
GPIB TUTORIAL

BACKGROUND

Instrumentation has always leveraged off widely used electronics technology to drive its
innovation. The jeweled movement of the clock was first used to build analog meters. The variable
capacitor, the variable resistor, and the vacuum tube from radios were used to pioneer the first
electronic instruments. Display technology was leveraged off the television for use in oscilloscopes
and analyzers.

Today, cost-effective and powerful desktop and notebook computers are paving the way for new
types of instruments --virtual instruments--. Virtual instruments are designed and built by the user
to match specific needs by leveraging off the power and low cost of PCs and workstations.

Software is the key to virtual instruments. Application software empowers the user with the tools
necessary to build virtual instruments and expand their functionality by providing connectivity to
the enormous capabilities of PCs, workstations, and their assortment of applications, boosting
performance, flexibility, reusability and reconfigurability while diminishing at the same time
development and maintenance costs.

FUNDAMENTALS OF VIRTUAL INSTRUMENTS

Tradtional Instruments Virtual Instruments

Vendor-defined User-defined

Function-specific, stand-alone with
limited connectivity

Application-oriented system with connectivity to
networks, peripherals, and applications

Hardware is the key Software is the key

Expensive Low-cost, reusable

Closed, fixed functionality Open, flexible functionality leveraging off familiar
computer technology

Slow turn on technology (5-10 year life
cycle)

Fast turn on technology (1-2 year life cycle)

Minimal economics of scale Maximum economics of scale

High development and maintenance
costs

Software minimizes development and maintenance costs

INTRODUCTION

In 1965, Hewlett-Packard designed the
Hewlett-Packard Interface Bus (HP-IB) to
connect their line of programmable instruments
to their computers. Because of its high transfer
rates (nominally 1 Mbytes/s), this interface bus
quickly gained popularity. It was later accepted
as IEEE Standard 488-1975, and has evolved to
ANSI/IEEE Standard 488.1-1987. Today, the
name General Purpose Interface Bus (GPIB) is
more widely used than HP-IB. ANSI/IEEE 488.2-1987 strengthened the original standard by

defining precisely how controllers and instruments communicate. Standard Commands for
Programmable Instruments (SCPI) took the command structures defined in IEEE 488.2 and created
a single, comprehensive programming command set that is used with any SCPI instrument. Figure
1 summarizes GPIB history.

TYPES OF GPIB MESSAGES

GPIB devices communicate with other GPIB devices by sending device-dependent messages and
interface messages through the interface system.

Device-dependent messages, often called data or data messages, contain device-specific
information, such as programming instructions, measurement results, machine status, and data
files.

Interface messages manage the bus. Usually called commands or command messages,
interface messages perform such functions as initializing the bus, addressing and
unaddressing devices, and setting device modes for remote or local programming.

The term "command" as used here should not be confused with some device instructions that are
also called commands. Such device-specific commands are actually data messages as far as the
GPIB interface system itself is concerned.

TALKERS, LISTENERS AND CONTROLLERS

GPIB Devices can be Talkers, Listeners, and/or Controllers. A Talker sends data messages to one
or more Listeners, which receive the data. The Controller manages the flow of information on the
GPIB by sending commands to all devices. A digital voltmeter, for example, is a Talker and is also
a Listener.

The GPIB is like an ordinary computer bus, except that a computer has its circuit cards
interconnected via a backplane - the GPIB has stand-alone devices interconnected by standard
cables.

The role of the GPIB Controller is comparable to the role of a computer CPU, but a better analogy
is to compare the Controller to the switching center of a city telephone system.

The switching center (Controller) monitors the communications network (GPIB). When the center
(Controller) notices that a party (device) wants to make a call (send a data message), it connects the
caller (Talker) to the receiver (Listener).

The Controller usually addresses (or enables) a Talker and a Listener before the Talker can send its
message to the Listener. After the message is transmitted, the Controller may address other Talkers
and Listeners.

Some GPIB configurations do not require a Controller. For example, a device that is always a
Talker, called a talk-only device, is connected to one or more listen-only devices.

A Controller is necessary when the active or addressed Talker or Listener must be changed. The
Controller function is usually handled by a computer.

A computer with the appropriate hardware and software could perform the roles of Talker/Listener

and Controller.

THE CONTROLLER-IN-CHARGE AND SYSTEM CONTROLLER

Although there can be multiple Controllers on the GPIB, at any time only one Controller is the
Controller-In-Charge (CIC). Active control can be passed from the current CIC to an idle
Controller. Only the System Controller can make itself the CIC.

GPIB SIGNALS AND LINES

The GPIB interface system consists of 16 signal lines and eight ground-return or shield-drain lines.
The 16 signal lines, discussed below, are grouped into data lines (eight), handshake lines (three),
and interface management lines (five) (see Figure 2).

GPIB Signals and Lines

Data Lines

The eight data lines, DIO1 through DIO8, carry both data and command messages. The state of the
Attention (ATN) line determines whether the information is data or commands. All commands and
most data use the 7-bit ASCII or ISO code set, in which case the eighth bit, DIO8, is either unused
or used for parity.

Handshake Lines

Three lines asynchronously control the transfer of message bytes between devices. The process is
called a 3-wire interlocked handshake. It guarantees that message bytes on the data lines are sent
and received without transmission error.

NRFD (not ready for data) - Indicates when a device is ready or not ready to receive a
message byte. The line is driven by all devices when receiving commands, by Listeners when
receiving data messages, and by the Talker when enabling the HS488 protocol.

NDAC (not data accepted) - Indicates when a device has or has not accepted a message byte.
The line is driven by all devices when receiving commands, and by Listeners when receiving
data messages.

DAV (data valid) - Tells when the signals on the data lines are stable (valid) and can be

accepted safely by devices. The Controller drives DAV when sending commands, and the
Talker drives DAV when sending data messages.

Interface Management Lines

Five lines manage the flow of information across the interface:

ATN (attention) - The Controller drives ATN true when it uses the data lines to send
commands, and drives ATN false when a Talker can send data messages.
IFC (interface clear) - The System Controller drives the IFC line to initialize the bus and
become CIC.
REN (remote enable) - The System Controller drives the REN line, which is used to place
devices in remote or local program mode.
SRQ (service request) - Any device can drive the SRQ line to asynchronously request service
from the Controller.
EOI (end or identify) - The EOI line has two purposes - The Talker uses the EOI line to mark
the end of a message string, and the Controller uses the EOI line to tell devices to identify
their response in a parallel poll.

PHYSICAL AND ELECTRICAL CHARACTERISTICS

Devices are usually connected with a shielded 24-conductor cable with both a plug and receptacle
connector at each end (see Figure 3). You can link devices in either a linear configuration (see
Figure 4), a star configuration (see Figure 5), or a combination of the two.

Linear Configuration Star Configuration

The standard connector is the Amphenol or Cinch Series 57 MICRORIBBON or AMP CHAMP
type. For special interconnect applications, an adapter cable with non-standard cable and/or
connectors is used.

DATA LINES Pin No.

DIO1 1

DIO2 2

DIO3 3

DIO4 4

DIO5 13

DIO6 14

DIO7 15

DIO8 16

MANAGEMENT LINES Pin No.

IFC 9

REN 17

ATN 11

SRQ 10

EOI 5

HANDSHAKE LINES Pin No.

DAV 6

NRFD 7

NDAC 8

GPIB Connector and Signal Assignment

The GPIB uses negative logic with standard TTL levels. When DAV is true, for example, it is a
TTL low level (<= 0.8 V), and when DAV is false, it is a TTL high level (>= 2.0 V).

CONFIGURATION REQUIREMENTS

To achieve the high data transfer rate for which the GPIB was designed, the physical distance
between devices and the number of devices on the bus are limited.

The following restrictions are typical for normal operation:

A maximum separation of 4 m between any two devices and an average separation of 2 m
over the entire bus
A maximum total cable length of 20 m
No more than 15 device loads connected to each bus, with no less than two-thirds powered on

For higher speed systems using the 3-wire IEEE 488.1 handshake (T1 delay = 350 ns), and HS488
systems, the following restrictions apply:

A maximum total cable length of 15 m with a device load per 1 m cable
All devices should be powered on
All devices should use 48 mA three-state drivers
Device capacitance on each GPIB signal should be less than 50 pF per device

IEEE 488.2 AND SCPI

The SCPI and IEEE 488.2 standards addressed the limitations and ambiguities of the original IEEE
488 standard. IEEE 488.2 makes it possible to design more compatible and productive test systems.
SCPI simplifies the programming task by defining a single comprehensive command set for
pro-grammable instrumentation, regardless of type or manufacturer. The scope of each of the IEEE
488, IEEE 488.2, and SCPI standards is shown in Figure 6.

Evolution of GPIB Instrumentation Standards

The ANSI/IEEE Standard 488-1975, now called IEEE 488.1, greatly simplified the interconnection
of programmable instrumentation by clearly defining mechanical, electrical, and hardware protocol
specifications. For the first time, instruments from different manufacturers were interconnected by a
standard cable. Although this standard went a long way towards improving the productivity of test
engineers, the standard did have a number of shortcomings. Specifically, IEEE 488.1 did not
address data formats, status reporting, message exchange protocol, common configuration
commands, or device-specific commands. As a result, each manufacturer implemented these items
differently, leaving the test system developer with a formidable task.

IEEE 488.2 enhanced and strengthened IEEE 488.1 by standardizing data formats, status reporting,
error handling, Controller functionality, and common commands to which all instruments must
respond in a defined manner. By standardizing these issues, IEEE 488.2 systems are much more
compatible and reliable. The IEEE 488.2 standard focuses mainly on the software protocol issues
and thus maintains compatibility with the hardware-oriented IEEE 488.1 standard.

SCPI built on the IEEE 488.2 standard and defined device-specific commands that standardize
programming instruments. SCPI systems are much easier to program and maintain. In many cases,
you can interchange or upgrade instruments without having to change the test program. The
combination of SCPI and IEEE 488.2 offers significant productivity gains, and finally, delivers as
sound a software standard as IEEE 488.1 did a hardware standard.

IEEE 488.2

IEEE 488.2-1987 encouraged a new level of growth and acceptance of the IEEE 488 bus or GPIB
by addressing problems that had arisen from the original IEEE 488 standard. IEEE 488.2 was
drafted on the premise that it stay compatible with the existing IEEE 488.1 standard. The overriding
concept used in the IEEE 488.2 specification for the communication between Controllers and
instruments is that of "precise talking" and "forgiving listening." In other words, IEEE 488.2
exactly defined how both IEEE 488.2 Controllers and IEEE 488.2 instruments talk so that a
completely IEEE 488.2-compatible system can be highly reliable and efficient. The standard also
required that IEEE 488.2 devices be able to work with existing IEEE 488.1 devices by accepting a
wide range of commands and data formats as a Listener. You obtain the true benefits of IEEE 488.2
when you have a completely IEEE 488.2-compatible system.

CONTROLLERS

Although IEEE 488.2 had less impact on Controllers than it did on instruments, there are several

requirements and optional improvements for Controllers that made an IEEE 488.2 Controller a
necessary component of test systems. IEEE 488.2 precisely defined the way IEEE 488.2 Controllers
send commands and data and added functionality. Because of these IEEE 488.2 Controller
requirements, instrument manufacturers can design more compatible and efficient instruments. The
benefits of this standardization for the test system developer are reduced development time and
cost, because it solves the problems caused by instrument incompatibilities, varying command
structures, and data formats.

Requirements of IEEE 488.2 Controllers

IEEE 488.2 defined a number of requirements for a Controller, including an exact set of IEEE
488.1 interface capabilities, such as pulsing the interface clear line for 100 µs, setting and detecting
EOI, setting/asserting the REN line, sensing the state and transition of the SRQ line, sensing the
state of NDAC, and timing out on any I/O transaction. Other key requirements for Controllers are
bus control sequences and bus protocols.

IEEE 488.2 Control Sequences

The IEEE 488.2 standard defined control sequences that specify the exact IEEE 488.1 messages
that are sent from the Controller as well as the ordering of multiple messages. IEEE 488.2 defined
15 required control sequences and four optional control sequences, as shown in Table 1.

Description Control Sequence Compliance

Send ATN-true commands SEND COMMAND Mandatory

Send address to send data SEND SETUP Mandatory

Send ATN-false data SEND DATA BYTES Mandatory

Send a program message SEND Mandatory

Send address to receive data RECEIVE SETUP Mandatory

Receive ATN-false data RECEIVE/RESPONSE MESSAGE Mandatory

Receive a response message RECEIVE Mandatory

Pulse IFC line SEND IFC Mandatory

Place device in DCAS DEVICE CLEAR Mandatory

Place devices in local state ENABLE LOCAL CONTROLS Mandatory

Place devices in remote state ENABLE REMOTE Mandatory

Place devices in remote with local lockout
state

SET RWLS Mandatory

Place devices in local lockout state SEND LLO Mandatory

Read IEEE-488.1 status byte READ STATUS BYTE Mandatory

Send group execution trigger (GET) messageTRIGGER Mandatory

Give control to another device PASS CONTROL Optional

Conduct a parallel poll PERFORM PARALLEL POLL Optional

Configure devices’ parallel poll responses PARALLEL POLL CONFIGURE Optional

Disable devices’ parallel poll capability PARALLEL POLL UNCONFIGUREOptional

IEEE 488.2 Required and Optional Control Sequences

The IEEE 488.2 control sequences describe the exact states of the GPIB and the ordering of
command messages for each of the defined operations. IEEE 488.2 control sequences remove the
ambiguity of the possible bus conditions, so instruments and Controllers are much more
compatible. By exactly defining the state of the bus and how devices should respond to specific
messages, IEEE 488.2 removes such system development problems.

IEEE 488.2 Protocols

Protocols are high-level routines that combine a number of control sequences to perform common
test system operations. IEEE 488.2 defines two required protocols and six optional protocols, as
shown in Table 2.

Keyword Name Compliance

RESET Reset System Mandatory

FINDRQS Find Device Requesting Service Optional

ALLSPOLL Serial Poll All Devices Mandatory

PASSCTL Pass Control Optional

REQUESTCTL Request Control Optional

FINDLSTN Find Listeners Optional

SETADD Set Address Optional, but requires FINDLSTN

TESTSYS Self-Test System Optional

IEEE 488.2 Controller Protocols

These protocols reduce development time because they combine several commands to execute the
most com-mon operations required by any test system. The RESET protocol ensures that the GPIB
has been initialized and all devices have been cleared and set to a known state. The ALLSPOLL
protocol serial polls each device and returns the status byte of each device. The PASSCTL and
REQUESTCTL protocols pass control of the bus between a number of different devices. The
TESTSYS protocol instructs each device to run its own self-tests and report back to the Controller
whether it has a problem or is ready for operation.

Perhaps the two most important protocols are FINDLSTN and FINDRQS. The FINDLSTN
protocol takes advantage of the IEEE 488.2 Controller capability of monitoring bus lines to locate
listening devices on the bus. The Controller implements the FINDLSTN protocol by issuing a
particular listen address and then monitoring the NDAC handshake line to determine if a device
exists at that address. The result of the FINDLSTN protocol is a list of addresses for all the located
devices. FINDLSTN is used at the start of an application program to ensure proper system
configuration and to provide a valid list of GPIB devices that can be used as the input parameter to
all other IEEE 488.2 protocols. The bus line monitoring capability of an IEEE 488.2 Controller is
also useful to detect and diagnose problems within a test system.

The FINDRQS protocol is an efficient mechanism for locating and polling devices that are
requesting service. It uses the IEEE 488.2 Controller capability of sensing the FALSE to TRUE
transition of the SRQ line. You prioritize the input list of devices so that the more critical devices
receive service first. If the application program can jump to this protocol immediately upon the

assertion of the SRQ line, you increase program efficiency and throughput.

IEEE 488.2 INSTRUMENTS

The IEEE 488.2 specifications for instruments can require major changes in the firmware and
possibly the hardware. However, IEEE 488.2 instruments are easier to program because they
respond to common commands and queries in a well defined manner using standard message
exchange protocols and data formats. The IEEE 488.2 message exchange protocol is the foundation
for the SCPI standard that makes test system programming even easier.

IEEE 488.2 defines a minimum set of IEEE 488.1 interface capabilities that an instrument must
have. All devices must be able to send and receive data, request service, and respond to a device
clear message. IEEE 488.2 defines precisely the format of commands sent to instruments and the
format and coding of responses sent by instruments.

All instruments must perform certain operations to communicate on the bus and report status.
Because these operations are common to all instruments, IEEE 488.2 defined the programming
commands used to execute these operations and the queries used to receive common status
information. These common commands and queries are shown in Table 3.

Mnemonic Group Description

*IDN? System Data Identification query

*RST Internal Operations Reset

*TST? Internal Operations Self-test query

*OPC Synchronization Operation complete

*OPC? Synchronization Opearation complete query

*WAI Synchronization Wait to complete

*CLS Status and Event Clear status

*ESE Status and Event Event status enable

*ESE? Status and Event Event status enable query

*ESR? Status and Event Event status register query

*SRE Status and Event Service request enable

*SRE? Status and Event Service request enable query

*STB? Status and Event Read status byte query

IEEE 488.2 Mandatory Common Commands

Because IEEE 488.2 standardizes status reporting, the Controller knows exactly how to obtain
status information from every instrument in the system. This status reporting model builds upon the
IEEE 488.1 status byte to provide more detailed status information. The status reporting model is
shown in Figure 7.

IEEE 488.2 Status Report Model

SCPI

On April 23, 1990, a group of instrument manufacturers announced the SCPI specification, which
defines a common command set for programming instruments. Before SCPI, each instrument
manufacturer developed its own command sets for its programmable instruments. This lack of
standardization forced test system developers to learn a number of different command sets and
instrument-specific parameters for the various instruments used in an application, leading to
programming complexities and resulting in unpredictable schedule delays and development costs.
By defining a standard programming command set, SCPI decreases development time and increases
the readability of test programs and the ability to interchange instruments.

SCPI is a complete, yet extendable, standard that unifies the software programming commands for
instruments. The first version of the standard was released in mid-1990. Today, the SCPI
Consortium continues to add commands and functionality to the SCPI standard. SCPI has its own
set of required common commands in addition to the mandatory IEEE 488.2 common commands
and queries. Although IEEE 488.2 is used as its basis, SCPI defines programming commands that
you can use with any type of hardware or communication link.

SCPI specifies standard rules for abbreviating command keywords and uses the IEEE 488.2
message exchange protocol rules to format commands and parameters. You may use command
keywords in their long form (MEASure) or their short form shown in capital letters (MEAS).

SCPI offers numerous advantages to the test engineer. One of these is that SCPI provides a
comprehensive set of programming functions covering all the major functions of an instrument.
This standard command set ensures a higher degree of instrument interchangeability and minimizes
the effort involved in designing new test systems. The SCPI command set is hierarchical, so adding

commands for more specific or newer functionality is easily accommodated.

The SCPI Instrument Model

As a means of achieving compatibility and categorizing command groups, SCPI defined a model of
a programmable instrument. This model, shown in Figure 8, applies to all the different types of
instrumentation.

The SCPI Instrument Model

All of the functional components of the instrument model may not apply to every instrument. For
example, an oscilloscope does not have the functionality defined by the signal generation block in
the SCPI model. SCPI defines hierarchical command sets to control specific functionality within
each of these functional components.

The signal routing component controls the connection of a signal to the instrument’s internal
functions; the measurement component converts the signal into a preprocessed form; and the signal
generation component converts internal data to real-world signals. The memory component stores
data inside the instrument. The format component converts the instrument data to a form that you
can transmit across a standard bus. The trigger component synchronizes instrument actions with
internal functions, external events, or other instruments.

The measurement function gives the highest level of compatibility between instruments because a
measurement is specified by signal parameters, not instrument functionality. In most cases, you can
exchange an instrument that makes a particular measurement with another instrument capable of
making the same measurement without changing the SCPI command.

The MEASurement component is subdivided into three distinct parts --INPut, SENSe, and
CALCulate--. The INPut component conditions the incoming signal before it is converted into data
by the SENSe block. INPut functions include filtering, biasing, and attenuation. The SENSe
component converts signals into internal data that you can manipulate. SENSe functions control
such parameters as range, resolution, gate time, and normal mode rejection. The CALCulate
component converts the acquired data into a more useful format for a particular application.
CALCulation functions include converting units, rise time, fall time, and frequency parameters.

The signal generation component converts data into output as physical signals. SCPI subdivides the
signal generation block into three function blocks --OUTPut, SOURce, and CALCulate--. The
OUTPut block conditions the outgoing signal after it is generated. OUTPut block functions include
filtering, biasing, and attenuation. The SOURce block generates a signal based on specified
characteristics and internal data. SOURce block functions specify such signal parameters as
amplitude modulation, power, current, voltage, and frequency. The CALCulate block converts

application data to account for signal generation anomalies such as correcting for external effects,
converting units, and changing domains.

Example SCPI Command

The following command programs a digital multimeter (DMM) to configure itself to make an AC
voltage measurement on a signal of 20 V with a 0.001 V resolution.

: MEASure:VOLTage:AC? 20, 0.001

The leading colon indicates a new command is coming
The keywords MEASure:VOLTage:AC instruct the DMM to take an AC voltage
measurement
The ? instructs the DMM to return its measurement to the computer/controller
The 20, 0.001 specifies the range (20 V) and resolution (.001 V) of the measurement

THE HIGH-SPEED GPIB HANDSHAKE PROTOCOL (HS488)

National Instruments has developed the patented high-speed GPIB handshake protocol (called
HS488) to increase the data transfer rate of a GPIB system. All devices involved in a data transfer
must be HS488 compliant to use the HS488 protocol, but when non-HS488 devices are involved,
the HS488 devices automatically use the standard IEEE 488.1 handshake to ensure compatibility.
HS488 is a superset of the IEEE 488 standards.

IEEE 488 HANDSHAKE

The standard IEEE 488.1 3-wire handshake (shown in Figure 9) requires the Listener to unassert
Not Ready for Data (NRFD), the Talker to assert the Data Valid (DAV) signal to indicate to the
Listener that a data byte is available, and for the Listener to unassert the Not Data Accepted
(NDAC) signal when it has accepted that byte. A byte cannot transfer in less than the time it takes
for the following events to occur:

NRFD to propagate to the Talker,
DAV signal to propagate to all Listeners,
the Listeners to accept the byte and assert NDAC,
the NDAC signal to propagate back to the Talker, and
the Talker to allow a settling time (T1) before asserting DAV again.

Normal IEEE 488.1 Handshake

HS488 HANDSHAKE

HS488 increases system throughput by removing propogation delays associated with the 3-wire
handshake. To enable the HS488 handshake, the Talker pulses the NRFD signal line after the
Controller addresses all Listeners. If the Listener is HS488 capable, then the transfer occurs using
the HS488 handshake (shown in Figure 10). Once HS488 is enabled, the Talker places a byte on the
GPIB DIO lines, waits for a preprogrammed settling time, asserts DAV, waits for a preprogrammed
hold time, unasserts DAV, and drives the next data byte on the DIO lines. The Listener keeps
NDAC unasserted and must accept the byte within the specified hold time. A byte must transfer in
the time set by the settling time and hold time, without waiting for any signals to propagate along
the GPIB cable.

HS488 Handshake

HS488 Data Transfer Flow Control

The Listener may assert NDAC to temporarily prevent more bytes from being transmitted, or assert
NRFD to force the Talker to use the 3-wire handshake. Through these methods, the Listener can
limit the average transfer rate. However, the Listener must have an input buffer that can accept
short bursts of data at the maximum rate, because by the time NDAC or NRFD propagates back to
the Talker, the Talker may have already sent another byte.

The required settling and hold times are user configurable, depending on the total length of cable
and number of devices in the system. Between two devices and 2 m of cable, HS488 can transfer
data up to 8 Mbytes/s. For a fully loaded system with 15 devices and 15 m of cable, HS488 transfer
rates can reach 1.5 Mbytes/s.

HS488 Controllers always use the standard IEEE 488.1 3-wire handshake to transfer GPIB
commands (bytes with Attention (ATN) asserted).

Reference Documents

For more information on the GPIB standards, refer to the following documents:

ANSI/IEEE 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation,
ANSI/IEEE 488.2-1992, IEEE Codes, Formats, Protocols, and Common Commands, and
Standard Commands for Programmable Instruments.
The latest SCPI Standards are published by the SCPI Consortium.

Project-specific references:

PCL-848A/B Multifunction IEEE-488 Interface Card -- User’s Manual
Advantech Co., Ltd., Apr. 1989
Philips PM5192 manuals
Fluke/Philips PM3365A manuals
AVCOM PSA-65A manuals
Fluke/Philips PM3585 manuals

Other information related to Automation/Instrumentation Protocols could be found in:

1. GPIB related materials:
Hewlett-Packard, Tutorial Description of the Hewlett-Packard Interface Bus
Hewlett-Packard, Nov. 1987

2. Fieldbus related materials:
FURNESS, Harry, Fieldbus Series, Part 1: Digital Communication Provides...
Control Engineering, 41:1, pp. 23-25
FURNESS, Harry, Fieldbus Series, Part 2: The Differences Start from the Bottom Up
Control Engineering, 41:3, pp. 75-77
CHATHA, Andrew, Fieldbus Series, Part 3: The Foundation for Field Control Systems
Control Engineering, 41:6, pp. 77-80
LASHER, Richard J., Fieldbus Series, Part 4: Fieldbus Advancements and Their
Implications
Control Engineering, 41:8, pp. 55-59
PIERSON, Lynda L., Fieldbus Series, Part 5: Broader Fieldbus Standards Will
Improve System Functionality
Control Engineering, 41:12, pp. 58-59
JOHNSON, Dick, Fieldbus Series, Part 6: The Future of Fieldbus at Milestone 1995
Control Engineering, 41:13, pp. 49-52

3. CAN --Controller Area Network--
4. MAP/TOP --Manufacturing Automation Protocol/ Office Protocol--

