EE4380 Microprocessor Design Project

Fall 2001

Pari vallal Kannan

Center for Integrated Circuits and Systems University of Texas at Dallas

Introduction

- What is a Microcontroller?
- Microcontroller Vs Microprocessor
 - Level of Integration
 - Processor, memory, timer, UART, I/O ports etc
 - Cost
 - System cost, per unit cost
 - Application domain
 - General purpose Vs specialized
- System design Issues

Embedded Systems

- Do one specialized task
 - Efficiently
 - Cost effective manner
- Microcontroller based system + Software
- Embedded software
 - Usually small code footprint
 - Assembly Language everywhere
 - RTOS and HLLs are available
 - Need special tools for development, debugging etc

Embedded Systems (contd.)

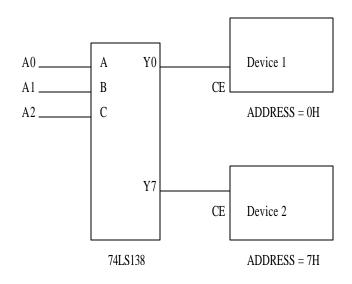
- Embedded system design is unique
 - Normal software design usually targets fixed hardware
 - gcc, gdb, gprof done!
 - Both hardware and software have to be <u>engineered</u> together
 - Engineering decisions:
 - Hardware/Software partitioning (open problem)
 - Device/Peripheral selection (memory size, vendor etc)
 - Software development environment

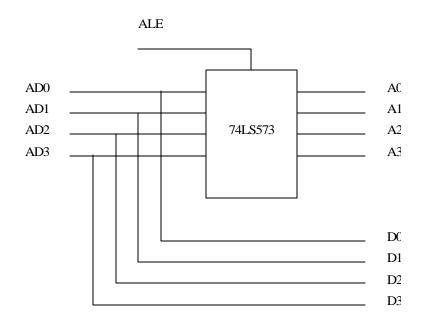
Embedded Systems (contd.)

- Full Manual
 - Design hardware and software manually
- Vendor tool assisted flow
 - Sophisticated (high \$) CAD tools
 - HLL compilers
 - Simulators, source level debuggers, ICE etc
 - Major engineering decisions are still manual
- Fully Automated Flow
 - Wish list item #1

Review of Logic Circuits

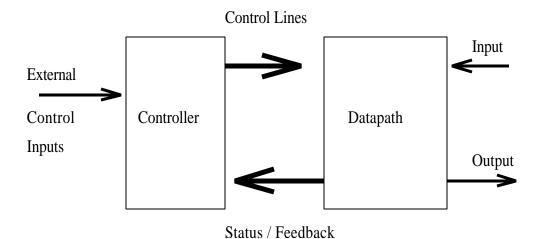
- Hex system
 1000 1010 0011 1111b = 8A3FH
- Hex arithmetic needed to calculate jump addresses
- Hex addition
 - Simple TBT addition with 1 carry for every 16
- Hex subtraction
 - If subtrahend smaller than minuend then simple TBT subtraction
 - Else, swap and then and find 2's complement of result


Review of Logic Circuits (contd.)


- Logic gates
 - For loose random logic
 - Inverter, AND, OR, XOR, NAND, NOR, Tri-state buffer
- Decoders
 - Used for address decoding
- Sequential elements
 - Used for demuxing address/data lines, latches etc
 - Flip-flops, latches
 - Edge and level triggered

Review of Logic Circuits (contd.)

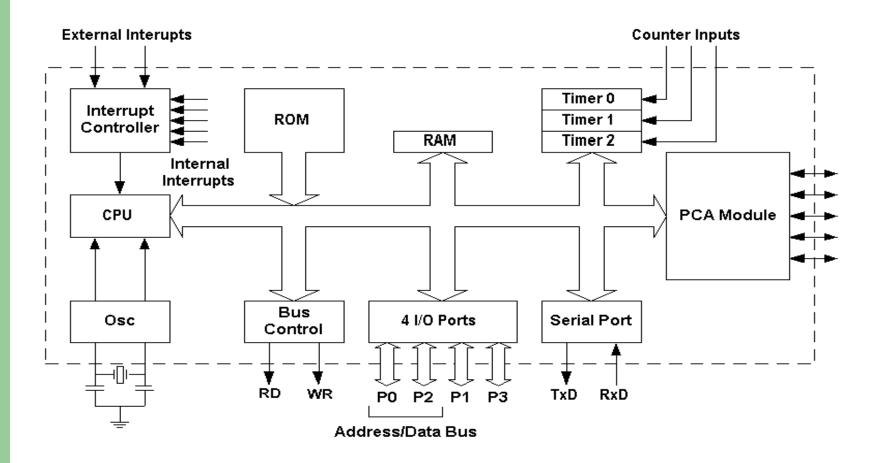
- Common use of a decoder 74LS138
- Common use of a latch, AD Demuxing


Digital Systems

- Controller path and Data path
- Controller controls the datapath at specific control points in the datapath
- Controllers are FSMs
- Controllers can be designed up from scratch or use a Microprocessor / Microcontroller
- Microprocessor based digital system controller design is essentially creating the software
- Microprocessors can also do some of the datapath's functions
 - ALU units, IO units, special units for comm, dsp, etc

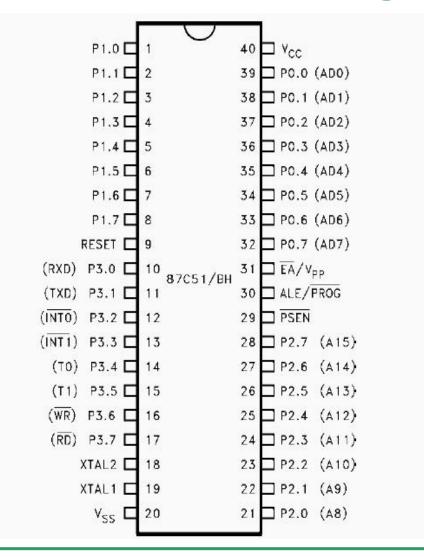
Digital Systems (contd.)

Controller and Datapath Illustration



Overview of the 8051 Family

- One of the oldest (Intel MCS-51 in 1981) and probably the most popular microcontroller. Many derivatives are marketed by a number of manufacturers
- Common features,
 - 8-bit processor
 - 4 I/O ports each 8bits wide
 - max of 64K on-chip ROM (usually 0k to 4k)
 - max of 64K external data memory
 - max of 64K external code memory
 - 2 timers, one serial port
 - 128 bytes of on-chip RAM
 - various speeds from 12MHz
- Clones may have different on-chip memory, timers etc



8051 Block Diagram

8051 Pinout Diagram

- •From Intel 87C51 datasheet
- DIP package
- Data lines and lower 8 address lines are muxed
- •Two ports P0 and P2 are used by AD buses
- •Clones may not be pin compatible

Some 8051 clones

- 8031 No on-chip ROM
- 8751 With on-chip EPROM
- Atmel AT89C51 With on-chip Flash ROM
- DalSemi DS5000
 - With on-chip NV-RAM
 - In system programmable via serial-port
- Philips Corp.
- 8051 cores from FPGA vendors
 - Xilinx, Altera, etc
- 8051 with programmable logic
 - Triscend etc

