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Building a
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i
To kick off this three-
part article, Jan’s go-
ing to port a C
compiler, design an
instruction set, write
an assembler and
simulator, and design
the CPU datapath.
Get reading, you’ve
only got a month be-
fore your connecting
article arrives!

used to envy
CPU designers—

the lucky engineers
with access to expensive

tools and fabs. But, field-program-
mable gate arrays (FPGAs) have made
custom-processor and integrated-
system design much more accessible.

20–50-MHz FPGA CPUs are per-
fect for many embedded applications.
They can support custom instructions
and function units, and can be recon-
figured to enhance system-on-chip
(SoC) development, testing, debug-
ging, and tuning. Of course, FPGA
systems offer high integration, short
time-to-market, low NRE costs, and
easy field updates of entire systems.

FPGA CPUs may also provide new
answers to old problems. Consider
one system designed by Philip Freidin.
During self-test, its FPGA is config-
ured as a CPU and it runs the tests.
Later the FPGA is reconfigured for
normal operation as a hardwired sig-
nal processing datapath. The ephem-
eral CPU is free and saves money by
eliminating test interfaces.

THE PROJECT
Several companies sell FPGA CPU

cores, but most are synthesized imple-
mentations of existing instruction
sets, filling huge, expensive FPGAs,
and are too slow and too costly for
production use. These cores are mar-
keted as ASIC prototyping platforms.

In contrast, this article shows how
a streamlined and thrifty CPU design,
optimized for FPGAs, can achieve a
cost-effective integrated computer
system, even for low-volume products
that can’t justify an ASIC run.

I’ll build an SoC, including a 16-bit
RISC CPU, memory controller, video
display controller, and peripherals, in
a small Xilinx 4005XL. I’ll apply free
software tools including a C compiler
and assembler, and design the chip
using Xilinx Student Edition.

If you’re new to Xilinx FPGAs, you
can get started with the Student Edi-
tion 1.5. This package includes the
development tools and a textbook
with many lab exercises.[3]

The Xilinx university-program
folks confirm that Student Edition is
not just for students, but also for pro-
fessionals continuing their education.
Because it is discounted with respect
to their commercial products, you do
not receive telephone support, al-
though there is web and fax-back
support. You also do not receive
maintenance updates—if you need the

Part 1: Tools, Instruction Set, and Datapath

Table 1—The xr16 C language calling conventions
assign a fixed role to each register. To minimize the cost
of function calls, up to three arguments, the return
address, and the return value are passed in registers.

Register Use

r0 always zero
r1 reserved for assembler
r2 function return value
r3–r5 function arguments
r6–r9 temporaries
r10–r12 register variables
r13 stack pointer (sp)
r14 interrupt return address
r15 return address
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next version of the software, you have
to buy it all over again. Nevertheless,
Student Edition is a good deal and a
great way to learn about FPGA design.

My goal is to put together a simple,
fast 16-bit processor that runs C code.
Rather than implement a complex
legacy instruction set, I’ll design a
new one streamlined for FPGA imple-
mentation: a classic pipelined RISC
with 16-bit instructions and sixteen
16-bit registers. To get things started,
let’s get a C compiler.

C COMPILER
Fraser and Hanson’s book is the

literate source code of their lcc retar-
getable C compiler.[1] I downloaded
the V.4.1 distribution and modified it
to target the nascent RISC, xr16.

Most of lcc is machine indepen-
dent; targets are defined using ma-
chine description (md) files. Lcc ships
with ’x86, MIPS, and SPARC md files,
and my job was to write xr16.md.

I copied xr16.md from mips.md,
added it to the makefile, and added an
xr16 target option. I designed xr16
register conventions (see Table 1) and
changed my md to target them.

At this point, I had a C compiler for
a 32-bit 16-register RISC, but needed
to target a 16-bit machine with
sizeof(int)=sizeof(void*)=2. lcc obtains
target operand sizes from md tables, so
I just changed some entries from 4 to 2:

Interface xr16IR = {
  1, 1, 0,  /* char */
  2, 2, 0,  /* short */
  2, 2, 0,  /* int */
  2, 2, 0,  /* T* */

Next, lcc needs operators that load
a 2-byte int into a register, add 2-byte
int registers, dereference a 2-byte
pointer, and so on. The lcc ops util-
ity prints the required operator set. I
modified my tables and instruction
templates accordingly.  For example:

reg: CVUI2(INDIRU1(addr)) \
�lb r%c,%0\n� 1

uses lb rd,addr to load an unsigned
char at addr and zero-extend it into a
16-bit int register.
stmt: EQI2(reg,con) \
�cmpi r%0,%1\nbeq %a\n� 2

uses a cmpi, beq sequence to com-
pare a register to a constant and
branch to this label if equal.

I removed any remaining 32-bit
assumptions inherited from mips.md,
and arranged to store long ints in
register pairs, and call helper routines
for mul, div, rem, and some shifts.

My port was up and running in just
one day, but I had already read the lcc
book. Let’s see what she can do. List-
ing 1 is the source for a binary tree
search routine, and Listing 2 is the
assembly code lcc-xr16 emits.

INSTRUCTION SET
Now, let’s refine the instruction

set and choose an instruction encod-
ing. My goals and constraints include:
cover C (integer) operator set, fixed-
size 16-bit instructions, easily de-
coded, easily pipelined, with three-
operand instructions (dest = src1

op src2/imm), as encoding space
allows. I also want it to be byte ad-
dressable (load and store bytes and

words), and provide one addressing
mode—disp(reg). To support long
ints we need add/subtract carry and
shift left/right extended.

Which instructions merit the most
bits? Reviewing early compiler out-
put from test applications shows that
the most common instructions (static
frequency) are lw (load word), 24%;
sw (store word), 13%; mov (reg-reg
move), 12%; lea (load effective ad-
dress), 8%; call, 8%; br, 6%; and
cmp, 6%. Mov, lea, and cmp can be
synthesized from add or sub with r0.
69% of loads/stores use disp(reg)
addressing, 21% are absolute, and
10% are register indirect.

Therefore we make these choices:

• add, sub, addi are 3-operand
• less common operations (logical ops,

add/sub with carry, and shifts) are 2-
operand to conserve opcode space

• r0 always reads as 0
• 4-bit immediate fields
• for 16-bit constants, an optional

immediate prefix imm establishes the
most significant 12-bits of the in-
struction that immediately follows

• no condition codes, rather use an
interlocked compare and condi-
tional branch sequence

• jal (jump-and-link) jumps to an
effective address, saving the return
address in a register

• call func encodes jal r15,func
in one 16-bit instruction (provided
the function is 16-byte aligned)

• perform mul, div, rem, and variable
and multiple bit shifts in software

The six instruction formats are
shown in Table 2 and the 43 distinct
instructions are shown in Table 3.
adds, subs, shifts, and imm are
uninterruptible prefixes. Loads/stores
take two cycles, jump and branch-
taken take three cycles (no branch

Listing 1— This sample C code declares a binary search tree data structure and defines a binary search
function. Search returns a pointer to the tree node whose key compares equal to the argument key, or
NULL if not found.

typedef struct TreeNode {
  int key;
  struct TreeNode *left, *right;
} *Tree;

Tree search(int key, Tree p) {
  while (p && p->key != key)
    if (p->key < key)
      p = p->right;
    else
      p = p->left;
  return p;
}

Table 2—The xr16 has six instruction formats, each
with 4-bit opcode and register fields.

Format 15–12 11–8 7–4 3–0

rrr op rd ra rb
rri op rd ra imm
rr op rd fn rb
ri op rd fn imm

i12 op  imm12 … …
br op cond disp8 …
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delay slots). The four-bit imm field
encodes either an int (-8–7): add/
sub, logic, shifts; unsigned (0–15): lb,
sb; or unsigned word displacement (0,
2–30): lw, sw, jal, call.

Some assembly instructions are
formed from other machine instruc-
tions, as you can see in Table 4. Note
that only signed char data use lbs.

ASSEMBLER
I wrote a little multipass assembler

to translate the lcc assembly output
into an executable image.

The xr16 assembler reads one or
more assembly files and
emits both image and
listing files. The lexical
analyzer reads the source
characters and recognizes
tokens like the identifier
_main. The parser scans
tokens on each line and
recognizes instructions
and operands, such as
register names and effec-
tive address expressions.
The symbol table remem-
bers labels and their ad-
dresses, and a fixup table
remembers symbolic refer-
ences.

In pass one, the assem-
bler parses each line. La-
bels are added to the
symbol table. Each in-
struction expands into one
or more machine instruc-
tions. If an operand refers
to a label, we record a
fixup to it.

In pass two, we check
all branch fixups. If a
branch displacement ex-
ceeds 128 words, we re-

write it using a jump. Because insert-
ing a jump may make other branches
far, we repeat until no far branches
remain.

Next, we evaluate fixups. For each
one, we look up the target address and
apply that to the fixup subject word.
Lastly, we emit the output files.

I also wrote a simple instruction set
simulator. It is useful for exercising
both the compiler and the embedded
application in a friendly environment.

Well, by now you are probably
wondering if there is any hardware to
this project. Indeed there is! First,
let’s consider our target FPGA device.

THE FPGA
The Xilinx XC4005XL-PC84C-3 is

a 3.3-V FPGA in an 84-pin J-lead
PLCC package. This SRAM-based
device must be configured by external
ROM or host at power-up. It has a
14 × 14 array of configurable logic
blocks (CLBs) and 61 bonded-out I/O
blocks (IOBs) in a sea of program-
mable interconnect.

Every CLB has two 4-input look-up

tables (4-LUTs) and two flip-flops.
Each 4-LUT can implement any logic
function of 4 inputs, or a 16 × 1-bit
synchronous static RAM, or ROM.
Each CLB also has “carry logic” to
build fast, compact ripple-carry adders.

Each IOB offers input and output
buffers and flip-flops. The output
buffer can be 3-stated for bidirectional
I/O. The programmable interconnect
routes CLB/IOB output signals to other
CLB/IOB inputs. It also provides wide-
fanout low-skew clock lines, and hori-
zontal long lines, which can be driven
by 3-state buffers at each CLB.[2]

The XC4000XL architecture would
appear to have been designed with
CPUs in mind. Just eight CLBs can
build a single-port 16 × 16-bit register
file (using LUTs as SRAM), a 16-bit
adder/subtractor (using carry logic), or
a four-function 16-bit logic unit. Be-
cause each LUT has a flip-flop, the
device is register rich, enabling a
pipelined implementation style; and
as each flip-flop has a dedicated clock
enable input, it’s easy to stall the
pipeline when necessary. Long line

buses and 3-state drivers
form an efficient word-
wide multiplexer of the
many function unit re-
sults, and even an on-
chip 3-state peripheral
bus.

THE PROCESSOR
INTERFACE

Figure 1 gives you a
good look at the xr16
processor macro symbol.
The interface was de-
signed to be easy to use
with an on-chip bus. The
key signals are the sys-
tem clock (CLK), next
memory address (AN15:0),
next access is a read
(READN), next access is
16-bit data (WORDN),
address clock enable:
above signals are valid,
start next access (ACE),
memory ready input: the
current access completes
this cycle (RDY), instruc-
tion word input
(INSN15:0), on-chip bidi-

Figure 1 —The xr16
processing symbol
ports, which include
instruction and data
buses, next address
and memory con-
trols, and bus
controls, constitute
its interface to the
system memory
controller.
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Figure 2 —The control unit receives instructions, decodes them, and drives both the
memory control outputs and the datapath control signals.
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To execute one instruction per
cycle you need a 16-entry 16-bit regis-
ter file with two read ports (add r3, r1,
r2) and one write port (add r3, r1,
r2); an immediate operand multiplexer
(mux) to select the immediate field as
an operand (addi r3, r1, 2); an arith-
metic/logic unit (ALU) (sub r3, r1,
r2; xor r3, r1); a shifter (srai r3,
1), and an effective address adder to
compute reg+offset (lw r3, 2(r1)).

You’ll also need a mux to select a
result from the adder, logic unit, left
or right shifter, return address, or load
data; logic to check a result for zero,
negative, carry-out, or overflow; a
program counter (PC), PC incrementer,
branch displacement adder (br L),
and a mux to load the PC with a jump
target address (call _foo); and a
mux to share the memory port for

instruction fetch (addr ← PC) and
load/store (addr ← effective address).

Careful design and reuse will let
you minimize the datapath area be-
cause the adder, with the immediate
mux, can do the effective address add,
and the PC incrementer can also add
branch displacements. The memory
address mux can help load the PC
with the jump target.

DATAPATH SCHEMATIC
Figure 3 is the culmination of these

ideas. There are three groups of re-
sources. The execution unit is the
heart of the processor. It fetches oper-
ands from the register file and the
immediate fields of the instruction
register, presents them to the add/sub,
logic, and (trivial) shift units, and
writes back the result to the register

rectional data bus to load/store data
(D15:0).

The memory/bus controller (which
I’ll explain further in Part 3) decodes
the address and activates the selected
memory or peripheral. Later it asserts
RDY to signal that the memory access
is done.

As Figure 2 shows, the CPU is
simply a datapath that is steered by a
control unit. Next month, I’ll exam-
ine the control unit in greater detail.
The rest of this article explores the
design and implementation of the
datapath.
DATAPATH RESOURCES

The instruction set evolved with
the datapath implementation. Each
new idea was first evaluated in terms
of the additional logic required and its
impact on the processor cycle time.

Figure 3 —The pipelined datapath has an execution unit, a result multiplexer, and an address/PC unit. Operands from the register file or immediate field are selected and latched
into the A and B operand registers. Then the function units, including ADDSUB, operate upon A and B, and one of the results is driven onto RESULT15:0 and written back into the
register file. Meanwhile, the address/PC unit increments the PC to help fetch the next instruction.
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file. The result multiplexer
selects one result from the
various function units. The
address/PC unit drives the
next memory address, and
includes the PC, PC adder,
and address mux. Now, let’s
see how each resource is
implemented in our FPGA.

REGISTER FILE
During each cycle, we

must read two register oper-
ands and write back one re-
sult. You get two read ports
(AREG and BREG) by keeping
two copies of the 16 × 16-bit
register file REGFILE, and
reading one operand from
each. On each cycle you must
write the same result value
into both copies.

So, for each REGFILE and
each clock cycle you must do one read
access and one write access. Each
REGFILE is a 16 × 16 RAM. Recall
that each CLB has two 4-LUTs, each
of which can be a 16 × 1-bit RAM.
Thus, a REGFILE is a column of eight
CLBs. Each REGFILE also has an in-
ternal 16-bit output register that cap-
tures the RAM output on the CLK
falling edge.

To read and write the REGFILE
each clock, you double-cycle it. In the
first half of each clock cycle, the con-
trol unit presents a read-port source
operand register number to the RAM
address inputs. The selected register
is read out and captured in the
REGFILE output register as CLK falls.

In the second half cycle, the con-
trol unit drives the write-port register
number. As CLK rises, the RESULT15:0

is written to the destination register.

OPERAND SELECTION
With the two source registers

AREG and BREG in hand, you now
select the A and B operands, and latch
them in the A and B registers. Some
examples are shown in Table 5.

The A operand is AREG unless (as
with add2) the instruction depends on
the result of the previous instruction.
Next month, you’ll see why this pipe-
line data hazard is avoided by forward-
ing the add1 result directly into the A

register, just in time for add2.
FWD, a 16-bit mux of AREG or

RESULT, does this result forwarding.
It consists of 16 1-bit muxes, each a 3-
input function implemented in a
single 4-LUT, and arranged in a col-
umn of eight CLBs. The FWD output
is captured in the A operand register,
made from the 16 flip-flops in the
same CLBs. As for the B operand,
select either the BREG register file
output port or an immediate constant.

For rri and ri format instruc-
tions, B is the zero- or sign-extended
4-bit imm field of the instruction reg-
ister. But, if there’s an imm prefix, load
B15:4 with its 12-bit imm12 field, then
load B3:0 while decoding the rri or ri

format instruction which
follows.

So, the B operand mux
IMMED is a 16-bit-wide
selection of either BREG,
015:4||IR3:0, sign15:4||IR3:0, or
IR11:0||03:0 (“||” means bit
concatenation).

I used an unusual 2-1
mux with a fourth “force
constant” input for this
zero/sign extension func-
tion, primarily because it
fits in a single 4-LUT.
So, as with FWD,
IMMED is an 8-CLB
column of muxes.

The B operand register
uses IMMED’s CLBs 16
flip-flops. The register
has separate clock en-
ables for B15:4 and B3:0, to
permit separate loading of

the upper and lower bits for an imm
prefix.

For sw or sb, read the register to be
stored, via BREG, into DOUT15:0,
another column of eight CLBs flip-
flops.

ALU
The arithmetic/logic-unit consists

of a 16-bit adder/subtractor and a 16-
bit logic unit, which concurrently
operate on the A and B registers.

LOGIC computes the 16-bit result
of A and B, A or B, A xor B, or A
andnot B, as selected by LOGICOP1:0.
Each logic unit output bit is a func-
tion of the four inputs Ai, Bi, and
LOGICOP1:0, and fits in a single

Hex Fmt Assembler Semantics

0dab rrr add rd,ra,rb rd = ra + rb;
1dab rrr sub rd,ra,rb rd = ra – rb;
2dai rri addi rd,ra,imm rd = ra + imm;
3d*b rr {and or xor andn adc rd = rd op rb;

sbc} rd,rb
4d*i ri {andi ori xori andni rd = rd op imm;

adci sbci slli slxi
srai srli srxi} rd,imm

5dai rri lw rd,imm(ra) rd = *(int*)(ra+imm);
6dai rri lb rd,imm(ra) rd = *(byte*)(ra+imm);
8dai rri sw rd,imm(ra) *(int*)(ra+imm) = rd;
9dai rri sb rd,imm(ra) *(byte*)(ra+imm) = rd;
Adai rri jal rd,imm(ra) rd = pc, pc = ra + imm;
B*dd br {br brn beq bne bc bnc bv

bnv blt bge ble bgt bltu
bgeu bleu bgtu} label if (cond) pc += 2*disp8;

Ciii i12 call func r15 = pc, pc = imm12<<4;
Diii i12 imm imm12 imm'next15:4 = imm12;
7xxx – reserved
Exxx – reserved
Fxxx – reserved

Table 3—The xr16 needs only 43 different instructions to efficiently implement an
integer-only subset of the C programming language.

Listing 2— Here’s the xr16 assembly code (with comments added) that lcc generates from Listing 1. lcc
has done a good job, although a few register-to-register moves are unnecessary.

_search: br L3 ; r3=k r4=p
L2: lw r9,(r4)

cmp r9,r3 ; p->k < k?
bge L5
lw r4,4(r4) ; p = p->right
br L6

L5: lw r4,2(r4) ; p = p->left
L6:L3: mov r9,r4

cmp r9,r0 ; p==0?
beq L7
lw r9,(r4)
cmp r9,r3 ; p->k != k?
bne L2

L7: mov r2,r4 ; retval = p
L1: ret
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serted to update PC with PCNEXT.
When the next access is a load/store,
SELPC and PCCE are false, and
ADDR ← SUM, without updating PC.

PCDISP is a 16-bit mux of +215:0

and 2×disp8, 5 CLBs tall. PCINCR is
an instance of the ADD16 library
symbol, 9 CLBs tall. ADDRMUX is a
16-bit 2-1 mux with a fourth input,
ZERO, to set PC to 0 on reset. It’s 16
LUTs, 8 CLBs tall.

PC is not a simple register, but
rather it is a 16-entry register file. PC0

is the CPU PC, and PC1 is the DMA
address. PC is a 16 × 16 RAM, eight
CLBs tall.

I used RLOC attributes to place the
datapath elements. Figure 4 is the
resulting floorplan on the 14 × 14 CLB
FPGA. Each column of CLBs provides
logic, flip-flops, and TBUF resources.

THE DATAPATH IN ACTION
Next, let’s see what happens when

we run 0008: addi r3,r1,2. As-
suming that PC=6 and r1=10,
PCINCR adds PCDISP=2 to PC=6,
giving PCNEXT=8. Because SELPC is
true, ADDR ← PCNEXT=8, and the
next memory cycle reads the word at
0008. Because PCCE is true, PC is
updated to 8.

Some time later, RDY is asserted
and the control unit latches 0x2312
(addi r3,r1,2) into its instruction
register. The control unit sets RNA=1,
so AREG=r1. BREG is not used. FWD
is false so A=AREG=r1=10. IMMOP is
set to sign-extend the 4-bit imm field,
and so B=2.

We add A+B=10+2 and as SUMT is
asserted (low), we drive SUM=12 onto

the RESULT bus. The control unit
asserts RFWE (register file write en-
able), and sets RNA=RNB=3 to write
the result into both REGFILEs’ r3.

DEVELOPMENT TOOLS
This hardware was designed, simu-

lated, and compiled on a PC using the
Foundation tools in Xilinx Student
Edition 1.5. I used schematics for this
project because their 2-D layout
makes it easier to understand the data
flow because they offer explicit con-
trol and because they support the
RLOC (relative location) placement
attributes that are essential to
floorplanning (to achieve the smallest,
fastest, cheapest design).

To compile my schematics into a
configuration bitstream, Foundation
runs these tools:

• map: technology mapping—map
schematic’s arbitrary logic struc-
tures into the device’s LUTs and
flip-flops

• par: place and route—place the
logic and flip-flops in specific CLBs
and then route signals through the
programmable interconnect

• trce: static timing analysis—enu-
merate all possible signal paths in
the design and report the slowest
ones

• bitgen: generate a bit stream con-
figuration file for the design

HIGH-PERFORMANCE DESIGN
The datapath implementation

showcases some good practices, such
as exploiting FPGA features (using
embedded SRAM, four input logic

Assembly Maps to

nop and r0,r0
mov rd,ra add rd,ra,r0
cmp ra,rb sub r0,ra,rb
subi rd,ra,imm addi rd,ra,-imm
cmpi ra,imm addi r0,ra,-imm
com rd xori rd,-1
lea rd,imm(ra) addi rd,ra,imm
lbs rd,imm(ra) lb rd,imm(ra)
  (load-byte,   xori rd,0x80
  sign-extending)   subi rd,0x80
j addr jal r0,addr
ret jal r0,0(r15)

Table 4—Many assembly pseudo-instructions are
composed from the native instructions. Only rare
signed char data use the rather expensive lbs.

Figure 4 —In the datapath floorplan, RLOC attributes
applied to the datapath schematic pin down the
datapath elements to specific CLB locations. The
RESULT15:0 bus runs horizontally across the bottom
eight rows of CLBs.
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4-LUT. Thus, the 16-bit logic unit is a
column of eight CLBs.

ADDSUB adds B to A, or subtracts
B from A, according to its ADD input.
It reads carry-in (CI) and drives carry-
out (CO), and overflow (V). ADDSUB
is an instance of the ADSU16 library
symbol, and is 10 CLBs high—one to
anchor the ripple-carry adder, eight to
add/sub 16 bits, and one to compute
carry-out and overflow.

Z, the zero detector, is a 2.5-CLB
NOR-tree of the SUM15:0 output.

The shifter produces either A>>1 or
A<<1. This requires no logic, so mux
simply selects either SRI || A15:1 or
A14:0 || 0. SRI determines whether the
shift is logical or arithmetic.

RESULT MULTIPLEXER
The result mux selects the instruc-

tion result from the adder, logic unit,
A>>1, A<<1, load data, or return ad-
dress. You build this 16-bit 7-1 mux
from lots of 3-state buffers (TBUFs).
In every cycle, the control unit asserts
some resource’s output enable, driv-
ing its output onto the RESULT15:0

long line bus that spans the FPGA.
In the third article of this series,

I’ll share the CPU result bus as the
16-bit on-chip data bus for load/store
data. During sw or sb, the CPU drives
DOUT7:0 and/or DOUT15:8 onto RE-
SULT15:0. During lw or lb, the se-
lected memory or peripheral drives
the load data on RESULT15:0 or RE-
SULT7:0.

ADDRESS/PC UNIT
This unit generates memory ad-

dresses for instruction fetch, load/
store, and DMA memory accesses. For
each cycle, we add PC += 2 to fetch
the next instruction. For a taken
branch, we add PC += 2×disp8. For
jal and call, we load PC with the
effective address SUM from ADDSUB.

Refer to Figure 3 to see how this
arrangement works. PCINCR adds PC
and the PCDISP mux output (either
+2 or the branch displacement) giving
PCNEXT. ADDRMUX then selects
PCNEXT or SUM as the next memory
address.

If the next memory access is an
instruction fetch, ADDR ← PCNEXT,
and PCCE (PC clock enable) is as-
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structures, TBUFs, and flip-flop clock
enables), floorplanning (placing func-
tions in columns, ordering columns to
reduce interconnect requirements,
and running the 3-state bus horizon-
tally over the columns), iterative
design (measuring the area and delay
effects of each potential feature), and
using timing-driven place-and-route
and iterative timing improvement.

I apply timing constraints, such as
net CLK period=28;, which causes
par to find critical paths in the design
and prioritize their placement and
routing to best meet the constraints.
Next, I run trce to find critical
paths. Then I fix them, rebuild, and
repeat until performance is satisfac-
tory.

I’ve built some tools, settled on an
instruction set, built a datapath to
execute it, and learned how to imple-
ment it efficiently in an FPGA. Next
month, I’ll design the control unit. I

Instruction(s) A B

add rd,ra,rb AREG BREG

addi rd,ra,i4 AREG sign-ext imm

sb rd,i4(ra) AREG zero-ext imm

imm 0x123 ignored imm12 || 03:0

addi rd,ra,4 AREG B15:4 || imm

add1 r3,r1,r2 AREG BREG
add2 r5,r3,r4 RESULT BREG

Table 5—Depending on the instruction or instruction
sequence, A is either AREG or the forwarded result,
and B is either BREG or an immediate field of the
instruction register.

Jan Gray is a software developer
whose products include a leading C++
compiler. He has been building FPGA
processors and systems since 1994,
and now he designs for Gray Re-
search LLC. You may reach him at
jan@fpgacpu.org.
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Building a RISC System
in an FPGA

FEATURE
ARTICLE

Jan Gray

l
In Part 1, Jan intro-
duced his plan to
build a pipelined 16-
bit RISC processor
and System-on-a-
Chip in an FPGA.
This month, he ex-
plores the CPU pipe-
line and designs the
control unit. Listen up,
because next month,
he’ll tie it all together.

ast month, I
discussed the

instruction set and
the datapath of an xr16

16-bit RISC processor. Now, I’ll
explain how the control unit pushes
the datapath’s buttons.

Figure 2 in Part 1 (Circuit Cellar,
116) showed the CTRL16 control unit
schematic symbol in context. Inputs
include the RDY signal from the
memory controller, the next instruc-
tion word INSN15:0 from memory, and
the zero, negative, carry, and overflow
outputs from the datapath.

The control unit outputs manage
the datapath. These outputs include
pipeline control clock enables,
register and operand selectors, ALU
controls, and result multiplexer
output enables. Before designing the
control circuitry, first consider how
the pipeline behaves in both good and
bad times.

PIPELINED EXECUTION
To increase instruction through-

put, the xr16 has a three-stage
pipeline—instruction fetch (IF),
decode and operand fetch (DC), and
execute (EX).

In the IF stage, it reads memory at
the current PC address, captures the
resulting instruction word in the
instruction register IR, and incre-
ments PC for the next cycle. In the
DC stage, the instruction is decoded,
and its operands are read from the
register file or extracted from an
immediate field in the IR. In the EX
stage, the function units act upon the
operands. One result is driven through
three-state buffers onto the result bus
and is written back into the register
file as the cycle ends.

Consider executing a series of
instructions, assume no memory wait
states. In every pipeline cycle, fetch a
new instruction and write back its
result two cycles later. You
simultaneously prepare the next
instruction address PC+2, fetch

Part 2: Pipeline and Control Unit Design

Table 1—Here the processor fetches instruction I1 at
time t1 and computes its result in t3, while I2 starts in t2

and ends in t4. Memory accesses are in boldface.

t1 t2 t3 t4 t5

IF1 DC1 EX1

IF2 DC2 EX2

IF3 DC3 EX3

IF4 DC4
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instruction IPC, decode instruction IPC-2,
and execute instruction IPC-4.

Table 1 shows a normal pipelined
execution of four instructions. That’s
the simple case, but there are several
pipeline complications to consider—
data hazards, memory wait states,
load/store instructions, jumps and
branches, interrupts, and direct
memory access (DMA).

What happens when an instruction
uses the result of the preceding
instruction?

I1: andi r1,7
I2: addi r2,r1,1

Referring to time t3 of Table 1, EX1

computes r1=r1&7, while DC2 fetches
the old value of r1. In t4, EX2

incorrectly adds 1 to this stale r1.
 This is a data hazard, and there are

several ways to address it. The assem-
bler can reorder instructions or insert
nops to avoid the problem. Or, the
control unit can detect the hazard and
stall the pipeline one cycle, in order
to write-back the result to the register
file before fetching it as a source regis-
ter. However, these techniques hurt
performance.

Instead, you do result forwarding,
also known as register file bypass.
The datapath DC stage includes FWD,
a 16-bit 2-1 multiplexer (mux) of
AREG (register file port A), and the
result bus. Most of the time, FWD
passes AREG to the A operand regis-
ter, but when the control unit detects
the hazard (DC source register equals
EX destination register), it asserts its
FWD output signal, and the A register
receives the I1 result just in time for
EX2 in t4.

Unlike most pipelined CPUs, the
xr16 only forwards results to the A
operand—a speed/area tradeoff. The
assembler handles any rare port B data

hazards by swapping A and B operands,
if possible, or inserting nops if not.

MEMORY ACCESSES
The processor has a single memory

port for reading instructions and
loading and storing data. Most
memory accesses are for fetching
instructions. The processor is also the
DMA engine, and a video refresh
DMA cycle occurs once every eight
clocks or so. Therefore, in any given
clock cycle, the processor executes
either an instruction fetch memory
cycle, a DMA memory cycle, or a
load/store memory cycle.

Memory transactions are pipelined.
In each memory cycle, the processor
drives the next memory cycle’s
address and control signals and awaits
RDY, indicating the access has been
completed. So, what happens when
memory is not ready?

The simplest thing to do is to stop
the pipeline for that cycle. CTRL
deasserts all pipeline register clock
enables PCE, ACE, and so forth. The
pipeline registers do not clock, and
this extends all pipeline stages by one
cycle. In Table 2, memory is not ready
during the fetch of instruction I3 in t3,
and so t4 repeats t3. (Repeated pipe
stages are italicized.)

IL in Listing 1 is a load word in-
struction. Loads and stores need a
second memory access, causing pipe-
line havoc (see Table 3). In t4 you
must run a load data access instead
of an instruction fetch. You must
stall the pipeline to squeeze in this
access.

Then, although you fetched I3 in t3,
you must not latch it into the
instruction register (IR) as t3 ends,

because neither EXL nor DC2 are
finished at this point. In particular,
DC2 must await the load result in
order to forward it to A, because I2

uses r6—the result of IL!
Finally, if (in t3) you don’t save the

just-fetched I3 somewhere, you’ll lose
it, because in t4, the memory port is
busy with the load cycle. If you lose
it, you’ll have to re-fetch it no sooner
than t5, with the result that even a no-
wait load requires three cycles, which
is unacceptable.

To fix this problem, the control
unit has a 16-bit NEXTIR register and
an IR source multiplexer (IRMUX). In
t3, it captures I3 in NEXTIR, and then
in t4, IR is loaded from NEXTIR
instead of from the memory port
(which is busy with the load).
NEXTIR ensures a two-cycle load or
store, at a cost of eight CLBs.

As with instruction fetch accesses,
load/store memory accesses may
have to wait on slow memory. For
example, had RDY not been asserted
during t4, the pipeline would have
stalled another cycle to wait for EXL

access to complete.

BRANCHING OUT
Next, consider the effect of jumps

(call and jal) and taken branches.
By the time you execute the jump or
taken branch IJ during EXJ (updating
PC), you’ll have decoded IJ+1 and
fetched IJ+2. These instructions in the
branch shadow (and their side effects)
must be annulled.

Continuing the Table 3 example
from time t5, and assuming the branch
is taken at t7, you must annul the EX5

stage of I5, and the DC6 and EX6 stages
of I6. (Annulled stages are struck

Listing 1— This C code produces assembly code that includes a load IL and a branch IB. Each causes
pipeline headaches.

Table 2—During t3, the instruction fetch memory access
of I3 is not RDY, so the pipeline registers do not clock,
and the pipeline stalls until RDY is asserted in t4.
Repeated pipeline stages are italicized.

t1 t2 t3 t4 t5

IF1 DC1 EX1 EX1

IF2 DC2 DC2 EX2

IF3 IF3 DC3

IF4

if ((p->flags & 7) == 1)
    p->x = p->y;

I
L
: lw r6,2(r10) ;load r6 with p->flags

I
2
: andi r6,7 ;is (p->flags & 7)

I
3
: addi r0,r6,-1 ;==1?

I
B
: bne T

I
5
: lw r6,6(r10) ;yes: load r6 with p->y

...
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through). Execution continues at in-
struction IT. T9 is not an EX5 load
cycle, because the I5 load is annulled.

Because you always annul the two
branch shadow instructions, jumps
and taken branches take three cycles.
Jumps also save the return address in
the destination register. This return
address is obtained from the data-
path’s RET register, which holds the
address of the instruction in the DC
pipeline stage.

INTERRUPTS
When an interrupt request

occurs, you must jump to the
interrupt handler, preserve the
interrupt return address, retire
the current pipeline, execute
the handler, and later return to
the interrupted instruction.

When INTREQ is asserted,
you simply override the
fetched instruction with int,
that is, jal r14,10(r0) via
the IRMUX. This jumps to the
interrupt handler at 0x0010

and leaves the return address in r14,
which is reserved for this purpose.
When the handler has completed, it
executes iret, (i.e, jal r0,0(r14))
and exection resumes with the
interrupted instruction.

There are two pipeline issues here.
First, you must not interrupt an
interlocked instruction sequence (any
add, sub, shift, or imm followed by
another instruction). If an interlocked
instruction is in the DC stage, the
interrupt is deferred one cycle.

Secondly, the int must not be
inserted in a branch or jump shadow,
lest it be annulled. If a branch or jump
is in the DC stage, or if a taken
branch or jump is in the EX stage, the
interrupt is deferred.

The simplicity of the process pays
off once again. The time to take an
interrupt and then return from a null
interrupt handler is only six cycles.

You might be wondering about the
interrupt priorities, non-maskable
interrupts, nested interrupts, and
interrupt vectors. These artifacts of
the fixed-pinout era need not be
hardwired into our FPGA CPU. They
are best done by collaboration with an
on-chip interrupt controller and the
interrupt handler software.

The last pipeline issue is DMA.
The PC/address unit doubles as a
DMA engine. Using a 16 × 16 RAM as
a PC register file, you can fetch either
an instruction (AN ← PC0 += 2) or a
DMA word (AN ← PC1 += 2) per
memory cycle.

After an instruction is fetched, if

Table 3—Pipelined execution of the load instruction IL, I2, I3, the
branch IB, the annulled I5 and I6, and the branch target IT. During
t4 you stall the pipeline for the IL load/store memory cycle. The
branch IB executed in t7 causes I5 and I6 to be annulled in t8 and
t9. Annulled instructions are struck through.

t1 t2 t3 t4 t5 t6 t7 t8 t9

IFL DCL EXL EXL
IF2 DC2 DC2 EX2

IF3 IF3 DC3 EX3

IFB DCB EXB

IF5 DC5 EX5

IF6 DC6 EX6

IFT DCT

IF
DMAP
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DMA
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IF
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Mem cycle state  machine
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Q EXANNUL

RDY
BUF
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RDY
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Figure 1— This control unit finite state machine schematic implements
the symbol CTRLFSM in Figure 2. It consists of the memory cycle FSM
(see Figure 4), plus instruction annulment and pending request registers.
The FSM outputs are derived from the machines current and next states.

a) b)
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DMAREQ has been asserted, you
insert one DMA memory cycle.

This PC register file costs eight
CLBs for the RAM, but saves 16 CLBs
(otherwise necessary for a separate 16-
bit DMA address counter and a 16-bit
2-1 address mux), and shaves a couple

of nanoseconds from the system’s
critical path. It’s a nice example of a
problem-specific optimization you
can build with a customizable
processor.

To recap, each instruction takes
three pipeline cycles to move through
the instruction fetch, operand fetch
and decode, and execute pipeline
stages. Each pipeline cycle requires up
to three memory access cycles
(mandatory instruction fetch, optional
DMA, and optional EX stage load or
store). Each memory access cycle
requires one or more clock cycles.

CONTROL UNIT DESIGN
Now that you understand the pipe-

line, you are ready to design the con-
trol unit. (For more information on
RISC pipelines, see Computer Orga-
nization and Design: The Hardware/
Software Interface, by Patterson and
Hennessy.) [1] First, some important
naming conventions. Some control
unit signal names have prefixes and
suffixes to recognize their function or
context (most signal names sans pre-

fix are DC stage signals):
• Nsig: not signal—signal inverted
• DCsig: a DC stage signal
• EXsig: an EX stage signal
• sigN: signal in “next cycle”—input

to a flip-flop whose output is sig
• sigCE: flip-flop clock enable
• sigT: active low 3-state buffer

output enable

Each instruction flows through the
three stages (IF, DC, and EX) of the
control unit (see Figure 2) pipeline. In
the IF stage, when the instruction
fetch read completes, the new instruc-
tion at INSN15:0 is latched into IR.

In the DC stage, DECODE decodes
IR to derive internal control signals.
In the first half clock cycle, CTRL
drives RNA3:0 and RNB3:0 with the
source registers to read, and drives
FWD and IMM5:0 to select the A and B
operands. If the instruction is a
branch, CTRL determines if it is
taken. Then as the pipeline advances,
the instruction passes into EXIR.

In the EX stage, CTRL drives ALU
and result mux controls. If the in-

Table 4—RNA and RNB control the A and B ports of
the register file.  While CLK is high, they select which
registers to read, based upon register fields of the
instruction in the DC stage. While CLK is low, they
select which register to write, based upon the instruc-
tion in the EX stage.

RNA When

RA DC: add sub addi
lw lb sw sb jal

RD DC: all rr, ri format
0 DC: call
EXRD EX: all but call
15 EX: call

RNB When

RB DC: add sub, all rr fmt
RD DC: sw sb
EXRD EX: all but call
15 EX: call

FD16CE
NEXTIR

D[15:0]
CE
C

Q[15:0]
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^
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A[15:0] O[15:0]
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Figure 2— This control unit schematic implements
half of the symbol CTRL16 in last month’s Figure 2,
including the CPU finite state machine, instruction
register pipline, and instruction decoder. Instructions
enter on INSN15:0  and are latched in IR and decoded.
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• RDY: memory cycle complete (input
from the memory controller)

• READN: next memory cycle is a
read transaction—true except for
stores

• WORDN: next cycle is 16-bit data—
true except for byte loads/stores

• DBUSN: next cycle is a load/store,
and it needs the on-chip data bus

• ACE (address clock enable): the next
address AN15:0 (a datapath output)
and the above control outputs are
all valid, so start a new memory
transaction in the next clock cycle.
ACE equals RDY, because if
memory is ready, the CPU is
always eager to start another
memory transaction.
There are no IF stage control out-

puts. Internal to the control unit,
three signals control IF stage re-
sources. Those three signals are:

• PCE: enable IR and EXIR
clocking

• IF: asserted in an instruction
fetch memory cycle

• IFINT: force the next instruction to
be int = jal r14,10(r0) =

Table 5—Here’s a look at the result multiplexer output enable controls.
The instruction determines which enable is asserted and which function
unit drives RESULT15:0.

Enable Instruction Source

SUMT add sub addi SUM15:0

adc sbc adci sbci
LOGICT and or xor andn LOGIC15:0

andi ori xori andni
SLT slli A14:0 || 0
SRT srli srai SRI || A15:1

ZXT lb 015:8

RETADT jal call RETAD15:0

none sw sb br* imm —

0xAE01

If a DMA or load/store access
is pending, IF enables NEXTIR to
capture the previously fetched
instruction (take a look back at
time t3 in Table 3). Otherwise,
the instruction fetch is the only
memory access in the pipe stage.
So, IF is then asserted with PCE,
and IRMUX selects the INSN15:0

input as the next instruction to
complete.

DECODE STAGE
The greater part of the control unit

operates in the DC stage. It must
decode the new instruction, control
the register file, the A and B operand
multiplexers, and prepare most EX
stage control signals.

The instruction register IR latches
the new instruction word as the DC
stage begins. The buffers IRB and
IMMB break out the instruction fields
OP, RD, and so forth—IR15:12 is re-
named OP3:0 and so on (the tools opti-
mize away these buffers).

 The instruction decoder DECODE
is simple. It is a set of 30 ROM 16x1s,
gate expressions, and a handful of flip-
flops. Each ROM inputs OP3:0 or
EXOP3:0 and outputs some decoded
signal. The decoder is relatively
compact because xr16 has a simple
instruction set, and its 4-bit opcodes
are a good match for the FPGA’s 4
LUTs.

The register file control signals,
shared by both the DC and EX stages,
are RNA3:0: port A register number;
RNB3:0: port B register number; and
RFWE: register file write enable.

struction is a load/store, it in-
serts a memory access. In the last
half cycle, RNA and RNB both
drive the destination register
number to store the result into
the register file.

Let’s consider each part of the
control finite state machine (see
Figure 1). The control FSM has
three states:

• IF: current memory access is an
instruction fetch cycle

• DMA: current access is a DMA
cycle

• LS: current access is a load/store

Figure 4 shows the state transition
diagram. The FSM clocks when one
memory transaction completes and
another begins (on RDY). CTRLFSM
also has several other bits of state:

• DCANNUL: annul DC stage
• EXANNUL: annul EX stage
• DCINT: int in DC stage
• DMAP: DMA transfer pending
• INTP: interrupt pending

DCANNUL and EXANNUL are set
after executing a jump or taken
branch. They suppress any effects of
the two instructions in the branch
shadow, including register file write-
back and load/store memory accesses.
So, an annulled add still fetches and
adds its operands, but its results are
not retired to the register file.

DCINT is set in the pipeline cycle
following the insertion of the int
instruction. It inhibits clocking of
RET for one cycle, so that the int
picks up the return address of the
interrupted instruction rather than
the instruction after that.

The highest fan-out control signal is
PCE, the pipeline clock enable. Most
datapath registers are enabled by PCE.
It indicates that all pipe stages are
ready and the pipeline can advance.
PCE is asserted when RDY signals
completion of the last memory cycle
in the current pipeline cycle. If mem-
ory isn’t ready, PCE isn’t asserted, and
the pipeline stalls for one cycle.

The control FSM also takes care of
managing the memory interface via
the following signals:

Table 6—Here’s a look at the result multiplexer output enable controls. The instruction determines which enable to
assert and thus determines which function unit drives the RESULT bus.

Next cycle Next address Outputs

IF AN ← PC0 += 2 SELPC PCCE
IF branch AN ← PC0 += 2×disp8 BRANCH SELPC PCCE

IF jal call AN ← PC0 = SUM PCCE

IFreset AN ← PC0 = 0 SELPC ZEROPC PCCE

LS load/store AN ← SUM —

DMA AN ← PC1 += 2 SELPC DMAPC PCCE
DMA reset AN ← PC1 = 0 SELPC ZEROPC DMAPC PCCE
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RNA
RA[3:0]
RD[3:0]
SELRD
SELR0
EXRD[3:0]
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FDCE
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NSUB
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PCE
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DC: operand select ion
Execute stage
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^
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Figure 3— The remainder of the control unit schematic implements the DC stage operand selection
logic including register file, immediate operand control, branch logic, EX stage ALU, and result mux
controls.

With CLK high,
CTRL drives RNA
and RNB with the
DC stage
instruction’s source
register numbers.
With CLK low,
CTRL drives RNA
and RNB with the
EX stage destination
register number.

RFWE is asserted
with PCE when
there is a result to
write back. It is false
for instructions,
which produces no
result (immediate
prefix, branch, or
store) for annulled
instructions, and for
destination r0.

The muxes RNA
and RNB produce
RNA3:0 and RNB3:0, as
shown in Table 4, as
selected by decode
outputs RRRI,
CALL, ST, EXCALL,
and CLK. Call is
irregular. It
computes r15 = pc,
pc = r0 + imm12<<4,
and the registers r15
and r0 are implicit.

The FWD signal
causes RESULT to be
forwarded into A,
overriding AREG.
CTRL asserts FWD when the EX stage
destination register equals the DC
stage source register A (detected
within RNA), unless the EX stage
instruction is annulled or its
destination is r0.

Last month, I discussed IMMED,
the BREG/immediate operand mux.
IMMOP5:0 controls IMMED, based
upon the decoder outputs
WORDIMM, SEXTIMM4, IMM_12,
and IMM_4.

B3:0 is clock enabled on PCE, but
B15:4 uses B15_4CE. B15_4CE is PCE,
unless the EX stage instruction is
imm. Thus, the imm prefix establishes
B15:4, and the subsequent immediate
operand instruction provides B3:0

only.

Now, turning to conditional
branches, if the DC stage instruction
is a branch, then the EX stage
instruction must be add, sub, or
addi, which drives the control unit’s
condition inputs Z (zero), N
(negative), CO (carry-out), and V
(overflow).

Late in the DC stage, the TRUE
macro evaluates whether or not the
branch condition COND is true with
respect to the condition inputs. If so,
and if the branch instruction is not
annulled, the BRANCH flip-flop is
set. Therefore, as the pipeline
advances and the branch instruction
enters the EX stage, the BRANCH
control output is asserted. This
directs PCINCR to take the branch

by adding 2×disp8 to
the PC.

THE EXECUTE
STAGE

Now, let’s discuss
the EX stage ALU,
result mux, and
address unit controls.
The ALU and shift
control outputs are:

• ADD: set unless the
instruction is sub or
sbc
• CI: carry-in. 0 for
add and 1 for sub,
unless it’s adc or sbc
where we XOR in the
previous carry-out
• LOGICOP1:0: select
and, or, xor, or andn.
LOGICOP1:0 is simply
EXIR5:4 (i.e., EX stage
copy of FN1:0)
• SRI: shift right
input—0 for srli and
A15 for srai (shift
right arithmetic)

slxi and srxi (shift
extended left/right for
multi-word shift sup-
port) are not yet imple-
mented. Be my guest!

The result mux
control outputs SUMT,
LOGICT, SLT, SRT,
SXT, and RETADT are

active low RESULT bus 3-state output
enables. Each cycle, all EX stage
function units produce results. One
asserted T enables its unit’s 3-state
buffers to drive the RESULT bus, as
shown in Table 5.

ZXT zeroes RESULT15:8 during lb.
As you’ll see next month, the system
drives RESULT7:0 with the byte load
result.

The following outputs control the
address unit:

• BRANCH: if set, add 2×disp8 to PC,
otherwise add +2

• SELPC: if set, next address is
PCNEXT15:0, otherwise SUM15:0

• ZEROPC: if set, next address is 0
• PCCE (PC clock enable): update PCi
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Figure 4 —Each memory cycle is an instruction fetch
unless there is a DMA transfer pending or the EX stage
instruction is a load or store. The FSM clocks when one
memory transaction completes and another begins (on
RDY).

IF

DMA

LS

LS
P

*LSP

DMAP

*D
M

A

P×LSP

*D
M

AP
×LSP

DMAP: DMA pending
LSP: load/store pending

• DMAPC: if set, fetch and update
PC1 (DMA address), otherwise PC0

(PC)

Depending on the next memory
cycle and the current EX stage
instruction, the control unit selects
the next address by asserting certain
combinations of control outputs (see
Table 6).

WRAP-UP
This month, we considered pipe-

lined processor design issues and ex-
plored the detailed implementation of
our xr16 control unit—and lived! The
CPU design is complete. The final
article in this series tackles the design
of this System-on-a-Chip. I

© Circuit Cellar, The Magazine for Computer Applications.
Reprinted with permission. For subscription information call
(860) 875-2199, email subscribe@circuitcellar.com or on our
web site at www.circuitcellar.com.
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Building a RISC System
in an FPGA

FEATURE
ARTICLE

Jan Gray

t
Now that the xr16
RISC processor is
complete, it’s time to
tie everything to-
gether and wrap up
this series. In this fi-
nal part, Jan designs
a demo system that
includes an on-chip
bus, memory control-
ler, video controller,
and peripherals.

he xr16 RISC
processor is de-

signed, now it’s time
to design the rest of the

System-on-a-Chip (SoC). Besides the
CPU, the FPGA hosts an on-chip bus,
bus controller, parallel port, RAM,
video controller, and an external
SRAM controller.

This month, I’ll show how simple
interfaces can make SoC design as
straightforward as classic CPU, glue
logic, memory, peripherals, and PCB
design used to be.

XS40 BOARD
The project targets the XESS XS40-

005XL V.1.2 FPGA board in Photo 1,
which includes a Xilinx XC4005XL,
12-MHz oscillator (see Figure 1),
32-KB SRAM, 8031 MCU,
7-segment LED, voltage
regulators, and parallel
port and VGA port connec-
tors. It’s simple, inexpen-
sive, and is featured in The
Practical Xilinx Designer
Lab Book included with
Xilinx Student Edition.

I chose this board be-
cause it is well supported
with documentation and
tools, and because it can
be used for both the XSE
exercises and this project.

A SYSTEM-ON-A-CHIP
I’ll build an integrated system from

the resources at hand—the FPGA,
RAM, the video and parallel ports,
and the 12-MHz oscillator.

I used the RAM for program, data,
and video memory. The byte-wide,
asynchronous SRAM isn’t ideal, but it
is fast enough for you to read and
latch a byte on each clock edge,
thereby fetching a 16-bit instruction
during each cycle.

By displaying all 32 KB of RAM,
you can fashion a bitmapped 576 ×
455 monochrome video display at
VGA-compatible sync frequencies.
How quaint, to watch every bit on
screen!

Refer also to Figure 4, the FPGA
top-level schematic. It includes the

Part 3: System-on-a-Chip Design

Table 1—The system memory map includes eight decoded peripheral
control register address blocks.

Address Resource

0000-7FFF external 32-KB RAM,
    video frame buffer

0000 reset handler
0010 interrupt handler
FF00-FFFF I/O control registers,

8 peripherals × 32 bytes
FF00-FF1F 0: 16-word on-chip IRAM
FF21 1: parallel port input byte
FF41 2: parallel port output byte
FF60-FF7F 3: unused
… …
FFE0-FFFF 7: unused
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processor (P), the system memory/bus
controller (MEMCTRL), the on-chip
16-bit data bus (D15:0), on-chip periph-
erals (PARIN, PAROUT, and IRAM),
the external SRAM interface, and the
VGA video controller.

DECISIONS, DECISIONS
Before examining the design, let’s

briefly explore the on-chip bus design
space. (This is not the sort of thing
you worry about when designing to
someone else’s microprocessor, but in
an FPGA SoC, you have a little more
freedom.)

Bus design issues include how
many bus masters are permitted, how
is the bus clocked and pipelined, how
wide is it, does it provide byte ad-
dressing, and is it split or unified with
the processor core RESULT bus.

For XSOC, the pipelined on-chip
16-bit data bus D15:0 is single-mas-
tered (but recall the CPU also per-
forms DMA transfers), the bus clock
is the CPU clock, and the on-chip
data bus is unified with the pro-
cessor’s RESULT15:0 data bus. All of
these design decisions help to keep
this project simple.

BUS CONTROLS
MEMCTRL, the system bus/

memory controller, interfaces the
processor to the on-chip and off-chip
peripherals. It receives the pipelined
“next transaction” memory request
signals AN15:0, WORDN, READN,
DBUSN, and ACE from the CPU.
Then, it decodes the address, enables
some peripheral or memory, and later
asserts RDY in the clock cycle in
which the memory cycle completes.
I/O registers are memory mapped (see
Table 1).

There are eight transaction types:
(external RAM or I/O) × (read or
write) × (byte or word), all decoded
from AN15:0, WORDN, and READN.

MEMCTRL manages transfers on
the on-chip data bus D15:0 and the
external data bus XD7:0 by asserting
various tri-state output enables (xT)
and control register clock enables
(xCE). These enable signals are as-
serted according to the transaction
type (see Table 3).

 For example, during sw r0,

0xFF00, MEMCTRL decodes an I/O
write word request. It asserts LDT
and UDT, driving the store data onto
D15:0, and asserts IRAM/LCE and
IRAM/UCE, writing D15:0 into IRAM’s
SRAMs:

IRAM/D15:0 := D15:0 ← DOUT15:0

Next, consider a store to external
RAM: sw r0,0x0100. Because the
external data bus is only eight bits
wide, first store the least significant
byte, then the most significant byte.
First, MEMCTRL asserts LDT and
XDOUTT:

XD7:0 ¬ D7:0 ¬ DOUT7:0

Later, it asserts UDLDT and
XDOUTT:

XD7:0 ← D7:0 ← DOUT15:8

BUS INTERFACE
Now, let’s design an on-chip bus

peripheral interface to enable robust
and easy reuse of peripheral cores and
to prepare for an ecology of interoper-
able cores to come.

It helps to distinguish between
core users and core designers. The
former are more numerous, while the
latter are more experienced. There-
fore, I make ease-of-use tradeoffs in
favor of core users.

Because FPGAs are malleable and
FPGA SoC design is so new, I wanted
an interface that can evolve to address
new requirements without invalidat-
ing existing designs.

With these two considerations in
mind, I borrowed a few ideas from the
software world and defined an ab-
stract control signal bus with all of
the common control signals collected

into an opaque bus CTRL15:0.
MEMCTRL drives CTRL and also

does I/O address decoding, driving the
eight I/O selects SEL7:0.

Now, you need only instantiate the
core, attach CLK, CTRL, D, some
SELi, any core-specific inputs and
outputs, and you’re done!

Contrast this with interfacing to a
traditional peripheral IC. Each IC has
its own idiosyncratic set of control
signals, I/O register addresses, chip
selects, byte read and write strobes,
ready, interrupt request, and such.
They don’t call it glue logic for nothing.

Of course, we can’t just sweep all
the complexity under the rug. Each
core must decode CTRL and recover
the relevant control signals. This is
done with the DCTRL (CTRL de-
coder) macro (see Figure 5). DCTRL
inputs SELi, CTRL15:0, and CLK and
outputs local I/O register address,
upper and lower byte output enables
(read strobes), and clock enables
(write strobes).

Within each DCTRL instance, you
do final address decoding for the spe-
cific peripheral, combining its SELi

signal with the I/O select within
CTRL15:0. Here XIN8 only uses LDT
(the LSB output enable). The other
DCTRL outputs are unloaded and
automatically eliminated by the
FPGA implementation tools.

Using DCTRL and the on-chip tri-
state bus, the typical overhead per
peripheral is only one or two CLBs,
and perhaps a column of TBUFs.

Control signal abstraction can also
make bus interface evolution easy. If
you revise MEMCTRL and DCTRL
together, arbitrary changes to CTRL15:0

can be made without invalidating any

Figure 1 —The system schematic depicts the subset of
the XS40 needed for our project. The 8031 (not shown)
is held in reset.

Table 2—There are a set of enables p/* within each
peripheral. DOUT15:0 is the CPU store data output
register (see Part 1, Circuit Cellar 116).

Enable Effect

LDT D7:0 ← DOUT7:0
UDT D15:8 ← DOUT15:8
UDLDT D7:0 ← DOUT15:8
XDOUTT XD7:0 ← D7:0
LXDT D7:0 ← XDIN7:0
UXDT D15:8

 
← XDIN15:8

p/LDT D7:0 ← p/D7:0
p/UDT D15:8 ← p/D15:8
p/LCE p/D7:0 := D7:0
p/UCE p/D15:8 := D15:8
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Table 3—Depending on the memory transaction, different bus output
enables and register clock enables are asserted.

Figure 3 —The rest of the device contains the auto-
matically placed processor control unit and other logic.

existing designs. And, to add new bus
features, simply design a new decoder
DCTRL_v2, causing no changes to
existing DCTRL clients.

EXTERNAL I/O INTERFACE?
There isn’t one. If it were necessary

to attach external peripherals, perhaps
to the XD7:0 bus, you might design
some on-chip external peripheral
adapter macros. Just like an on-chip
peripheral, each adapter would take
CTRL and some SELi, but its job
would be to use additional I/O pins to
control its peripheral IC’s chip selects
and so forth. Of course, as a CTRL15:0

client, it would be able to raise inter-
rupts, insert wait states, and so forth.

EXTERNAL RAM
The external RAM is a classic

32-KB fast asynchronous SRAM with
a 15-ns access time (tAA). Its pins in-

clude A14:0 (address), D7:0 (data in/
out), /CS (chip select), /WE (write
enable), and /OE (output enable).

Refer to Figure 2 and the external
bus and SRAM interface block of
Figure 5.

XA14:1 is 14 IOBs configured as
OFDXs (output flip-flops with clock
enables). XA14:1 captures the next ad-
dress AN14:1 at the start of each new
memory transaction. XA0 (XA_0) is
the least significant bit of the external
address. It is a logic output and can
change on either CLK edge.

XD7:0 is eight IOBs configured as
eight sets of simultaneous OBUFTs
(tri-state output buffers), IBUFs (input

buffers), and IFDs (input flip-flops).
During a RAM write, XDOUTT is

asserted, RAMNOE is deasserted, and
the OBUFTs drive D7:0 out onto XD7:0.

During a RAM read, XDOUTT is
deasserted, RAMNOE is asserted, and
the RAM drives its output data onto
XD7:0. The data is input through the
IBUFs and latched in the XDIN IFDs
(on each falling CLK edge).

To keep the CPU busy with fresh
new instructions, the system reads
both bytes of a 16-bit word in one
cycle. In the first half cycle, it sets
XA0=0, reading the MSB, and latches
it in XDIN. In the second half cycle,
the system sets XA0=1, reading the
LSB, and reads it through IBUFs. The
catenation of these two bytes,
XDIN15:0, feeds the CPU’s INSN port,
the video controller’s PIX port, and
D15:0 via the byte-wide tri-state buff-
ers LXD and UXD.

Writes to asynchronous SRAM
require careful design. Let’s see if we
can safely write one byte per clock
cycle. The key constraints are:

• address must be valid before assert-
ing /WE

• data must be valid before deassert-
ing /WE

• /WE must be deasserted briefly
• no adddress/data hold

time after /WE

I required a fully syn-
chronous design to be
able to slow or stop the
clock and was unwilling
to employ any asynchro-
nous delay tricks.

Accomplishing this
requires one half clock to
settle the write address,
one half clock to assert /

WE, and one half clock to deassert it.
Therefore, byte writes take two full
cycles, and word writes take three
(e.g., a word write takes six half
cycles W1–W6):

• W1: assert XA14:1, data LSB, XA0=1
• W2: assert /WE
• W3: deassert /WE, hold XA and data
• W4: assert data MSB, XA1=0
• W5: assert /WE
• W6: deassert /WE, hold XA and data

MEMCTRL DESIGN
I’ve discussed the responsibilities

of MEMCTRL design: address decod-
ing, on-chip bus control, and external
RAM control. Now, let’s review its
implementation (see Figure 6).

In address decoding, if the next
access is a load/store to address FFxx,
the access is to memory-mapped I/O,
and SELIO is asserted. Otherwise, it’s
a RAM access.

Within each peripheral’s DCTRL
instance, its SELi (decoded from AN7:5)
and CTRLSELIO combine to develop that
peripheral’s output and clock enables.

For bus control, the current state of
the memory transaction finite state
machine determines which controls
are asserted. The CPU asserts ACE
(address clock enable) to request the
next transaction and awaits RDY.
MEMCTRL decodes the request, and
the FSM enters the IO, RAMRD, or
RAMWR state. The latter has three
sub-states—W12, W34, and W56—
corresponding to pairs of the W1–W6
half-states described previously.

In the IO state, RDY is asserted
unless the selected peripheral
deasserts CTRL0, the I/O ready line,
thereby inserting a wait state.

In the RAMRD state, RDY is as-

Figure 2 —The RAM interface signals for three memory
transactions are: read 1234 from address 0010, write
ABCD to address 0200, and read 5678 from address
0012.
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Figure 5— The XIN8 (PARIN) implementation shows the CTRL
decoder output LDT that enables the input byte to be driven onto the
data bus.

serted immediately because all
RAM reads require only one
clock cycle. In the RAMWR
state, RDY is asserted on W34 for
byte stores and on W56 for word
stores.

The write controller uses flip-
flops W23_45 and W45, which are
clocked on CLK falling edges. So,
W34 is true during W3 and W4, while
W45 is true during W4 and W5. From
the W* signals you derive glitch-free
control signals XA_0, /WE, /OE, and so
on.

The rest of MEMCTRL is straight-
forward. Note how E encodes (re-
names) the various peripheral control
signals to CTRL15:0.

I technology-mapped some logic
using FMAPs. Timing analysis had
revealed poor automatic mapping of
this logic. This change shaved a few
nanoseconds off the critical path.

Now that we’ve covered the imple-
mentation of MEMCTRL, let’s turn
our attention to peripherals.

PARALLEL PORT I/O
I provided parallel port I/O to com-

municate with the host. The XS40
board provides eight parallel port data
inputs and five status outputs. Reserv-
ing a few for debug I/Os, I used six
inputs and four outputs.

During lb rd,FF41, the PARIN
input peripheral is selected, driving
the inputs 00 || PAR_D5:0 onto D7:0 (see
Figure 5).

During sb r1,FF21, the PAROUT
output peripheral is selected, captur-
ing the store data D3:0 in flip-flops,
which drive the PC_S6:3 status outputs.

XOUT4 is as simple as XIN8. It

has a DCTRL decoder, of course, and
clocks D3:0 on LCE (LSB clock enable).
This parallel port requires only three
CLBs, eight TBUFs, and 10 IOBs!

ON-CHIP RAM
XSOC also includes a 16 × 16-bit

RAM peripheral. It uses all of the
DCTRL outputs: A4:1 to select the
word to read or write, LCE and UCE
as lower and upper byte write strobes,
and LDT and UDT as lower and upper
byte output enables.

VIDEO CONTROLLER
The bit-mapped video controller,

based on ideas from [1], displays all
32 KB of external SRAM at 576 × 455
resolution, monochrome.

It runs autonomously from the
CPU, and so is not a peripheral on the
on-chip bus. It uses DMA to fetch
video data, which consumes about
10% of memory bandwidth.

A video signal is a series of frames;
each frame is a series of lines, and
each line is a series of pixels. The
video controller fetches 16-pixel words
of video memory, shifts the pixels out
serially, and uses horizontal and verti-
cal sync pulses to format the pixels
into frames and lines for the monitor.

Generating VGA-compatible hori-
zontal and vertical sync timings, VGA

shifts pixels out at 24
MHz, twice the sys-
tem clock rate, shift-
ing one out when CLK
is high and a second
when it is low. The
horizontal and vertical
sync pulses are ad-
vanced a few clocks
(lines) to center the
display in the frame
(see Table 5).

The VGA ports are
described in Table 6.
The first five ports

Photo 1 —Here’s the XS40 board, with the project design loaded into the
FPGA and running a demo program that’s drawing graphics on the monitor.

request new pixel data via the
DMA controller. The rest are the
VGA video outputs. The red,
green, and blue intensities R1,
R0, G1, G0, B1, and B0 drive
resistor-based 2-bit D/A convert-
ers, providing up to 64 colors (4 ×
4 × 4). However, at this resolu-
tion, with 32 KB of RAM, you

can only support a monochrome (1-
bit/pixel) display. So, each pixel bit
drives all six outputs, drawing black
or white pixels.

To generate horizontal and vertical
syncs and a video blanking signal, you
need a 9-bit horizontal cycle counter
and a 10-bit vertical line counter.

After 288 clocks, it’s time to blank
the video. Assert horizontal sync after
308 clocks, deassert it after 353, and
reset the counter and re-enable video
after 381 clocks (one line).

In the vertical direction, the VGA
controller must blank video after 455
lines, assert vertical sync after 486
lines, deassert it after 488 lines, and
reset the counter, re-enable video, and
reset the video DMA address counter
after 528 lines.

The simplest way to build each
counter is with a Xilinx library binary
counter, such as a CC16RE. But be-
cause I had just about filled the
FPGA, and because they’re cool, I
designed a more compact 10-bit linear
feedback shift register (LFSR) counter.
This uses a 10-bit serial shift register
which has an input that is the XOR of
certain shift register output taps.

An n-bit LFSR repeats every 2n-1
cycles, but you can make an arbitrary
m-cycle counter by complementing
the LFSR input bit, thereby short-
circuiting the full sequence when a
particular bit pattern is recognized.
My LFSR counter design program can
be downloaded from the Circuit Cel-
lar web site.

Referring to Figure 7, note the
video controller contains two LFSR
counters, H and V. Each has four com-
parators to compare the LFSR bit
patterns to the count patterns output
by my program.

Each of the J-K flip-flops HENN,
NHSYNC, VEN, and NVSYNC are set
on reaching one counter value and
reset on reaching another.
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design using the Xilinx tools and
tested it on my XS40 board. Using a
parallel port output for CLK, I wrote
shell scripts to single-step the proces-
sor and observe PC7:1 on the LEDs.
Later, I ran the CPU at up to 20 MHz.

Starting from a core set of working
instructions, it was easy to test the
rest, one at a time. If something went
awry, I could do a binary search for
the problem, insert a stop: goto
stop;  breakpoint into my test,
recompile, and download. A real re-
mote debugger would be nice!

Armed with a working CPU, it is
easy to add and test new features, one
by one. I added double-cycled reads

from external
RAM, then
MEMCTRL, then
LED output regis-
ters. Writing text
messages to the
seven-segment LED
was a big mile-
stone. RAM writes
were next. And,
late in the project I
added DMA, the
video controller,
and interrupts.

I want to em-
phasize the impor-
tance of thorough
testing. You have
your work cut out
for you when prop-
erly testing a
pipelined processor
and an SoC.

This has been a
proof-of-concept
project, and I have

focused on design issues. To ship
something like this, you would need
to budget as much or more time for
validation as for the design and imple-
mentation.

The final system floorplan, as
placed on our 14 × 14 CLB FPGA, is
shown in Figure 3.

SERIES WRAP-UP
In this three-part series, I have

presented the complete design and
implementation of a real, full-fea-
tured, pipelined microprocessor and
an integrated System-on-a-Chip. I
designed a new instruction set, ported
a C compiler, and discussed how to

NHSYNC is asserted low during
clocks 308–353, and NVSYNC during
lines 486–488. HEN is the pipelined
horizontal video enable, and VEN is
the vertical video enable. When both
are true, you fetch and shift out video
data.

In the video datapath, each clock
shifts out two bits of video data. Ev-
ery eight clocks, WORD goes true,
and it requests a new 16-bit word of
video data from memory. REQ is
asserted, registering a pending DMA
transfer with the CPU.

Five or fewer clocks later, the CPU
performs the DMA load, asserting
ACK. The video data word is latched
in the PIXELS staging register. On the
eighth clock, this word is loaded into
the PMUX 8 × 2 parallel-load serial-
out shift register.

Two bits shift out of PMUX during
each clock, and feed a 2–1 mux that
drives the 1-bit pixel each half clock.

SYSTEM BRING-UP
After designing the CPU, I de-

signed a simple test-fixture using on-
chip ROM and ran my test programs
in the Foundation simulator.

After simulating test programs for
hundreds of cycles, I compiled the

Figure 4— The processor (P) issues requests to MEMCTRL, accessing instruction and data via the on-chip bus D15:0 or external SRAM.
Integrated peripherals provide parallel port I/O and on-chip RAM. The VGA controller fetches pixel data via DMA.

Tables 5 & 6 —The 12-MHz clock and 24-MHz pixel shift frequency determines the pixels per line and lines per
frame, as well as the horizontal and vertical counter values for sync and blanking events.

Port Description

PIX15:0 next 16-bit pixel word
REQ request DMA of next word
RESET reset DMA address counter
ACK DMA acknowledge input
CLK system clock
R1,R0 2-bit red intensity
G1,G0 2-bit green intensity
B1,B0 2-bit blue intensity
NHSYNC active-low horizontal sync
NVSYNC active-low vertical sync

Quantity Value

two-pixel clock 83.3 ns
one-pixel half-clock 41.7 ns
visible pixels/line 576
visible clocks/line 288
horizontal sync “on” clock 308
horizontal sync “off” clock 353
line total clocks 381
line time 31.8 ms
visible lines/frame 455
vertical sync “on” line 486
vertical sync “off” line 488
frame total lines 528
frame time 16.8 ms
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Figure 7— As you can see, the video controller contains two LFSR counters that each have four comparators for comparing the LFSR bit patterns to the count patterns that are
output by the program that I wrote.

Figure 6— The memory
controller consists of an
address decoder, a memory
transaction state machine,
and miscellaneous on-chip
bus and external RAM
control logic.
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SOFTWARE
You may download more informa-
tion, including specifications,
source code, schematics, and links
to related sites from the Circuit
Cellar web site.
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