Microcontroller based System Design Concepts

EE4380 Fall 2001

Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas

9/11 Bad day

Step – 1 : Problem Definition

- Define the system to be designed
 - External Inputs (operating conditions, constraints)
 - External Outputs required
 - Engineering time
 - Cost, size, running costs etc
 - Performance/Quality requirements

Step – 2 : Block Diagram

- Identify blocks in the system
 - Prior experience
 - Use the system spec
 - Rigorous processes are available (complicated)
- Identify major signals between blocks
 - Signals are data and control
 - Include external inputs and outputs
 - Determine the range of each signals (bit width)

Step – 3 : Realize the blocks

- Analyze the blocks for their "realizability"
- Blocks become
 - Well known components
 - Displays, A/D D/A converters
 - Microprocessor or a digital control system
 - Digital Circuits like decoders, muxes, latches etc
 - Unknown digital blocks
 - Usually made up of random logic
 - Implement using PLDs / FPGAs or discrete components
 - Analog blocks
- If some blocks are unrealizable, then go back to the block diagram

Step - 4 : Component Choice

• Microprocessors

- MIPS rating, power consumption, package size etc
 - MP3 decoding Vs temperature controller
 - Battery operated Vs mains operated
 - Hand held Vs desktop
- Memory, Peripherals, UI
- Software (prom code, OS, protocol compliance etc.)
- Sensors
 - Range, accuracy, speed, resolution
- Displays
 - Power, # of characters / lines, UI
- PLDs/FPGAs
 - Number of logic gates, cost, package etc

Example - 1

- Design a temperature controller. Use any temperature sensor of your choice. Control is effected by controlling the turn-on time of the room A/C
- Is spec complete ?
 - Interface to the A/C ? A/C parameters ??
 - Suitable temperature sensor availability ?
 - Cost issues ?
 - UI spec ?

• Block Diagram

- Signal Identification
 - S1 : Sensor and Controller
 - Current Temperature : Sensor → Controller
 - Controller → Sensor ??
 - S2 : User Input and Controller
 - On/Off : User → Controller
 - Temperature Setting : User → Controller
 - S3 : Controller and AC unit
 - On/Off : Controller \rightarrow AC
 - Status: AC \rightarrow Controller ??
 - S4: Controller and Display
 - Current Temperature : Controller → Display
 - Status : Controller \rightarrow Display

- Realizability Analysis
 - Sensor is available as a package
 - Or design one using a thermistor and A/D converter
 - User I/P dip switch
 - Display two or more 7seg LEDs or LCD
 - AC unit control lines
- Controller Design
 - Design a digital controller
 - Use microprocessor

- Microprocessor based Controller
 - Decide on control algorithm
 - Low system speed (a few kHz), so microprocessor speed is not critical
 - Small number of steps in control algorithm. So a low MIPS processor is adequate
 - Choose 8051
 - Need external memory ?
 - Maybe some EPROM.
 - No external RAM
 - Peripherals ?
 - One port for sensor reading, one for user display and one for AC
 - So need an external 8255 I/O chip

- 8051 as the controller
 - Write the code for the control algorithm
 - Choose external ROM from the code size
 - Or choose 8051 clone with internal ROM (8751, DS5000 etc)
- Optionally do a board level simulation
- Design the board with the components
 - Use existing general purpose boards if possible

Board Design

CAD tools for design entry and pcb design
Protel, ORCAD, etc.

