RA1 again will increment location
count and be ready for the next verify cycle. Pulsing
RA0 will begin a program cycle.

2.1.3 PROGRAM CYCLE

“Program cycle” is entered from “verify cycle” or pro-
gram cycle” itself. After a verify, pulsing RA0 will begin
a program cycle. 16-bit data must be presented on
PORTB (high byte) and PORTC (low byte) before RA0
is raised.

The data is sampled 3 TCY cycles after the rising edge
of RA0. Programming continues for the duration of RA0
pulse.

At the end of programming, the user can choose one of
three different routes. If RA1 is kept low and RA0 is
pulsed again, the same location will be programmed
again. This is useful for applying over programming
pulses. If RA1 is raised before RA0 falling edge, then a
verify cycle is started without address increment. Rais-
ing RA1 after RA0 goes low will increment address and
begin verify cycle on the next address.

FIGURE 2-2: PIC17C7XX PROGRAM MEMORY MAP

FOSC0

FOSC1

WDTPS0

WDTPS1

PM0

PM1

PM2

Reserved

Reserved

Reserved

FE00h

FE01h

FE02h

FE03h

FE04h

FE05h

FE06h

FE07h

FE08h

FE09h

FE0Fh

Reserved

BODENFE0Eh

On-chip
Program
EPROM

Configuration
Word

0000h

1FFFh

FE00h
FE0Fh

FFFFh

On-chip
Program
EPROM

Configuration
Word

On-chip
Program
EPROM

Configuration
Word

On-chip
Program
EPROM

Configuration
Word

PIC17C752 PIC17C756/756A PIC17C762 PIC17C766

3FFFh

 2000 Microchip Technology Inc. DS30274B-page 3-75

PIC17C7XX

3.0 PARALLEL MODE PROGRAMMING SPECIFICATIONS

FIGURE 3-1: PROGRAMMING ROUTINE FLOWCHART

RESET

RA2 = 0
RA3 = 0
RA4 = 1

MCLR = 1
Bport = 0xE1
(hold for 10 TCY)

Present address
on ports RB, RC
hold TCY after
RA1 changes
to 1

RA1 = 0

RA1 = 1

Stop driving
address on ports

RA1 = 0

RA1 = 1

B port =
MSB of Data

C port =
LSB of Data

Read MSB of data
from portB.

Read LSB of data
from portC

Enable RA0 to end
program cycle

Program
16-bit
data

RA0 = 0

RA1 = 0

Bport = xxx

Bport = xxx

RA1 = 0

RA1 = 1

RA1 = 0

B and C
ports not

driven by part

If programming is desired
force portB = MSB of data
force portC = LSB of data
(hold 10 Tcy after RA0
is raised)

RA0 = 1

RA1 = 1

Increment
Address

YES

YES

YES

YES

NO

NO

NO

NO

YES

YES

YES

NO

NO

NO

NO

NO

RA0 = 1

RA1 = 1

NO

NO

YES
YES

YES

YES

YES

NO

NO

- B port is forced by the part

- B port tristate, should be forced by user

Min RA + high or low = 10 TCY

PIC17C7XX

DS30274B-page 3-76 2000 Microchip Technology Inc.

FIGURE 3-2: RECOMMENDED PROGRAMMING ALGORITHM FOR USER EPROM

Apply (3x Pulse-count)
more 100 µs programming

pulses for margin
(Over programming)

Start

Load new address
Pulse-count = 0

Set VDD = VDDMIN

Verify blank

Pulse
Blank

Check?

Load new data

Set VDD to VDDP

Program using 100 µs
pulse increment

pulse-count

Verify location
for correct date

Pass?

Pulse-
Count
>25

Location fails
programming issue error

message “Unable to
programming location”

Issue “Blank check fail”
error message

Pass?

Set VDD = VDDMIN

verify location

Set VDD = VDDMIN

verify location(s)

Program error message
Issue error message

“Fail verify @ VDDMIN/MAX”

Set VDD = VDDMIN

YES

NO

NO

YES

YES

NO

NO

YES

 2000 Microchip Technology Inc. DS30274B-page 3-77

PIC17C7XX

FIGURE 3-3: RECOMMENDED PROGRAMMING ALGORITHM FOR CONFIGURATION WORDS

Load new address
Pulse-count = 0

Set VDD = VDDmin

Verify blank

Issue “blank check fail”

Load new data

Set VDD = VDDP

Set VDD = VDDmax

Set VDD = VDDmin
Verify location for

Program using 100 µs

Location fails

Programming error:

NO

YES

NO

NO

YES

YES

Start

Pass
Blank

check?

pulse increment
pulse-count

Pass?

Issue error message
“Fail verify @ VDDmin/max”

Verify location(s)

Pass?

NO

YES Pulse
count
<100

programming, issue error
message “Unable to

program location”

correct data

error message

Set VDD = VDDMIN

Set VDD = VDDmin
Verify location

PIC17C7XX

DS30274B-page 3-78 2000 Microchip Technology Inc.

4.0 SERIAL MODE PROGRAM
ENTRY

4.1 Hardware Requirements

Certain design criteria must be taken into account for
ISP. Seven pins are required for the interface. These
are shown in Table 4-1.

4.2 Serial Program Mode Entry

To place the device into the serial programming test
mode, two pins will need to be placed at VIHH. These
are the TEST pin and the MCLR/VPP pins. Also, the fol-
lowing sequence of events must occur:

1. The TEST pin is placed at VIHH.
2. The MCLR/VPP pin is placed at VIHH.

There is a setup time between step 1 and step 2 that
must be meet (See “Electrical Specifications for Serial
Programming Mode” on page 93.)

After this sequence the Program Counter is pointing to
Program Memory Address 0xFF60. This location is in
the Boot ROM. The code initializes the USART/SCI so
that it can receive commands. For this the device must
be clocked. The device clock source in this mode is the
RA1/T0CKI pin. Once the USART/SCI has been initial-
ized, commands may be received. The flow is show in
these 3 steps:

1. The device clock source starts.
2. Wait 80 device clocks for Boot ROM code

to configure the USART/SCI.
3. Commands may be sent now.

TABLE 4-1: ISP Interface Pins
During Programming

Name Function Type Description

RA4/RX/DT DT I/O Serial Data

RA5/TX/CK CK I Serial Clock

RA1/T0CKI OSCI I Device Clock Source

TEST TEST I Test mode selection control input. Force to VIHH,

MCLR/VPP MCLR/VPP P Programming Power

VDD VDD P Power Supply

VSS VSS P Ground

 2000 Microchip Technology Inc. DS30274B-page 3-79

PIC17C7XX

4.3 Software Commands

This feature is similar to that of the PIC16CXXX mid-
range family, but the programming commands have
been implemented in the device Boot ROM. The Boot
ROM is located in the program memory from 0xFF60 to
0xFFFF. The ISP mode is entered when the TEST pin
has a VIHH voltage applied. Once in ISP mode, the
USART/SCI module is configured as a synchronous
slave receiver, and the device waits for a command to
be received. The ISP firmware recognizes eight com-
mands. These are shown in Table 4-2.

TABLE 4-2: ISP COMMANDS

4.3.1 RESET PROGRAM MEMORY POINTER

This is used to clear the address pointer to the Program
Memory. This ensures that the pointer is at a known
state as well as pointing to the first location in program
memory.

4.3.2 INCREMENT ADDRESS

This is used to increment the address pointer to the
Program Memory. This is used after the current location
has been programmed (or read).

FIGURE 4-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

FIGURE 4-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

Command Value

RESET PROGRAM
MEMORY POINTER

0000 0000

LOAD DATA 0000 0010

READ DATA 0000 0100

INCREMENT ADDRSS 0000 0110

BEGIN PROGRAMMING 0000 1000

LOAD ADDRESS 0000 1010

READ ADDRESS 0000 1100

END PROGRAMMING 0000 1110

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 0 0 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS6

VIHH

PS3

PS4PS5

PS1

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 1 1 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS6

VIHH

PS3

PS4PS5

PS1

(NEXT COMMAND)

PIC17C7XX

DS30274B-page 3-80 2000 Microchip Technology Inc.

4.3.3 LOAD ADDRESS

This is used to load the address pointer to the Program
Memory with a specific 16-bit value. This is useful when
a specific range of locations are to be accessed.

4.3.4 READ ADDRESS

This is used so that the current address in the Program
Memory pointer can be determined. This can be used
to increase the robustness of the ISP programming
(ensure that the Program Memory pointers are still in
sync).

FIGURE 4-3: LOAD ADDRESS COMMAND

FIGURE 4-4: READ ADDRESS COMMAND

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 1 0 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS7

VIHH

PS3

PS4PS5

PS1

PS6

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 0 1 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS8

VIHH

PS3

PS4PS5

RA4 = Output

PS6

PS1

PS9

(NEXT COMMAND)

 2000 Microchip Technology Inc. DS30274B-page 3-81

PIC17C7XX

4.3.5 LOAD DATA

This is used to load the 16-bit data that is to be pro-
grammed into the Program Memory location. The Pro-
gram Memory address may be modified after the data
is loaded. This data will not be programmed until a
BEGIN PROGRAMMING command is executed.

4.3.6 READ DATA

This is used to read the data in Program Memory that
is pointed to by the current address pointer. This is use-
ful for doing a verify of the programming cycle and can
be used to determine the number for programming
cycles that are required for the 3X overprogramming.

FIGURE 4-5: LOAD DATA COMMAND

FIGURE 4-6: READ DATA COMMAND

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 1 0 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS7

VIHH

PS3

PS4PS5

PS1

SP6

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 0 1 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS8

VIHH

PS3

PS4PS5

RA4 = Output

PS6

PS1

PS9

(NEXT COMMAND)

PIC17C7XX

DS30274B-page 3-82 2000 Microchip Technology Inc.

4.3.7 BEGIN PROGRAMMING

This is used to program the current 16-bit data (last
data sent with LOAD DATA Command) into the Pro-
gram Memory at the address specified by the current
address pointer. The programming cycle time is speci-
fied by specification P10. After this time has elapsed,
any command must be sent, which wakes the proces-
sor from the Long Write cycle. This command will be
the next executed command.

4.3.8 3X OVERPROGRAMMING

Once a location has been both programmed and veri-
fied over a range of voltages, 3X overprogramming
should be applied. In other words, apply three times the
number of programming pulses that were required to
program a location in memory, to ensure a solid pro-
gramming margin.

This means that every location will be programmed a
minimum of 4 times (1 + 3X overprogramming).

FIGURE 4-7: BEGIN PROGRAMMING COMMAND (PROGRAM)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 0 0 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS10

VIHH

PS3

PS4PS5

PS1

(NEXT COMMAND)

7 8

 2000 Microchip Technology Inc. DS30274B-page 3-83

PIC17C7XX

FIGURE 4-8: RECOMMENDED PROGRAMMING FLOWCHART

ISP Command
INCREMENT ADDRESS

or
LOAD ADDRESS

START

TEST = Vihh

MCLR = Vihh

N = 1

ISP Command
RESET ADDRESS

ISP Command
LOAD DATA

ISP Command
BEGIN PROGRAMMING

Wait approx 100 ms

ISP Command
READ DATA

Data Correct? N = N + 1

N > 25?
Report

Programming
Failure

ISP Command
BEGIN PROGRAMMING

Wait approx 100 ms

N = N - 1

N = 0?

Programmed all
required locations?

4.75V < VDD < 5.25V

Start Device Clock (on RA0),

TEST = MCLR = RA4 = RA5 = Vss

YesNo

Wait 80 Device Clocks

N = 3N

Verify all Locations
@ Vddmin

Data Correct?

Report

@ Vddmin

Verify all Locations
@ Vddmax

DONE

Data Correct?
Verify
Error

Report

@ Vddmax

Verify
Error

No

Yes

No

No

Yes

Yes

No

Yes

YesNo

PIC17C7XX

DS30274B-page 3-84 2000 Microchip Technology Inc.

5.0 CONFIGURATION WORD
Configuration bits are mapped into program memory.
Each bit is assigned one memory location. In erased
condition, a bit will read as ‘1’. To program a bit, the
user needs to write to the memory address. The data is
immaterial; the very act of writing will program the bit.
The configuration word locations are shown in
Table 5-3. The programmer should not program the
reserved locations to avoid unpredictable results
and to be compatible with future variations of the
PIC17C7XX. It is also mandatory that configuration
locations are programmed in the strict order start-
ing from the first location (0xFE00) and ending with
the last (0xFE0F). Unpredictable results may occur
if the sequence is violated.

5.1 Reading Configuration Word

The PIC17C7XX has seven configuration locations
(Table 5-1). These locations can be programmed (read
as ‘0’) or left unprogrammed (read as ‘1’) to select var-
ious device configurations. Any write to a configuration
location, regardless of the data, will program that con-
figuration bit. Reading any configuration location
between 0xFE00 and 0xFE07 will place the low byte of
the configuration word (Table 5-2) into DAD<7:0>
(PORTC). DAD<15:8> (PORTD) will be set to 0xFF.
Reading a configuration location between 0xFE08 and
0xFE0F will place the high byte of the configuration
word into DAD<7:0> (PORTC). DAD<15:8> (PORTD)
will be set to 0xFF.

TABLE 5-1: CONFIGURATION BIT
PROGRAMMING LOCATIONS

TABLE 5-2: READ MAPPING OF CONFIGURATION BITS

Bit Address

FOSC0 0xFE00

FOSC1 0xFE01

WDTPS0 0xFE02

WDTPS1 0xFE03

PM0 0xFE04

PM1 0xFE06

BODEN 0xFE0E

PM2 0xFE0F

—=Unused
PM<2:0>, Processor Mode Select bits

111 = Microprocessor mode
110 = Microcontroller mode
101 = Extended Microcontroller mode
000 = Code protected microcontroller mode

BODEN, Brown-out Detect Enable
1 = Brown-out Detect Circuitry enabled
0 = Brown-out Detect Circuitry disabled

WDTPS1:WDTPS0, WDT Prescaler Select bits.
11 = WDT enabled, postscaler = 1
10 = WDT enabled, postscaler = 256
01 = WDT enabled, postscaler = 64
00 = WDT disabled, 16-bit overflow timer
FOSC1:FOSC0, Oscillator Select bits

11 = EC oscillator
10 = XT oscillator
01 = RC oscillator
00 = LF oscillator

WDTPS1 FOSC1 FOSC0WDTPS0PM0PM1 ——

PM2

11111111

11111111 BODEN PM2 PM2

89101112131415 01234567

PM2 PM2PM2
89101112131415 01234567

PM2

 2000 Microchip Technology Inc. DS30274B-page 3-85

PIC17C7XX

5.2 Embedding Configuration Word Information in the Hex File

5.3 Reading From and Writing To a Code
Protected Device

When a device is code-protected, writing to program
memory is disabled. If program memory is read, the
value returned is the XNOR8 result of the actual pro-
gram memory word. The XNOR8 result is the upper
eight bits of the program memory word XNOR’d with
the lower eight bits of the same word. This 8-bit result
is then duplicated into both the upper and lower 8-bits
of the read value. The configuration word can always
be read and written.

To allow portability of code, a PIC17C7XX programmer is required to read the configuration word locations from the
hex file when loading the hex file. If the configuration word information was not present in the hex file, then a simple
warning message may be issued. Similarly, while saving a hex file, all configuration word information must be included.
An option to not include the configuration word information may be provided. When embedding configuration word
information in the hex file, it should be to address FE00h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

PIC17C7XX

DS30274B-page 3-86 2000 Microchip Technology Inc.

5.4 CHECKSUM COMPUTATION

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked
• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

Table describes how to calculate the checksum for
each device. Note that the checksum calculation differs
depending on the code protect setting. Since the pro-
gram memory locations read out differently, depending
on the code protect setting, the table describes how to
manipulate the actual program memory values to sim-

ulate the values that would be read from a protected
device. When calculating a checksum by reading a
device, the entire program memory can simply be read
and summed. The configuration word and ID locations
can always be read.

Note: Some older devices have an additional
value added in the checksum. This is to
maintain compatibility with older device
programmer checksums.

TABLE 5-3: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0xC0DE at 0
and max
address

PIC17C752 MP mode
MC mode

EMC mode
PMC mode

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x1FFF] + (CONFIG & 0xC05F)

0xA05F
0xA04F
0xA01F
0x200F

0x221D
0x220D
0x21DD
0xE3D3

PIC17C756 MP mode
MC mode

EMC mode
PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F
0x804F
0x801F
0x000F

0x021D
0x020D
0x01DD
0xC3D3

PIC17C756A MP mode
MC mode

EMC mode
PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F
0x804F
0x801F
0x000F

0x021D
0x020D
0x01DD
0xC3D3

PIC17C762 MP mode
MC mode

EMC mode
PMC mode

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x1FFF] + (CONFIG & 0xC05F)

0xA05F
0xA04F
0xA01F
0x200F

0x221D
0x220D
0x21DD
0xE3D3

PIC17C766 MP mode
MC mode

EMC mode
PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)
SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F
0x804F
0x801F
0x000F

0x021D
0x020D
0x01DD
0xC3D3

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a to b inclusive]
SUM_XNOR8(a:b) = [Sum of 8-bit wide XNOR copied into upper and lower byte, of locations a to b inclusive]
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND

 2000 Microchip Technology Inc. DS30274B-page 3-87

PIC17C7XX

5.5 Device ID Register

Program memory location FDFFh is preprogrammed
during the fabrication process with information on the
device and revision information. These bits are
accessed by a TABLR0 instruction, and are access
when the TEST pin is high. As as a result, the device ID
bits can be read when the part is code protected.

TABLE 5-4: DEVICE ID REGISTER DECODE

Resultant Device

Device
Device ID Value

DEV REV

PIC17C766 0000 0001 001 X XXXX

PIC17C762 0000 0001 101 X XXXX

PIC17C756 0000 0000 001 X XXXX

PIC17C756A 0000 0010 001 X XXXX

PIC17C752 0000 0010 101 X XXXX

PIC17C7XX

DS30274B-page 3-88 2000 Microchip Technology Inc.

6.0 PARALLEL MODE AC/DC CHARACTERISTICS AND TIMING
REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +70°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.25V, unless otherwise stated.

Parameter
No.

Sym. Characteristic Min. Typ. Max. Units Conditions/Comments

PD1 VDDP Supply voltage during pro-
gramming

4.75 5.0 5.25 V

PD2 IDDP Supply current during pro-
gramming

— — 50 mA Freq = 10MHz, VDD = 5.5V

PD3 VDDV Supply voltage during verify VDD
min.

— VDD
max.

V Note 2

PD4 VPP Voltage on VPP/MCLR pin
during programming

12.75 — 13.25 V Note 1

PD6 IPP Programming current on
VPP/MCLR pin

— 25 50 mA

P1 FOSCP Osc/clockin frequency dur-
ing programming

4 — 10 MHz

P2 TCY Instruction cycle 1 — 0.4 µs TCY = 4/FOSCP

P3 TIRV2TSH RA0, RA1, RA2, RA3, RA4
setup before TEST↑

1 — — µs

P4 TTSH2MCH TEST↑ to MCLR↑ 1 — — µs
P5 TBCV2IRH RC7:RC0, RB7:RB0 valid to

RA1 or RA0↑:Address/Data
input setup time

0 — — µs

P6 TIRH2BCL RA1 or RA0↑ to RB7:RB0,
RC7:RC0 invalid; Address

data hold time;

10 TCY — — µs

P7 T0CKIL2RBCZ RT↓ to RB7:RB0, RC7:RC0
hi-impedance

— — 8TCY

P8 T0CKIH2BCV RA1↑ to data out valid — — 10 TCY

P9 TPROG Programming pulse width 100 1000 µs
P10 TIRH2IRL RA0, RA1 high pulse width 10 TCY — — µs
P11 TIRL2IRH RA0, RA1 low pulse width 10 TCY — — µs
P12 T0CKIV2INL RA1↑ before INT↓ (to go

from prog cycle to verify w/o
increment)

0 — — µs

P13 TINL2RTL RA1 valid after RA0 (to
select increment or no

increment going from pro-
gram to verify cycle

10 TCY — — µs

P14 TVPPS VPP setup time before RA0↑ 100 — — µs Note 1
P15 TVPPH VPP hold time after INT↓ 0 — — µs Note 1
P16 TVDV2TSH VDD stable to TEST↑ 10 — — ms
P17 TRBV2MCH RB input (E1h) valid to VPP/

MCLR↑
0 — — µs

P18 TMCH2RBI RB input (E1h) hold after
VPP/MCLR↑

10TCY — — ns

P19 TVPL2VDL VDD power down after VPP
power down

10 — — ms

Note 1: VPP/MCLR pin must only be equal to or greater than VDD at times other than programming.
2: Program must be verified at the minimum and maximum VDD limits for the part.

 2000 Microchip Technology Inc. DS30274B-page 3-89

PIC17C7XX

FIGURE 6-1: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS I

Te
st

M
C

LR

R
A

1

R
A

0

R
B

<
7:

0>

R
C

<
7:

0>

P
4

P
5

P
18

IN
C

A
D

D
R

E
1H

A
D

D
R

_H
I

D
AT

A
_H

I O
U

T
D

AT
A

_H
I O

U
T

D
D

AT
A

_H
I O

U
T

A
D

D
R

_L
O

D
AT

A
_L

O
 O

U
T

D
AT

A
_L

O
 O

U
T

D
AT

A
_L

O
 O

U
T

D
AT

A
_L

O
 O

U
T

D
AT

A
_H

I O
U

T

13
V

5V

P
14

P
9

P
15

P
10

P
11

P
9

P
7

P
5

P
6

Ju
m

p
A

dd
re

ss
In

pu
t

P
ro

gr
am

m
in

g

M
od

e
E

nt
ry

Lo
ad

 A
dd

re
ss

 X

V
er

ify
 lo

ca
tio

n
X

In
cr

em
en

t A
dd

re
ss

 to
 X

 +
 1

by
 p

ul
si

ng
 R

A
1

V
er

ify
 lo

ca
tio

n
X

 +
 1

P
ro

gr
am

 lo
ca

tio
n

X
 +

 !

D
o

no
t i

nc
re

m
en

t P
C

by
 r

ai
si

ng
 R

A
1

be
fo

re

R
A

0

V
er

ify
 lo

ca
tio

n
X

 +
 1

N
o

te
:

R
A

2
=

 0
R

A
3

=
 0

R
A

4
=

 1

PIC17C7XX

DS30274B-page 3-90 2000 Microchip Technology Inc.

FIGURE 6-2: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS II

Te
st

13
V

5V

V
P

P
/M

C
LR

R
A

1

R
A

0

R
B

<
7:

0>

R
C

<
7:

0>

E
1H

A
D

D
R

_H
I

D
AT

A
_H

I O
U

T
D

AT
A

_H
I_

IN
D

AT
A

_H
I_

IN
D

AT
A

_H
I_

IN
D

AT
A

_H
I O

U
T

A
D

D
R

_L
O

D
AT

A
_L

O
 O

U
T

D
AT

A
_L

O
 O

U
T

D
AT

A
_L

O
_I

N
D

AT
A

_L
O

_I
N

D
AT

A
_L

O
_I

N

P
15

P
9

P
9

P
9

Ju
m

p
A

dd
re

ss
In

pu
t

P
ro

gr
am

m
in

g
m

od
e

en
tr

y
Lo

ad
 a

dd
re

ss
 X

V
er

ify
 lo

ca
tio

n
X

P
ro

gr
am

 lo
ca

tio
n

X

P
ro

gr
am

 lo
ca

tio
n

X
M

ov
e

to
 v

er
ify

 c
yc

le
P

re
ve

nt
 in

cr
em

en
t o

f
P

C
 b

y
ra

is
in

g
R

A
1

be
fo

re
 R

A
0

V
er

ify
 lo

ca
tio

n
X

N
o

te
:

R
A

2
=

 0
R

A
3

=
 0

R
A

4
=

 1

P
14

 2000 Microchip Technology Inc. DS30274B-page 3-91

PIC17C7XX

FIGURE 6-3: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS III

P
13

P
13

P
12

D
AT

A
_
H

IO
U

T
D

AT
A

_H
I I

N
D

AT
A

_H
I O

U
T

D
AT

A
_H

I I
N

D
AT

A
_H

I O
U

T
D

AT
A

_H
I I

N

D
AT

A
_
L
O

 O
U

T
D

AT
A

_L
O

 IN
D

AT
A

_L
O

 O
U

T
D

AT
A

_L
O

 IN
D

AT
A

_L
O

 O
U

T
D

AT
A

_L
O

 IN

V
er

ify
 lo

ca
tio

n
X

P
ro

gr
am

 lo
ca

tio
n

X
D

o
no

t i
nc

re
m

en
t

P
C

 R
ai

se
 R

A
1

be
fo

re
R

A
0

to
 d

o
th

is

V
er

ify
 lo

ca
tio

n
X

P
ro

gr
am

 lo
ca

tio
n

X
R

ai
se

 R
A

1
af

te
r

R
A

0
to

 in
cr

em
en

t l
oc

at
io

n
X

 +
 1

V
er

ify
 lo

ca
tio

n
X

 +
 1

P
ul

se
 R

A
1

to
 in

cr
em

en
t

ad
dr

es
s

to
 X

 +
 2

V
er

ify
 lo

ca
tio

n
X

 +
 2

R
A

1

R
A

0

R
B

<
7:

0>

R
C

<
7:

0>

IN
C

 P
C N
o

te
:

D
ev

ic
e

in
 P

G
M

 m
od

e
Te

st
 =

 +
6

V
P

P
/M

C
LR

 =
 V

P
P

R
A

2
=

 0
R

A
3

=
 0

R
A

4
=

 1

IN
C

 P
C

IN
C

 P
C

PIC17C7XX

DS30274B-page 3-92 2000 Microchip Technology Inc.

FIGURE 6-4: POWER-UP/DOWN SEQUENCE FOR PROGRAMMING

P16

P19

P3

P
17

P18

E1H

VDD

VPP/MCLR

Test

RA4

RA2

RA3

RA0

RB<7:0>

 2000 Microchip Technology Inc. DS30274B-page 3-93

PIC17C7XX

7.0 ELECTRICAL SPECIFICATIONS FOR SERIAL PROGRAMMING MODE

All parameters apply across the specified operating ranges
unless otherwise noted.

Vcc = 2.5V to 5.5V
Commercial (C): Tamb = 0° to +70°C
Industrial (I): Tamb = -40°C to +85°C

Parameter
No.

Sym Characteristic Min Typ† Max Units Conditions

VIHH Programming Voltage on VPP/
MCLR pin and TEST pin.

12.75 — 13.75 V

IPP Programming current on MCLR pin — 25 50 mA

FOSC Input OSC frequency on RA1 — — 8 MHz

TCY Instruction Cycle Time — 4/FOSC —

PS1 TVH2VH Setup time between TEST = VIHH
and MCLR = VIHH

1 — — µs

PS2 TSER Serial setup time 20 — — TCY

PS3 TSCLK Serial Clock period 1 — — TCY

PS4 TSET1 Input Data Setup Time to serial
clock ↓

15 — — ns

PS5 THLD1 Input Data Hold Time from serial
clock ↓

15 — — ns

PS6 TDLY1 Delay between last clock ↓ to first
clock ↑ of next command

20 — — TCY

PS7 TDLY2 Delay between last clock ↓ of com-
mand byte to first clock ↑ of read of

data word

20 — — TCY

PS8 TDLY3 Delay between last clock ↓ of com-
mand byte to first clock ↑ of write of

data word

30 — — TCY

PS9 TDLY4 Data input not driven to next clock
input

1 — — TCY

PS10 TDLY5 Delay between last begin program-
ming clock ↓ to last clock ↓ of next
command (minimum programming

time)

100 — — µs

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not

tested.

PIC17C7XX

DS30274B-page 3-94 2000 Microchip Technology Inc.

FIGURE 7-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

FIGURE 7-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 0 0 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS6

VIHH

PS3

PS4PS5

PS1

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 1 1 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS6

VIHH

PS3

PS4PS5

PS1

(NEXT COMMAND)

 2000 Microchip Technology Inc. DS30274B-page 3-95

PIC17C7XX

FIGURE 7-3: LOAD ADDRESS COMMAND

FIGURE 7-4: READ ADDRESS COMMAND

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 1 0 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS7

VIHH

PS3

PS4PS5

PS1

PS6

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 0 1 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS8

VIHH

PS3

PS4PS5

RA4 = Output

PS6

PS1

PS9

(NEXT COMMAND)

PIC17C7XX

DS30274B-page 3-96 2000 Microchip Technology Inc.

FIGURE 7-5: LOAD DATA COMMAND

FIGURE 7-6: READ DATA COMMAND

FIGURE 7-7: BEGIN PROGRAMMING COMMAND (PROGRAM)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 1 0 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS7

VIHH

PS3

PS4PS5

PS1

PS6

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2 3 15 16 1

0 0 1 0 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS8

VIHH

PS3

PS4PS5

RA4 = Output

PS6

PS1

PS9

(NEXT COMMAND)

MCLR/VPP
VIHH

RA1/T0CKI

Test

RA5 (Clock)

RA4 (Data)

1 2 3 4 5 6 7 8 1 2

0 0 0 1 0 0 0 0

PS2

Reset

RA4 = Input

Program/Verify Test Mode

PS10

VIHH

PS3

PS4PS

PS1

(NEXT COMMAND)

7 8

PIC18CXXX
In-Circuit Serial Programming for PIC18CXXX OTP MCUs
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC18CXXX

The PIC18CXXX can be programmed using a serial
method. while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC18CXXX devices in all package
types.

1.1 Hardware Requirements

The PIC18CXXX requires two programmable power
supplies, one for VDD (2.0V to 5.5V recommended) and
one for VPP (12V to 14V). Both supplies should have a
minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC18CXXX allows
programming of user program memory, special loca-
tions used for ID, and the configuration word for the
PIC18CXXX.

Pin Diagram

• PIC18C452
• PIC18C252

• PIC18C242
• PIC18C442

P
IC

18C
2X

X

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD

VSS

RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2

MCLR/VPP

RA0
RA1
RA2
RA3

RA4/T0CKI
RA5
RE0
RE1
RE2
VDD

VSS

OSC1/CLKIN
OSC2/CLKOUT

RC0
RC1
RC2
RC3
RD0
RD1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

PDIP, Windowed CERDIP

PDIP, SOIC, Windowed CERDIP (300 mil)

28

27

26

25

24

23

22

21

20

19

18

17

16

15

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RC7

RC6

RC5

RC4

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

MCLR/VPP

RA0

RA1

RA2

RA3

RA4/T0CKI

RA5

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0

RC1

RC2

RC3

P
IC

18C
4X

X

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18C242/252/442/452

Pin Name
During Programming

Pin Name Pin Type Pin Description

MCLR/VPP VPP P Programming Power

VDD VDD P Power Supply

Vss VSS P Ground

RB6 RB6 I Serial Clock

RB7 RB7 I/O Serial Data

Legend: I = Input, O = Output, P = Power
 2000 Microchip Technology Inc. DS39028A-page 3-97

PIC18CXXX
2.0 IN-CIRCUIT SERIAL
PROGRAMMING MODE (ICSP)

2.1 Introduction

Serial programming mode is entered by asserting
MCLR/VPP = VIHH and RB6, RB7 = 0.

Instructions are fed into the CPU serially on RB7, and
are shifted in on the rising edge of the serial clock pre-
sented on RB6. Programming and verification are per-
formed by executing TBLRD and TBLWT instructions.
The address pointer to the program memory is simply
the table pointer. The address pointer can be incre-
mented and decremented by executing table reads and
writes with auto-decrement and auto-increment.

2.2 ICSP OPERATION

In ICSP mode, instruction execution takes place
through a serial interface using RB6 and RB7. RB7 is
used to shift in instructions and shift out data from the
TABLAT register. RB6 is used as the serial shift clock
and the CPU execution clock. Instructions and data
are shifted in LSb first.

In this mode all instructions are shifted serially, then
loaded into the instruction register, and executed. No
program fetching occurs from internal or external pro-
gram memory. 8-bit data bytes are read from the
TABLAT register via the same serial interface.

2.2.1 4-BIT SERIAL INSTRUCTIONS

A set of 4-bit instructions are provided for ICSP mode,
so that the most common instructions used for ICSP
can be fetched quickly, and thus reduce the amount of
time required to program a device. The 4-bit opcode is
shifted in while the previous instruction fetched exe-
cutes. The 4-bit instruction contains the lower 4-bits of
an instruction opcode. The upper 12-bits default as all
0’s. Instructions with all 0’s in the upper byte of the
instruction word, are by default considered special
instructions. The serial instructions are decoded as
shown in Table 2-1:

TABLE 2-1: SPECIAL INSTRUCTIONS FOR SERIAL INSTRUCTION EXECUTION AND ICSP

Mnemonic,
Operands

Description Cycles 4-Bit Opcode
Status

Affected

NOP No Operation (Shift in16-bit instruction) 1 0000 None

TBLRD * Table Read (no change to TBLPTR) 2 1000 None

TBLRD *+ Table Read (post-increment TBLPTR) 2 1001 None

TBLRD *- Table Read (post-decrement TBLPTR) 2 1010 None

TBLRD +* Table Read (pre-increment TBLPTR) 2 1011 None

TBLWT * Table Write (no change to TBLPTR) 2 1100 None

TBLWT *+ Table Write (post-increment TBLPTR) 2 1101 None

TBLWT *- Table Write (post-decrement TBLPTR) 2 1110 None

TBLWT +* Table Write (pre-increment TBLPTR) 2 1111 None

Legend: Refer to the PIC18CXXX Data Sheet (DS39026) for opcode field descriptions.
Note: All special instructions not included in this table are decoded as NOP’s

In-Circuit Serial Programming™ (ICSP) is a trademark of Microchip Technology Inc.
DS39028A-page 3-98 2000 Microchip Technology Inc.

PIC18CXXX
2.2.2 INITIAL SERIAL INSTRUCTION
OPERATION

Upon ICSP mode entry, the CPU is idle. The execution
of the CPU is governed by a state machine. The CPU
clock source comes from RB6 which also acts as the
serial shift clock. The first clock transition on RB6 is
absorbed after RESET. While the first instruction is
being clocked in, a forced NOP is executed.

Following the FNOP instruction execution and the next
shifting in of the next instruction, the serial state
machine will do one of three things depending upon
the 4-bit instruction that was fetched:

1. If the instruction fetched was a NOP, the state
machine will suspend the CPU awaiting a 16-bit
wide instruction to be shifted in.

2. If the instruction is a TBLWT, the state machine
suspends the CPU from execution while sixteen
bits of data are shifted in as data for the TBLWT
instruction.

3. If the instruction is a TBLRD, then execution of
the TBLRD instruction begins immediately for
eight clock cycles, followed by eight clock cycles
where the contents of the TABLAT register is
shifted out onto RB7.

Once sixteen clock cycles have elapsed, the next 4-bit
instruction is fetched while the current instruction is
executed. Each instruction type is described in later
sections.

FIGURE 2-1: SERIAL INSTRUCTION TIMING AFTER RESET

Q1Q Cycles

P2

Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input or Output depending upon instruction

ICSP Mode

16-bit Instruction Load or Execute Instruction,Execute FNOP
Fetch 4-bit Instruction Fetch Next 4-bit

Q4Q1

MCLR/VPP

VIHH

P1

Reset

16-bit data Fetch or
Perform TABLRD followed by shift data out Instruction

1 2 3 4 1 2 15 16 1 2 3 4

RB6 (Clock)
P5 P5

3 4 65 7 8 9 10 12 13 1411

P4P3

P9

RB7 (Data) 1 1 0 11 1 0 1

(TBLWT **)
 2000 Microchip Technology Inc. DS39028A-page 3-99

PIC18CXXX
2.2.3 NOP SERIAL INSTRUCTION EXECUTION

The NOP serial instruction is used to allow execution of
all other instructions not included in Table 2-1. When
the NOP instruction is fetched, the serial execution
state machine suspends the CPU for 16 clock cycles.
During these 16 clock cycles, all 16-bits of an instruc-
tion are fed into the CPU and the NOP instruction is
discarded. Once all 16 bits have been shifted in the
state machine will allow the instruction to be executed
for the next 4 clock cycles.

2.2.4 ONE CYCLE 16-BIT INSTRUCTIONS

If the instruction fetched is a one cycle instruction,
then the instruction operation will be completed in the
4 clock cycles following the instruction fetched. During
instruction execution, the next 4-bit serial instruction is
fetched (See Figure 2-2).

FIGURE 2-2: SERIAL INSTRUCTION TIMING FOR 1 CYCLE 16-BIT INSTRUCTIONS

Note: 16-bit TBLWT and TBLRD instructions are
not permitted. They will cause timing prob-
lems with the serial state machine. If the
user wishes to perform a TBLWT or TBLRD
instruction, it must be performed as a 4-bit
instruction.

MCLR/VPP = VIHH

P5
P3P4

Q1Q Cycles

2 3 1 2 3 15 16 1 2 3 4

P2

RB6 (Clock)

P5

Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input

ICSP Mode

16-bit Instruction Fetch Execute 16-bit Instruction,Execute PC-2,

1 4

Fetch NOP to enable
16-bit Instruction fetch

Fetch Next Serial

4 5 6 7 8 9 10 11 12 13 14

Q4

4-bit Instruction

RB7 (Data) 1 1 0 10 0 0 0
DS39028A-page 3-100 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-3: 16-BIT 1 CYCLE SERIAL INSTRUCTION FLOW AFTER RESET

Start

Num_Clk = 1,

Clock
Transition

RB6?

Yes

No

MCLR = VIHH

MCLR = VSS,
RB6, RB7 = 0

Num_Clk = 1,

Execute 16-bit Instruction,

Clock
Transition

RB6?

Yes

No

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Num_Clk = 16?

Clock
Transition

RB6?

Yes

Yes

No

No

Shift in 1st
4-bit instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1

and shift in next
4-bit instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1

4-bit instruction = NOP,
Shift in 16-bit instruction,

Num_Clk = 1
 2000 Microchip Technology Inc. DS39028A-page 3-101

PIC18CXXX
FIGURE 2-4: 16-BIT 1 CYCLE SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1,

Clock
Transition

RB6?

Yes

No

execute (PC - 2),

Num_Clk = 1,

execute 16-bit Instruction,

Clock
Transition

RB6?

Yes

No

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Num_Clk = 16?

Clock
Transition

RB6?

Yes

Yes

No

No

and shift in next
4-bit instruction,

Shift(R) RB7
into ROMLAT<15>,

Num_Clk = Num_Clk + 1

and shift in next
4-bit instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1

4-bit instruction = NOP,
Shift in 16-bit instruction,

Num_Clk = 1
DS39028A-page 3-102 2000 Microchip Technology Inc.

PIC18CXXX
2.3 Serial Instruction Execution For Two
Cycle, One Word Instructions

When a NOP instruction is fetched, the serial execution
state machine suspends the CPU for 16 clock cycles.
During these 16 clock cycles, all 16-bits of an instruc-
tion are fed in and the NOP instruction is discarded.

If the instruction fetched is a two cycle, one word
instruction, then the instruction operation will require a
second “dummy fetch” to be performed before the
instruction execution can be completed. The first cycle
of the instruction will be executed in the 4 clock cycles
following the instruction fetched. During the first cycle
of instruction execution, the next 4-bit serial instruction
is fetched. In order to perform the second half of the
two cycle instruction, this 4-bit instruction loaded in
must be a NOP, so that state machine will remain idle
for the second half of the instruction. Following the
fetch of the second NOP, the state machine will shift
16-bits of data that will be discarded. After the 16-bits
of data is shifted in, the state machine will release the
CPU, and allow it to perform the second half of the two
cycle instruction. During the second half of the two
cycle instruction execution, the next 4-bit instruction is
loaded (See Figure 2-5).

FIGURE 2-5: 2 CYCLE 1 WORD 16-BIT INSTRUCTION SEQUENCE

Q Cycles

1 2 3 4 1 2 15 16

P5 P5

1 2 3 4

Q1 Q2 Q3 Q4

MCLR/VPP

RB7 = Input

ICSP Mode

P3P4

Execute PC-2 Fetch 16-bit Instruction

P2

RB6 (Clock)

Q1 Q2 Q3 Q4

Fetch 2nd 16-bit
Execute 1st Cycle

P5

1 2 15 16

P5

1 2 3 4

Q1 Q2 Q3 Q4

Fetch 4-bit NOP
Execute 2nd Cycle,Fetch 4-bit NOP,
Fetch Next 4-bit InstructionOperand Word (discarded)

of 16-bit Instruction

RB7 (Data) 1 1 0 10 0 0 0
 2000 Microchip Technology Inc. DS39028A-page 3-103

PIC18CXXX
2.4 Serial Instruction Execution For Two
Word, Two Cycle Instructions

After a NOP instruction is fetched, the serial execution
state machine suspends the CPU in the Q4 state for
16 clock cycles. During these 16 clock cycles, all 16-
bits of an instruction are fed in and the NOP instruction
is discarded.

If the 16-bit instruction fetched is a two cycle, two word
instruction, then the instruction operation will require a
second operand fetch to be performed before the
instruction execution can be completed. The first cycle
of the instruction will be executed in the 4 clock cycles
following the 16-bit instruction fetch. During the first
cycle of instruction execution, the next 4-bit serial
instruction is fetched. In order to perform the second
half of the two cycle instruction, this 4-bit instruction
loaded in must also be a NOP, so that the state
machine will remain idle for the second half of the
instruction. Following the fetch of the second NOP, the
state machine will shift 16-bits of data that will be used
as an operand for the two cycle instruction. After the
16-bits of data are shifted in, the state machine will
release the CPU, and allow it to execute the second
half of the two cycle instruction. During the second half
of the two cycle instruction execution, the next 4-bit
instruction is loaded (see Figure 2-6).

FIGURE 2-6: 16-BIT 2 CYCLE 2 WORD INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

P5

P3P4

Q1Q Cycles

2 3 1 2 3 15 16 1 2 3 4 1 2 15 16 1 2 3 4

P2

RB6 (Clock)
P5 P5 P5

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input

ICSP Mode

Execute 1st Cycle,Execute PC-2, Execute 2nd Cycle,

1 4

Fetch 2nd wordFetch 1st word
Fetch next 4-bit Fetch 4-bit NOP Fetch 4-bit NOP
Instruction

RB7 (Data) 1 1 0 10 0 0 0 0 0 0 0
DS39028A-page 3-104 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-7: 16-BIT 2 CYCLE 2 WORD SERIAL INSTRUCTION FLOW AFTER RESET

Start

MCLR = VPP,
RB6, RB7 = 0

Num_Clk = 1,

4-bit instruction = NOP,

Num_Clk = 1

Num_Clk = 16?

Clock
Transition

RB6?

Clock
Transition

RB6?

Yes

No

Yes

Yes

No

No

execute FNOP and shift in

Shift in 16-bit instruction,
Num_Clk = 1

Num_Clk = 16?

Clock
Transition

RB6?

Yes

Yes

No

No

Enable CPU,

Num_Clk = 1,

execute 1st cycle of 16-bit

Clock
Transition

RB6?

Yes

No

execute 2nd cycle of 16-bit

End

MCLR = VIHH

Shift in 2nd 16-bit operand,

Clock
Transition

RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

instruction, and shift in next
4-bit instruction,

4-bit instruction = NOP,

1st 4-bit instruction,

Shift(R) RB7,
Num_Clk = Num_Clk + 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

instruction, and shift in
next 4-bit instruction

Num_Clk = 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1
 2000 Microchip Technology Inc. DS39028A-page 3-105

PIC18CXXX
FIGURE 2-8: 16-BIT 2 CYCLE 2 WORD SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1,

Num_Clk = 16?

Clock
Transition

RB6?

Clock
Transition

RB6?

Yes

No

Yes

Yes

No

No

execute (PC-2)and shift in

Shift in 16-bit instruction,
Num_Clk = 1

Num_Clk = 16?

Clock
Transition

RB6?

Yes

Yes

No

No

Num_Clk = 1,

execute 1st cycle of 16-bit

Clock
Transition

RB6?

Yes

No

execute 2nd cycle of 16-bit

End

Clock
Transition

RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

instruction, and shift in next
4-bit instruction,

4-bit instruction = NOP,

4-bit instruction,

Shift(R) RB7,
Num_Clk = Num_Clk + 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

instruction, and shift in
next 4-bit instruction

Num_Clk = 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

4-bit instruction = NOP,

Num_Clk = 1
Shift in 2nd 16-bit operand,
DS39028A-page 3-106 2000 Microchip Technology Inc.

PIC18CXXX
2.5 TBLWT Instruction

The TBLWT instruction is a unique two cycle instruc-
tion.

All forms of TBLWT instructions (post/pre-increment,
post decrement, etc.) are encoded as 4-bit special
instructions. This is useful as TBLWT instructions are
used repeatedly in ICSP mode. A 4-bit instruction will
minimize the total number of clock cycles required to
perform programming algorithms.

The TBLWT instruction sequence operates as follows:

1. The 4-bit TBLWT instruction is read in by the
state machine on RB7 during the 4 clock cycle
execution of the instruction fetched previous to
the TBLWT (which is an FNOP if the TBLWT is
executed following a reset).

2. Once the state machine recognizes that the
instruction fetched is a TBLWT, the state
machine proceeds to fetch in the 16-bits of data
that will be written into the program memory
location pointed to by the TBLPTR.

3. The serial state machine releases the CPU to
execute the first cycle of the TBLWT instruction
while the first 4 bits of the 16-bit data word are
shifted in. After the first cycle of TBLWT instruc-
tion has completed the state machine shifts in
the remaining 12 of the sixteen bits of data. The
data word will not be used until the second cycle
of the instruction.

4. After all 16-bits of data are shifted in and the first
cycle of the TBLWT is performed, the CPU is
allowed to execute the second cycle of the
TBLWT operation, programming the current
memory location with the 16-bit value. The next
instruction following the TBLWT instruction is
shifted in during the execution of the second
cycle (See Figure 2-9).

The TBLWT instruction is used in ICSP mode to pro-
gram the EPROM array. When writing a 16-bit value
to the EPROM, ID locations, or configuration locations,
the device, RB6, must be held high for the appropriate
programming time during the TBLWT instruction as
specified by parameter P9.

When RB6 is asserted low the device will cease pro-
gramming the specified location.

After RB6 is asserted low, RB6 is held low for the time
specified by parameter P10, to allow high voltage dis-
charge of the program memory array.

FIGURE 2-9: TBLWT INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

Q Cycles

1 2 3 4 1 2 15 16 1 2 3 4

RB6 (Clock)
P5 P5

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input

ICSP Mode

Execute PC-2 Execute 2nd Cycle TBLWT

Load TBLWT Data

Fetch TBLWT

3 4 65 7 8 9 10 12 13 1411

Execute 1st
Cycle TBLWT

P2

P4P3

P9

and fetch next 4-bit

Q1 Q2 Q3 Q4

instruction

P10

RB7 (Data) 1 1 0 10 0 0 0 0 01 1
 2000 Microchip Technology Inc. DS39028A-page 3-107

PIC18CXXX
FIGURE 2-10: TBLWT SERIAL INSTRUCTION FLOW AFTER RESET

Start

Num_Clk = 1,

4-bit instruction = TBLWT,

Begin Shifting in TBLWT data,
Num_Clk = 1

Clock
Transition

RB6?

Yes

No

Execute FNOP,

MCLR = VIHH

MCLR = VSS,
RB6, RB7 = 0

Num_Clk = 1,

Num_Clk = 12?

Clock
Transition

RB6?

Yes

Yes

No

No

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Execute 1st cycle of TBLWT,

Num_Clk = 4?

Clock
Transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLWT instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1

shift in last 12 bits
of TBLWT data,

Shift(R) RB7
Num_Clk = Num_Clk + 1

Num_Clk = 1,

Execute 2nd cycle of TBLWT

Clock
Transition

RB6?

Yes

No

instruction and shift in next
4-bit instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1
DS39028A-page 3-108 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-11: TBLWT SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1,

4-bit instruction = TBLWT,

Begin Shifting in TBLWT data,
Num_Clk = 1

Clock
Transition

RB6?

Yes

No

Execute (PC-2),

Num_Clk = 1,

Num_Clk = 12?

Clock
Transition

RB6?

Yes

Yes

No

No

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Execute 1st cycle of TBLWT,

Num_Clk = 4?

Clock
Transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLWT instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1

Shift in last 12 bits
of TBLWT data,

Shift(R) RB7
Num_Clk = Num_Clk + 1

Num_Clk = 1,

Execute 2nd cycle of TBLWT

Clock
Transition

RB6?

Yes

No

instruction and shift in next
4-bit instruction,

Shift(R) RB7
Num_Clk = Num_Clk + 1
 2000 Microchip Technology Inc. DS39028A-page 3-109

PIC18CXXX
2.6 TBLRD Instruction

The TBLRD instruction is another unique two cycle
instruction.

All forms of TBLRD instructions (post/pre-increment,
post decrement, etc.) are encoded as 4-bit special
instructions. This is useful as TBLRD instructions are
used repeatedly in ICSP mode. A 4-bit instruction will
minimize the total number of clock cycles required to
perform programming algorithms.

The TBLRD instruction sequence operates as follows:

1. The 4-bit TBLRD instruction is read in by the
state machine on RB7 during the 4 clock cycle
execution of the instruction fetched previous to
the TBLRD (which is an FNOP if the TBLRD is
executed following a reset).

2. Once the state machine recognizes that the
instruction fetched is a TBLRD, the state
machine releases the CPU and allows execu-
tion of the first and second cycles of the TBLRD
instruction for eight clock cycles. When the
TBLRD is performed, the contents of the pro-
gram memory byte pointed to by the TBLPTR is
loaded into the TABLAT register.

3. After eight clock cycles have transitioned on
RB6, and the TBLRD instruction has completed,
the state machine will suspend the CPU for eight
clock cycles. During these eight clock cycles,
the state machine configures RB7 as an output,
and will shift out the contents of the TABLAT reg-
ister onto RB7 LSb first.

4. When the state machine has shifted out all eight
bits of data, the state machine suspends the
CPU to allow an instruction pre-fetch. Four (4)
clock cycles are required on RB6 to shift in the
next 4-bit instruction.

FIGURE 2-12: TBLRD INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

Q Cycles

1 2 3 4 1 2 3 4

RB6 (Clock)

P5

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 (Data)

RB7 = Input

ICSP Mode

Execute PC-2 Execute Cycle 2Execute Cycle 1 Shift Data Out From TABLAT

P6

RB7 = Output

1 2 3 4

Q1 Q2 Q3 Q4

1 2 3 4

P5

Fetch TBLRD

1 2 3 5 7 864

TBLRD TBLRD
No Execution takes place,
Fetch Next 4-bit instruction

1 0 0 1 1 0 0 1

RB7 = Input

LSb MSb1 2 3 4 5 6
DS39028A-page 3-110 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-13: TBLRD SERIAL INSTRUCTION FLOW AFTER RESET

Start

Num_Clk = 1,

Enable CPU,

cycle TBLRD instruction

Clock
Transition

RB6?

Yes

No

Execute FNOP,

MCLR = VIHH

MCLR = VSS,
RB6, RB7 = 0

Shift out 8-bits

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

execute 1st and 2nd

Num_Clk = 8?

Clock
Transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLRD instruction,

TBLRD instruction execution

Num_Clk = Num_Clk + 1

of data to RB7

Num_Clk = 8?

Clock
Transition

RB6?

Yes

Yes

No

No

Shift(R) TABLAT<0>
out onto RB7

Num_Clk = Num_Clk + 1

4-bit instruction
Shift in next

Num_Clk = 4?

Clock
Transition

RB6?

Yes

Yes

No

No

Shift(R) RB7
Num_Clk = Num_Clk + 1

takes place here
 2000 Microchip Technology Inc. DS39028A-page 3-111

PIC18CXXX
FIGURE 2-14: TBLRD SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1,

cycle TBLRD instruction

Clock
Transition

RB6?

Yes

No

Execute (PC-2),

Shift out 8-bits

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Execute 1st and 2nd

Num_Clk = 8?

Clock
Transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLRD instruction,

of data to RB7

Num_Clk = 8?

Clock
Transition

RB6?

Yes

Yes

No

No

4-bit instruction
Shift in next

Num_Clk = 4?

Clock
Transition

RB6?

Yes

Yes

No

No

Shift(R) RB7
Num_Clk = Num_Clk + 1

Shift(R) TABLAT<0>
out onto RB7

Num_Clk = Num_Clk + 1

TBLRD instruction execution

Num_Clk = Num_Clk + 1
takes place here
DS39028A-page 3-112 2000 Microchip Technology Inc.

PIC18CXXX
2.6.1 SOFTWARE COMMANDS

ICSP commands of the PICmicro® MCU are supported
in the PIC18CXXX family by simply combining CPU
instructions. Once in In-Circuit Serial Programming
(ICSP) mode, the instructions are loaded into a shift
register, and the device waits for a command to be
received. The ICSP commands for the PIC16CXXX
family are now “pseudo-commands” and are shown in
Table 2-2. The following sections are a description of
how the pseudo-commands can be implemented using
CPU instructions.

TABLE 2-2: ICSP PSEUDO COMMAND MAPPING

ICSP Command Golden Gate Instructions

Load Configuration MOVLW
#Address1

MOVWF
TBLPTRL

MOVLW
#Address2

MOVWF
TBLPTRH

MOVLW
#Address3

MOVWF
TBLPTRU

Load Data Not needed. Data encoded in 4-bit TBLWT instruction sequence.

Read Data TBLRD instruction

Increment Address Not needed. Use TBLWT with increment/decrement (TBLWT *+/*-).

Load Address MOVLW
#Addr_low

MOVWF
TBLPTRL

MOVLW
#Addr_high

MOVWF
TBLPTRH

MOVLW
#Addr_upper

MOVWF
TBLPTRU

Reset Address MOVLW
#Data

MOVWF
TBLPTRH

MOVWF
TBLPTRL

MOVWF
TBLPTRU

Begin programming TBLWT

End Programming Not needed. Programming will cease at the end of TBLWT execution.
 2000 Microchip Technology Inc. DS39028A-page 3-113

PIC18CXXX
2.6.2 RESET ADDRESS

A reset of the program memory pointer is a write to the
upper, high, and low bytes of the TBLPTR. To reset the
program memory pointer, the following instruction
sequence is used.

NOP ;(4-BIT INSTRUCTION)
MOVLW 00h
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRU, 0
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRH, 0
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRL, 0
DS39028A-page 3-114 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-15: RESET ADDRESS SERIAL INSTRUCTION SEQUENCE

Start

Num_Clk = 4?

Yes

No

execute (PC - 2),

End

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

Num_Clk = 16?

Yes

No

shift in next 4-bit instruction, Shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 1,

Num_Clk = 4?

Yes

No

Num_Clk = 16?

Yes

No

Num_Clk = 1,

Execute MOVLW Instruction,
shift in 4-bit NOP instruction,

Num_Clk = 1,

execute MOVWF Instruction,
shift in 4-bit NOP instruction,

On rising edge RB6

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Num_Clk = 1,

Execute MOVWF Instruction,
shift in next 4-bit instruction,

Num_Clk = 4?

Yes

No

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6

(NOP)

(NOP)

(NOP)

(NOP)

(NOP)

MOVLW 00h

MOVWF
TBLPTRM,0

MOVWF
TBLPTRM,0

(NOP)

4-bit instruction = NOP,

Num-Clk = 1
Shift in 16-bit MOVLW instruction,
 2000 Microchip Technology Inc. DS39028A-page 3-115

PIC18CXXX
2.6.3 LOAD ADDRESS

This is used to load the address pointer to the Program
Memory with a specific 22-bit value. This is useful when
a specific range of locations are to be accessed. To
load the address into the table pointer, the following
commands must be used:

NOP ; 4-bit instruction
MOVLW Low_Address
NOP ; 4-bit instruction
MOVWF TBLPTRL, 0
NOP ; 4-bit instruction
MOVLW High_Address
NOP ; 4-bit instruction
MOVWF TBLPTRH, 0
NOP ; 4-bit instruction
MOVLW Upper_Address
NOP ; 4-bit instruction
MOVWF TBLPTRU, 0
DS39028A-page 3-116 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-16: LOAD ADDRESS SERIAL INSTRUCTION SEQUENCE

Start

Num_Clk = 4?

Shift in 16-bit MOVLW instruction,
Num_Clk = 1

Yes

No

execute (PC - 2),

End

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

shift in next 4-bit instruction, Shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 1,

Num_Clk = 4?

Yes

No

Num_Clk = 16?

Yes

No

Num_Clk = 1,

execute MOVLW Instruction,
shift in 4-bit NOP instruction,

Num_Clk = 1,

execute MOVWF Instruction,
shift in 4-bit NOP instruction,

On rising edge RB6

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6

Num_Clk = 1,

execute MOVWF Instruction,
shift in next 4-bit instruction,

Num_Clk = 4?

Yes

No

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6

(NOP)

(NOP)

MOVLW
LOW_Address

MOVWF
TBLPTRL,0

MOVLW
HIGH_Address

(NOP)
 2000 Microchip Technology Inc. DS39028A-page 3-117

PIC18CXXX
2.6.4 ICSP BEGIN PROGRAMMING

Programming is performed by executing a TBLWT
instruction. In ICSP mode the TBLWT instruction
sequence will include 16-bits of data that are shifted
into a data buffer, and then written to the word location
that is addressed by the TBLPTR. Although the
TBLPTR addresses the program memory on a byte
wide boundary, all 16-bits of data that are shifted in dur-
ing the TBLWT sequence are written at once. The
16-bits are shifted into the TABLAT and buffer registers.
The TBLPTR points to the word that will be pro-
grammed; it can point to either the high or the low byte.
(See Figure 2-17).

The sequence for programming a location could occur
as follows:

1. Setup the TLBPTR with the first ok address to
be programmed (even or odd byte).

2. Shift in a 4 bit TBLWT instruction.
3. 16-bits of data are then shifted in for program-

ming both high and low byte of the first pro-
grammed location.

4. Execute TBLWT instruction to program location.
5. Verify high byte (odd address) by executing

TLBRD *- (post-decrement). (If TBLPTR point-
ing at odd address.)

6. Verify low byte (even address) by executing
TLBRD *+ (post-increment). TBLPTR is point-
ing to odd address again.

7. If location doesn’t verify, go back to step 4.

8. If location does verify, begin 3x overprogram-
ming.

The TBLWT instruction offers flexibility with multiple
addressing modes: pre-increment, post-increment,
post decrement, and no change of the TBLPTR. These
modes eliminate the need for the increment address
command sequence.

FIGURE 2-17: DATA BUFFERING SCHEME FOR ICSP

Buffer Register

Program Memory
bank 0
(Even Address)

Program Memory
bank 1
(Odd Address)

TBLWT
Odd or Even

TBLWT
Odd or Even

TBLRD

TABLAT Register

addressaddress

EvenOddTBLRD

RB7

Data shifted into
TABLAT and
Buffer registers
DS39028A-page 3-118 2000 Microchip Technology Inc.

PIC18CXXX
2.6.5 PROGRAMMING INSTRUCTION
SEQUENCE

The series of instructions needed to execute a pro-
gramming sequence is as follows. Many of the instruc-
tion sequences used in the following example are also
shown in previous sections.

NOP ; 4-bit instruction
; Set up low byte
; of program address

MOVLW Low_Byte_Address ; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRL, 0
NOP ; 4-bit instruction

; Set up high byte
; of program
; address

MOVLW High_Byte_Address ; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRH, 0
NOP ; 4-bit instruction

; Set up upper byte
; of program
; address

MOVLW Upper_Byte_Address; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRU, 0 ; Program data byte

; included in TBLWT
; instruction
; sequence

TBLWT+* ; TBLPTR = 000000h

A write of a program memory location with an odd or an
even address causes a long write cycle in ICSP mode.
The 16-bit data is encoded in the TBLWT sequence and
is loaded into the temporary buffer register for word
wide writes.

The user must wait 100 µs for the long write to com-
plete before the next instruction is executed.

2.6.6 VERIFY SEQUENCE

The table pointer = 000001h in the last example. A
TBLRD will then read the odd address byte of the cur-
rent program word address location first. The verify
sequence will be as follows:

; Read/verify high byte first
TBLRD*-

; TBLPTR = 0000 post-dec
; Read/verify low byte

TBLRD*

The first TBLRD decrements the table pointer to point to
the even address byte of the current program word.
After the first and second cycle of the TBLRD are per-
formed, all 8-bits of data are shifted out on RB7. The
fetch of the second TBLRD occurs on the next 4 clock
cycles. The second TBLRD does not modify the table
pointer address. This allows another programming
cycle (TBLWT+*) to take place if the verify doesn’t
match the program data without having to update the
table pointer.

If the contents of the verify do not match the intended
program data word, then the TBLWT instruction must be
repeated with the correct contents of the current pro-
gram word. Therefore, only one instruction needs to be
performed to repeat the programming cycle:

TBLWT+*

2.6.7 3X OVER PROGRAMMING

Once a location has been both programmed and veri-
fied over a range of voltages, 3x over programming
should be applied. In other words, apply three times the
number of programming pulses that were required to
program a location in memory, to ensure a solid pro-
gramming margin.

This means that every location will be programmed a
minimum of 4 times (1 + 3x over programming).
 2000 Microchip Technology Inc. DS39028A-page 3-119

PIC18CXXX
FIGURE 2-18: DETAILED PROGRAMMING FLOW CHART – PROGRAM MEMORY

Start

Execute MOVLW
for 4 clock cycles

MCLR = VPP,
RB6, RB7 = 0

Execute FNOP
for four clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Hold CPU,
Shift in TBLRD *
for 4 clock cycles

Execute 1st cycle
TBLWT +*, and shift in

Wait 100 µsec to
ensure programming

A

Execute 2nd cycle
TBLWT +* for 4 clock cycles

Shift in TBLRD *-
for 4 clock cycles

N = 0

Execute 1st and 2nd cycle
TBLRD *- for 8 clock cycles

Shift Data Out
for 8 clock cycles

Verify?

No

Yes

N = N + 1

N > 25?
Yes

No
Report

Programming
Failure

shift in 4-bit NOP

Shift in 16-bit MOVLW Low_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

Shift in 16-bit MOVLW High_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Execute MOVWF
for 4 clock cycles

Shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

first 4-bits of data
for 4 clock cycles

Execute 1st and 2nd cycle
TBLRD * for 8 clock cycles

Shift Data Out
for 8 clock cycles

B

Shift in 16-bit MOVLW Upper_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Execute MOVWF
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute current instruction
for 4 clock cycles, and
shift in 4-bit TBLWT+*

Hold RB6
Clock high

Clock Low
for Discharge

Hold RB6
Clock high (P10)
DS39028A-page 3-120 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-19: DETAILED PROGRAMMING FLOW CHART – PROGRAM MEMORY (CONTINUED)

A

Execute current instruction,
Shift in TBLWT *+
for 4 clock cycles

N = 1?

Yes

No

N = 3 * N

All locations

No

Yes
programmed?

To B

Wait 100 µsec to
ensure programming

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

No

No

Yes

Yes

End

Verify all Locations
@ VDDMIN

Data Correct?

Verify all Locations
@ VDDMAX

Data Correct?

N = N - 1

Execute 1st cycle
TBLWT *+ or *, and shift in

first 4-bits of data
for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT * for 4 clock cycles

Shift in TBLWT *
for 4 clock cycles

Execute 2nd cycle
TBLWT * for 4 clock cycles

Shift in TBLWT *+
for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute current instruction
for 4 clock cycles, and
shift in 4-bit TBLRD+*

Hold RB6 high

Wait 100 µS

Hold RB6 high

Clock Low
for Discharge
 2000 Microchip Technology Inc. DS39028A-page 3-121

PIC18CXXX
2.6.8 LOAD CONFIGURATION

The Configuration registers are located in ok memory,
and are only addressable when the high address bit of
the TBLPTR (bit 21) is set. Test program memory con-
tains test memory, configuration registers, calibration
registers, and ID locations. The desired address must
be loaded into all three bytes of the table pointer to pro-
gram specific ID locations or the configuration bits. To
program the configuration registers, the following
sequence must be followed:

NOP ; 4-bit instruction
; shift in 16-bit
; MOVLW instruction

MOVLW 03h
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction
; Enable Test memory

MOVWF TBLPTRU, 0
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

MOVLW Low_Config_Address
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction

MOVWF TBLPTRL, 0
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

MOVLW ; High_Config_Address
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction

MOVWF TBLPTRH, 0
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

TBLWT *+
; 16-bits of data are
; shifted in for write
; of config1L and
; config1H TBLWT is a
; 4-bit special
; instruction Wait
; 100 µsec for programming

2.6.9 END PROGRAMMING

When programming occurs, 16 bits of data are pro-
grammed into memory. The 16-bits of data are shifted
in during the TBLWT sequence. After the programming
command (TBLWT) has been executed, the user must
wait for 100 µs until programming is complete, before
another command can be executed by the CPU. There
is no command to end programming.

RB6 must remain high for as long as programming is
desired. When RB6 is lowered programming will cease.

After the falling edge occurs on RB6, RB6 must be held
low for a period of time so that a high voltage discharge
can be performed to ensure that the program array isn’t
stressed at high voltage during execution of the next
instruction. The high voltage discharge will occur while
RB6 is low following the programming time.
DS39028A-page 3-122 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-20: SYMBOLIC PROGRAMMING FLOW CHART – CONFIG WORD / ID LOCATION

ICSP Command
INCREMENT ADDRESS

START

MCLR = VIHH

N = 0

ICSP Command
LOAD CONFIGURATION

Program ID Loc?

Report
Programming

Failure

ICSP Command
BEGIN PROGRAMMING

Wait approx 100 µs

N = N - 1

4.75V < VDD < 5.25V
MCLR = VSS

No

N = 3N

No

Yes

No

Address = 300000h

N > 25?

ICSP Command
LOAD DATA

Address = 300000h?

ICSP Command
LOAD ADDRESS

Address = 300000h

ICSP Command
BEGIN PROGRAMMING

Wait approx 100 µs

ICSP Command
READ DATA

Data Correct?

Yes

ICSP Command
LOAD DATA

ICSP Command
BEGIN PROGRAMMING

Wait approx 100 µs

N = N - 1

N = 0?

N = 100

No

Data Correct?
Report

Programming
Failure

Yes

ICSP Command
READ DATA

Verify all Locations
@ VDDMIN

Data Correct?

Verify all Locations
@ VDDMAX

Data Correct?

DONE

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

No

No

Yes

Yes

Yes

N = 0

N = 0?
 2000 Microchip Technology Inc. DS39028A-page 3-123

PIC18CXXX
FIGURE 2-21: DETAILED PROGRAMMING FLOW CHART – CONFIG WORD

START

MCLR = VIHH

4.75V < VDD < 5.25V
MCLR = VSS

N = 99

Wait 100 µsec to
ensure programming

N = N - 1

Execute FNOP
for four clock cycles

shift in 4-bit NOP

Shift in 16-bit MOVLW 00
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVWF
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVLW 00
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBPLTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute last fetched inst.
for 4 clock cycles

and shift in 4-bit TBLWT+*

TBPLTR = 0x300000h

Shift in last 12-bits of data
for 12 clock cycles

Execute 1st cycle
TBLWT, and shift in

Execute 2nd cycle
TBLWT for 4 clock cycles

Shift in TBLWT *
for 4 clock cycles

first 4-bits of config. reg.
for 4 clock cycles

CONFIG1L and CONFIG1H

N = 1?

Execute 2nd cycle
TBLWT* for 4 clock cycles

Shift in TBLWT *-
for 4 clock cycles

Shift in 16-bit MOVLW 30
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVWF
for 4 clock cycles

and shift in 4-bit NOP

A

B

Yes

No

Wait 100 µsec to
ensure programming

Clock Low
for Discharge

RB6 High
DS39028A-page 3-124 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-22: DETAILED PROGRAMMING FLOW CHART – CONFIG WORD

Shift in TBLRD*+
for 4 clock cycles

Execute 1st and 2nd cycle
TBLRD*+ for 8 clock cycles

Shift Data Out
for 8 clock cycles

Execute 1st and 2nd cycle
TBLRD*+ for 8 clock cycles

Shift Data Out
for 8 clock cycles

Verify?

Yes

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

Yes

Yes

Verify all ID_Locations
@ VDDMIN

Verify all Locations
@ VDDMAX

All
locations

Report
Verify
Error

No

Data Correct? No

Data Correct?

programmed?

Wait 100 µsec to
ensure programming

Execute 2nd cycle
TBLWT *- for 4 clock cycles

Shift in TBLRD*+
for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute 1st cycle
TBLWT*-, and shift in
first 4-bits of config. reg.

for 4 clock cycles

B

A

DONE

No

No

Yes
 2000 Microchip Technology Inc. DS39028A-page 3-125

PIC18CXXX
FIGURE 2-23: DETAILED PROGRAMMING FLOW CHART – ID LOCATION

Start

Execute MOVLW
for 4 clock cycles

MCLR = VPP,
RB6, RB7 = 0

Execute FNOP
for four clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Shift in TBLRD *
for 4 clock cycles

Execute 1st cycle
TBLWT +*, and shift in

Wait 100 µsec to
ensure programming

A

Execute 2nd cycle
TBLWT +* for 4 clock cycles

Shift in TBLRD *-
for 4 clock cycles

N = 0

Execute 1st and 2nd cycle
TBLRD *- for 8 clock cycles

Shift Data Out
for 8 clock cycles

Verify?

No

Yes

N = N + 1

N > 25?
Yes

No
Report

Programming
Failure

shift in 4-bit NOP

Shift in 16-bit MOVLW Low_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

Shift in 16-bit MOVLW High_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Execute MOVWF
for 4 clock cycles

Shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

first 4-bits of data
for 4 clock cycles

Execute 1st and 2nd cycle
TBLRD * for 8 clock cycles

Shift Data Out
for 8 clock cycles

B

Shift in 16-bit MOVLW Upper_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for 4 clock cycles

and shift in 4-bit NOP

Execute MOVWF
for 4 clock cycles

and shift in 4-bit NOP

Shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute current instruction
for 4 clock cycles, and
shift in 4-bit TBLWT+*
DS39028A-page 3-126 2000 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-24: DETAILED PROGRAMMING FLOW CHART – ID LOCATIONS (CONTINUED)

A

Execute current instruction,
Shift in TBLWT *+
for 4 clock cycles

N = 1?

Yes

No

N = 3 * N

All locations

No

Yes
programmed?

B

Wait 100 µsec to
ensure programming

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

No

No

Yes

Yes

End

Verify all Locations
@ VDDMIN

Data Correct?

Verify all Locations
@ VDDMAX

Data Correct?

N = N - 1

Wait 100 µsec to
ensure programming

Execute 1st cycle
TBLWT *+ or *, and shift in

first 4-bits of data
for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT * for 4 clock cycles

Shift in TBLWT *
for 4 clock cycles

Execute 2nd cycle
TBLWT * for 4 clock cycles

Shift in TBLWT *+
for 4 clock cycles

Execute 1st cycle
TBLWT *+, and shift in

first 4-bits of data
for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute 2nd cycle TBLWT *+
for 4 clock cycles, and
shift in 4-bit TBLWT +*
 2000 Microchip Technology Inc. DS39028A-page 3-127

PIC18CXXX
3.0 CONFIGURATION WORD
The configuration bits can be programmed (read as ’0’)
or left unprogrammed (read as ’1’) to select various
device configurations. These bits are mapped starting
at program memory location 300000h.

The user will note that address 300000h is beyond the
user program memory space. In fact, it belongs to the
configuration memory space (300000h – 3FFFFFh).

TABLE 3-1: CONFIGURATION BITS AND DEVICE IDS

Filename Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Default /

unprogrammed
value

300000h CONFIG1L CP CP CP CP CP CP CP CP 1111 1111

300001h CONFIG1H RES1 RES1 OSCSEN — — FOSC2 FOSC1 FOSC0 111- -111

300002h CONFIG2L — — — — BORV1 BORV0 BODEN PWRTEN ---- 1111

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300005h CONFIG3H — — — — — — — CCP2MX ---- ---1

300006h CONFIG4L — — — — — — RES1 STVREN ---- --11

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 ---- ----

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 ---- ----

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, grayed cells are unimplemented read
as 0

Note 1: Resvered – Read as 1.
DS39028A-page 3-128 2000 Microchip Technology Inc.

PIC18CXXX
Register 3-1: Configuration Register 1 High (CONFIG1H: Byte Address 300001h)

Register 3-2: Configuration Register 1 Low (CONFIG1L: Byte Address 300000h)

R/P-1 R/P-1 R/P-1 U-0 U-0 R/P-1 R/P-1 R/P-1

Reserved Reserved OSCSEN — — FOSC2 FOSC1 FOSC0

bit 7 bit 0

bit 7-6 Reserved: Read as ’1’

bit 5 OSCSEN: Oscillator System Clock Switch Enable bit
1 =Oscillator system clock switch option is disabled (OSCA is source)
0 =Oscillator system clock switch option is enabled
(OSCA → OSCB, OSCB → OSCA switching is enabled)

bit 4-3 Reserved: Read as ’0’

bit 2-0 FOSC2:FOSC0: Oscillator Selection bits
111 = RC oscillator w/ OSC2 configured as RA6
110 = HS oscillator with PLL enabled/CLock frequency = (4 x Fosc1)
101 = EC oscillator w/ OSC2 configured as RA6
100 = EC oscillator w/ OSC2 configured as divide by 4 clock output
011 = RC oscillator
010 = HS oscillator
001 = XT oscillator
000 = LP oscillator

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

CP CP CP CP CP CP CP CP

bit 7 bit 0

CP: Code Protection bits (apply when in Code Protected Microcontroller Mode)
1 = Program memory code protection off
0 = All of program memory code protected

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
 2000 Microchip Technology Inc. DS39028A-page 3-129

PIC18CXXX
Register 3-3: Configuration Register 2 High (CONFIG2H: Byte Address 300003h)

Register 3-4: Configuration Register 2 Low (CONFIG2L: Byte Address 300002h)

U-0 U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1

— — — — WDTPS2 WDTPS1 WDTPS0 WDTEN

bit 7 bit 0

bit 7-4 Reserved: Read as ’0’

bit 3-1 WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits
111 = 1:128
110 = 1:64
101 = 1:32
100 = 1:16
011 = 1:8
010 = 1:4
001 = 1:2
000 = 1:1

bit 0 WDTEN: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled (control is placed on the SWDTE bit)

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state

U-0 U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1

— — — — BORV1 BORV0 BOREN PWRTEN

bit 7 bit 0

bit 7-4 Reserved: Read as ’0’

bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits
11 = VBOR set to 2.5V
10 = VBOR set to 2.7V
01 = VBOR set to 4.2V
00 = VBOR set to 4.5V

bit 1 BOREN: Brown-out Reset Enable bit (1)

1 = Brown-out Reset enabled
0 = Brown-out Reset disabled
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of
bit PWRTEN. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

bit 0 PWRTEN: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of
bit PWRTEN. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
DS39028A-page 3-130 2000 Microchip Technology Inc.

PIC18CXXX
Register 3-5: Configuration Register 3 High (CONFIG3H: Byte Address 300005h)

Register 3-6: Configuration Register 4 Low (CONFIG3H: Byte Address 300006h)

3.1 ID Locations

A user may store identification information (ID) in 8 ID
locations. The ID locations are mapped in
[0x200000:0x200007]. It is recommended that the user
use only the 4 least significant bits of each ID location.
The ID locations do not read out in a scrambled fashion
after code protection is enabled. For all devices it is rec-
ommended that all ID locations are written as ‘1111
bbbb’ where bbbb is the ID information. When the
upper four bits of an ID location is written as ‘1111’, the
resulting opcode when executed is read as a NOP. This
allows Reset testing of test program memory after ID
locations have been programmed.

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/P-1

— — — — — — — CCP2MX

bit 7 bit 0

bit 7-1 Reserved: Read as ’0’

bit 0 CCP2MX: CCP2 Mux bit
1 = CCP2 input/output is multiplexed with RC1
0 = CCP2 input/output is multiplexed with RB3

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state

U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1

— — — — — — Reserved STVREN

bit 7 bit 0

bit 7-2 Reserved: Read as ’0’

bit 1 Reserved: Maintain this bit set.

bit 0 STVREN: Stack Full/Underflow Reset Enable bit
1 = Stack Full/Underflow will cause reset
0 = Stack Full/Underflow will not cause reset

Legend

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
 2000 Microchip Technology Inc. DS39028A-page 3-131

PIC18CXXX
3.2 Embedding Configuration Word Information in the Hex File

3.3 CHECKSUM COMPUTATION

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked
• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-

ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

To allow portability of code, a PIC18C4X programmer is required to read the configuration word locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, all configuration word information must be included. An
option to not include the configuration word information may be provided. When embedding configuration word infor-
mation in the hex file, it should be to address FE00h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 3-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0xAA at 0
and max
address

PIC18C452

Disable SUM[0C000:0x7FFF] + CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2
& 0x0F + CFGW3 & 0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 +

CFGW6 & 0x03 + CFGW7 & 0x00

0x8148 0x809E

Enabled CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2 & 0xF + CFGW3 & 0x0F
+ CFGW4 & 0x00 + CFGW5 & 0x01 + CFGW6 & 0x03 + CFGW7 &

0x00 + SUM_ID

0x005E 0x0068

PIC18C442

Disable SUM[0x000:0x3FFF] + CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2
& 0x0F + CFGW3 & 0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 +

CFGW6 & 0x03 + CFGW7 & 0x00

0xC148 0xC09E

Enabled CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2 & 0x0F + CFGW3 &
0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 + CFGW6 & 0x03 +

CFGW7 & 0x00 + SUM_ID

0x0062 0x006C

PIC18C252

Disable SUM[0x000:0x7FFF] + CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2
& 0x0F + CFGW3 & 0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 +

CFGW6 & 0x03 + CFGW7 & 0x00

0x8148 0x809E

Enabled CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2 & 0x0F + CFGW3 &
0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 + CFGW6 & 0x03 +

CFGW7 & 0x00 + SUM_ID

0x005E 0x0068

PIC18C242

Disable SUM[0x000:0x3FFF] + CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2
& 0x0F + CFGW3 & 0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 +

CFGW6 & 0x03 + CFGW7 & 0x00

0xC148 0xC09E

Enabled CFGW0 & 0xFF + CFGW1 & 0x27 + CFGW2 & 0x0F + CFGW3 &
0x0F + CFGW4 & 0x00 + CFGW5 & 0x01 + CFGW6 & 0x03 +

CFGW7 & 0x00 + SUM_ID

0x0062 0x006C

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a to b inclusive]
SUM_ID = Byte-wise sum of lower four bits of all ID locations
+ = Addition
& = Bitwise AND
DS39028A-page 3-132 2000 Microchip Technology Inc.

PIC18CXXX
4.0 AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +70°C, unless otherwise stated, (25°C is recommended)

Operating Voltage: 4.5V ≤ VDD ≤ 5.25V, unless otherwise stated.

Parameter
No.

Sym Characteristic Min Typ† Max Units Conditions

VIHH Programming Voltage on VPP/
MCLR pin and TEST pin.

VDD + 4.0 — 13.25 V

IPP Programming current on MCLR pin 25 50 mA

P1 TSER Serial setup time 20 — — ns

P2 TSCLK Serial Clock period 100 — — ns

P3 TSET1 Input Data Setup Time to serial
clock ↓

15 — — ns

P4 THLD1 Input Data Hold Time from serial
clock ↓

15 — — ns

P5 TDLY1 Delay between last clock ↓ to first
clock ↑ of next command

20 — — ns

P6 TDLY2 Delay between last clock ↓ of com-
mand byte to first clock ↑ of read of
data word

20 — — ns

P8 TDLY4 Data input not driven to next clock
input

1 — — ns

P9 TDLY5 RB6 high time (minimum program-
ming time)

100 — — µs

P10 TDLY6 RB6 low time after programming
(high voltage discharge time)

100 — — ns

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5V, 25×C unless otherwise stated. These parameters are for design guidance only and are not

tested.
 2000 Microchip Technology Inc. DS39028A-page 3-133

PIC18CXXX
NOTES:
DS39028A-page 3-134 2000 Microchip Technology Inc.

PIC16F62X
In-Circuit Serial Programming for PIC16F62X FLASH MCUs
This document includes the programming
specifications for the following devices:

• PIC16F627

• PIC16F628
• PIC16LF627
• PIC16LF628

1.0 PROGRAMMING THE
PIC16F62X

The PIC16F62X is programmed using a serial method.
The serial mode will allow the PIC16F62X to be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC16F62X devices in all packages.

PIC16F62X devices may be programmed using a sin-
gle +5 volt supply (low voltage programming mode).

1.1 Hardware Requirements

The PIC16F62X requires one programmable power
supply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V
or VPP of (4.5V to 5.5V) when using low voltage. Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F62X allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

PIN Diagram

PDIP, SOIC

RA2/AN2/VREF

RA3/AN3/CMP1

RA4/T0CKI/CMP2

RA5/MCLR/THV

VSS

RB0/INT

RB1/RX/DT

RB2/TX/CK

RB3/CCP1

RA1/AN1

RA0/AN0

RA7/OSC1/CLKIN

RA6/OSC2/CLKOUT

VDD

RB7/T1OSI

RB6/T1OSO/T1CKI

RB5

RB4/PGM

• 1

2

3

4

5

7

8

9

18

17

16

15

14

12

11

10

P
IC

16F
62X6 13

RA2/AN2/VREF

RA3/AN3/CMP1

RA4/T0CKI/CMP2

RA5/MCLR/THV

VSS

RB0/INT

RB1/RX/DT

RB2/TX/CK

RB3/CCP1

RA1/AN1

RA0/AN0

RA7/OSC1/CLKIN

RA6/OSC2/CLKOUT

VDD

RB7/T1OSI

RB6/T1OSO/T1CKI

RB5

RB4/PGM

• 1

2

3

4

5

7

8

9

18

17

16

15

14

12

1110

P
IC

16F
62X6

13

VDDVSS

19

20

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F62X

Pin Name

During Programming

Function Pin Type Pin Description

RB4 PGM I Low voltage programming input if configuration bit
equals 1

RB6 CLOCK I Clock input

RB7 DATA I/O Data input/output

MCLR VTEST MODE P* Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

*In the PIC16F62X, the programming high voltage is internally generated. To activate the programming mode, high voltage needs
to be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-135

PIC16F62X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x7FFF. In programming mode the program memory
space extends from 0x0000 to 0x3FFF, with the first
half (0x0000-0x7FFF) being user program memory and
the second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x7FFF
and wrap to 0x000, 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 3-1.

FIGURE 2-1: PROGRAM MEMORY MAPPING

1FFF

2000ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2005

2006

2007

2008

3FFF

0x1FF

Not Implemented

Implemented

1 KW

Implemented

2004

Implemented

2 KW

Implemented
DS30034A-page 3-136 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage) or by applying VDD to MCLR and
raising RB3 from VIL to VDD. Once in this mode the user
program memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RB6 and RB7 are Schmitt
Trigger Inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

A device reset will clear the PC and set the address to
0. The “increment address” command will increment
the PC. The “load configuration” command will se the
PC to 0x2000. The available commands are shown in
Table 2-1.

2.3.1 LOW-VOLTAGE PROGRAMMING MODE

When LVP bit is set to ‘1’, the low-voltage programming
entry is enabled. Since the LVP configuration bit allows
low voltage programming entry in its erased state, an
erased device will have the LVP bit enabled at the fac-
tory. While LVP is ‘1’, RB4 is dedicated to low voltage
programming. Bring MCLR to VDD and then RB4 to
VDD to enter programming mode. All other specifica-
tions for high-voltage ICSP™ apply.

To disable low voltage mode, the LVP bit must be pro-
grammed to ‘0’. This must be done while entered with
high voltage entry mode (LVP bit= 1). RB4 is now a
general purpose I/O pin.

2.3.2 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 µs between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 µs is required between a command and a
data word (or another command).

The commands that are available are:

2.3.2.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

Note: The OSC must not have 72 osc clocks
while the device MCLR is between VIL and
VIHH.
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-137

PIC16F62X
2.3.2.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F627/PIC16F628

Command Mapping (MSB … LSB) Data

Load Configuration X X 0 0 0 0 0, data (14), 0

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0

Increment Address X X 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0

Read Data from Data Memory X X 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1
DS30034A-page 3-138 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
FIGURE 2-2: PROGRAM FLOW CHART - PIC16F62X PROGRAM MEMORY

Start

Set VDD = VDDP

Program Cycle

Read Data
Command

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations @

VDDMIN

Data Correct?

Verify all
Locations @

VDDMAX

Data Correct?

Done

Increment
Address

Command

Report Verify
Error @
VDDMIN

Report Verify
Error @
VDDMAX

Load Data
Command

Begin
Programming

Command

Wait 2 ms

PROGRAM CYCLE

No

No

No

No
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-139

PIC16F62X
FIGURE 2-3: PROGRAM FLOW CHART - PIC16F62X CONFIGURATION MEMORY

Program ID

Start

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?
Report

Programming
Failure

Increment
Address

Command

Address =
0x2004?

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

Done

Yes

No

No

Yes

YesNo

No

Yes

Yes

No
DS30034A-page 3-140 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
2.3.2.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory. If the device is
code protected, the data is read as all zeros.

2.3.2.4 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.2.5 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.2.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.2.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.2.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.2.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a “Load Data All 1’s” command.
2. Do a “Bulk Erase User Memory” command.

3. Do a “Begin Programming” command.
4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will
not be erased, even if the address is pointing to location
0x2007.

2.3.2.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a “Load Data All 1’s” command.

2. Do a “Bulk Erase Data Memory” command.
3. Do a “Begin Programming” command.
4. Wait 10 ms to complete bulk erase.

Note: If the device is code-protected, the BULK
ERASE command will not work.

Note: All BULK ERASE operations must take
place at 4.5 to 5.5 VDD range.
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-141

PIC16F62X
2.4 Programming Algorithm Requires
Variable VDD

The PIC16F62X uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin. as
well as VDDmax. Verification at VDDmin. guarantees
good “erase margin”. Verification at VDDmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

VDDP = VCC range required during programming.

VDDmin. = minimum operating VDD spec for the part.

VDDmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F62X at its speci-
fied VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F62X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
DS30034A-page 3-142 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
3.0 CONFIGURATION WORD
The PIC16F62X has several configuration bits. These
bits can be set (reads ‘0’) or left unchanged (reads ‘1’)
to select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F62X is located at
2006h.

FIGURE 3-1: CONFIGURATION WORD FOR PIC16F877/876/873

TABLE 3-1:

Device
Device ID Value

Dev Rev

PIC16F627 00 0111 111 x xxxx
PIC16F628 00 0111 001 x xxxx

CP1 CP0 CP1 CP0 - CPD LVP BODEN MCLRE FOSC2 PWRTE WDTE F0SC1 F0SC0 Register: CONFIG
Address 2007h

bit13 bit0

bit 13-10: CP1:CP0: Code Protection bits (2)

Code protection for 2K program memory
11 = Program memory code protection off
10 = 0400h-07FFh code protected
01 = 0200h-07FFh code protected
00 = 0000h-07FFhcode protected
Code protection for 1K program memory
11 = Program memory code protection off
10 = Program memory code protection off
01 = 0200h-03FFh code protected
00 = 0000h-03FFh code protected

bit 8: CPD: Data Code Protection bit(3)

1 = Data memory code protection off
0 = Data memory code protected

bit 7: LVP: Low Voltage Programming Enable
1 = RB4/PGM pin has PGM function, low voltage programming enabled
0 = RB4/PGM is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Detect Reset Enable bit (1)

1 = BOD reset enabled
0 = BOD reset disabled

bit 5: MCLRE: RA5/MCLR pin function select
1 = RA5/MCLR pin function is MCLR
0 = RA5/MCLR pin function is digital I/O, MCLR internally tied to VDD

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 4,1-0: FOSC2:FOSC0: Oscillator Selection bits(4)

111 = ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN
110 = ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN
101 = INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
100 = INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
011 = EXTCLK: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN
010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
000 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure
the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed. The entire pro-
gram EEPROM will be erased if the code protection is reduced.

3: The entire data EEPROM will be erased when the code protection is turned off. The calibration space in the test memory
is not erased.

4: When MCLR is asserted in INTRC or ER mode, the internal clock oscillator is disabled.

 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-143

PIC16F62X
4.0 CODE PROTECTION
For PIC16F62X devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a) Execute load configuration (with a ‘1’ in bit 4,
code protect).

b) Increment to configuration word location
(0x2007)

c) Execute command (000001)
d) Execute command (000111)

e) Execute ‘Begin Programming’ (001000)
f) Wait 10 ms
g) Execute command (000001)

h) Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F62X, the EEPROM data memory should also be embedded in the hex file (see
Section 5.1).

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.
DS30034A-page 3-144 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F62X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., 0x1FF for the PIC16F62X. Any carry bits exceed-
ing 16-bits are neglected. Finally, the configuration
word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16F62X devices is shown in Table 4-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-1: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at 0
and max
address

PIC16F627 OFF SUM[0x0000:0x3FFF] + CFGW & 0x3DFF 0x39FF 0x05CD

0x200 : 0x3FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x4DFE 0xFFB3

ALL 0x3BFE 0x07CC

PIC16F628 OFF SUM[0x0000:0x07FF] + CFGW & 0x3DFF 0x35FF 0x01CD

0x400 : 0xFFF SUM[0x0000:0x03FF] + CFGW & 0x3DFF +SUM_ID 0x5BFE 0x0DB3

0x200 : 0x7FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x49FE 0xFBB3

ALL CFGW & 0x3DFF + SUM_ID 0x37FE 0x03CC

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a to b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
 For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-145

PIC16F62X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 64 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions (unless otherwise stated)
Operating Temperature: 0°C ≤ TA ≤ +70°C
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V

Characteristics Sym Min Typ Max Units Conditions/Comments

General

VDD level for word operations, program
memory VDD 2.0 5.5 V

VDD level for word operations, data mem-
ory VDD 2.0 5.5 V

VDD level for bulk erase/write operations,
program and data memory VDD 4.5 5.5 V

High voltage on MCLR and
RA4/T0CKI for test-mode entry VIHH VDD + 3.5 13.5 V

MCLR rise time (VSS to VHH) for test
mode entry

tVHHR 1.0 µs

(RB6, RB7) input high level VIH1 0.8VDD V Schmitt Trigger input

(RB6, RB7) input low level VIL1 0.2VDD V Schmitt Trigger input

RB<7:4> setup time before MCLR↑
(test mode selection pattern setup time)

tset0 100 ns

RB<7:4> hold time after MCLR↑
(test mode selection pattern setup time)

thld0 5 µs

Serial Program/Verify

Data in setup time before clock↓ tset1 100 ns

Data in hold time after clock↓ thld1 100 ns

Data input not driven to next clock input
(delay required between command/data or
command/command)

tdly1 1.0 µs

Delay between clock↓ to clock↑ of next
command or data

tdly2 1.0 µs

Clock↑ to data out valid (during read data) tdly3 80 ns

Parallel Program/Verify

Data in setup time before clock↓ tset0 1.0 µs

Data in hold time after clock↓ thld0 1.0 µs

RB6 and RB7 setup time before clock↓ tset1 1.0 µs

RB6 and RB7 hold time after clock↓ thld1 1.0 µs

RA4/T0CKI (clock)↓ to (clock)↑ tdly4 2.0 µs

RB7 (data/command select input) setup
before RA4/T0CKI (clock)↑

tset2 1.0 µs

RB7 (data/command select input) hold time
after RA4/T0CKI (clock)↓

thld2 1.0 µs

RA4/T0CKI (clock)↑ to data out valid tdly5 1.0 µs

RB6 (hi/lo select) valid to data out valid tdly6 1.0 µs

Erase cycle time tera 2 5 ms

Programming cycle time tprog 2 5 ms

Time delay from program to compare (HV
discharge time)

tdis 0.5 µs
DS30034A-page 3-146 Preliminary 2000 Microchip Technology Inc.

PIC16F62X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

MCLR
VIHH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tset1

thld1
tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

100ns min.

1µs min.

tdly21 2 3 4 5 6

0 1 0 0 X X

1 2 3 4 5 15 16

strt_bit stp_bit

100ns min.

}

thld0

} } }

MCLR
VIHH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

1 0 1 0 X X

1 2 3 4 5 15 16

100ns min.
} }

tdly3

RB7 = input RB7 = output
RB7

input

thld0

strt_bit stp_bit

MCLR
VIHH

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

100ns min.

} }

X 00

Next Command
 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-147

PIC16F62X
NOTES:
DS30034A-page 3-148 Preliminary 2000 Microchip Technology Inc.

PIC16F8X
In-Circuit Serial Programming for PIC16F8X FLASH MCUs
This document includes the programming
specifications for the following devices:

• PIC16F83

• PIC16CR83
• PIC16F84
• PIC16CR84

• PIC16F84A
• PIC16F877

1.0 PROGRAMMING THE PIC16F8X
The PIC16F8X is programmed using a serial method.
The serial mode will allow the PIC16F8X to be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC16F8X devices in all packages.

1.1 Hardware Requirements

The PIC16F8X requires one programmable power sup-
ply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V. Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F8X allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

Pin Diagram

RA1
RA0
OSC1/CLKIN
OSC2/CLKOUT
VDD
RB7
RB6
RB5
RB4

RA2
RA3

RA4/T0CKI
MCLR

VSS
RB0/INT

RB1
RB2
RB3

•1
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

P
IC

16F
8X

PDIP, SOIC

RB7
RB6

RB5

RB4
RB3

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6
RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA
RD3/PSP3

RD2/PSP2

MCLR/VPP

RA0/AN0

RA1/AN1
RA2/AN2/VREF

RA3/AN3/VREF

RA4/T0CKI

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7
VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL
RD0/PSP0

RD1/PSP1

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

40

39

38

37

36

35

34

33

32
31

30

29
28

27

26

25

24

23

22
21

P
IC

16F
877

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F8X

Pin Name

During Programming

Function Pin Type Pin Description

RB6 CLOCK I Clock input

RB7 DATA I/O Data input/output

MCLR VTEST MODE P* Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

*In the PIC16F8X, the programming high voltage is internally generated. To activate the programming mode, high voltage needs to
be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.
 2000 Microchip Technology Inc. DS30262C-page 3-149

PIC16F8X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K), of which 1K (0x0000 - 0x03FF) is physi-
cally implemented. In actual implementation the on-
chip user program memory is accessed by the lower
10-bits of the PC, with the upper 3-bits of the PC
ignored. Therefore if the PC is greater than 0x3FF, it will
wrap around and address a location within the physi-
cally implemented memory. (See Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to 0x3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x000 or 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-2.

To understand the scrambling mechanism after code
protection, refer to Section 4.0.
DS30262C-page 3-150 2000 Microchip Technology Inc.

PIC16F8X
FIGURE 2-1: PROGRAM MEMORY MAPPING

0

3FF
400

1FFF

2000

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

2008

3FFF

Not Implemented

Not Implemented

Implemented

Implemented1FF

Not Implemented

Not Implemented

Implemented

Implemented

0.5 KW 1 KW

Not Implemented

Implemented

8 KW

Implemented
 2000 Microchip Technology Inc. DS30262C-page 3-151

PIC16F8X
2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RB6 and RB7 are Schmitt
Trigger Inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 µs between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 µs is required between a command and a
data word (or another command).

The commands that are available are:

2.3.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

Note: The OSC must not have 72 osc clocks
while the device MCLR is between VIL and
VIHH.
DS30262C-page 3-152 2000 Microchip Technology Inc.

PIC16F8X
2.3.1.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F83/CR83/F84/CR84

Command Mapping (MSB … LSB) Data

Load Configuration 0 0 0 0 0 0 0, data (14), 0

Load Data for Program Memory 0 0 0 0 1 0 0, data (14), 0

Read Data from Program Memory 0 0 0 1 0 0 0, data (14), 0

Increment Address 0 0 0 1 1 0

Begin Programming 0 0 1 0 0 0

Load Data for Data Memory 0 0 0 0 1 1 0, data (14), 0

Read Data from Data Memory 0 0 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory 0 0 1 0 0 1

Bulk Erase Data Memory 0 0 1 0 1 1

TABLE 2-2: COMMAND MAPPING FOR PIC16F84A/PIC16F877

Command Mapping (MSB … LSB) Data

Load Configuration X X 0 0 0 0 0, data (14), 0

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0

Increment Address X X 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0

Read Data from Data Memory X X 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1
 2000 Microchip Technology Inc. DS30262C-page 3-153

PIC16F8X
FIGURE 2-2: PROGRAM FLOW CHART - PIC16F8X PROGRAM MEMORY

Start

Set VDD = VDDP

Program Cycle

Read Data
Command

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations @

VDDMIN

Data Correct?

Verify all
Locations @

VDDMAX

Data Correct?

Done

Increment
Address

Command

Report Verify
Error @
VDDMIN

Report Verify
Error @
VDDMAX

Load Data
Command

Begin
Programming

Command

Wait 10 ms

PROGRAM CYCLE

No

No

No

No
DS30262C-page 3-154 2000 Microchip Technology Inc.

PIC16F8X
FIGURE 2-3: PROGRAM FLOW CHART - PIC16F8X CONFIGURATION MEMORY

Program ID

Start

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?
Report

Programming
Failure

Increment
Address

Command

Address =
0x2004?

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

Done

Yes

No

No

Yes

YesNo

No

Yes

Yes

No
 2000 Microchip Technology Inc. DS30262C-page 3-155

PIC16F8X
2.3.1.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory.

2.3.1.4 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.1.5 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.1.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.1.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.1.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.1.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a “Load Data All 1’s” command.
2. Do a “Bulk Erase User Memory” command.
3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will
not be erased, even if the address is pointing to location
0x2007

For PIC16F84 perform the following commands:

1. Issue Command 2 (write program memory).

2. Send out 3FFFH data.
3. Issue Command 1 (toggle select even rows).
4. Issue Command 7 (toggle select even rows).

5. Issue Command 8 (begin programming)
6. Delay 10 ms
7. Issue Command 1 (toggle select even rows).

8. Issue Command 7 (toggle select even rows).

Note: If the device is code-protected
(PIC16F84A), the BULK ERASE com-
mand will not work.
DS30262C-page 3-156 2000 Microchip Technology Inc.

PIC16F8X
2.3.1.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a “Load Data All 1’s” command.

2. Do a “Bulk Erase Data Memory” command.
3. Do a “Begin Programming” command.
4. Wait 10 ms to complete bulk erase.

For PIC16F84 perform the data memory).

5. Send out 3FFFH data.

6. Issue Command 1 (toggle select even rows).
7. Issue Command 7 (toggle select even rows).
8. Issue Command 8 (begin data)

9. Delay 10 ms
10. Issue Command 1 (toggle select even rows).

Issue Command 7 (toggle select even rows).

2.4 Programming Algorithm Requires
Variable VDD

The PIC16F8X uses an intelligent algorithm. The algo-
rithm calls for program verification at VDDmin. as well
as VDDmax. Verification at VDDmin. guarantees good
“erase margin”. Verification at VDDmax guarantees
good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

VDDP = VCC range required during programming.

VDDmin. = minimum operating VDD spec for the part.

VDDmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F8X at its specified
VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F8X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok). Note: All BULK ERASE operations must take

place at 4.5 to 5.5 VDD range. Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS30262C-page 3-157

PIC16F8X
3.0 CONFIGURATION WORD
The PIC16F8X has five configuration bits. These bits
can be set (reads ‘0’) or left unchanged (reads ‘1’) to
select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F8XX is located at
2006h.

FIGURE 3-1: CONFIGURATION WORD BIT MAP FOR PIC16F83/CR83/F84/CR84/F84A

TABLE 3-1:

Device
Device ID Value

Dev Rev

PIC16F84A 00 0101 010 0 0000

PIC16F877 00 1001 101 0 0000

Bit
Number: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC16F83/
F84/F84A

CP CP CP CP CP CP CP CP CP CP PWRTE WDTE FOSC1 FOSC0

PIC16CR83/
CR84

CP CP CP CP CP CP DP CP CP CP PWRTE WDTE FOSC1 FOSC0

bit 4-13: CP, Code Protection Configuration Bits
1 = code protection off
0 = code protection on

bit 7: PIC16CR83/CR84 only
DP, Data Memory Code Protection Bit
1 = code protection off
0 = data memory is code protected

bit 3: PWRTE, Power Up Timer Enable Configuration Bit
1 = Power up timer disabled
0 = Power up timer enabled

bit 2: WDTE, WDT Enable Configuration Bits
1 = WDT enabled
0 = WDT disabled

bit 1-0 FOSC<1:0>, Oscillator Selection Configuration Bits
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator
DS30262C-page 3-158 2000 Microchip Technology Inc.

PIC16F8X
FIGURE 3-2: CONFIGURATION WORD FOR PIC16F877

CP1 CP0 BKBUG - WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0 Register: CONFIG
Address 2007hbit13 bit0

bit 13-12:
bit 11: BKBUG: Background Debugger Mode (This bit documented as reserved in data sheet)
 1 = Background debugger functions not enabled

0 = Background debugger functional.
bit 5-4: CP1:CP0: Flash Program Memory Code Protection bits (2)

 11 = Code protection off
10 = 1F00h to 1FFFh code protected
01 = 1000h to 1FFFh code protected
00 = 0000h to 1FFFh code protected

bit 11: Reserved: Set to ‘1’ for normal operation
bit 10: Unimplemented: Read as ‘1’
bit 9: WRT: Flash Program Memory Write Enable
 1 = Unprotected program memory may be written to by EECON control

0 = Unprotected program memory may not be written to by EECON control
bit 8: CPD: Data EE Memory Code Protection
 1 = Code protection off

0 = Data EE memory code protected

bit 7: LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Reset Enable bit (1)

1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC1:FOSC0: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
 2000 Microchip Technology Inc. DS30262C-page 3-159

PIC16F8X
4.0 CODE PROTECTION
For PIC16F8X devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a) Execute load configuration (with a ‘1’ in bit 4,
code protect).

b) Increment to configuration word location
(0x2007)

c) Execute command (000001)
d) Execute command (000111)

e) Execute ‘Begin Programming’ (001000)
f) Wait 10 ms
g) Execute command (000001)

h) Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CONFIGURATION WORD

PIC16F83

To code protect: 0000000000XXXX

PIC16CR83

To code protect: 0000000000XXXX

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F8X, the EEPROM data memory should also be embedded in the hex file (see Section 5.1).

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

All memory Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations [0x2000 : 0x2003] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled Read Unscrambled

All memory Read All 0’s for Program Memory,
Read All 1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -
Write Enabled

ID Locations [0x2000 : 0x2003] Read Unscrambled Read Unscrambled
DS30262C-page 3-160 2000 Microchip Technology Inc.

PIC16F8X
PIC16CR84

To code protect: 0000000000XXXX

PIC16F84

To code protect: 0000000000XXXX

PIC16F84A

To code protect: 0000000000XXXX

PIC16F8XX

To code protect: 00X1XXXX00XXXX

Legend: X = Don’t care

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled Read Unscrambled
All memory Read All 0’s for Program Memory,

Read All 1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -
Write Enabled

ID Locations [0x2000 : 0x2003] Read Unscrambled Read Unscrambled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
All memory Read All 0’s, Write Disabled Read Unscrambled, Write Enabled
ID Locations [0x2000 : 0x2003] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
All memory Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations [0x2000 : 0x2003] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

All memory Read All 0’s, Write Disabled Read Unscrambled, Write Enabled
ID Locations [0x2000 : 0x2003] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2000 Microchip Technology Inc. DS30262C-page 3-161

PIC16F8X
4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F8X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., 0x1FF for the PIC16F8X. Any carry bits exceeding
16-bits are neglected. Finally, the configuration word
(appropriately masked) is added to the checksum.
Checksum computation for each member of the
PIC16F8X devices is shown in Table 4-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked
• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank
Value

0x25E6 at 0
and max
address

PIC16F83 OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3FFF
CFGW & 0x3FFF + SUM_ID

0x3DFF
0x3E0E

0x09CD
0x09DC

PIC16CR83 OFF
ON

SUM[0x000:0x1FF] + CFGW & 0x3FFF
CFGW & 0x3FFF + SUM_ID

0x3DFF
0x3E0E

0x09CD
0x09DC

PIC16F84 OFF
ON

SUM[0x000:0x3FF] + CFGW & 0x3FFF
CFGW & 0x3FFF + SUM_ID

0x3BFF
0x3C0E

0x07CD
0x07DC

PIC16CR84 OFF
ON

SUM[0x000:0x3FF] + CFGW & 0x3FFF
CFGW & 0x3FFF + SUM_ID

0x3BFF
0x3C0E

0x07CD
0x07DC

PIC16F84A OFF
ON

SUM[0x000:0x3FF] + CFGW & 0x3FFF
CFGW & 0x3FFF + SUM_ID

0x3BFF
0x3C0E

0x07CD
0x07DC

PIC16F877 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD

0X1F00
–

0X1FFF

SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

0x1000
–

0x1FFF

SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a to b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
 For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
DS30262C-page 3-162 2000 Microchip Technology Inc.

PIC16F8X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 64 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Paramet
er

No.
Sym. Characteristic Min. Typ. Max. Units

Conditions/
Comments

VDDP Supply voltage during programming 4.5 5.0 5.5 V

VDDV Supply voltage during verify VDDmin VDDmax V Note 1

 VIHH High voltage on MCLR for test mode
entry

12 14.0 V Note 2

IDDP Supply current (from VDD) during
program/verify

50 mA

IHH Supply current from VIHH (on MCLR) 200 µA

 VIH1 (RB6, RB7) input high level 0.8 VDD V Schmitt Trigger input

VIL1 (RB6, RB7) input low level MCLR
(test mode selection)

0.2 VDD V Schmitt Trigger input

P1 TvHHR MCLR rise time (VSS to VHH) for test
mode entry

8.0 µs

P2 Tset0 RB6, RB7 setup time (before pattern
setup time)

100 ns

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock
input (delay required between com-
mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock to data out valid (during read
data)

80 ns

P8 Thld0 RB <7:6> hold time after MCLR ↑ 100 ns

- - Erase cycle time - - 10 ms

- - Program cycle time - - 10 ms

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
Note 2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
 2000 Microchip Technology Inc. DS30262C-page 3-163

PIC16F8X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns

P8

VIHH

RB6
(CLOCK)

RB7
(DATA) 0

MCLR
P2

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0
100ns

P4

1

100ns
min.

P3

Reset

21

100ns

P8

VIHH

RB6
(CLOCK)

RB7
(DATA)

0

MCLR

RB7 = output
RB7
input

P7

}

P2

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR

RB6
(CLOCK)

(DATA)
RB7

Reset
Program/Verify Test Mode
DS30262C-page 3-164 2000 Microchip Technology Inc.

PIC16F8XX
In-Circuit Serial Programming for PIC16F8XX FLASH MCUs
This document includes the programming
specifications for the following devices:

1.0 PROGRAMMING THE
PIC16F8XX

The PIC16F8XX is programmed using a serial method.
The serial mode will allow the PIC16F8XX to be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC16F8XX devices in all packages.

PIC16F8XX devices may be programmed using a sin-
gle +5 volt supply (low voltage programming mode).

1.1 Hardware Requirements

The PIC16F8XX requires one programmable power
supply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V
or VPP of (4.5V to 5.5V) when using low voltage In-Cir-
cuit Serial Programming™ (ICSP™). Both supplies
should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F8XX allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

Pin Diagram

• PIC16F870 • PIC16F874

• PIC16F871 • PIC16F876

• PIC16F872 • PIC16F877

• PIC16F873

PDIP, SOIC

RB7
RB6

RB5

RB4
RB3

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6
RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA
RD3/PSP3

RD2/PSP2

MCLR/VPP

RA0/AN0

RA1/AN1
RA2/AN2/VREF

RA3/AN3/VREF

RA4/T0CKI

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7
VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL
RD0/PSP0

RD1/PSP1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29
28

27

26

25

24

23

22

21

P
IC

16F
877/874/871

P
IC

16F
876/873/872/870

10
11

2
3
4
5
6

1

8
7

9

12
13
14 15

16
17
18
19
20

23
24
25

26
27
28

22
21

MCLR/VPP

RA0/AN0
RA1/AN1

RA2/AN2/VREF

RA3/AN3/VREF

RA4/T0CKI
RA5/AN4/SS

VSS

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2

RC2/CCP1
RC3/SCK/SCL

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD

VSS

RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F8XX

Pin Name
During Programming

Function Pin Type Pin Description

RB3 PGM I Low voltage ICSP programming input if
configuration bit equals 1

RB6 CLOCK I Clock input

RB7 DATA I/O Data input/output

MCLR VTEST MODE P* Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

*In the PIC16F8XX, the programming high voltage is internally generated. To activate the programming mode, high voltage needs
to be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.
 2000 Microchip Technology Inc. DS39025D-page 3-165

In-circuit Serial Programming (ICSP) is a trademark of Microchip Technology Inc.

PIC16F8XX
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). In programming mode the program mem-
ory space extends from 0x0000 to 0x3FFF, with the first
half (0x0000-0x1FFF) being user program memory and
the second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x000, 0x2000 to 0x3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.0.
DS39025D-page 3-166 2000 Microchip Technology Inc.

PIC16F8XX
FIGURE 2-1: PROGRAM MEMORY MAPPING

2K
words

4K
words

8K
words

Implemented Implemented Implemented

Implemented Implemented Implemented

Implemented Implemented

Implemented Implemented

Reserved Implemented

Reserved Implemented

Implemented

Implemented

Reserved Reserved Reserved

Reserved Reserved Reserved

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Device ID

Configuration Word

2000h

2001h

2002h

2003h

2004h

2005h

2006h

2007h

0h

1FFh

3FFh

400h

7FFh

800h

BFFh

C00h

FFFh

1000h

1FFFh

2008h

2100h

3FFFh
 2000 Microchip Technology Inc. DS39025D-page 3-167

PIC16F8XX
2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). In this mode, the state of the RB3
pin does not effect programming. Low-voltage ICSP
programming mode is entered by applying VDD to
MCLR and raising RB3 from VIL to VDD. Once in this
mode the user program memory and the configuration
memory can be accessed and programmed in serial
fashion. The mode of operation is serial, and the mem-
ory that is accessed is the user program memory. RB6
and RB7 are Schmitt Trigger Inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

A device reset will clear the PC and set the address to
0. The “increment address” command will increment
the PC. The “load configuration” command will se the
PC to 0x2000. The available commands are shown in
Table 2-1.

2.3.1 LOW-VOLTAGE ICSP PROGRAMMING
MODE

When LVP bit is set to ‘1’, the low-voltage ICSP pro-
gramming entry is enabled. Since the LVP configura-
tion bit allows low voltage ICSP programming entry in
its erased state, an erased device will have the LVP bit
enabled at the factory. While LVP is ‘1’, RB3 is dedi-
cated to low voltage ICSP programming. Bring MCLR
to VDD and then RB3 to VDD to enter programming
mode. All other specifications for high-voltage ICSP™
apply.

To disable low voltage ICSP mode, the LVP bit must be
programmed to ‘0’. This must be done while entered
with high voltage entry mode (LVP bit= 1). RB3 is now
a general purpose I/O pin.

2.3.2 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 µs between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 µs is required between a command and a
data word (or another command).

The commands that are available are:

2.3.2.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

Note: The OSC must not have 72 osc clocks
while the device MCLR is between VIL and
VIHH.
DS39025D-page 3-168 2000 Microchip Technology Inc.

PIC16F8XX
2.3.2.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F84A/PIC16F877

Command Mapping (MSB … LSB) Data

Load Configuration X X 0 0 0 0 0, data (14), 0

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0

Increment Address X X 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0

Read Data from Data Memory X X 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1
 2000 Microchip Technology Inc. DS39025D-page 3-169

PIC16F8XX
FIGURE 2-2: PROGRAM FLOW CHART - PIC16F8XX PROGRAM MEMORY

Start

Set VDD = VDDP

Program Cycle

Read Data
Command

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations @

VDDMIN

Data Correct?

Verify all
Locations @

VDDMAX

Data Correct?

Done

Increment
Address

Command

Report Verify
Error @
VDDMIN

Report Verify
Error @
VDDMAX

Load Data
Command

Begin
Programming

Command

Wait tprog

PROGRAM CYCLE

No

No

No

No
DS39025D-page 3-170 2000 Microchip Technology Inc.

PIC16F8XX
FIGURE 2-3: PROGRAM FLOW CHART - PIC16F8XX CONFIGURATION MEMORY

Program ID

Start

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?
Report

Programming
Failure

Increment
Address

Command

Address =
0x2004?

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Report Program
Configutation
Word Error

Done

Yes

No

No

Yes

YesNo

No

Yes

Yes

No
 2000 Microchip Technology Inc. DS39025D-page 3-171

PIC16F8XX
2.3.2.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory. If the device is
code protected, the data is read as all zeros.

2.3.2.4 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.2.5 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.2.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.2.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.2.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.2.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a “Load Data All 1’s” command.
2. Do a “Bulk Erase Program Memory” command.
3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will
not be erased, even if the address is pointing to location
0x2007.

2.3.2.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a “Load Data All 1’s” command.
2. Do a “Bulk Erase Data Memory” command.

3. Do a “Begin Programming” command.
4. Wait 10 ms to complete bulk erase.

Note: If the device is code-protected, the BULK
ERASE command will not work.

Note: All BULK ERASE operations must take
place at 4.5 to 5.5 VDD range.
DS39025D-page 3-172 2000 Microchip Technology Inc.

PIC16F8XX
2.4 Programming Algorithm Requires
Variable VDD

The PIC16F8XX uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin. as
well as VDDmax. Verification at VDDmin. guarantees
good “erase margin”. Verification at VDDmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

VDDP = VCC range required during programming.

VDDmin. = minimum operating VDD spec for the part.

VDDmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F8XX at its speci-
fied VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F8XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.
 2000 Microchip Technology Inc. DS39025D-page 3-173

PIC16F8XX
3.0 CONFIGURATION WORD
The PIC16F8XX has several configuration bits. These
bits can be set (reads ‘0’) or left unchanged (reads ‘1’)
to select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F8XX is located at
2006h.

FIGURE 3-1: CONFIGURATION WORD FOR PIC16F873/874/876/877

TABLE 3-1: DEVICE ID VALUE

Device
Device ID Value

Dev Rev

PIC16F870 00 1101 000 x xxxx

PIC16F871 00 1101 001 x xxxx

PIC16F872 00 1000 111 x xxxx

PIC16F873 00 1001 011 x xxxx

PIC16F874 00 1001 001 x xxxx

PIC16F876 00 1001 111 x xxxx

PIC16F877 00 1001 101 x xxxx

CP1 CP0 RESV - WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0 Register: CONFIG
Address 2007hbit13 bit0

bit 13-12:
bit 11: Reserved: Set to ‘1’ for normal operation
bit 5-4: CP1:CP0: Flash Program Memory Code Protection bits (2)

 4K Devices:
11 = Code protection off
10 = not supported
01 = not supported
00 = 0000h to 0FFFh code protected

8K Devices:
11 = Code protection off
10 = 1F00h to 1FFFh code protected
01 = 1000h to 1FFFh code protected
00 = 0000h to 1FFFh code protected

bit 11: Reserved: Set to ‘1’ for normal operation
bit 10: Unimplemented: Read as ‘1’
bit 9: WRT: Flash Program Memory Write Enable
 1 = Unprotected program memory may be written to by EECON control

0 = Unprotected program memory may not be written to by EECON control
bit 8: CPD: Data EE Memory Code Protection
 1 = Code protection off

0 = Data EE memory code protected

bit 7: LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Reset Enable bit (1)

1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC1:FOSC0: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
DS39025D-page 3-174 2000 Microchip Technology Inc.

PIC16F8XX
FIGURE 3-2: CONFIGURATION WORD FOR PIC16F870/871/872

CP1 CP0 RESV - WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0 Register: CONFIG
Address 2007hbit13 bit0

bit 13-12:
bit 5-4: CP1:CP0: Flash Program Memory Code Protection bits (2)

11 = Code protection off
10 = not supported
01 = not supported
00 = 0000h to 07FFh code protected

bit 11: Reserved: Set to ‘1’ for normal operation
bit 10: Unimplemented: Read as ‘1’
bit 9: WRT: Flash Program Memory Write Enable
 1 = Unprotected program memory may be written to by EECON control

0 = Unprotected program memory may not be written to by EECON control
bit 8: CPD: Data EE Memory Code Protection
 1 = Code protection off

0 = Data EE memory code protected

bit 7: LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Reset Enable bit (1)

1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1-0: FOSC1:FOSC0: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
 2000 Microchip Technology Inc. DS39025D-page 3-175

PIC16F8XX
4.0 CODE PROTECTION
For PIC16F8XX devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a) Execute load configuration (with a ‘1’ in bit 13-4,
code protect).

b) Increment to configuration word location
(0x2007)

c) Execute command (000001)
d) Execute command (000111)

e) Execute ‘Begin Programming’ (001000)
f) Wait 12 ms
g) Execute command (000001)

h) Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F8XX, the EEPROM data memory should also be embedded in the hex file (see
Section 5.1).

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.
DS39025D-page 3-176 2000 Microchip Technology Inc.

PIC16F8XX
4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F8XX memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., 0x1FF for the PIC16F8XX. Any carry bits exceed-
ing 16-bits are neglected. Finally, the configuration
word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16F8XX devices is shown in Table 4-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations
• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.
 2000 Microchip Technology Inc. DS39025D-page 3-177

PIC16F8XX
TABLE 4-1: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank”V
alue

0x25E6 at 0
and max
address

PIC16F870 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F871 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F872 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F873 OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF 0x2BFF 0xF7CD

0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID 0x48EE 0xFAA3

0x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193

ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F874 OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF 0x2BFF 0xF7CD

0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID 0x48EE 0xFAA3

0x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193

ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F876 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD

0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

0x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

PIC16F877 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD

0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

0x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a to b inclusive]
SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.
 For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND
DS39025D-page 3-178 2000 Microchip Technology Inc.

PIC16F8XX
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 256 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions (unless otherwise stated)
Operating Temperature: 0°C ≤ TA ≤ +70°C
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V

Characteristics Sym Min Typ Max Units Conditions/Comments

General

VDD level for word operations, program
memory VDD 2.0 5.5 V

VDD level for word operations, data mem-
ory VDD 2.0 5.5 V

VDD level for bulk erase/write operations,
program and data memory VDD 4.5 5.5 V

High voltage on MCLR for
high-voltage programming entry VIHH VDD + 3.5 13.5 V

Voltage on MCLR for
low-voltage programming entry

VIH 4.5 5.5 V

MCLR rise time (VSS to VHH) for test
mode entry

tVHHR 1.0 µs

(RB6, RB7) input high level VIH1 0.8VDD V Schmitt Trigger input

(RB6, RB7) input low level VIL1 0.2VDD V Schmitt Trigger input

RB<7:4> setup time before MCLR↑
(test mode selection pattern setup time)

tset0 100 ns

RB<7:4> hold time after MCLR↑
(test mode selection pattern setup time)

thld0 5 µs

Serial Program/Verify

Data in setup time before clock↓ tset1 100 ns

Data in hold time after clock↓ thld1 100 ns

Data input not driven to next clock input
(delay required between command/data or
command/command)

tdly1 1.0 µs

Delay between clock↓ to clock↑ of next
command or data

tdly2 1.0 µs

Clock↑ to data out valid (during read data) tdly3 80 ns

Erase cycle time tera 2 5 ms

Programming cycle time tprog 2 5 ms
 2000 Microchip Technology Inc. DS39025D-page 3-179

PIC16F8XX
FIGURE 5-1: LOAD DATA COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)

MCLR
VIHH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tset1

thld1
tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

100ns min.

1µs min.

tdly21 2 3 4 5 6

0 1 0 0 X X

1 2 3 4 5 15 16

strt_bit stp_bit

100ns min.

}

thld0

} } }

MCLR
VIHH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

0 0 1 0 X X

1 2 3 4 5 15 16

100ns min.

} }

tdly3

RB7 = input RB7 = output
RB7

input

thld0

strt_bit stp_bit

MCLR
VIHH

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

100ns min.

} }

X 00

Next Command
DS39025D-page 3-180 2000 Microchip Technology Inc.

PIC16F8XX
FIGURE 5-4: LOAD DATA COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

FIGURE 5-5: READ DATA COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

FIGURE 5-6: INCREMENT ADDRESS COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

MCLR
VIH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tset1

thld1
tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

100ns min.

1µs min.

tdly21 2 3 4 5 6

0 1 0 0 X X

1 2 3 4 5 15 16

strt_bit stp_bit

100ns min.

}

thld0

} } }
RB3

MCLR
VIH

tset0

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

0 0 1 0 X X

1 2 3 4 5 15 16

100ns min.
} }

tdly3

RB7 = input RB7 = output
RB7

input

thld0

strt_bit stp_bit

RB3

MCLR
VIH

RB6
(CLOCK)

RB7
(DATA)

Reset

tdly1

1µs min.

Program/Verify Test Mode

tset1

thld1

1µs min.

tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

100ns min.

} }

X 00

Next Command

RB3
 2000 Microchip Technology Inc. DS39025D-page 3-181

PIC16F8XX
NOTES:
DS39025D-page 3-182 2000 Microchip Technology Inc.

SECTION 4
APPLICATION NOTES
IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) OF CALIBRATION PARAMETERS
USING A PICmicro® MICROCONTROLLER ...4-1
 2000 Microchip Technology Inc. DS30277C-page 4-i

DS30277C-page 4-ii 2000 Microchip Technology Inc.

AN656
In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters

Using a PICmicro® Microcontroller
INTRODUCTION

Many embedded control applications, where sensor
offsets, slopes and configuration information are mea-
sured and stored, require a calibration step. Tradition-
ally, potentiometers or Serial EEPROM devices are
used to set up and store this calibration information.
This application note will show how to construct a pro-
gramming jig that will receive calibration parameters
from the application mid-range PICmicro® microcon-
trollers (MCU) and program this information into the
application baseline PICmicro MCU using the In-Circuit
Serial Programming (ICSP) protocol. This method uses
the PIC16CXXX In-Circuit Serial Programming algo-
rithm of the 14-bit core microcontrollers.

PROGRAMMING FIXTURE

A programming fixture is needed to assist with the self
programming operation. This is typically a small re-
usable module that plugs into the application PCB
being calibrated. Only five pin connections are needed
and this programming fixture can draw its power from
the application PCB to simplify the connections.

FIGURE 1:

Author: John Day
Microchip Technology Inc.

PIC16CXXX
Sensor(s)

Application I/O

To Application Input(s)

RAX

RBX

MCLR/VPP

VDD

VSS

RB7

RB6

+5V

10k

Customer Application PCB

VPP

VDD

VSS

RB7

RB6

Calibration Programming Jig

+13V VPP
Generator

PIC16C58

+5V +5V

VDD

GND_ON
VPP_ON VSS

MCLR

RB7
RB6
RB5
RB4 RB3

RB2

RB1RC osc

Optional PC Connection

1k

Wait

Done
 2000 Microchip Technology Inc. DS00656B-page 4-1

AN656
Electrical Interface

There are a total of five electrical connections needed
between the application PIC16CXXX microcontroller
and the programming jig:

• MCLR/VPP - High voltage pin used to place appli-
cation PIC16CXXX into programming mode

• VDD - +5 volt power supply connection to the
application PIC16CXXX

• VSS - Ground power supply connection to the
application PIC16CXXX

• RB6 - PORTB, bit6 connection to application
PIC16CXXX used to clock programming data

• RB7 - PORTB, bit7 connection to application
PIC16CXXX used to send programming data

This programming jig is intended to grab power from
the application power supply through the VDD connec-
tion. The programming jig will require 100 mA of peak
current during programming. The application will need
to set RB6 and RB7 as inputs, which means external
devices cannot drive these lines. The calibration data
will be sent to the programming jig by the application
PIC16CXXX through RB6 and RB7. The programming
jig will later use these lines to clock the calibration data
into the application PIC16CXXX.

Programming Issues

The PIC16CXXX programming specification suggests
verification of program memory at both Maximum and
Minimum VDD for each device. This is done to ensure
proper programming margins and to detect (and reject)
any improperly programmed devices. All production
quality programmers vary VDD from VDDmin to VDDmax
after programming and verify the device under each of
these conditions.

Since both the application voltage and it’s tolerances
are known, it is not necessary to verify the PIC16CXXX
calibration parameters at the device VDDmax and
VDDmin. It is only necessary to verify at the application
power supply Max and Min voltages. This application
note shows the nominal (+5V) verification routine and
hardware. If the power supply is a regulated +5V, this
is adequate and no additional hardware or software is
needed. If the application power supply is not regulated
(such as a battery powered or poorly regulated system)
it is important to complete a VDDmin and VDDmax veri-
fication cycle following the +5V verification cycle. See
programming specifications for more details on VDD

verification procedures.

• PIC16C5X Programming Specifications -
DS30190

• PIC16C55X Programming Specifications -
DS30261

• PIC16C6X/7X/9XX Programming Specifications -
DS30228

• PIC16C84 Programming Specifications -
DS30189

The calibration programming and initial verification
MUST occur at +5V. If the application is intended to run
at lower (or higher voltages), a second verification pass
must be added where those voltages are applied to
VDD and the device is verified.

Note: The designer must consider environmental
conditions, voltage ranges, and aging
issues when determining VDD min/max
verification levels. Please refer to the pro-
gramming specification for the application
device.
DS00656B-page 4-2 2000 Microchip Technology Inc.

AN656
Communication Format (Application
Microcontroller to Programming Jig)

Unused program memory, in the application
PIC16CXXX, is left unprogrammed as all 1s; therefore
the unprogrammed program memory for the calibration
look-up table would contain 3FFF (hex). This is inter-
preted as an “ADDLW FF”. The application microcon-
troller simply needs one “RETLW FF” instruction at the
end of the space allocated in program memory for the
calibration parameter look-up table. When the applica-
tion microcontroller is powered up, it will receive a “FFh”
for each calibration parameter that is looked up; there-
fore, it can detect that it is uncalibrated and jump to the
calibration code.

Once the calibration constants are calculated by the
application PICmicro MCU, they need to be communi-
cated to the (PIC16C58A based) programming jig. This

is accomplished through the RB6 and RB7 lines. The
format is a simple synchronous clock and data format
as shown in Figure 2.

A pull-down on the clock line is used to hold it low. The
application microcontroller needs to send the high and
low bytes of the target start address of the calibration
constants to the calibration jig. Next, the data bytes are
sent followed by a checksum of the entire data transfer
as shown in Figure 1.

Once the data transfer is complete, the checksum is
verified by the programming jig and the data printed at
9600 baud, 8-bits, no parity, 1 stop bit through RB3. A
connection to this pin is optional. Next the programming
jig applies +13V, programs and verifies the application
PIC16CXXX calibration parameters.

FIGURE 2:

FIGURE 1:

RB6

RB7 CALbit7 CALbit6 CALbit5 CALbit4 CALbit3 CALbit2 CALbit1 CALbit0

AddrH AddrL Data 0 Data 1 Data N CKSUM
 2000 Microchip Technology Inc. DS00656B-page 4-3

AN656
LED Operation

When the programming jig is waiting for communication
from the application PICmicro MCU, both LEDs are
OFF. Once a valid data stream is received (with at least
one calibration byte and a correct checksum) the
WORK LED is lit while the calibration parameters are
printed through the optional RB3 port. Next, the DONE
LED is lit to indicate that these parameters are being
programmed and verified by the programming jig. Once
the programming is finished, the WORK LED is extin-
guished and the DONE LED remains lit. If any param-
eters fail programming, the DONE LED is extinguished;
therefore both LEDs would remain off.

FIGURE 3: ISP CALIBRATION JIG PROGRAMMER SCHEMATIC

T0CKI

VSS VDD

VCC VCC

VPP

VCC

VCC

VCC

VPP

VIN

VREF

VCC

VCC VCC
DS00656B-page 4-4 2000 Microchip Technology Inc.

AN656
 Code Protection

Selection of the code protection configuration bits on
PIC16CXXX microcontrollers prevents further pro-
gramming of the program memory array. This would
prevent writing self calibration parameters if the device
is code protected prior to calibration. There are two
ways to address this issue:

1. Do not code protect the device when program-
ming it with the programmer. Add additional
code (See the PIC16C6X/7X programming
Spec) to the ISPPRGM.ASM to program the code
protection bit after complete verification of the
calibration parameters

2. Only code protect 1/2 or 3/4 of the program
memory with the programmer. Place the calibra-
tion constants into the unprotected part of pro-
gram memory.

Software Routines

There are two source code files needed for this appli-
cation note:

1. ISPTEST.ASM (Appendix A) Contains the source
code for the application PIC16CXXX, sets up the cali-
bration look-up table and implements the communica-
tion protocol to the programming jig.

2. ISPPRGM.ASM (Appendix B) Source code for a
PIC16C58A to implement the programming jig. This
waits for and receives the calibration parameters from

the application PIC16CXXX, places it into program-
ming mode and programs/verifies each calibration
word.

CONCLUSION

Typically, calibration information about a system is
stored in EEPROM. For calibration data that does not
change over time, the In-circuit Serial Programming
capability of the PIC16CXXX devices provide a simple,
cost effective solution to an external EEPROM. This
method not only decreases the cost of a design, but
also reduces the complexity and possible failure points
of the application.

TABLE 1: PARTS LIST FOR PIC16CXXX ISP CALIBRATION JIG

Bill of Material

Item Quantity Reference Part

1 2 C1,C2 15 pF
2 1 C3 620 pF
3 1 C4 0.1 mF
4 2 C5,C6 220 mF
5 2 D1,D2 LED
6 1 E1 PIC16C58
7 1 E2 LM78S40
8 1 J1 CON5
9 1 L1 270 mH
10 2 Q1,Q2 2N2222
11 2 Q3,Q4 2N2907
12 5 R1,R2,R3,R4,R15 1k
13 4 R5,R6,R12,R14 10k
14 2 R7,R8 270
15 1 R9 180
16 1 R10 23.7k
17 1 R11 2.49k
18 1 R13 2.2k
19 1 Y1 4.0 MHz
 2000 Microchip Technology Inc. DS00656B-page 4-5

AN656
APPENDIX A:
MPASM 01.40.01 Intermediate ISPPRGM.ASM 3-31-1997 10:57:03 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Filename: ISPPRGM.ASM
 00002 ; **
 00003 ; * Author: John Day *
 00004 ; * Sr. Field Applications Engineer *
 00005 ; * Microchip Technology *
 00006 ; * Revision: 1.0 *
 00007 ; * Date August 25, 1995 *
 00008 ; * Part: PIC16C58 *
 00009 ; * Compiled using MPASM V1.40 *
 00010 ; **
 00011 ; * Include files: *
 00012 ; * P16C5X.ASM *
 00013 ; **
 00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
 00015 ; * WDT: OFF *
 00016 ; * CP: OFF *
 00017
 ;***
 00018 ; This program is intended to be used as a self programmer
 00019 ; to store calibration constants into a lookup table
 00020 ; within the main system processor. A 4 Mhz crystal
 00021 ; is needed and an optional 9600 baud seiral port will
 00022 ; display the parameters to be programmed.
 00023 ;
 ;***
 00024 ; * Program Memory: *
 00025 ; * Words - communication with test jig *
 00026 ; * 17 Words - calibration look-up table (16 bytes of data) *
 00027 ; * 13 Words - Test Code to generate Calibration Constants *
 00028 ; * RAM memory: *
 00029 ; * 64 Bytes - Store up to 64 bytes of calibration constant *
 00030 ; * 9 Bytes - Store 9 bytes of temp variables (reused) *
 00031 ;
 ;**
 00032
 00033 list p=16C58A
 00034 include <p16C5x.inc>
 00001 LIST
 00002 ; P16C5X.INC Standard Hdr File, Version 3.30 Microchip Technology, Inc.
 00224 LIST
0FFF 0FF9 00035 __CONFIG _CP_OFF&_WDT_OFF&_XT_OSC
 00036
 00037 ; ************************************
 00038 ; * Port A (RA0-RA4) bit definitions *
 00039 ; ************************************
 00040 ; No PORT A pins are used in this design
 00041
 00042 ; ************************************
 00043 ; * Port B (RB0-RB7) bit definitions *
 00044 ; ************************************
 00000006 00045 ISPCLOCK EQU 6 ; Clock line for ISP and parameter comm
 00000007 00046 ISPDATA EQU 7 ; Data line for ISP and parameter comm
 00000005 00047 VPPON EQU 5 ; Apply +13V VPP voltage to MCLR (test mode)
 00000004 00048 GNDON EQU 4 ; Apply +0V (gnd) voltage to MCLR (reset)
 00000003 00049 SEROUT EQU 3 ; Optional RS-232 TX output (needs 12V driver)
 00000002 00050 DONELED EQU 2 ; Turns on LED when done sucessfully program
 00000001 00051 WORKLED EQU 1 ; On during programming, off when done
 00052 ; RB0 is not used in this design
 00053
DS00656B-page 4-6 2000 Microchip Technology Inc.

AN656
 00054 ; ***
 00055 ; * RAM register definition: *
 00056 ; * 07h - 0Fh - used for internal counters, vars *
 00057 ; * 10h - 7Fh - 64 bytes for cal param storage *
 00058 ; ***
 00059 ; ***
 00060 ; *** The following VARS are used during ISP programming:
 00061 ; ***
 00000007 00062 HIADDR EQU 07h ; High address of CAL params to be stored
 00000008 00063 LOADDR EQU 08h ; Low address of CAL params to be stored
 00000007 00064 HIDATA EQU 07h ; High byte of data to be sent via ISP
 00000008 00065 LODATA EQU 08h ; Low byte of data to be sent via ISP
 00000009 00066 HIBYTE EQU 09h ; High byte of data received via ISP
 0000000A 00067 LOBYTE EQU 0Ah ; Low byte of data received via ISP
 0000000B 00068 PULSECNT EQU 0Bh ; Number of times PIC has been pulse programmed
 0000000C 00069 TEMPCOUNT EQU 0Ch ; TEMP var used in counters
 0000000D 00070 TEMP EQU 0Dh ; TEMP var used throughout program
 00071 ; ***
 00072 ; *** The following VARS are used to receive and store CAL params:
 00073 ; ***
 00000007 00074 COUNT EQU 07h ; Counter var used to receive cal params
 00000008 00075 TEMP1 EQU 08h ; TEMP var used for RS-232 comm
 00000009 00076 DATAREG EQU 09h ; Data register used for RS-232 comm
 0000000A 00077 CSUMTOTAL EQU 0Ah ; Running total of checksum (addr + data)
 0000000B 00078 TIMEHIGH EQU 0Bh ; Count how long CLOCK line is high
 0000000C 00079 TIMELOW EQU 0Ch ; Count how long CLOCK line is low
 0000000E 00080 ADDRPTR EQU 0Eh ; Pointer to next byte of CAL storage
 0000000F 00081 BYTECOUNT EQU 0Fh ; Number of CAL bytes received
 00082
 00083 ; *************************************
 00084 ; * Various constants used in program *
 00085 ; *************************************
 00000001 00086 DATISPOUT EQU b’00000001’ ; tris settings for ISP data out
 00000081 00087 DATISPIN EQU b’10000001’ ; tris settings for ISP data in
 00000006 00088 CMDISPCNT EQU 6 ; Number of bits for ISP command
 00000010 00089 STARTCALBYTE EQU 10h ; Address in RAM where CAL byte data stored
 00000007 00090 VFYYES EQU PA2 ; Flag bit enables verification (STATUS)
 00000006 00091 CMDISPINCRADDR EQU b’00000110’ ; ISP Pattern to increment address
 00000008 00092 CMDISPPGMSTART EQU b’00001000’ ; ISP Pattern to start programming
 0000000E 00093 CMDISPPGMEND EQU b’00001110’ ; ISP Pattern to end programming
 00000002 00094 CMDISPLOAD EQU b’00000010’ ; ISP Pattern to load data for program
 00000004 00095 CMDISPREAD EQU b’00000100’ ; ISP Pattern to read data for verify
 00000034 00096 UPPER6BITS EQU 034h ; Upper 6 bits for retlw instruction
 00097
 00098 ; *************************************
 00099 ; * delaybit macro *
 00100 ; * Delays for 104 uS (at 4 Mhz clock)*
 00101 ; * for 9600 baud communications *
 00102 ; * RAM used: COUNT *
 00103 ; *************************************
 00104 delaybit macro
 00105 local dlylabels
 00106 ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 00107 ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
 00108 movlw .31 ; place 31 decimal literal into count
 00109 movwf COUNT ; Initialize COUNT with loop count
 00110 nop ; Add one cycle delay
 00111 dlylabels
 00112 decfsz COUNT,F ; Decrement count until done
 00113 goto dlylabels ; Not done delaying - go back!
 00114 ENDM ; Done with Macro
 00115
 00116 ; **
 00117 ; * addrtofsr macro *
 00118 ; * Converts logical, continuous address 10h-4Fh *
 00119 ; * to FSR address as follows for access to (4) *
 2000 Microchip Technology Inc. DS00656B-page 4-7

AN656
 00120 ; * banks of file registers in PIC16C58: *
 00121 ; * Logical Address FSR Value *
 00122 ; * 10h-1Fh 10h-1Fh *
 00123 ; * 20h-2Fh 30h-3Fh *
 00124 ; * 30h-3Fh 50h-5Fh *
 00125 ; * 40h-4Fh 70h-7Fh *
 00126 ; * Variable Passed: Logical Address *
 00127 ; * RAM used: FSR *
 00128 ; * W *
 00129 ; **
 00130 addrtofsr macro TESTADDR
 00131 movlw STARTCALBYTE ; Place base address into W
 00132 subwf TESTADDR,w ; Offset by STARTCALBYTE
 00133 movwf FSR ; Place into FSR
 00134 btfsc FSR,5 ; Shift bits 4,5 to 5,6
 00135 bsf FSR,6
 00136 bcf FSR,5
 00137 btfsc FSR,4
 00138 bsf FSR,5
 00139 bsf FSR,4
 00140 endm
 00141
 00142
 00143 ; **************************************
 00144 ; * The PC starts at the END of memory *
 00145 ; **************************************
07FF 00146 ORG 7FFh
Message[306]: Crossing page boundary -- ensure page bits are set.
07FF 0A00 00147 goto start
 00148
 00149 ; **************************************
 00150 ; * Start of CAL param read routine *
 00151 ; **************************************
0000 00152 ORG 0h
0000 00153 start
0000 0C0A 00154 movlw b’00001010’ ; Serial OFF, LEDS OFF, VPP OFF
0001 0026 00155 movwf PORTB ; Place “0” into port b latch register
0002 0CC1 00156 movlw b’11000001’ ; RB7;:RB6, RB0 set to inputs
0003 0006 00157 tris PORTB ; Move to tris registers
0004 0040 00158 clrw ; Place 0 into W
0005 0065 00159 clrf PORTA ; Place all ZERO into latch
0006 0005 00160 tris PORTA ; Make all pins outputs to be safe..
0007 0586 00161 bsf PORTB,GNDON ; TEST ONLY-RESET PIC-NOT NEEDED IN REAL DESIGN!
0008 00162 clearram
0008 0C10 00163 movlw 010h ; Place start of buffer into W
0009 0027 00164 movwf COUNT ; Use count for RAM pointer
000A 00165 loopclrram
 00166 addrtofsr COUNT ; Set up FSR
000A 0C10 M movlw STARTCALBYTE ; Place base address into W
000B 0087 M subwf COUNT,w ; Offset by STARTCALBYTE
000C 0024 M movwf FSR ; Place into FSR
000D 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
000E 05C4 M bsf FSR,6
000F 04A4 M bcf FSR,5
0010 0684 M btfsc FSR,4
0011 05A4 M bsf FSR,5
0012 0584 M bsf FSR,4
0013 0060 00167 clrf INDF ; Clear buffer value
0014 02A7 00168 incf COUNT,F ; Move to next reg
0015 0C50 00169 movlw 050h ; Move end of buffer addr to W
0016 0087 00170 subwf COUNT,W ; Check if at last MEM
0017 0743 00171 btfss STATUS,Z ; Skip when at end of counter
0018 0A0A 00172 goto loopclrram ; go back to next location
0019 0486 00173 bcf PORTB,GNDON ; TEST ONLY-LET IT GO-NOT NEEDED IN REAL DESIGN!
001A 00174 calget
001A 006A 00175 clrf CSUMTOTAL ; Clear checksum total byte
DS00656B-page 4-8 2000 Microchip Technology Inc.

AN656
001B 0069 00176 clrf DATAREG ; Clear out data receive register
001C 0C10 00177 movlw STARTCALBYTE ; Place RAM start address of first cal byte
001D 002E 00178 movwf ADDRPTR ; Place this into ADDRPTR
001E 00179 waitclockpulse
001E 07C6 00180 btfss PORTB,ISPCLOCK ; Wait for CLOCK high pulse - skip when high
001F 0A1E 00181 goto waitclockpulse ; CLOCK is low - go back and wait!
0020 00182 loopcal
0020 0C08 00183 movlw .8 ; Place 8 into W (8 bits/byte)
0021 0027 00184 movwf COUNT ; set up counter register to count bits
0022 00185 loopsendcal
0022 006B 00186 clrf TIMEHIGH ; Clear timeout counter for high pulse
0023 006C 00187 clrf TIMELOW ; Clear timeout counter for low pulse
0024 00188 waitclkhi
0024 06C6 00189 btfsc PORTB,ISPCLOCK ; Wait for CLOCK high - skip if it is low
0025 0A29 00190 goto waitclklo ; Jump to wait for CLOCK low state
0026 02EB 00191 decfsz TIMEHIGH,F ; Decrement counter - skip if timeout
0027 0A24 00192 goto waitclkhi ; Jump back and wait for CLOCK high again
0028 0A47 00193 goto timeout ; Timed out waiting for high - check data!
0029 00194 waitclklo
0029 07C6 00195 btfss PORTB,ISPCLOCK ; Wait for CLOCK low - skip if it is high
002A 0A2E 00196 goto clockok ; Got a high to low pulse - jump to clockok
002B 02EC 00197 decfsz TIMELOW,F ; Decrement counter - skip if timeout
002C 0A29 00198 goto waitclklo ; Jump back and wait for CLOCK low again
002D 0A47 00199 goto timeout ; Timed out waiting for low - check data!
002E 00200 clockok
002E 0C08 00201 movlw .8 ; Place initial count value into W
002F 0087 00202 subwf COUNT,W ; Subtract from count, place into W
0030 0743 00203 btfss STATUS,Z ; Skip if we are at count 8 (first value)
0031 0A34 00204 goto skipcsumadd ; Skip checksum add if any other count value
0032 0209 00205 movf DATAREG,W ; Place last byte received into W
0033 01EA 00206 addwf CSUMTOTAL,F ; Add to checksum
0034 00207 skipcsumadd
0034 0503 00208 bsf STATUS,C ; Assume data bit is high
0035 07E6 00209 btfss PORTB,ISPDATA ; Skip if the data bit was high
0036 0403 00210 bcf STATUS,C ; Set data bit to low
0037 0369 00211 rlf DATAREG,F ; Rotate next bit into DATAREG
0038 02E7 00212 decfsz COUNT,F ; Skip after 8 bits
0039 0A22 00213 goto loopsendcal ; Jump back and send next bit
 00214 addrtofsr ADDRPTR ; Convert pointer address to FSR
003A 0C10 M movlw STARTCALBYTE ; Place base address into W
003B 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
003C 0024 M movwf FSR ; Place into FSR
003D 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
003E 05C4 M bsf FSR,6
003F 04A4 M bcf FSR,5
0040 0684 M btfsc FSR,4
0041 05A4 M bsf FSR,5
0042 0584 M bsf FSR,4
0043 0209 00215 movf DATAREG,W ; Place received byte into W
0044 0020 00216 movwf INDF ; Move recv’d byte into CAL buffer location
0045 02AE 00217 incf ADDRPTR,F ; Move to the next cal byte
0046 0A20 00218 goto loopcal ; Go back for next byte
0047 00219 timeout
0047 0C14 00220 movlw STARTCALBYTE+4 ; check if we received (4) params
0048 008E 00221 subwf ADDRPTR,W ; Move current address pointer to W
0049 0703 00222 btfss STATUS,C ; Skip if we have at least (4)
004A 0A93 00223 goto sendnoise ; not enough params - print and RESET!
004B 0200 00224 movf INDF,W ; Move received checksum into W
004C 00AA 00225 subwf CSUMTOTAL,F ; Subtract received Checksum from calc’d checksum
004D 0743 00226 btfss STATUS,Z ; Skip if CSUM OK
004E 0A9F 00227 goto sendcsumbad ; Checksum bad - print and RESET!
004F 00228 csumok
004F 0426 00229 bcf PORTB,WORKLED ; Turn on WORK LED
0050 0C10 00230 movlw STARTCALBYTE ; Place start pointer into W
0051 008E 00231 subwf ADDRPTR,W ; Subtract from current address
0052 002F 00232 movwf BYTECOUNT ; Place into number of bytes into BYTECOUNT
 2000 Microchip Technology Inc. DS00656B-page 4-9

AN656
0053 002B 00233 movwf TIMEHIGH ; TEMP store into timehigh reg
0054 0C10 00234 movlw STARTCALBYTE ; Place start address into W
0055 002E 00235 movwf ADDRPTR ; Set up address pointer
0056 00236 loopprintnums
 00237 addrtofsr ADDRPTR ; Set up FSR
0056 0C10 M movlw STARTCALBYTE ; Place base address into W
0057 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
0058 0024 M movwf FSR ; Place into FSR
0059 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
005A 05C4 M bsf FSR,6
005B 04A4 M bcf FSR,5
005C 0684 M btfsc FSR,4
005D 05A4 M bsf FSR,5
005E 0584 M bsf FSR,4
005F 0380 00238 swapf INDF,W ; Place received char into W
0060 0E0F 00239 andlw 0Fh ; Strip off upper digits
0061 002D 00240 movwf TEMP ; Place into TEMP
0062 0C0A 00241 movlw .10 ; Place .10 into W
0063 00AD 00242 subwf TEMP,F ; Subtract 10 from TEMP
0064 0603 00243 btfsc STATUS,C ; Skip if TEMP is less than 9
0065 0A6D 00244 goto printhiletter ; Greater than 9 - print letter instead
0066 00245 printhinumber
0066 0380 00246 swapf INDF,W ; Place received char into W
0067 0E0F 00247 andlw 0Fh ; Strip off upper digits
0068 002D 00248 movwf TEMP ; Place into TEMP
0069 0C30 00249 movlw ‘0’ ; Place ASCII ‘0’ into W
006A 01CD 00250 addwf TEMP,w ; Add to TEMP, place into W
006B 09AE 00251 call putchar ; Send out char
006C 0A73 00252 goto printlo ; Jump to print next char
006D 00253 printhiletter
006D 0380 00254 swapf INDF,W ; Place received char into W
006E 0E0F 00255 andlw 0Fh ; Strip off upper digits
006F 002D 00256 movwf TEMP ; Place into TEMP
0070 0C37 00257 movlw ‘A’-.10 ; Place ASCII ‘A’ into W
0071 01CD 00258 addwf TEMP,w ; Add to TEMP, place into W
0072 09AE 00259 call putchar ; send out char
0073 00260 printlo
0073 0200 00261 movf INDF,W ; Place received char into W
0074 0E0F 00262 andlw 0Fh ; Strip off upper digits
0075 002D 00263 movwf TEMP ; Place into TEMP
0076 0C0A 00264 movlw .10 ; Place .10 into W
0077 00AD 00265 subwf TEMP,F ; Subtract 10 from TEMP
0078 0603 00266 btfsc STATUS,C ; Skip if TEMP is less than 9
0079 0A81 00267 goto printloletter ; Greater than 9 - print letter instead
007A 00268 printlonumber
007A 0200 00269 movf INDF,W ; Place received char into W
007B 0E0F 00270 andlw 0Fh ; Strip off upper digits
007C 002D 00271 movwf TEMP ; Place into TEMP
007D 0C30 00272 movlw ‘0’ ; Place ASCII ‘0’ into W
007E 01CD 00273 addwf TEMP,w ; Add to TEMP, place into W
007F 09AE 00274 call putchar ; send out char
0080 0A87 00275 goto printnext ; jump to print next char
0081 00276 printloletter
0081 0200 00277 movf INDF,W ; Place received char into W
0082 0E0F 00278 andlw 0Fh ; Strip off upper digits
0083 002D 00279 movwf TEMP ; Place into TEMP
0084 0C37 00280 movlw ‘A’-.10 ; Place ASCII ‘A’ into W
0085 01CD 00281 addwf TEMP,w ; Add to TEMP, place into W
0086 09AE 00282 call putchar ; send out char
0087 00283 printnext
0087 0C7C 00284 movlw ‘|’ ; Place ASCII ‘|’ into W
0088 09AE 00285 call putchar ; Send out character
0089 028E 00286 incf ADDRPTR,W ; Go to next buffer value
008A 0E0F 00287 andlw 0Fh ; And with F

008B 0643 00288 btfsc STATUS,Z ; Skip if this is NOT multiple of 16
DS00656B-page 4-10 2000 Microchip Technology Inc.

AN656
008C 09A9 00289 call printcrlf ; Print CR and LF every 16 chars
008D 02AE 00290 incf ADDRPTR,F ; go to next address
008E 02EF 00291 decfsz BYTECOUNT,F ; Skip after last byte
008F 0A56 00292 goto loopprintnums ; Go back and print next char
0090 09A9 00293 call printcrlf ; Print CR and LF
0091 05A3 00294 bsf STATUS,PA0 ; Set page bit to page 1
Message[306]: Crossing page boundary -- ensure page bits are set.
0092 0A6B 00295 goto programpartisp ; Go to program part through ISP
0093 00296 sendnoise
0093 0C4E 00297 movlw ‘N’ ; Place ‘N’ into W
0094 09AE 00298 call putchar ; Send char in W to terminal
0095 0C4F 00299 movlw ‘O’ ; Place ‘O’ into W
0096 09AE 00300 call putchar ; Send char in W to terminal
0097 0C49 00301 movlw ‘I’ ; Place ‘I’ into W
0098 09AE 00302 call putchar ; Send char in W to terminal
0099 0C53 00303 movlw ‘S’ ; Place ‘S’ into W
009A 09AE 00304 call putchar ; Send char in W to terminal
009B 0C45 00305 movlw ‘E’ ; Place ‘E’ into W
009C 09AE 00306 call putchar ; Send char in W to terminal
009D 09A9 00307 call printcrlf ; Print CR and LF
009E 0A1A 00308 goto calget ; RESET!
009F 00309 sendcsumbad
009F 0C43 00310 movlw ‘C’ ; Place ‘C’ into W
00A0 09AE 00311 call putchar ; Send char in W to terminal
00A1 0C53 00312 movlw ‘S’ ; Place ‘S’ into W
00A2 09AE 00313 call putchar ; Send char in W to terminal
00A3 0C55 00314 movlw ‘U’ ; Place ‘U’ into W
00A4 09AE 00315 call putchar ; Send char in W to terminal
00A5 0C4D 00316 movlw ‘M’ ; Place ‘M’ into W
00A6 09AE 00317 call putchar ; Send char in W to terminal
00A7 09A9 00318 call printcrlf ; Print CR and LF
00A8 0A1A 00319 goto calget ; RESET!
 00320
 00321 ; **
 00322 ; * printcrlf *
 00323 ; * Sends char .13 (Carrage Return) and *
 00324 ; * char .10 (Line Feed) to RS-232 port *
 00325 ; * by calling putchar. *
 00326 ; * RAM used: W *
 00327 ; **
00A9 00328 printcrlf
00A9 0C0D 00329 movlw .13 ; Value for CR placed into W
00AA 09AE 00330 call putchar ; Send char in W to terminal
00AB 0C0A 00331 movlw .10 ; Value for LF placed into W
00AC 09AE 00332 call putchar ; Send char in W to terminal
00AD 0800 00333 retlw 0 ; Done - return!
 00334
 00335 ; **
 00336 ; * putchar *
 00337 ; * Print out the character stored in W *
 00338 ; * by toggling the data to the RS-232 *
 00339 ; * output pin in software. *
 00340 ; * RAM used: W,DATAREG,TEMP1 *
 00341 ; **
00AE 00342 putchar
00AE 0029 00343 movwf DATAREG ; Place character into DATAREG
00AF 0C09 00344 movlw 09h ; Place total number of bits into W
00B0 0028 00345 movwf TEMP1 ; Init TEMP1 for bit counter
00B1 0403 00346 bcf STATUS,C ; Set carry to send start bit
00B2 0AB4 00347 goto putloop1 ; Send out start bit
00B3 00348 putloop
00B3 0329 00349 rrf DATAREG,F ; Place next bit into carry
00B4 00350 putloop1
00B4 0703 00351 btfss STATUS,C ; Skip if carry was set
00B5 0466 00352 bcf PORTB,SEROUT ; Clear RS-232 serial output bit
00B6 0603 00353 btfsc STATUS,C ; Skip if carry was clear
 2000 Microchip Technology Inc. DS00656B-page 4-11

AN656
00B7 0566 00354 bsf PORTB,SEROUT ; Set RS-232 serial output bit
 00355 delaybit ; Delay for one bit time
 0000 M local dlylabels
 M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00B8 0C1F M movlw .31 ; place 31 decimal literal into count
00B9 0027 M movwf COUNT ; Initialize COUNT with loop count
00BA 0000 M nop ; Add one cycle delay
00BB M dlylabels
00BB 02E7 M decfsz COUNT,F ; Decrement count until done
00BC 0ABB M goto dlylabels ; Not done delaying - go back!
00BD 02E8 00356 decfsz TEMP1,F ; Decrement bit counter, skip when done!
00BE 0AB3 00357 goto putloop ; Jump back and send next bit
00BF 0566 00358 bsf PORTB,SEROUT ; Send out stop bit
 00359 delaybit ; delay for stop bit
 0000 M local dlylabels
 M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00C0 0C1F M movlw .31 ; place 31 decimal literal into count
00C1 0027 M movwf COUNT ; Initialize COUNT with loop count
00C2 0000 M nop ; Add one cycle delay
00C3 M dlylabels
00C3 02E7 M decfsz COUNT,F ; Decrement count until done
00C4 0AC3 M goto dlylabels ; Not done delaying - go back!
00C5 0800 00360 retlw 0 ; Done - RETURN
 00361
 00362 ; ***
 00363 ; * ISP routines from PICSTART-16C *
 00364 ; * Converted from PIC17C42 to PIC16C5X code by John Day *
 00365 ; * Originially written by Jim Pepping *
 00366 ; ***
0200 00367 ORG 200 ; ISP routines stored on page 1
 00368
 00369 ; ***
 00370 ; * poweroffisp *
 00371 ; * Power off application PIC - turn off VPP and reset device after *
 00372 ; * programming pass is complete *
 00373 ; ***
0200 00374 poweroffisp
0200 04A6 00375 bcf PORTB,VPPON ; Turn off VPP 13 volts
0201 0586 00376 bsf PORTB,GNDON ; Apply 0 V to MCLR to reset PIC
0202 0CC1 00377 movlw b’11000001’ ; RB6,7 set to inputs
0203 0006 00378 tris PORTB ; Move to tris registers
0204 0486 00379 bcf PORTB,GNDON ; Allow MCLR to go back to 5 volts, deassert reset
0205 0526 00380 bsf PORTB,WORKLED ; Turn off WORK LED
0206 0800 00381 retlw 0 ; Done so return!
 00382
 00383 ; ***
 00384 ; * testmodeisp *
 00385 ; * Apply VPP voltage to place application PIC into test mode. *
 00386 ; * this enables ISP programming to proceed *
 00387 ; * RAM used: TEMP *
 00388 ; ***
0207 00389 testmodeisp
0207 0C08 00390 movlw b’00001000’ ; Serial OFF, LEDS OFF, VPP OFF
0208 0026 00391 movwf PORTB ; Place “0” into port b latch register
0209 04A6 00392 bcf PORTB,VPPON ; Turn off VPP just in case!
020A 0586 00393 bsf PORTB,GNDON ; Apply 0 volts to MCLR
020B 0C01 00394 movlw b’00000001’ ; RB6,7 set to outputs
020C 0006 00395 tris PORTB ; Move to tris registers
020D 0206 00396 movf PORTB,W ; Place PORT B state into W
020E 002D 00397 movwf TEMP ; Move state to TEMP
020F 048D 00398 bcf TEMP,4 ; Turn off MCLR GND
0210 05AD 00399 bsf TEMP,5 ; Turn on VPP voltage
0211 020D 00400 movf TEMP,W ; Place TEMP into W
0212 0026 00401 movwf PORTB ; Turn OFF GND and ON VPP
DS00656B-page 4-12 2000 Microchip Technology Inc.

AN656
0213 0546 00402 bsf PORTB,DONELED ; Turn ON GREEN LED
0214 0800 00403 retlw 0 ; Done so return!
 00404
 00405 ; ***
 00406 ; * p16cispout *
 00407 ; * Send 14-bit data word to application PIC for writing this data *
 00408 ; * to it’s program memory. The data to be sent is stored in both *
 00409 ; * HIBYTE (6 MSBs only) and LOBYTE. *
 00410 ; * RAM used: TEMP, W, HIBYTE (inputs), LOBYTE (inputs) *
 00411 ; ***
0215 00412 P16cispout
0215 0C0E 00413 movlw .14 ; Place 14 into W for bit counter
0216 002D 00414 movwf TEMP ; Use TEMP as bit counter
0217 04C6 00415 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0218 04E6 00416 bcf PORTB,ISPDATA ; Clear DATA line
0219 0C01 00417 movlw DATISPOUT ; Place tris value for data output
021A 0006 00418 tris PORTB ; Set tris latch as data output
021B 04E6 00419 bcf PORTB,ISPDATA ; Send a start bit (0)
021C 05C6 00420 bsf PORTB,ISPCLOCK ; Set CLOCK output
021D 04C6 00421 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock start bit)
021E 00422 P16cispoutloop
021E 0403 00423 bcf STATUS,C ; Clear carry bit to start clean
021F 04E6 00424 bcf PORTB,ISPDATA ; Clear DATA bit to start (assume 0)
0220 0329 00425 rrf HIBYTE,F ; Rotate HIBYTE output
0221 032A 00426 rrf LOBYTE,F ; Rotate LOBYTE output
0222 0603 00427 btfsc STATUS,C ; Skip if data bit is zero
0223 05E6 00428 bsf PORTB,ISPDATA ; Set DATA line to send a one
0224 05C6 00429 bsf PORTB,ISPCLOCK ; Set CLOCK output
0225 04C6 00430 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock bit)
0226 02ED 00431 decfsz TEMP,F ; Decrement bit counter, skip when done
0227 0A1E 00432 goto P16cispoutloop ; Jump back and send next bit
0228 04E6 00433 bcf PORTB,ISPDATA ; Send a stop bit (0)
0229 05C6 00434 bsf PORTB,ISPCLOCK ; Set CLOCK output
022A 04C6 00435 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock stop bit)
022B 0800 00436 retlw 0 ; Done so return!
 00437
 00438 ; ***
 00439 ; * p16cispin *
 00440 ; * Receive 14-bit data word from application PIC for reading this *
 00441 ; * data from it’s program memory. The data received is stored in *
 00442 ; * both HIBYTE (6 MSBs only) and LOBYTE. *
 00443 ; * RAM used: TEMP, W, HIBYTE (output), LOBYTE (output) *
 00444 ; ***
022C 00445 P16cispin
022C 0C0E 00446 movlw .14 ; Place 14 data bit count value into W
022D 002D 00447 movwf TEMP ; Init TEMP and use for bit counter
022E 0069 00448 clrf HIBYTE ; Clear recieved HIBYTE register
022F 006A 00449 clrf LOBYTE ; Clear recieved LOBYTE register
0230 0403 00450 bcf STATUS,C ; Clear carry bit to start clean
0231 04C6 00451 bcf PORTB,ISPCLOCK ; Clear CLOCK output
0232 04E6 00452 bcf PORTB,ISPDATA ; Clear DATA output
0233 0C81 00453 movlw DATISPIN ; Place tris value for data input into W
0234 0006 00454 tris PORTB ; Set up tris latch for data input
0235 05C6 00455 bsf PORTB,ISPCLOCK ; Send a single clock to start things going
0236 04C6 00456 bcf PORTB,ISPCLOCK ; Clear CLOCK to start receive
0237 00457 P16cispinloop
0237 05C6 00458 bsf PORTB,ISPCLOCK ; Set CLOCK bit
0238 0000 00459 nop ; Wait one cycle
0239 0403 00460 bcf STATUS,C ; Clear carry bit, assume 0 read
023A 06E6 00461 btfsc PORTB,ISPDATA ; Check the data, skip if it was zero
023B 0503 00462 bsf STATUS,C ; Set carry bit if data was one
023C 0329 00463 rrf HIBYTE,F ; Move recevied bit into HIBYTE
023D 032A 00464 rrf LOBYTE,F ; Update LOBYTE
023E 04C6 00465 bcf PORTB,ISPCLOCK ; Clear CLOCK line
023F 0000 00466 nop ; Wait one cycle
0240 0000 00467 nop ; Wait one cycle
 2000 Microchip Technology Inc. DS00656B-page 4-13

AN656
0241 02ED 00468 decfsz TEMP,F ; Decrement bit counter, skip when zero
0242 0A37 00469 goto P16cispinloop ; Jump back and receive next bit
0243 05C6 00470 bsf PORTB,ISPCLOCK ; Clock a stop bit (0)
0244 0000 00471 nop ; Wait one cycle
0245 04C6 00472 bcf PORTB,ISPCLOCK ; Clear CLOCK to send bit
0246 0000 00473 nop ; Wait one cycle
0247 0403 00474 bcf STATUS,C ; Clear carry bit
0248 0329 00475 rrf HIBYTE,F ; Update HIBYTE with the data
0249 032A 00476 rrf LOBYTE,F ; Update LOBYTE
024A 0403 00477 bcf STATUS,C ; Clear carry bit
024B 0329 00478 rrf HIBYTE,F ; Update HIBYTE with the data
024C 032A 00479 rrf LOBYTE,F ; Update LOBYTE with the data
024D 04C6 00480 bcf PORTB,ISPCLOCK ; Clear CLOCK line
024E 04E6 00481 bcf PORTB,ISPDATA ; Clear DATA line
024F 0C01 00482 movlw DATISPOUT ; Place tris value for data output into W
0250 0006 00483 tris PORTB ; Set tris to data output
0251 0800 00484 retlw 0 ; Done so RETURN!
 00485
 00486 ; ***
 00487 ; * commandisp *
 00488 ; * Send 6-bit ISP command to application PIC. The command is sent *
 00489 ; * in the W register and later stored in LOBYTE for shifting. *
 00490 ; * RAM used: LOBYTE, W, TEMP *
 00491 ; ***
0252 00492 commandisp
0252 002A 00493 movwf LOBYTE ; Place command into LOBYTE
0253 0C06 00494 movlw CMDISPCNT ; Place number of command bits into W
0254 002D 00495 movwf TEMP ; Use TEMP as command bit counter
0255 04E6 00496 bcf PORTB,ISPDATA ; Clear DATA line
0256 04C6 00497 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0257 0C01 00498 movlw DATISPOUT ; Place tris value for data output into W
0258 0006 00499 tris PORTB ; Set tris to data output
0259 00500 P16cispcmmdoutloop
0259 0403 00501 bcf STATUS,C ; Clear carry bit to start clean
025A 04E6 00502 bcf PORTB,ISPDATA ; Clear the DATA line to start
025B 032A 00503 rrf LOBYTE,F ; Update carry with next CMD bit to send
025C 0603 00504 btfsc STATUS,C ; Skip if bit is supposed to be 0
025D 05E6 00505 bsf PORTB,ISPDATA ; Command bit was a one - set DATA to one
025E 05C6 00506 bsf PORTB,ISPCLOCK ; Set CLOCK line to clock the data
025F 0000 00507 nop ; Wait one cycle
0260 04C6 00508 bcf PORTB,ISPCLOCK ; Clear CLOCK line to clock data
0261 02ED 00509 decfsz TEMP,F ; Decement bit counter TEMP, skip when done
0262 0A59 00510 goto P16cispcmmdoutloop ; Jump back and send next cmd bit
0263 0000 00511 nop ; Wait one cycle
0264 04E6 00512 bcf PORTB,ISPDATA ; Clear DATA line
0265 04C6 00513 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0266 0C81 00514 movlw DATISPIN ; Place tris value for data input into W
0267 0006 00515 tris PORTB ; set as input to avoid any contention
0268 0000 00516 nop ; Wait one cycle
0269 0000 00517 nop ; Wait one cycle
026A 0800 00518 retlw 0 ; Done - return!
 00519
 00520 ; **
 00521 ; * programpartisp *
 00522 ; * Main ISP programming loop. Reads data starting at STARTCALBYTE *
 00523 ; * and calls programming subroutines to program and verify this *
 00524 ; * data into the application PIC. *
 00525 ; * RAM used: LOADDR, HIADDR, LODATA, HIDATA, FSR, LOBYTE, HIBYTE*
 00526 ; **
026B 00527 programpartisp
026B 0907 00528 call testmodeisp ; Place PIC into test/program mode
026C 0064 00529 clrf FSR ; Point to bank 0
026D 0210 00530 movf STARTCALBYTE,W ; Upper order address of data to be stored into W
026E 0027 00531 movwf HIADDR ; place into counter
026F 0211 00532 movf STARTCALBYTE+1,W ; Lower order address byte of data to be stored
0270 0028 00533 movwf LOADDR ; place into counter
DS00656B-page 4-14 2000 Microchip Technology Inc.

AN656
0271 00E8 00534 decf LOADDR,F ; Subtract one from loop constant
0272 02A7 00535 incf HIADDR,F ; Add one for loop constant
0273 00536 programsetptr
0273 0C06 00537 movlw CMDISPINCRADDR ; Increment address command load into W
0274 0952 00538 call commandisp ; Send command to PIC
0275 02E8 00539 decfsz LOADDR,F ; Decrement lower address
0276 0A73 00540 goto programsetptr ; Go back again
0277 02E7 00541 decfsz HIADDR,F ; Decrement high address
0278 0A73 00542 goto programsetptr ; Go back again
0279 0C03 00543 movlw .3 ; Place start pointer into W, offset address
027A 008B 00544 subwf TIMEHIGH,W ; Restore byte count into W
027B 002F 00545 movwf BYTECOUNT ; Place into byte counter
027C 0C12 00546 movlw STARTCALBYTE+2 ; Place start of REAL DATA address into W
027D 002E 00547 movwf ADDRPTR ; Update pointer
027E 00548 programisploop
027E 0C34 00549 movlw UPPER6BITS ; retlw instruction opcode placed into W
027F 0027 00550 movwf HIDATA ; Set up upper bits of program word
 00551 addrtofsr ADDRPTR ; Set up FSR to point to next value
0280 0C10 M movlw STARTCALBYTE ; Place base address into W
0281 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
0282 0024 M movwf FSR ; Place into FSR
0283 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
0284 05C4 M bsf FSR,6
0285 04A4 M bcf FSR,5
0286 0684 M btfsc FSR,4
0287 05A4 M bsf FSR,5
0288 0584 M bsf FSR,4
0289 0200 00552 movf INDF,W ; Place next cal param into W
028A 0028 00553 movwf LODATA ; Move it out to LODATA
028B 0208 00554 movf LODATA,W ; Place LODATA into LOBYTE
028C 002A 00555 movwf LOBYTE ;
028D 0207 00556 movf HIDATA,W ; Place HIDATA into HIBYTE
028E 0029 00557 movwf HIBYTE ;
028F 006B 00558 clrf PULSECNT ; Clear pulse counter
0290 00559 pgmispcntloop
0290 05E3 00560 bsf STATUS,VFYYES ; Set verify flag
0291 09B1 00561 call pgmvfyisp ; Program and verify this byte
0292 02AB 00562 incf PULSECNT,F ; Increment pulse counter
0293 0C19 00563 movlw .25 ; Place 25 count into W
0294 008B 00564 subwf PULSECNT,w ; Subtract pulse count from 25
0295 0643 00565 btfsc STATUS,Z ; Skip if NOT 25 pulse counts
0296 0AA9 00566 goto pgmispfail ; Jump to program failed - only try 25 times
0297 0209 00567 movf HIBYTE,w ; Subtract programmed and read data
0298 0087 00568 subwf HIDATA,w
0299 0743 00569 btfss STATUS,Z ; Skip if programmed is OK
029A 0A90 00570 goto pgmispcntloop ; Miscompare - program it again!
029B 020A 00571 movf LOBYTE,w ; Subtract programmed and read data
029C 0088 00572 subwf LODATA,w
029D 0743 00573 btfss STATUS,Z ; Skip if programmed is OK
029E 0A90 00574 goto pgmispcntloop ; Miscompare - program it again!
029F 0040 00575 clrw ; Clear W reg
02A0 01CB 00576 addwf PULSECNT,W ; now do 3 times overprogramming pulses
02A1 01CB 00577 addwf PULSECNT,W
02A2 01CB 00578 addwf PULSECNT,W
02A3 002B 00579 movwf PULSECNT ; Add 3X pulsecount to pulsecount
02A4 00580 pgmisp3X
02A4 04E3 00581 bcf STATUS,VFYYES ; Clear verify flag
02A5 09B1 00582 call pgmvfyisp ; Program this byte
02A6 02EB 00583 decfsz PULSECNT,F ; Decrement pulse counter, skip when done
02A7 0AA4 00584 goto pgmisp3X ; Loop back and program again!
02A8 0AAA 00585 goto prgnextbyte ; Done - jump to program next byte!
02A9 00586 pgmispfail
02A9 0446 00587 bcf PORTB,DONELED ; Failure - clear green LED!
02AA 00588 prgnextbyte
02AA 0C06 00589 movlw CMDISPINCRADDR ; Increiment address command load into W
02AB 0952 00590 call commandisp ; Send command to PIC
 2000 Microchip Technology Inc. DS00656B-page 4-15

AN656
02AC 02AE 00591 incf ADDRPTR,F ; Increment pointer to next address
02AD 02EF 00592 decfsz BYTECOUNT,F ; See if we sent last byte
02AE 0A7E 00593 goto programisploop ; Jump back and send next byte
02AF 0900 00594 call poweroffisp ; Done - power off PIC and reset it!
02B0 00595 self
02B0 0AB0 00596 goto self ; Done with programming - wait here!
 00597
 00598
 00599
 00600 ; ***
 00601 ; * pgmvfyisp *
 00602 ; * Program and/or Veryify a word in program memory on the *
 00603 ; * application PIC. The data to be programmed is in HIDATA and *
 00604 ; * LODATA. *
 00605 ; * RAM used: HIBYTE, LOBYTE, HIDATA, LODATA, TEMP *
 00606 ; ***
02B1 00607 pgmvfyisp
02B1 00608 loadcisp
02B1 0C02 00609 movlw CMDISPLOAD ; Place load data command into W
02B2 0952 00610 call commandisp ; Send load data command to PIC
02B3 0000 00611 nop ; Wait one cycle
02B4 0000 00612 nop ; Wait one cycle
02B5 0000 00613 nop ; Wait one cycle
02B6 0208 00614 movf LODATA,w ; Place LODATA byte into W
02B7 002A 00615 movwf LOBYTE ; Move it to LOBYTE reg
02B8 0207 00616 movf HIDATA,w ; Place HIDATA byte into W
02B9 0029 00617 movwf HIBYTE ; Move it to HIBYTE reg
02BA 0915 00618 call P16cispout ; Send data to PIC
02BB 0C08 00619 movlw CMDISPPGMSTART ; Place start programming command into W
02BC 0952 00620 call commandisp ; Send start programming command to PIC
02BD 00621 delay100us
02BD 0C20 00622 movlw .32 ; Place 32 into W
02BE 0000 00623 nop ; Wait one cycle
02BF 002D 00624 movwf TEMP ; Move it to TEMP for delay counter
02C0 00625 loopprgm
02C0 02ED 00626 decfsz TEMP,F ; Decrement TEMP, skip when delay done
02C1 0AC0 00627 goto loopprgm ; Jump back and loop delay
02C2 0C0E 00628 movlw CMDISPPGMEND ; Place stop programming command into W
02C3 0952 00629 call commandisp ; Send end programming command to PIC
02C4 07E3 00630 btfss STATUS,VFYYES ; Skip if we are supposed to verify this time
02C5 0800 00631 retlw 0 ; Done - return!
02C6 0000 00632 nop ; Wait one cycle
02C7 00633 readcisp
02C7 0C04 00634 movlw CMDISPREAD ; Place read data command into W
02C8 0952 00635 call commandisp ; Send read data command to PIC
02C9 092C 00636 call P16cispin ; Read programmed data
02CA 0800 00637 retlw 0 ; Done - return!
 00638 END
DS00656B-page 4-16 2000 Microchip Technology Inc.

AN656
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXX---------- ---------------- ---------------- ----------------
0200 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0240 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0280 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
02C0 : XXXXXXXXXXX----- ---------------- ---------------- ----------------
07C0 : ---------------- ---------------- ---------------- ---------------X
0FC0 : ---------------- ---------------- ---------------- ---------------X

All other memory blocks unused.

Program Memory Words Used: 402
Program Memory Words Free: 1646

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 2 reported, 0 suppressed
 2000 Microchip Technology Inc. DS00656B-page 4-17

AN656
APPENDIX B:
MPASM 01.40.01 Intermediate ISPTEST.ASM 3-31-1997 10:55:57 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Filename: ISPTEST.ASM
 00002 ; **
 00003 ; * Author: John Day *
 00004 ; * Sr. Field Applications Engineer *
 00005 ; * Microchip Technology *
 00006 ; * Revision: 1.0 *
 00007 ; * Date August 25, 1995 *
 00008 ; * Part: PIC16CXX *
 00009 ; * Compiled using MPASM V1.40 *
 00010 ; **
 00011 ; * Include files: *
 00012 ; * P16CXX.ASM *
 00013 ; **
 00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
 00015 ; * WDT: OFF *
 00016 ; * CP: OFF *
 00017 ; * PWRTE: OFF *
 00018 ; **
 00019 ; * This program is intended to be used as a code example to *
 00020 ; * show how to comunicate with a manufacturing test jig that *
 00021 ; * allows this PIC16CXX device to self program. The RB6 and RB7 *
 00022 ; * lines of this PIC16CXX device are used to clock the data from *
 00023 ; * this device to the test jig (running ISPPRGM.ASM). Once the *
 00024 ; * PIC16C58 running ISPPRGM in the test jig receives the data, *
 00025 ; * it places this device in test mode and programs these parameters. *
 00026 ; * The code with comments “TEST -“ is used to create some fakecalibration *
 00027 ; * parameters that are first written to addresses STARTCALBYTE through *
 00028 ; * ENDCALBYTE and later used to call the self-programming algorithm. *
 00029 ; * Replace this code with your parameter calculation procedure, *
 00030 ; * placing each parameter into the STARTCALBYTE to ENDCALBYTE *
 00031 ; * file register addresses (16 are used in this example). The address *
 00032 ; * “lookuptable” is used by the main code later on for the final lookup *
 00033 ; * table of calibration constants. 16 words are reserved for this lookup *
 00034 ; * table. *
 00035 ; **
 00036 ; * Program Memory: *
 00037 ; * 49 Words - communication with test jig *
 00038 ; * 17 Words - calibration look-up table (16 bytes of data) *
 00039 ; * 13 Words - Test Code to generate Calibration Constants *
 00040 ; * RAM Memory: *
 00041 ; * 16 Bytes -Temporary- Store 16 bytes of calibration constant*
 00042 ; * 4 Bytes -Temporary- Store 4 bytes of temp variables *
 00043 ; **
 00044
Warning[217]: Hex file format specified on command line.
 00045 list p=16C71,f=inhx8m
 00046 include <p16C71.inc>
 00001 LIST
 00002 ; P16C71.INC Standard Header File, Version 1.00 Microchip Technology, Inc.
 00142 LIST
2007 3FF1 00047 __CONFIG _CP_OFF&_WDT_OFF&_XT_OSC&_PWRTE_OFF
 00048
 00049 ; ************************************
 00050 ; * Port A (RA0-RA4) bit definitions *
 00051 ; ************************************
 00052 ; Port A is not used in this test program
 00053
 00054 ; ************************************
DS00656B-page 4-18 2000 Microchip Technology Inc.

AN656
 00055 ; * Port B (RB0-RB7) bit definitions *
 00056 ; ************************************
 00057 #define CLOCK 6 ; clock line for ISP
 00058 #define DATA 7 ; data line for ISP
 00059 ; Port pins RB0-5 are not used in this test program
 00060
 00061 ; ************************************
 00062 ; * RAM register usage definition *
 00063 ; ************************************
 0000000C 00064 CSUMTOTAL EQU 0Ch ; Address for checksum var
 0000000D 00065 COUNT EQU 0Dh ; Address for COUNT var
 0000000E 00066 DATAREG EQU 0Eh ; Address for Data output register var
 0000000F 00067 COUNTDLY EQU 0Fh ; Address for clock delay counter
 00068
 00069 ; These two symbols are used for the start and end address
 00070 ; in RAM where the calibration bytes are stored. There are 16 bytes
 00071 ; to be stored in this example; however, you can increase or
 00072 ; decrease the number of bytes by changing the STARTCALBYTE or ENDCALBYTE
 00073 ; address values.
 00074
 00000010 00075 STARTCALBYTE EQU 10h ; Address pointer for start CAL byte
 0000002F 00076 ENDCALBYTE EQU 2Fh ; Address pointer for end CAL byte
 00077
 00078 ; Table length of lookup table (number of CAL parameters to be stored)
 00079
 00000020 00080 CALTABLELENGTH EQU ENDCALBYTE - STARTCALBYTE + 1
 00081
0000 00082 ORG 0
 00083 ; **
 00084 ; * testcode routine *
 00085 ; * TEST code - sets up RAM register with register address as data *
 00086 ; * Uses file register STARTCALBYTE through ENDCALBYTE to store the*
 00087 ; * calibration values that are to be programmed into the lookup *
 00088 ; * table by the test jig running ISPPRGM. *
 00089 ; * Customer would place calibration code here and make sure that *
 00090 ; * calibration constants start at address STARTCALBYTE *
 00091 ; **
0000 00092 testcode
0000 3010 00093 movlw STARTCALBYTE ; TEST -
0001 0084 00094 movwf FSR ; TEST - Init FSR with start of RAM addres
0002 00095 looptestram
0002 0804 00096 movf FSR,W ; TEST - Place address into W
0003 0080 00097 movwf INDF ; TEST - Place address into RAM data byte
0004 0A84 00098 incf FSR,F ; TEST - Move to next address
0005 0804 00099 movf FSR,W ; TEST - Place current address into W
0006 3C30 00100 sublw ENDCALBYTE+1 ; TEST - Subtract from end of RAM
0007 1D03 00101 btfss STATUS,Z ; TEST - Skip if at END of ram
0008 2802 00102 goto looptestram ; TEST - Jump back and init next RAM byte
0009 0103 00103 clrw ; TEST - Clear W
000A 200F 00104 call lookuptable ; TEST - Get first CAL value from lookup table
000B 3CFF 00105 sublw 0FFh ; TEST - Check if lookup CAL table is blank
000C 1903 00106 btfsc STATUS,Z ; TEST - Skip if table is NOT blank
000D 2830 00107 goto calsend ; TEST - Table blank - send out cal parameters
000E 00108 mainloop
000E 280E 00109 goto mainloop ; TEST - Jump back to self since CAL is done
 00110
 00111 ; **
 00112 ; * lookuptable *
 00113 ; * Calibration constants look-up table. This is where the CAL *
 00114 ; * Constants will be stored via ISP protocol later. Note it is *
 00115 ; * blank, since these values will be pogrammed by the test jig *
 00116 ; * running ISPPRGM later. *
 00117 ; * Input Variable: W stores index for table lookup *
 00118 ; * Output Variable: W returns with the calibration constant *
 2000 Microchip Technology Inc. DS00656B-page 4-19

AN656
 00119 ; * NOTE: Blank table when programmed reads “FF” for all locations *
 00120 ; **
000F 00121 lookuptable
000F 0782 00122 addwf PCL,F ; Place the calibration constant table here!
 00123
002F 00124 ORG lookuptable + CALTABLELENGTH
002F 34FF 00125 retlw 0FFh ; Return FF at last location for a blank table
 00126
 00127 ; **
 00128 ; * calsend subroutine *
 00129 ; * Send the calibration data stored in locations STARTCALBYTE *
 00130 ; * through ENDCALBYTE in RAM to the programming jig using a serial*
 00131 ; * clock and data protocol *
 00132 ; * Input Variables: STARTCALBYTE through ENDCALBYTE *
 00133 ; **
0030 00134 calsend
0030 018C 00135 clrf CSUMTOTAL ; Clear CSUMTOTAL reg for delay counter
0031 018D 00136 clrf COUNT ; Clear COUNT reg to delay counter
0032 00137 delayloop ; Delay for 100 mS to wait for prog jig wakeup
0032 0B8D 00138 decfsz COUNT,F ; Decrement COUNT and skip when zero
0033 2832 00139 goto delayloop ; Go back and delay again
0034 0B8C 00140 decfsz CSUMTOTAL,F ; Decrement CSUMTOTAL and skip when zero
0035 2832 00141 goto delayloop ; Go back and delay again
0036 0186 00142 clrf PORTB ; Place “0” into port b latch register
0037 1683 00143 bsf STATUS,RP0 ; Switch to bank 1
0038 303F 00144 movlw b’00111111’ ; RB6,7 set to outputs
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0039 0086 00145 movwf TRISB ; Move to TRIS registers
003A 1283 00146 bcf STATUS,RP0 ; Switch to bank 0
003B 018C 00147 clrf CSUMTOTAL ; Clear checksum total byte
003C 3001 00148 movlw high lookuptable+1 ; place MSB of first addr of cal table into W
003D 204D 00149 call sendcalbyte ; Send the high address out
003E 3010 00150 movlw low lookuptable+1 ; place LSB of first addr of cal table into W
003F 204D 00151 call sendcalbyte ; Send low address out
0040 3010 00152 movlw STARTCALBYTE ; Place RAM start address of first cal byte
0041 0084 00153 movwf FSR ; Place this into FSR
0042 00154 loopcal
0042 0800 00155 movf INDF,W ; Place data into W
0043 204D 00156 call sendcalbyte ; Send the byte out
0044 0A84 00157 incf FSR,F ; Move to the next cal byte
0045 0804 00158 movf FSR,W ; Place byte address into W
0046 3C30 00159 sublw ENDCALBYTE+1 ; Set Z bit if we are at the end of CAL data
0047 1D03 00160 btfss STATUS,Z ; Skip if we are done
0048 2842 00161 goto loopcal ; Go back for next byte
0049 080C 00162 movf CSUMTOTAL,W ; place checksum total into W
004A 204D 00163 call sendcalbyte ; Send the checksum out
004B 0186 00164 clrf PORTB ; clear out port pins
004C 00165 calsenddone
004C 284C 00166 goto calsenddone ; We are done - go home!
 00167
 00168 ; **
 00169 ; * sendcalbyte subroutine *
 00170 ; * Send one byte of calibration data to the programming jig *
 00171 ; * Input Variable: W contains the byte to be sent *
 00172 ; **
004D 00173 sendcalbyte
004D 008E 00174 movwf DATAREG ; Place send byte into data register
004E 078C 00175 addwf CSUMTOTAL,F ; Update checksum total
004F 3008 00176 movlw .8 ; Place 8 into W
0050 008D 00177 movwf COUNT ; set up counter register
0051 00178 loopsendcal
0051 1706 00179 bsf PORTB,CLOCK ; Set clock line high
0052 205C 00180 call delaysend ; Wait for test jig to synch up
0053 0D8E 00181 rlf DATAREG,F ; Rotate to next bit
0054 1786 00182 bsf PORTB,DATA ; Assume data bit is high
0055 1C03 00183 btfss STATUS,C ; Skip if the data bit was high
DS00656B-page 4-20 2000 Microchip Technology Inc.

AN656
0056 1386 00184 bcf PORTB,DATA ; Set data bit to low
0057 1306 00185 bcf PORTB,CLOCK ; Clear clock bit to clock data out
0058 205C 00186 call delaysend ; Wait for test jig to synch up
0059 0B8D 00187 decfsz COUNT,F ; Skip after 8 bits
005A 2851 00188 goto loopsendcal ; Jump back and send next bit
005B 0008 00189 return ; We are done with this byte so return!
 00190
 00191 ; **
 00192 ; * delaysend subroutine *
 00193 ; * Delay for 50 ms to wait for the programming jig to synch up *
 00194 ; **
005C 00195 delaysend
005C 3010 00196 movlw 10h ; Delay for 16 loops
005D 008F 00197 movwf COUNTDLY ; Use COUNTDLY as delay count variable
005E 00198 loopdelaysend
005E 0B8F 00199 decfsz COUNTDLY,F ; Decrement COUNTDLY and skip when done
005F 285E 00200 goto loopdelaysend ; Jump back for more delay
0060 0008 00201 return
 00202 END

MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX ---------------- ---------------X XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X--------------- ----------------
2000 : -------X-------- ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 66
Program Memory Words Free: 958

Errors : 0
Warnings : 1 reported, 0 suppressed
Messages : 1 reported, 0 suppressed
 2000 Microchip Technology Inc. DS00656B-page 4-21

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights
arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other
trademarks mentioned herein are the property of their respective companies.

DS30277C-page 4-22 2000 Microchip Technology Inc.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 5/00 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
China - Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing, 100027, P.R.C.
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Shanghai
Microchip Technology
Unit B701, Far East International Plaza,
No. 317, Xianxia Road
Shanghai, 200051, P.R.C.
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore, 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835

03/23/00

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

	Section 1 Introduction
	In-Circuit Serial Programming™ (ICSP™) Guide
	What is In-Circuit Serial Programming (ICSP)
	PICmicro MCUs Make In-Circuit Serial Programming a Cinch
	What Can I Do with In-Circuit Serial Programming
	Programming the Considerations
	Microchip Provides a Complete Solution for ICSP

	SECTION 2 TECHNICAL BRIEFS
	How to Implement ICSP™ Using PIC12C5XX OTP MCUs
	Introduction
	In-Circuit Serial Programming
	The Programmer
	Programming Environment
	Other Benefits
	Conclusion

	How to Implement ICSP™ Using PIC16CXXX OTP MCUs
	Introduction
	How Does ICSP Work?
	Application Circuit
	Programmer
	Programming Environment
	Other Benefits

	Conclusion
	How to Implement ICSP™ Using PIC17CXXX OTP MCUs
	Introduction
	Using the ICSP Feature on PIC17CXXX OTP Deivces
	Conclusion

	How to Implement ICSP™ Using PIC16CXXX OTP MCUs
	Introduction
	HOW DOES ICSP WORK?
	CONCLUSION

	How to Implement ICSP™ Using PIC17CXXX OTP MCUs
	Introduction
	USING THE ICSP FEATURE ON PIC17CXXX OTP Devices
	CONCLUSION

	How to Implement ICSP™ Using PIC16F8X FLASH MCUs
	INTRODUCTION
	HOW DOES ICSP WORK?
	CONCLUSION

	SECTION 3 PROGRAMMING SPECIFICATIONS
	In-Circuit Serial Programming for PIC12C5XX OTP MCUs
	Programming the PIC12C5XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs
	PROGRAMMING THE PIC12C67X AND PIC12CD67X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC14000 OTP MCUs
	PROGRAMMING THE PIC14000
	PROGRAM MODE ENTRY
	CONFIGURATION
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16C55X OTP MCUs
	PROGRAMMING THE PIC16C55X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16C6XX/7XX/9XX OTP MCUs
	PROGRAMMING THE PIC16C6XX/7XX/9XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	PROGRAM/VERIFY MODE

	In-Circuit Serial Programming for PIC17C7XX
	PROGRAMMING THE PIC17C7XX
	PARALLEL MODE PROGRAM ENTRY
	PARALLEL MODE PROGRAMMING SPECIFICATIONS
	SERIAL MODE PROGRAM ENTRY
	CONFIGURATION WORD
	PARALLEL MODE AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE
	ELECTRICAL SPECIFICATIONS FOR SERIAL PROGRAMMING MODE

	PIC18CXXX PIC18C2XX PIC18C4XX In-MCUs
	PROGRAMMING THE PIC18CXXX
	IN-CIRCUIT SERIAL PROGRAMMING MODE (ICSP)
	CONFIGURATION WORD
	AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

	In-Circuit Serial Programming for PIC16F62X FLASH MCUs
	PROGRAMMING THE PIC16F62X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16F8X FLASH MCUs
	PROGRAMMING THE PIC16F8X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16F8XX FLASH MCUs
	PROGRAMMING THE PIC16F8XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	SECTION 4 APPLICATION NOTES
	In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters Using a PICmicro ® Microcontroller
	INTRODUCTION
	PROGRAMMING FIXTURE

