
Pari vallal Kannan
Center for Integrated Circuits and Systems
University of Texas at Dallas

8051 - Interrupts

EE4380 Fall 2001
Class 9

11-Oct-01 2

Polling Vs Interrupts

l Polling:
– MCU monitors all served devices continuously, looking for a

“service request flag”
– Whenever it sees a request, it serves the device and then

keeps polling
– MCU is always “busy” with polling doing the “while any

request” loop

l Interrupts
– If and when a device is ready and needs attention, it informs

the MCU
– MCU drops whatever it was doing and serves the device
– MCU is always “free”, when not serving any interrupts

11-Oct-01 3

Interrupt Service Routine

l MCUs have fixed number of interrupts
l Every interrupt has to be associated with a piece of

code called “Interrupt Service Routine”, or ISR.
– If interrupt-x is received by MCU, the ISR-x is executed

l MCU architecture defines a specific “code address” for
each ISR, which is stored in the,

– “Interrupt vector Table IVT”

l ISRs are basically “subroutines”, but they end with the
RETI, instruction instead of RET

l When an interrupt occurs, the MCU fetches its ISR
code address from the IVT and executes it.

11-Oct-01 4

Interrupt Execution

1. MCU finishes the instruction it is currently executing
and stores the PC on the stack

2. MCU saves the current status of all interrupts
internally

3. Fetches the ISR address for the interrupt from IVT
and jumps to that address

4. Executes the ISR until it reaches the RETI instruction
5. Upon RETI, the MCU pops back the old PC from the

stack and continues with whatever it was doiing
before the interrupt occurred

11-Oct-01 5

8051 Interrupts

l Vendors claim 6 hardware interrupts. One of them is
the reset. So only 5 real interrupts in the 8051. Clones
may differ.

l Two external interrupts – INT0 and INT1, two timer
interrupts – TF0 and TF1 and one serial port interrupt –
S0

l Interrupts can be individually enabled or disabled. This
is done in the IE (Interrupt Enable Register)

l External interrupts (INT0 and INT1) can be configured
to be either level or edge triggered.

11-Oct-01 6

8051 - IVT

l Each Interrupt has 8 bytes for its ISR.
l If ISR is too big to fit in 8bytes, then use a ljmp

9
P3.2

P3.3

0000H
0003H
000BH
0013H
001BH
0023H

Reset
INT0
TF0
INT1
TF1
S0

PinROM LocationInterrupt
ORG 0

rom_start: LJMP main_code

ORG 13H

int1_vec: LJMP int1_isr

ORG 30H

main_code: ;bla bla

; ….

int1_isr: ;bla bla

11-Oct-01 7

IE Register

l EA = 0, disable all interrupts

l Other bits if set to 1, enable the corresponding interrupt, if set to 0,
disable it.

l EX0 = enable INT0
l ET0 = enable Timer0
l EX1 = enable INT1
l ET1 = enable Timer1
l ES = enable serial port interrupt
l ET2 = (for 8052 clones only) enable Timer2
l Interrupts can be triggered by software by setting the bits in IE

– setb IE.1

EX0ET0EX1ET1ESET2--EA

11-Oct-01 8

Simple Example

l INT1 pin is connected to a switch that is normally high. Whenever it goes low, an
LED should be turned on. LED is connected to port pin P1.3 and is normally OFF

org 0H

ljmp MAIN

org 13H ;INT1 ISR

INT1_ISR: setb P1.3 ;turn on LED

mov r3, #255

BACK: djnz r3, BACK ;keep the led ON for a while

clr P1.3 ;turn OFF the LED

RETI ;use RETI, ***NOT RET***

org 30H

MAIN: mov IE, #1000 0100B ;enable INT1, EA=1, EX1=1

HERE: sjmp HERE ;stay here until interrupted

end

11-Oct-01 9

External Interrupts
l INT0 and INT1

– Level triggered : a low level on the pin causes interrupt –
Default mode

– Edge triggered : a high-to-low transition on the pin causes
interrupt

l Configuration in TCON register
– (IT1) TCON.2 = 1 è INT1 is edge triggered
– (IT0) TCON.0 = 1 è INT0 is edge triggered

l IE0 (TCON.1) and IE1 (TCON.3)
– In edge triggered mode, if interrupt INTx occurs, the MCU sets

the IEx bit, which is cleared only aftera RETI is executed
– Prevents interrupt within interrupt

l Setup and Hold times for Edge triggered external
interrupts

– One machine cycle each

11-Oct-01 10

Interrupt Priority

l Default Priority
– INT0 > TF0 > INT1 > TF1 > S0

l The ISR of an interrupt can be “interrupted” by a higher
priority interrupt.

l The Default Priority can be changed by programming
the IP register

l To set higher priority to an interrupt, set its bit in IP to 1
l If more than one 1 in IP, the default priority is used for

all the interrupts that have 1 in IP

PX0PT0PX1PT1PSPT2----

11-Oct-01 11

8051 - Timers

l Two 16-bit timers T0 and T1
– Timer - calculate timing, time etc
– Event counter – Count the occurrence of an event

l T0 = TH0:TL0
l T1 = TH1:TL1
l Timer mode is controlled by TMOD register

– Gate, C/T, M0, M1

l Timers are controlled by TCON register (upper 4 bits)
– TR0, TR1, TF0, TF1

11-Oct-01 12

8051 Timer : TMOD Register

l Gate = 0, software gate of Timer (TRx bit in TCON)
l Gate = 1, hardware gate of Timer (INTx) pin
l C/T = 0 è Timer operation
l C/T = 1 è Counter operation
l M1:M0 = 00 àMode 0 (13bit timer)
l M1:M0 = 01 àMode 1 (16 bit timer)
l M1:M0 = 10 àMode 2 (8 bit timer, with auto-reload)
l M1:M0 = 11 àMode 3 (split timer)
l Clock source for the timer is sys_clk/12

M0M1C/T0Gate0M0M1C/T1Gate1

11-Oct-01 13

Timer – Mode 1

l 16 bit timer
l Operation

1. Load TMOD register to set mode
2. Load TLx and THx with the initial count values
3. Start timer (setb TRx)
4. Keep monitoring TFx flag (jnb TFx, target)
5. Stop timer (clrb TRx) and clear TFx flag
6. Go back to step 2 to load again

l Time spent
– Telapsed = (65536 - intial_value)*cycle_time

l Instead of polling for TFx flag, an ISR could be used

11-Oct-01 14

Timer : Mode –1 Example

l Generate a 50% duty cycle square wave on
P1.5, with Timer0

mov TMOD, #01 ;Timer 0, mode 1

Here: mov TL0, #0F2H

mov TH0, #0FFH ;Initial Value = FFF2H

cpl P1.5

acall delay

sjmp Here

Delay: setb TR0 ;start Timer0

Again: jnb TF0, Again ;poll for TF0 (timer overflow)

clr TR0 ;stop timer

clr TF0 ;clear TF0 flag

RET

Timer0 sequence

FFF2 TF=0

FFF3 TF=0

FFF4 TF=0

….

….

FFFE TF=0

FFFF TF=1

